
Under review as a conference paper at ICLR 2024

LONG-DISTANCE TARGETED POISONING ATTACKS ON
GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

GNNs are vulnerable to targeted poisoning in which an attacker manipulates the
graph to cause a target node to be mis-classified to a label chosen by the attacker.
However, most existing targeted attacks inject or modify nodes within the target
node’s k-hop neighborhood to poison a k-layer GNN model. In this paper, we
investigate the feasibility of long-distance attacks, i.e., attacks where the injected
nodes lie outside the target node’s k-hop neighborhood. We show such attacks
are feasible by developing a bilevel optimization-based approach, inspired by
meta-learning. While this principled approach can successfully attack small graphs,
scaling it to large graphs requires significant memory and computation resources, and
is thus impractical. Therefore, we develop a much less expensive, but approximate,
heuristic-based approach that can attack much larger graphs, albeit with lower attack
success rate. Our evaluation shows that long-distance targeted poisoning is effective
and difficult to detect by existing GNN defense mechanisms. To the best of our
knowledge, our work is the first to study long-distance targeted poisoning attacks.

1 Introduction

Target’s k-hop
neighborhood

 Target’s predicted label: y

 Attacker injected nodes
 Long distance attack points
 Target

label: y
label: y

Unlabeled

GNN training

Target

Unlabeled

Figure 1: Targeted poisoning attack via
long distance node injection.

Many recent papers have proposed attacks on GNNs that
allow an attacker to cause mis-predictions by strategically
modifying the graph structure (Zügner & Günnemann,
2019; Xu et al., 2019; Dai et al., 2018; Chen et al., 2018;
2020; Zang et al., 2020; Chang et al., 2020; Bojchevski
& Günnemann, 2019; Wang & Gong, 2019; Geisler et al.,
2021a; Mujkanovic et al., 2022; Wang et al., 2022), mod-
ifing the features of an existing node in the graph (Zügner
et al., 2018; Liu et al., 2019; Wu et al., 2019; Ma et al.,
2020), or injecting new nodes with carefully crafted fea-
tures (Sun et al., 2020; Jiang et al., 2022; Zou et al., 2021;
Tao et al., 2021; Chen et al., 2022; Ju et al., 2022; Wang
et al., 2020; 2018; Nguyen Thanh et al., 2023). Depend-
ing on when the adversarial perturbation occurs, these at-
tacks can be classified as poisoning (training time) attacks
or evasion (test time) attacks. Furthermore, depending
on whether the attacker aims to misclassify a specific node or degrade the overall prediction accuracy,
the attacks can be targeted (local) or untargeted (global) attacks. In this paper, we investigate targeted
poisoning on node classification GNNs, where an attacker’s goal is to flip a selected a target node’s
label to an attacker-chosen label.

Existing attacks of this type assume that attackers have great flexibility in how they modify the graph,
e.g., they can add edges between any chosen pairs of nodes (Zügner et al., 2018; Chang et al., 2020; Dai
et al., 2018; Chen et al., 2018; Xu et al., 2019; Zang et al., 2020; Geisler et al., 2021a; Wang & Gong,
2019; Bojchevski & Günnemann, 2019) or connect a new fake node directly to the target node (Wang
et al., 2020; Chen et al., 2022; Dai et al., 2023; Xi et al., 2021). However, changing nodes close to the
target is undesirable because it make attack detection easy: many existing tools (Ying et al., 2019;
Huang et al., 2022; Luo et al., 2020; Yuan et al., 2021; Duval & Malliaros, 2021) measure the influence
of nodes within a target’s k-hop neighborhood and attack nodes generally have high influence values.

1

Under review as a conference paper at ICLR 2024

In this paper, we consider a more practical but restricted scenario, where an attacker can inject new
nodes but can only connect them to nodes beyond a threshold distance from the target. In other words,
we seek attacks that, given a threshold k and target node vt, can insert (inject) new nodes or add edges
connecting injected nodes to existing nodes that lie outside vt’s k-hop neighborhood. We call such
attacks long-distance targeted poisoning attacks.

Inspired by meta learning (Bengio, 2000; Finn et al., 2017), we design a bilevel optimization-based
method to craft a long distance attack, called MetaLDT (aka Meta learning based Long Distance
Targeted poisoning). Like the previous application of meta learning to GNN poisoning (Zügner &
Günnemann, 2019), we treat the graph perturbation, which includes injected nodes’ features and their
connections to existing nodes, as a hyperparameter to learn. However, unlike (Zügner & Günnemann,
2019), we introduce several important constraints to the optimization to make the attack hard to detect.
These include constraints that prevent changes to the target’s k-hop neighborhood, that avoid noticeably
changing node degree distribution, and that maintain graph homophilly. Our evaluation shows that
MetaLDT achieves excellent poison success rates over regular GNNs (>84%) as well as robust versions
that have been fortified with state-of-the-art defenses. However, MetaLDT has high computation and
memory requirements, and thus cannot scale: we found that we could only use it with small graphs
with at most a few thousand nodes (e.g., Cora and Citeseer), and even in these cases an attack could
take a day or more. Thus, the attack cannot target most practical graphs.

To address this, we examine the graphs generated by MetaLDT to learn common patterns. We find
that in order to flip a target node’s label to y, MetaLDT’s optimization tries to make the target node’s
embedding—the last GNN layer’s output before the softmax classifier—“collide” with the embedding
of nodes labelled y. Based on this observation, we designe MimicLDT, a scalable heuristic attack that
mimics MetaLDT’s effect. MimicLDT attaches a few fake nodes to a small subset of existing nodes
(aka points of attack) with target label y and uses gradient-based optimization to craft the features of
the fake nodes so that the points of attack become close to the target node in the embedding space.
While less effective than MetaLDT, our evaluation shows that MimicLDT nevertheless achieves decent
poison success rate (>55%) and can scale to graphs with hundreds of thousands of nodes (e.g. arXiv).

In summary, we make the following contributions:

• We study a new type of targeted poisoning attack on GNNs that does not modify the target
node’s k-hop neighborhood. We call such an attack long distance poisoning.

• We propose two optimization-based method, MetaLDT and MimicLDT, to achieve targeted
poisoning by injecting fake nodes that lie beyond the target node’s k-hop neighborhood.
MetaLDT is based on the principled approach of meta learning but is too expensive to use
with graphs containing more than a few thousand nodes. MimicLDT builds upon the insights
discovered by MetaLDT to perform direct optimization without meta learning and can scale
to much larger graphs.

• We evaluate our attack on different graphs and defenses. To the best of our knowledge, we are
the first to show the existence and effectiveness of long distance targeted poisoning attacks.

2 Related work
We discuss related work on targeted attacks for GNN-based node classification. For a broader discussion
including untargeted attacks, attacks on tasks other than node classification as well as GNN defenses,
we refer readers to existing surveys (Jin et al., 2020a; Zheng et al., 2021).

Targeted attacks can occur during training time (poisoning attacks) or test time (evasion attacks).
For any given k-layer GNN model architecture, the target node’s label prediction is a function of (1)
model weights, (2) the input features of the target node itself, and (3) the input features of the target’s
k-hop neighbors. Thus, in order to manipulate the target’s label prediction, the attacker can try to
corrupt any of these three factors. Attacks of type (2), aka corrupting the target’s input features, is a
well-studied problem in non-graph domains (Goodfellow et al., 2015; Shafahi et al., 2018; Madry et al.,
2018) such as images, text, and time series, and can be straightforwardly extended to the graph setting.
Thus, existing GNN attacks, including both poisoning and evasion attacks, focus on the adversarial
manipulation of (3), aka the target’s k-hop neighborhood, achieved through adding/removing edges
(referred to as structure perturbation attacks), or adding fake nodes (referred to as injection attacks).
The manipulation of (3) can be further categorized into direct vs. indirect attacks depending on whether
the target’s direct or k-hop neighborhood is modified. There is a vast collection of attacks of type
(3); most perturb graph structure, e.g. NetAttack (Zügner et al., 2018), FGA (Chen et al., 2018),

2

Under review as a conference paper at ICLR 2024

MGA (Chen et al., 2020), PGD (Xu et al., 2019), DICE (Waniek et al., 2018), GUA (Zang et al., 2020),
RL-S2V (Dai et al., 2018), Bojchevski et al. (Bojchevski & Günnemann, 2019), GF-Attack (Chang
et al., 2020), GAFNC (Jiang et al., 2022), IG-JSMA (Wu et al., 2019), Wang et al. (Wang et al., 2022)
and PR-BCD/GR-BCD (Geisler et al., 2021a). Some also modify existing nodes’ labels or features,
e.g. (Liu et al., 2019; Zügner et al., 2018; Wu et al., 2019). Others inject fake nodes, e.g., Wang et
al. (Wang et al., 2018), TDGIA (Zou et al., 2021), AFGSM (Wang et al., 2020), G2A2C (Ju et al., 2022)
and G-NIA (Tao et al., 2021).

Our work differs from existing ones in that we aim to achieve targeted poisoning by changing the graph
G used to train the GNN model. The key advantage of this approach is that we can make the resulting
attack long distance, by completely avoiding any modification to the target’s k-hop neighborhood.
This is desirable for two reasons: one, it makes the attack difficult to detect, foiling analysis tools like
GNNExplainer (Ying et al., 2019) and others (Luo et al., 2020; Yu & Gao, 2022; Yuan et al., 2021;
Duval & Malliaros, 2021). Two, it makes the attack easier to launch since there are many more potential
attack points beyond the target’s k-hop neighborhood.

Recent work such as HAO (Chen et al., 2022) and ADIMA (Tao et al.) aim to make attacks hard to
detect; the former adds a homophily constraint and the latter uses a GAN-style framework to train a
discriminator to distinguish subgraphs that include fake nodes from those that don’t. Like HAO, our
attack also tries to preserve homophily. Existing attacks all assume that the attacker can add/remove
edges to any existing node. A recent proposal tries to make attacks more realistic by assuming that
the attacker can only use a subset of nodes as attack points (Ma et al., 2020). Our work can also be
extended to this setting by restricting the set of attack points.

Our attack assumes that the attacker knows the process used to train the model being attacked, this
information includes knowledge of what defenses are used. Prior work (Zügner et al., 2018; Zügner &
Günnemann, 2019) has made similar assumptions, and our approach is inspired by these proposals.

3 Background and Problem Definition
In this section, we define the terminology we use, formalize our setting, and state our assumptions
about the attacker’s capabilities. We use the standard terminology and notation for graphs and GNNs:

Graphs We use G=(V,E) to denote a graph with nodesV={v1,v2,..,vn} and edges E={e1,e2,..em},
use A∈{0,1}n×n to denote graph G’s adjacency matrix, and X∈Rn×d to denote the d-dimensional
feature matrix for each node v∈V .

GNN based node classification Our work focuses on node classification in the transductive learning
setting: our training data consists of a graph G, a subset of whose nodes are labeled, denoted as VL⊂V .
Given this training data, node classification aims to learn a function that can predict labels for unlabeled
nodes VU :=V\VL.

For node classification, the computation can be viewed as consisting of two parts: first, one uses a GNN
to compute an embedding for each node that represents the node’s features and neighborhood, and
second, one feeds this embedding to a classification layer to get a set of logits for label prediction. In
what follows, we use fθ to represent the GNN model with θ representing its weights, and we use the
term node embedding to represent the embedding computed by fθ.

3.1 Attack Model

Attacker’s goal We consider targeted label-flipping attacks, where the attacker selects a target node vt
and target label yt, and the attack aims to alter the graph used to train the GNN fθ so that it predicts
label yt for node vt.

Attacker’s knowledge We assume the attacker has access to the training data, including the original
graph G, node features, and labels, and also knows the training procedure (including any changes made
to the training to improve model robustness). Note that we do not assume knowledge of model weights,
but if available this can be used to further reduce the cost of MimicLDT.

Attacker’s capability We constrain the attacker to long-distance node injection attacks. This means
that the attacker cannot modify an existing node’s features, remove existing edges, or add edges that
connect two nodes that are already present in the graph. In addition, constraining to long-distance
attacks means the attacker can only add edges to nodes that are outside the target’s k-hop neighborhood.
The attacks we consider add (inject) one or more new nodes, and add edges connecting these injected

3

Under review as a conference paper at ICLR 2024

nodes to each other or to existing nodes that are outside the target’s k-hop neighborhood. Finally, we
constrain the number of nodes and edges that an attacker can add.

More formally, we define node injection attacks as follows: an attack that generates a poisoned graph

G′=(V ′,E ′) by injecting a set of malicious nodes Vinj as A′=

[
A Binj

BT
inj Oinj

]
, X′=

[
X

Xinj

]
, where

Xinj are the injected nodes features,Binj is the adjacency matrix between injected and existing nodes in
G. We refer to an existing node that connects to any injected node as an attack point. We limit the number
of injected nodes, and their degree, i.e., we require that |Vinj |≤△∈Z and 1≤deg(i)≤b∈Z,∀i∈Vinj
for some threshold△ and b.

We define long-distance node injection attacks as follows: a node injection attack where no attack
point is within the target node vt’s k-hop neighborhood. More formally, in a long distance attack on a
k-layer GNN, ∀va∈Va, d(va,vt)>k where Va is the set of existing-graph nodes connected to injected
nodes (aka attack points), and d(va,vt) is the path length from va to vt.
3.2 Problem Formulation
We start by formalizing attacks as an optimization problem, which we can solve using a meta-learning
inspired approach. GNN attacks can generally be formalized as:

min
G′

Latk(fθ∗(G′)) s.t. θ∗=argmin
θ

Ltrain(fθ(G′)). (1)

whereLtrain is the general loss function used when training model fθ, which we assume the attacker
knows. Therefore, our goal is to find a graph, G′, that minimizes the attacker’s lossLatk.

A targeted label-flipping attack requires incorporating the target node and desired label into the loss-
function. More precisely, we need a loss function that maximize the target node’s logit (i.e., the model’s
confidence score for a label) for the attacker-chosen label. Therefore, we useLatk=−MG′(vt)[yt],
whereMG′(vt)=fθ∗(vt;G′), which maximizes the probability that target node vt has label yt. Beyond
this, and similar to prior work (Chen et al., 2022), we want to ensure that the attack is stealthy and
injected nodes do not differ significantly from existing nodes. To do so, we incorporate a homophily
term inLatk that minimizes feature differences between an injected node and its neighbors. Our final
attacker loss function,Latk, is thus:

Latk=−MG′(vt)[yt]−βC(G′) (2)

C(G′)= 1

|Vinj |
∑

u∈Vinj

sim(ru,Xu), where ru=
∑

j∈N (u)

1√
dj
√
du

Xj (3)

where β is a hyperparameter that controls how important homophily is, sim(·) measures cosine
similarity,N (u) is the set of nodes neighboring node u, and du is the node degree. The homophily
formulation above is based on Chen et al. (2022).

4 The MetaLDT Attack via Optimization
We start by describing an optimization approach to solving the problem defined in the previous section.
Given information about how the model is trained as well as access to the original graph G, a target
node vt, and a target label yt, our optimization algorithm produces an attack graph G′. To do this, we
start with an initial attack graph G′0 and iteratively modify it to minimize the attacker’s loss function
Latk. Our iterative approach, inspired by meta-learning (Bengio, 2000; Zügner & Günnemann, 2019),
treats the attack graph’s edges and features as hyperparameters, which it optimizes.

At the start of the process, MetaLDT produces an initial graph G′0 by injecting ∆ new nodes into
the input graph G. These injected nodes have zeroed-out features, and no edges connecting them to
any other node. In each iteration i (i≥0), MetaLDT updates graph G′i and produces the graph G′i+1,
which the next iteration operates on. When producing G′i+1, we can either alter G′i’s adjacency matrix
(thus adding or removing edges) or feature matrix (thus changing node features), and MetaLDT uses
alternating minimization to update both. Specifically, this means that our iterations alternate between
changing the adjacency matrix and changing the feature matrix.

In each iteration i, we determine updates to the feature or adjacency matrix (as appropriate) using a
computed meta-gradient∇meta

G′
i

, which we compute by unrolling the model training loop for T epochs.
Formally:

∇meta
G′
i

=∇G′
i
Latk(fθT (G′i))

=∇fLatk(fθT (G′i))·
[
∇G′

i
fθT (G′i)+∇θT fθT (G′i)·∇G′

i
θT
] (4)

4

Under review as a conference paper at ICLR 2024

where the last term is recursively defined as∇G′
i
θt+1=∇G′

i
θt−α∇G′

i
∇θtLtrain(fθt(G′i)), and α is

the learning rate. Observe that computing this meta-gradient does not require access to the model used
by the attack’s victim, but requires running T training epochs, using the same training setting (i.e., the
same algorithm and approach) as used by the victim. In the rest of the paper, we use the term surrogate
model to refer to models trained by the attacker using the same process as the victim.

4.1 Changing Graph Structure
Iterations that alter the adjacency matrix assume that the node feature matrix is a constant. Consequently,
we can treat∇meta

G′
i

as the meta-gradient for the graph G′i’s adjacency matrix Ai, and can compute a
meta-score (Zügner & Günnemann, 2019), S(u,v)=∇meta

G′
i

[auv]·(−2·auv+1) for each pair-of-nodes
(u,v), where [auv] indicates that we indexed the value at position (u,v) in∇meta

G′
i

’s adjacency matrix.
Our approach is predicated on the observation that altering the adjacency matrix for the pair (u,v) with
the highest computed meta-score S(u,v) is likely to best decrease the attacker’s lossLatk.

However, our assumptions (§3) limit what adjacency matrix modifications the attacker can perform,
and so we only consider a subset of node pairs in this process. In particular, we impose the following
constraints on the node-pairs we consider: (a) either u or v must be an injected node; (b) neither u nor v
can be within vt’s k-hop neighborhood, thus ensuring that the attacks are long-distance; and (c) that an
injected node u has no more than one-edge connecting it to a node in the original graph G, a constraint
we add to avoid cases where the optimization spends all of its time optimizing a single injected node.
We evaluate the effect of the last optimization in Appendix C.3.

Thus, iterations that change the adjacency matrix compute a score S(u,v) for any pair of nodes (u,v)
that meet our constraints, identify the pair (um,vm) with the largest score, and then adds edge (um,vm)
if none exists or removes it if it already exists.

4.2 Changing Node Features
Similarly, iterations where node-features are changed assume that the adjacency matrix is a constant,
and therefore use∇meta

G′
i

as the meta-gradient for the feature matrix. However, in this case, we do not
use∇meta

G′
i

to compute a scoring function to select and then update node features for a single node.
Instead, we use∇meta

G′
i

to compute feature gradients which we use to update Gi’s feature matrix. Care
must be taken when doing so, since we assume attacker cannot change features for any nodes already
present in the input graph G (§3). We impose this constraint by zeroing out the corresponding elements
in∇meta

G′
i

’s feature matrix, and in what follows we refer to the resulting matrix as X∇G′
i
. Given this, we

compute: X̂G′
i+1

=XG′
i
−αX∇G′

i
where XG′

i
is G′i’s feature matrix, and α is the learning rate.

Empirically, we found that a single gradient update is often insufficient, so in practice each iteration
repeats this process q times (and we compute a new∇meta

G′
i

after each update).

5 The MimicLDT Attack via Embedding Collision
Our evaluation (§6) shows that MetaLDT is effective, but has such high memory and computational
requirements (Table 2) that it is impractical to use it with common graphs (e.g., the Arxiv dataset).
MimicLDT is a cheaper attack that uses heuristics to mimic MetaLDT’s behavior. Our heuristics derive
from the following observations about MetaLDT generated attack graphs (G′):

(a) MetaLDT iterations reduce the embedding space distance (as determined by the surrogate GNN)
between vt and existing nodes with the attacker’s chosen target label yt. We empirically demonstrate
this phenomenon in Figure 2 by using MetaLDT to attack a GCN that uses the Cora dataset. We give
more details about this setting in §6. The graph shows how the average L2-distance, in each iteration’s
surrogate model’s embedding space, between vt and nodes whose ground truth label is yt varies across
iterations, and we observe that the optimization minimizes this distance.
(b) Edges between existing and injected nodes in G′ tend to connect injected nodes to nodes labeled yt.
We hypothesize that this is in support of the previous observation: an injected node, that connects to a
node v labeled yt, can reduce the embedding distance between vt (the target) and v.
(c) The edges connecting pairs of injected nodes in G′ do not appear to have any noticeable patterns.
This leads us to hypothesize that it is sufficient to randomly connect injected nodes with each other.

Next, we describe how MimicLDT’s heuristics allow it to efficiently generate attack graphs. Similar to
MetaLDT, MimicLDT takes as input an initial graph G, a target node vt, a target label yt, and assumes

5

Under review as a conference paper at ICLR 2024

knowledge of how the attacked GNN has been trained. MimicLDT works as follows: (a) First, it
trains a surrogate model fθ using G, which is used for the entire optimization. Much of MimicLDT’s
performance improvement is because it only needs to train one surrogate model. (b) Next, MimicLDT
generates the structure of the attack graph G′ based on heuristicsc) Finally, it optimizes injected node
features in G′ to produce the final attack graph.

5.1 Determining Graph Structure

Similar to MetaLDT, MimicLDT generates an initial attack graph G′ from G. To construct G′ Mimi-
cLDT first selects a set of nodes, Va, in G whose label is yt, and who lie outside the target’s (i.e., vt’s)
k-hop neighborhood. We refer to the nodes Va as attack points, and a hyperparameter r determines
|Va|, the number of attack points chosen.1

0 10 20 30 40 50 60 70
Iterative Optimization Rounds

2.5

3.0

3.5

4.0

4.5

Lo
ss

 --
 L

2-
no

rm
 d

ist
an

ce
Figure 2: The embedding space dis-
tance between the target node and ex-
isting nodes whose ground-truth label is
the same as the attack’s target label, as
MetaLDT’s optimization progresses.

Next, for each attack point, va ∈ Va, MimicLDT injects
Φ nodes Vgv and connects them (directly or indirectly)
to va. To do so, MimicLDT iterates over possible edges
connecting nodes in the set Vgv ∪ {va} (i.e., edges that
either connect injected nodes to each other or to the attack
point), and add each edge to the graph with probability
p=0.5. Finally, it prunes any nodes in Vgv not reachable to
any va. Therefore, the final set of injected nodes may have
fewer than Φ nodes.

The final graph structured produced by MimicLDT thus
consists of all nodes and edges in G, and a set of injected
nodes that are connected to each other and attack points. In
the rest of this section, we useVi to refer to the set of injected
nodes in G′, and B(vi) to refer to the attack point whose
k-hop neighborhood contains the injected node vi∈Vi.
5.2 Determining Injected Node Features
The algorithm above generates a graph G′ that contains all
nodes in G and the set Vi of injected nodes. We do not assign labels to any of the injected nodes, and
formulate the problem of assigning feature vectors to these injected nodes as an optimization problem,
which we describe below.

Optimization formulation. Our feature optimization problem aims to meet two goals. First, based on
our observations form MetaLDT, we try to ensure that the final node embedding for any selected attack
point va∈Va, h(L)

va , is close to the target’s final node embedding h
(L)
vt . Second, similar to MetaLDT,

we try to ensure that an injected node vi’s feature vector Xvi is similar to that of its attack point B(vi).

Taken both optimization goals into account, our final optimization formulation is:
X∗

Vi
=argmin

XVi

Latk, (5)

Latk=−

(
1

|Va|
∑
va

Simf (h
(L)
va ,h(L)

vt)+β∗ 1

|Vi|
∑
vi

Simin(Xvi ,XB(vi))

)
(6)

In this formulation, XVi
represents a |Vi|×d dimensional matrix whose columns are features of nodes

in Vi; Simf is a metric function (specific to the GNN used) that measures similarity between a pair of
final node embeddings; and Simin is a metric function (specific to the input graph G) that measures
similarity between a pair of nodes’ feature vectors.

The second term of the optimization in Eq 5 aims to preserve homophilly, but differs from the
formulation used in MetaLDT, and prior work (Chen et al., 2022): rather than maximizing the node-
centric homophily score which aggregating with neighborhood for all injected nodes, this formulation
maximizes similarity between the attack points and injected nodes. We found that this change in
formulation improved our performance, and our empirical results (in Appendix A.3) show that it
does not noticeably impact the homophily scores for injected nodes. Similar to MetaLDT, the β
hyperparameter allows attackers to decide how much the generated attack prioritizes homophily.

1In the evaluation we use 0<r<1, and select r|VL| points (VL is the set of labeled training nodes in G).

6

Under review as a conference paper at ICLR 2024

Computing feature vectors. We use a stochastic gradient descent based optimizer to compute feature
vectors. Our evaluation uses GNNs to classify nodes in citation graphs, and consequently we use cosine
similarity to measure similarity between node features (i.e., Simin is cosine similarity), and we use
L2-norm to measure similarity between final node embeddings (Simf).

We considered various initial values for XVi , including using the input features of the neighboring
attack point (Xvi = XB(vi)), input features of a random neighbor, and the target’s input features.
Empirically, we found no noticeable difference between these options since the embedding space
distance as well as the feature space distance will converge to the similar place despite being initialized
differently. During the optimization, we use the surrogate model fθ to compute h(L)

va and h
(L)
vt .

6 Experiments
We run experiments on NVIDIA V100 GPUs, with 32GB memory limitation. Our evaluation aims to
answer the following questions:

• Can our attacks poison existing GNN models and their fortified versions?
• Compared to MetaLDT, how effective is MimicLDT and can it scale to larger graphs?
• How do long-distance attacks compare to existing short-distance ones?
• Are our attacks stealthy? e.g. do the attacks impact graph homophily?
• Can we launch effective end-to-end attacks?

Datasets We use four graph datasets: Cora (Yang et al., 2016), Citeseer (Yang et al., 2016),
PubMed (Yang et al., 2016) and Ogbn-arXiv (Hu et al., 2021). The largest graph, arXiv, is almost two
orders of magnitude larger than the smallest, Cora. Appendix§B provides details.

GNN models. We use three popular GNN models: GCN (Kipf & Welling, 2017), GraphSAGE (Hamil-
ton et al., 2017), GAT (Veličković et al., 2018). We use 3-layer models for most datasets, the exception
is Cora, which is a small graph and for which we use a 2-layer model. We provide detailed model
settings, the training process, and hyperparameters in Appendix§B. In addition to vanilla models,
we also evaluate our attacks against models that use the following 5 GNN defense mechanisms:
ProGNN (Jin et al., 2020b), GNNGuard (Zhang & Zitnik, 2020), Soft-Median-GDC (Geisler et al.,
2021b), Jaccard GCN (Wu et al., 2019) and SVD GCN (Entezari et al., 2020).

Comparison with short-distance attacks Existing attacks perturb the target’s k-hop neighborhood and
are thus short-distance attacks. We compare against three short-distance attacks: Nettack (Zügner et al.,
2018), FGA (Chen et al., 2018) and IG-FGSM (Wu et al., 2019). In all cases, we use a loss function
designed for our goal of changing a target node’s label to a specified one (details in Appendix. E.1).

6.1 Effectiveness of MetaLDT Attack
We evaluate MetaLDT on Cora. Table. 1 reports MetaLDT’s poison success rate for different GNN
models, both vanilla ones as well as the their fortified versions. The poison success rate is calculated
over 200 experiments, each with a randomly chosen target node and target poison label. We configure
∆=68, which limits the number of changes on the adjacency matrix. For each step of adjacency matrix
optimization, MetaLDT performs q=1000 optimization steps on injected nodes’ feature.

Table 1 shows that MetaLDT can achieve high attack success rate (84%∼96%) over vanilla GNN
models. When evaluating MetaLDT against robust models, we assume the attacker is aware of the
defensive mechanism used and adapt MetaLDT accordingly (Mujkanovic et al., 2022). However, doing
so comes at the cost of increased memory consumption and computational overhead. Hence, for some
robust models (GNNGuard, SoftMedianGDC, ProGNN), we stop MetaLDT’s inner-training loop early
before its convergence after 50 instead of the regular 200 epochs, in order to avoid OOM. From Table 1,
we can see that when MetaLDT’s inner training loops is allowed converge (JaccardGCN, SVDGCN),
its success rate remains high. However, stopping the inner training loop early comes at a significant
cost of poison success rate. It is crucial that MetaLDT adapts to the underlying GNN defense. We
report the results of nonadaptive MetaLDT in §C.5.

Comparing with short-distance attacks. Table 1 also shows the range of performance achieved
by existing short-distance modification attacks, including Nettack-direct (modifying the target’s
immediate neighbors), Nettack-indirect(modifying the target’s k-hop neighborhood), FGA and IG-
FGSM. Detailed results are in §F (Table 14). We set the short-distance attack budget to be 68 and leave
experiments with varying perturbation budgets in §E.2). From Table 1, we can see that short-distance
attacks can achieve higher success rate, often at 100%. However, short-distance attacks are susceptible

7

Under review as a conference paper at ICLR 2024

MetaLDT MimicLDT Short Distance

V
an

ill
a GCN 0.96 0.67 0.79—1.00

GraphSAGE 0.87 0.63 0.42—0.96
GAT 0.84 0.60 0.53—0.97

R
ob

us
t

GNNGuard (0.53) 0.70 0.94—1.00
SoftMedianGDC (0.58) 0.55 0.46—1.00
JaccardGCN 0.91 0.66 0.47—1.00
SVDGCN 0.83 0.74 0.18—1.00
ProGNN (0.55) 0.59 0.60—1.00

Table 1: Success rate of MetaLDT, MimicLDT and short-distance attacks (Nettack, FGA and IG-FGSM)
over Cora. Numbers in parentheses indicate cases where MetaLDT could not complete, and we instead
ran a variant where inner-training runs for 50 epochs. More detailed numbers are in Appendix§F.

Graph size MetaLDT MimicLDT

Dataset Nodes Edges Time(s) Mem. Time(s) Mem.

Cora 2708 5429 82198.92 2.91GB 43.17 1.38GB
Citeseer 3312 4536 82510.19 3.01GB 41.08 1.54GB
PubMed 19717 44338 — OOM 105.82 1.89GB
ArXiv 169343 1157799 — OOM 692.44 9.51GB

Table 2: Total running time (in seconds) and GPU memory cost of generating one poisoned graph for
various datasets on GCN model.

Vanilla Robust

GCN GraphSAGE GAT GNNGuard SoftMedianGDC JaccardGCN SVDGCN ProGNN

Citeseer 0.72 0.69 0.66 0.70 0.59 0.64 0.67 0.61
PubMed 0.71 0.69 0.69 0.70 0.56 0.67 0.60 0.57
ArXiv 0.74 0.73 0.70 0.64 0.59 0.63 0.62 0.58

Table 3: Poison success rate of MimicLDT. More detailed numbers are in Appendix§F

MetaLDT MimicLDT

Degree changes 0.0419±0.0055 0.0393±0.0021
Homophily changes 0.0142±0.0015 0.0205±0.0010

Table 4: Changes in the distribution of graph node degrees and homophiliy, measured using Earth
Mover’s Distance, for the Cora dataset. The values represent the average distance between each
poisoned graph and the original input. We report on other datasets in Appendix. D.2 and D.3.

to GNN analysis tools such as GNNExplainer (Ying et al., 2019). In §E.3, we show that GNNExplainer
could detect the short-distance attacks with reasonable accuracy (0.45∼0.85) and recall (0.32∼0.84).

MetaLDT is much more expensive than MimicLDT. MetaLDT requires a lot of compute and
memory resources due to its extensive unrolling process. Table. 2 compares the running time (on a
V100) and the memory cost of MetaLDT and MimicLDT for the GCN model over various datasets.
Not only MetaLDT is 3 orders-of-magnitude slower than MimicLDT, but it can only handle small
graphs (Cora, Citeseer) of several thousands nodes due to OOM. Thus, unless otherwise mentioned,
the rest of our evaluation uses MimicLDT and Arxiv, our largest dataset.

Ablation Study and more analysis. We perform extensive ablation study and leave its discussion to
the Appendix. In particular, we study the effects of hyperparameters (§C.4§ C.1), explore the design
rationale of the optimization process (§C.1) and optimization constraints (§C.3). Finally, in §C.2, we
show that there are benefits to optimizing the adjacency matrix. Nevertheless, MimicLDT’s heuristic
of randomly connecting to existing nodes labelled with the target label is fast although imperfect
alternative, reducing success rate to 79.5% from 96%.
6.2 Effectiveness of MimicLDT Attack
Because it is feasible, we run MimicLDT over a larger variety of datasets. Table. 3 shows MimicLDT’s
poison success rate over Citeseer, PubMed and arXiv. For comparison with MetaLDT, we show
MimicLDT’s Cora results in Table 1. We set the number of attack points to r∗|VL|, where VL is the

8

Under review as a conference paper at ICLR 2024

0.001%
1

0.01%
10

0.05%
50

0.1%
90

0.3%
273

0.5%
454

Fraction/number of attack points

0.0

0.2

0.4

0.6

0.8

1.0

Po
iso

n S
uc

ce
ss

 Ra
te MimicLDT

Figure 3: Poison success rate with varying num-
ber of attack points for GraphSAGE on arXiv.

Neighbors

Non-Neighbors
beta=1e-06

beta=0.1
beta=1

beta=5
beta=50

0.4

0.6

0.8

1.0

Co
sin

eS
im

ila
rit

y o
f N

od
es

 Pa
irs

Figure 4: Similarity between injected nodes (vary-
ing β), their attack points, and between neighbor-
ing and non-neighboring nodes for GraphSAGE
on arXiv.

set of labeled training nodes, and we use r=0.5% for arXiv and PubMed, and r=1% for Cora and
Citeseer (which are smaller). MimicLDT injects a maximum of ∆=Φ∗r|VL| nodes, and we use Φ=4
for all experiments. Due to time constraint, instead of training a surrogate model, our experiments
directly use the weights of models under attack. We have evaluated both ways over Cora and found they
result in similar success rates. As shown in Table. 3, MimicLDT can achieve decent poison success
rate, for vanilla models (66%∼74%) as well as robust models (56%∼70%).

Effect of varying the number of attack points: We study the effect of varying the number of attack
points. Fig.3 shows poison success rate as r varies (while keeping Φ fixed). Increasing r, and thus the
number of attack points, improves attack success rate. §D.1 studies the effects of varying Φ. The total
number of injected nodes is determined by both r and Φ.

Attack stealthiness: degree distribution: We examine whether poisoned graphs can preserve the
node degree distribution. We measure the changes to degree distribution using the Earth Mover’s
Distance (EMD) metric. The average distance between each poisoned graph with original clean graph
for Cora is 0.039±0.002. Statistics on other datasets can be found in § D.2. The attacks only cause
slight changes on the node degree distribution.

Attack stealthiness: homophily: The second term of MimicLDT’s loss function (Eq. 5) keeps injected
nodes similar to the attack points they attach to. It serves a similar goal as prior work Chen et al. (2022),
which is to ensure that injected nodes do not significantly impact graph homophily. The hyperparameter
β controls the importance of the second term. Figure 4 measures the similarity of neighboring and
non-neighboring nodes in the arXiv graph, and compare them to the similarity between injected nodes
and their attack points with varying β. Appendix§ D.3 gives the detailed setup. We can observe that the
larger the value of β, the more similar injected nodes appear to their attack points. As we note in §5, we
use feature vector similarity as a proxy for the standard node-centric homophily metric (Chen et al.,
2022). In §D.3, we show this does not affect the homophily results.

6.3 End-to-end attacks

The attacks generated by MetaLDT and MimicLDT inject fake nodes whose features lie in continuous
space. Thus, they are not end-to-end attacks for graphs with discrete features, such as citation graphs
whose raw node features are natural language texts. Thus, an end-to-end attack needs to inject nodes
with textual features. We extend our design to perform such an attack.

Suppose some language model such as SciBERT Beltagy et al. (2019) is used to encode a node’s raw
texts to an embedding vector in continuous space. Our extension trains a decoder that can generate
texts given an embedding vector, which corresponds to some fake node’s feature as computed by
MimicLDT (or MetaLDT). We provide more details on the design and evaluation of end-to-end attack
in Appendix§G and give example texts generated for the fake nodes (§G Fig 11).

7 Conclusion
Our work shows that GNNs are susceptible to, long-distance injection attacks, a type of attack that (to
the best of our knowledge) have not been investigated in the past. When compared to short-distance
attacks, where the attacker modifies the target’s neighborhood, long-distance attacks require injecting a
larger number of nodes. However, detecting these nodes is challenging, they lie outside the target’s
k-hop neighborhood and thus defender must consider the influence of all nodes in the graph.

9

Under review as a conference paper at ICLR 2024

References

Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific text. arXiv
1903.10676, 2019.

Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12(8):
1889–1900, 2000. doi: 10.1162/089976600300015187.

Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via graph
poisoning. In International Conference on Machine Learning (ICML), 2019.

Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Wenwu Zhu, and
Junzhou Huang. A restricted black-box adversarial framework towards attacking graph embedding
models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 3389–3396,
2020.

Jinyin Chen, Yangyang Wu, Xuanheng Xu, Yixian Chen, Haibin Zheng, and Qi Xuan. Fast gradient
attack on network embedding. arXiv preprint arXiv:1809.02797, 2018.

Jinyin Chen, Yixian Chen, Haibin Zheng, Shijing Shen, Shanqing Yu, Dan Zhang, and Qi Xuan. Mga:
momentum gradient attack on network. IEEE Transactions on Computational Social Systems, 8(1):
99–109, 2020.

Yongqiang Chen, Han Yang, Yonggang Zhang, Kaili Ma, Tongliang Liu, Bo Han, and James Cheng.
Understanding and improving graph injection attack by promoting unnoticeability. In International
Conference on Learning Representations (ICLR), 2022.

Enyan Dai, Minhua Lin, Xiang Zhang, and Suhang Wang. Unnoticeable backdoor attacks on graph
neural networks. 2023.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on
graph structured data. In International conference on machine learning (ICML), 2018.

Alexandre Duval and Fragkiskos D Malliaros. Graphsvx: Shapley value explanations for graph neural
networks. In Machine Learning and Knowledge Discovery in Databases. Research Track: European
Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part II 21, pp.
302–318. Springer, 2021.

Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E Papalexakis. All you
need is low (rank) defending against adversarial attacks on graphs. In Proceedings of the 13th
International Conference on Web Search and Data Mining, pp. 169–177, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning, 2017.

Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
Günnemann. Robustness of graph neural networks at scale. In Advances in Neural Information
Processing Systems, 2021a.

Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
Günnemann. Robustness of graph neural networks at scale. In Neural Information Processing
Systems (NeurIPS 2021), 2021b.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Neural Information Processing Systems (NIPS 2017), 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
2005.00687, 2021.

10

Under review as a conference paper at ICLR 2024

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. Graphlime: Local inter-
pretable model explanations for graph neural networks. IEEE Transactions on Knowledge and Data
Engineering, 2022.

Chao Jiang, Yi He, Richard Chapman, and Hongyi Wu. Camouflaged poisoning attack on graph
neural networks. In Proceedings of the 2022 International Conference on Multimedia Retrieval, pp.
451–461, 2022.

Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, and Jiliang Tang. Adversarial attacks and defenses on graphs:
A review and empirical study. CoRR, abs/2003.00653, 2020a.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Knowledge Discovery and Data Mining (KDD), 2020b.

Mingxuan Ju, Yujie Fan, Chuxu Zhang, and Yanfang Ye. Let graph be the go board: Gradient-
free node injection attack for graph neural networks via reinforcement learning. arXiv preprint
arXiv:2211.10782, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
2017.

Xuanqing Liu, Si Si, Xiaojin Zhu, Yang Li, and Cho-Jui Hsieh. A unified framework for data poisoning
attack to graph-based semi-supervised learning. 2019.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. Advances in neural information processing
systems, 33:19620–19631, 2020.

Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on graph
neural networks. In Advances in neural information processing systems (NeurIPS), 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

Felix Mujkanovic, Simon Geisler, Stephan Günnemann, and Aleksandar Bojchevski. Are defenses for
graph neural networks robust? In Advances in Neural Information Processing Systems 35 (NeurIPS
2022), 2022.

Toan Nguyen Thanh, Nguyen Duc Khang Quach, Thanh Tam Nguyen, Thanh Trung Huynh, Viet Hung
Vu, Phi Le Nguyen, Jun Jo, and Quoc Viet Hung Nguyen. Poisoning gnn-based recommender
systems with generative surrogate-based attacks. ACM Transactions on Information Systems, 41(3):
1–24, 2023.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras, and
Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks. Advances
in neural information processing systems, 31, 2018.

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar. Adversarial attacks
on graph neural networks via node injections: A hierarchical reinforcement learning approach. In
Proceedings of the Web Conference (WWW), 2020.

Shuchang Tao, Qi Cao, Huawei Shen, Yunfan Wu, Liang Hou, and Xueqi Cheng. Rethinking the
imperceptibility of node injection attack on graphs. arXiv 2208.01819.

Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, Yunfan Wu, and Xueqi Cheng. Single node
injection attack against graph neural networks. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 1794–1803, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

Binghui Wang and Neil Zhenqiang Gong. Attacking graph-based classification via manipulating
the graph structure. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019.

11

Under review as a conference paper at ICLR 2024

Binghui Wang, Youqi Li, and Pan Zhou. Bandits for structure perturbation-based black-box attacks to
graph neural networks with theoretical guarantees. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13379–13387, 2022.

Jihong Wang, Minnan Luo, Fnu Suya, Jundong Li, Zijiang Yang, and Qinghua Zheng. Scalable attack
on graph data by injecting vicious nodes. Data Mining and Knowledge Discovery, 34:1363–1389,
2020.

Xiaoyun Wang, Minhao Cheng, Joe Eaton, Cho-Jui Hsieh, and Felix Wu. Attack graph convolutional
networks by adding fake nodes. arXiv preprint arXiv:1810.10751, 2018.

M. Waniek, T.P. Michalak, M.J. Wooldridge, and T. Rahwan. Hiding individuals and communities in a
social network. Nature Human Behaviour, (2), 2018.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples on graph data: Deep insights into attack and defense. In International Joint Conference on
Artificial Intelligence, 2019.

Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph backdoor. In USENIX Security Symposium,
pp. 1523–1540, 2021.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin. Topology
attack and defense for graph neural networks: An optimization perspective. In International Joint
Conference on Artificial Intelligence, 2019.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with
graph embeddings. 2016.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer: A tool
for post-hoc explanation of graph neural networks. In Advances in neural Information Processing
Systems (NeurIPS), 2019.

Zhaoning Yu and Hongyang Gao. Motifexplainer: a motif-based graph neural network explainer. arXiv
preprint arXiv:2202.00519, 2022.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural networks
via subgraph explorations. In International Conference on Machine Learning, pp. 12241–12252.
PMLR, 2021.

Xiao Zang, Yi Xie, Jie Chen, and Bo Yuan. Graph universal adversarial attacks: A few bad actors ruin
graph learning models. 2020.

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial
attacks. Advances in neural information processing systems, 33:9263–9275, 2020.

Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Da Yin, Jiarong Xu, Yang Yang, and Jie Tang. Graph
robustness benchmark: Benchmarking the adversarial robustness of graph machine learning. CoRR,
abs/2111.04314, 2021.

Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang Lu, and Jie Tang.
Tdgia: Effective injection attacks on graph neural networks. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2461–2471, 2021.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In ACM SIGKDD international conference on knowledge discovery & data mining,
2018.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations (ICLR), 2019.

12

Under review as a conference paper at ICLR 2024

A Design details of MetaLDT and MimicLDT

In this section, we provide pseudocode for our proposed attacks and give a more detailed explanation
of MimicLDT.

A.1 Pseudocode of MetaLDT

MetaLDT performs its alternating optimization in rounds (Alg. 1). Within each round, it does one
optimization step of the adjacency matrix optimization (Alg. 2) based on meta-gradient with constraints,
and q optimization steps of the features matrix optimization (Alg. 3) based on the gradient descent
across all injected nodes’ all feature dimensions.

Algorithm 1 MetaLDT

1: Input: graph G = (A,X), labels for labeled nodes CL, injected nodes Vinj , target node vt,
optimization rounds I , feature optimization iterations q, inner-train epochs T .

2: Initialize: G′=(A′,X′)← inject ∆ nodes into G; X′
inj=0⃗; no linkages between Vinj to nodes in

G
3: for rounds∈{1,2,...,I} do
4: Adjacency_Matrix_Optimization (G′,CL,vt,yt,T)
5: for iter∈{1,2,...,q} do
6: Feature_Matrix_Optimization (G′,CL,vt,yt,T)

return G′=(A′,X′)

Algorithm 2 Adjacency_Matrix_Optimization (G′,CL,vt,yt,T)

1: Define: Nk(vt): k-neighboring nodes of the target node vt; FLAG=True;
2: for t∈{1,2,...,T} do
3: θt+1←step(θt,∇θtLtrain(fθt(VL;G′);CL))

4: ∇meta
A′ ←∇A′Lh

atk(fθT (vt;G′);yt)
5: S(u,v)=∇meta

au,v
(−2·au,v+1)

6: // Constraints on edges
7: S[V\Vinj , V\Vinj]=−∞
8: S[Vinj ,Nk(vt)]=S[Nk(vt), Vinj]=−∞
9: while FLAG == True do

10: ê←argmaxS(u,v) ▷ ê=(u,v),u∈Vinj
11: if v∈V then ▷ v is an original node
12: if exist e=(u,w)∈E ′,w∈V then
13: ê←argmax[S(u,v)\ê]
14: else FLAG=False
15: else FLAG=False
16: A′← insert or remove ê to or from A

Algorithm 3 Feature_Matrix_Optimization (G′,CL,vt,yt,T)

1: for t∈{1,2,...,T} do
2: θt+1←step(θt,∇θtLtrain(fθt(VL;G′);CL))

3: ∇meta
X′ ←∇X′Lh

atk(fθT (vt;G′);yt)
4: X′

inj=X′
inj−α∇meta

X′
inj

5: X′←updateX′
inj , other nodes remain unchanged

A.2 Pseudocode of MimicLDT

As described in Sec.5, to generate a poison graph G′, we first inject fake nodes in G (Alg. 4) and then
optimize the injected nodes’ features using the gradient method (Alg. 5).

13

Under review as a conference paper at ICLR 2024

Algorithm 4 Inject Nodes – MimicLDT

1: procedure INJECTNODES(G,Vs,Φ) ▷ G is the benign graph, Vs is the list of attack points, Φ is the
upper bound of injected nodes for each attack point

2: Let G′=G
3: for vs∈Vs do
4: Vsubg_s={v1,v2,...,vΦ} ▷ First inject Φ nodes
5: G′=G′∪Vsubg_s
6: for each possible linkage (vi,vj),vi,vj ∈Vsubg_s do
7: add edge e(vi,vj) to G′ with probability p ▷ p=0.5

8: while True do ▷ randomly generate linkage to the attack point (at least one)
9: link_to_ap = random.binomial(1, p, ∆) ▷ p=0.5

10: if sum(link_to_ap) >0 then
11: Break
12: for i in 1,...,∆ do
13: add edge e(vs,vi) to G′ if link_to_ap[i] == 1
14: for vi∈Vsubg_s do
15: if deg(vi) == 0 then
16: remove vi from G′

return G′

Algorithm 5 Injected Nodes Feature Optimization – MimicLDT

1: Input: graph G = (A,X), injected nodes Vi, attack points Vs, target node Vt, pretrained GNN
model fθ(·), loss Latk

2: ▷ For each inject node vi, B(vi) represents its associated attack point
3: Parameter: β, MaxIters, learning rate α
4: Initialize: Xvi =XB(vi),∀vi∈Vi
5: Define: Latk=−

(
1

|Vs|
∑

vs∈Vs
Simf

(
h
(L)
vs ,h

(L)
vt

)
+β∗ 1

|Vi|
∑

vi∈Vi
Simin

(
Xvi ,XB(vi)

))
6: for t∈{1,2,...,MaxIters} do
7: h

(L)
vs =fθ

(
vs;G(t−1)

)
, h(L)

vt =fθ
(
vt;G(t−1)

)
▷ G(t−1)=

(
A,X(t−1)

)
8: X

(t)
Vi

=X
(t−1)
Vi

−α∇XVi
Latk

(
X

(t−1)
Vi

)
▷ For vj /∈Vi,X(t)

vj =X
(t−1)
vj

return G∗=(A,X∗)

A.3 More Detailed Explanation for MimicLDT Attack

In MimicLDT attack, our feature optimization problem takes Eq.5 as the optimization formulation and
uses a stochastic gradient descent based optimizer to compute feature vectors.

Injected nodes influence the attack point’s embedding through message passing.: The first term
of the loss function aims to make a attack point’s embedding close to the target node’s embedding.
The optimization can only change features for injected nodes, because we assume that the attacker
cannot modify others. But injected nodes are in the attack point’s k-hop neighborhood, and can thus
influence the attack point’s final embedding due to GNN message passing. More formally, given a
pre-trained GNN classifier fθ and graph G′, the embedding of nodes are h(L)

vi =fθ(vi;G′),∀vi∈V(G′).
Our goal is to ensure that the target node’s embedding vt, hvt =fθ(vt;G′), is close to the attack point
vs’s embedding hvs =fθ(vs;G′). Concretely, if we consider a 2-layer GCN model, and attack point vs,
we compute hvs as:

hvs =σ

 ∑
j∈Nvs

1

cvs,j
σ

 ∑
m∈Nj

1

cj,m
h(0)
vs θ

(0)

θ(1)

 (7)

where cj,m=
√
d̂j d̂m, d̂j =1+deg(j). When injected nodes are within the 2-hop neighborhood of

the attack point vs, they will pass their information to their neighbors and finally the attack point to
influence the hvs .

14

Under review as a conference paper at ICLR 2024

Dataset Nodes(|V |) Edges(|E|) Classes(|Y |) Labeled nodes

Ogbn-arXiv 169343 1157799 40 90941
SciBERT-embed-arXiv 169343 1157799 40 90941
Cora 2708 5429 7 1708
PubMed 19717 44338 3 18217
Citeseer 3312 4536 6 1812

Table 5: Dataset statistics.

GNN Dropout Weight Decay Inner-train-epochs Others

GCN 0.5 0.0005 200
GraphSAGE 0.5 0.0005 200
GAT 0.6 0.0005 200

GNNGuard 0.5 0.0005 50 ϵ=1e−6
SoftMedianGDC 0.5 0.0005 50 k=64, α=0.15, T =1.0
JaccardGCN 0.5 0.0005 200 ϵ=0.01
SVDGCN 0.5 0.0005 200 Rank=50
ProGNN 0.5 0.0005 50 α=0.1, β=10.0, γ=1.0, λ_=0, ϕ=0, lradj=0.01

Table 6: Hyperparameters for MetaLDT.

Attack stealthiness.: The second term of equation 5 tries to ensure that injected nodes are similar
to other nodes in their neighborhood. We use feature vector similarity Simin as a proxy for ho-
mophily Chen et al. (2022), though we also used node-centric homophily Chen et al. (2022) in §6. To
formulate in detail:

We use the following CosineSimilarity formulation:

Simin=
Xvi ·XB(vi)

||Xvi ||2||XB(vi)||2
(8)

We also did evaluation by using the following node-centric homophily formulation:

Simin=
1

|Vi|
∑
vi

sim(
∑

j∈Nvi

1√
dj
√
dvi

Xj ,Xvi) (9)

where sim(·) here is the CosineSimilarity and dj represents the degree of node j.

Our empirical evaluation shows that both similarity metrics perform similarly.

B Details of experimental setup

Dataset statistics: Table. 5 shows detailed statistics for the datasets used in the evaluation.

Model settings: By default, all GNNs used in the experiments have 3 layers (except 2 layers GNN
models for Cora), a hidden dimension of 16 for Cora, Citeseer, PubMed, and a hidden dimension of
256 for the ArXiv dataset. We adopt dropout with dropout rate of 0.5 between each layer (i.e., 0.6 for
GAT model). We use 5e−4 weight decay for models except the training for ArXiv graph. By default,
we set the maximum GNN models training epochs as 1000 and do the early stopping of 100 epochs by
examining the validation accuracy.

Hyperparameter settings: The hyperparameters for MetaLDT and MimicLDT are shown in Table 6
and Table 7), respectively.

C Additional evaluations on MetaLDT

C.1 Alternating vs. combined optimization of adj. matrix and node feature

Apart from adding constraints to enforce long-distance, a key difference of MetaLDT over existing
meta-learning based GNN attack (Zügner & Günnemann, 2019) is that MetaLDT performs alternating

15

Under review as a conference paper at ICLR 2024

GNN Dropout Weight Decay LR Max epochs Patience Others

GCN 0.5 0.0005 0.01 1000 100
GraphSAGE 0.5 0.0005 0.01 1000 100
GAT 0.6 0.0005 0.01 1000 100

GNNGuard 0.5 0.0005 0.01 1000 50 ϵ=1e−2
SoftMedianGDC 0.5 0.0005 0.01 1000 50 k=64, α=0.15, T =1.0
JaccardGCN 0.5 0.0005 0.01 1000 50 ϵ=0.01
SVDGCN 0.5 0.0005 0.01 1000 50 Rank=2000 (ArXiv) and 50 (others)
ProGNN 0.5 0.0005 0.01 1000 50 α=5e−4, β=1.5, γ=1.0, λ_=0, ϕ=0, lradj=0.01

Table 7: Hyperparameters for MimicLDT.

q 1 10 1000
Poison Success Rate 40.5% 52% 96%

Table 8: Poison success rate with varying q for GCN over Cora. I=68.

optimization of the adjacent matrix and node features as opposed to combining both in one step. We also
tried the combined optimization used in (Zügner & Günnemann, 2019) and achieved poison success
rate of 65.5% for GCN on Cora, which is significantly less than 96% achieved by the alternating
optimization approach. We find that the combined optimization is heavily biased towards modifying
the adjacency matrix as opposed to node feature, as the gain from changing a node feature dimension is
much smaller than that of adding/deleting an edge.

C.2 Benefits of optimizing the adjacency matrix

Compared to MetaLDT, our faster attack MimicLDT does not optimize the connections between
injected and existing nodes but simply connects injected nodes to each other and to randomly chosen
attack points with the target label. To understand the additional benefits of optimizing the adjacency
matrix, we run MetaLDT over a fixed adjacency matrix like that used by MimicLDT. MetaLDT is only
allowed to optimize the fake nodes’ features, like MimicLDT. This feature-only MetaLDT achieves
poison success rate of 79.5% for GCN over Cora, compared to 96% achieved by the full MetaLDT.
However, if we are to connect fake nodes to attack points with random labels instead of target labels,
the poison success rate drops dramatically to 22%. This shows that MimicLDT’s heuristic of forming
connections is a good, albeit still imperfect, strategy.

C.3 Importance of constraining edges between injected and existing nodes

Apart from constraining each injected nodes to only connect to existing nodes outside of the target’s
k-hop neighborhood, MetaLDT also constrains each injected node to connect to at most one existing
node. We run experiments without this constraint. Not only the resulting poison success rate is worse
(71%), the generated poisoned graphs tend to connect only a very small number of fake nodes (i.e,≤3)
each of which have a large number of connections with different existing nodes. Thus, due to their high
degree, the injected fake nodes are hardly inconspicuous.

C.4 Effects of hyperparameters

We evaluate the effects of q and I . Hyperparameter q refers to the number of optimization steps on node
features for each each optimization step of the adjacency matrix. Hyperparameter I refers to the total
number of rounds where each round takes one optimization step on adjacency matrix and q steps on
node feature. Table. 8 shows the effects of varying q while keeping I=68 unchanged. As we can see,
the success rate improves with larger q. We believe this is because larger q allows feature optimization
to converge better for each given adjacency matrix change. By default, our experiments use q=1000.

Increasing the rounds of optimization could make MetaLDT convergence to a higher poison success
rate at the cost of extra running time. As shown in Figure. 5, MetaLDT’s optimization is quite efficient:
at I=68, the poison success rate has mostly converged. Since the number of optimization rounds must
match or exceed the number of allowed adjacency matrix modification (I ≥∆=68), I =68 is the
smallest sensible I .

16

Under review as a conference paper at ICLR 2024

0 17 34 51 68
Number of Optimization Rounds

0.2

0.4

0.6

0.8

1.0

Po
iso

n
Su

cc
es

s R
at

e
GCN GraphSAGE

Figure 5: Poison success rate as the rounds of optimization increases.

Vanilla Robust

GCN GraphSAGE GAT GNNGuard SoftMedianGDC JaccardGCN SVDGCN ProGNN

MetaLDT
(non-adaptive) 0.96 0.76 0.51 0.19 0.30 0.72 0.14 0.31

MetaLDT-
Adaptive. 0.96 0.87 0.84 OOM OOM 0.91 0.83 OOM

MetaLDT-
Adaptive (ET) 0.69 0.73 0.68 0.53 0.58 0.86 0.62 0.55

Table 9: Poison success rate of MetaLDT on Cora. In the adaptive setting, MetaLDT’s inner training
loops takes into account the GNN defense used, and vice versa. To handle OOM cases, we also evaluate
MetaLDT in a setting with fewer inner training epochs (50) instead of the default (200). This setting is
referred to as (ET, early termination).

Dataset Cora ArXiv PubMed Citeseer

EMD (degree) 0.0393±0.0021 0.1189±0.0007 0.0550±0.0008 0.0186±0.0021

Table 10: The average graph degree distribution changes for different datasets according to the EMD
metric.

C.5 Importance of adapting MetaLDT to GNN defenses

In Section 6.1 (Table 1), we show MetaLDT’s performance when its inner training adapts to the GNN
defense mechanisms used. The implementation of the adaption follows the work (Mujkanovic et al.,
2022). We also experimented with non-adaptive MetaLDT its surrogate model is the vanilla GCN, no
matter what defense mechanism is. As shown in Table. 9, non-adaptive MetaLDT fares much worse
than MetaLDT, e.g. lowering success rate to 14% from 62% for SVD. Our finding is consistent with
that reported by (Mujkanovic et al., 2022).

D Additional evaluations on MimicLDT

D.1 Effect of Φ

We evaluate how the value ofΦ, which determines the number of nodes injected per attack point, affects
poison success rate. We show the results in Figure 6 show the poison success rate with varying Φ for
GraphSAGE over arXiv. We observe that the success rate increases as the value of Φ increases, but the
additional benefit is small beyond Φ=4, which is our default value.

D.2 More on attack graph’s node degree distribution

Table. 10 shows the node degree distribution change as a result of the MimicLDT attack for different
datasets. The change is measured in the Earth Mover’s Distance (EMD) metric.

17

Under review as a conference paper at ICLR 2024

1 2 3 4 5
Number (upper bound) of injected nodes for each attack point

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Figure 6: Attack success rate of varying Φ, which is the upper bound number of injected nodes for each
attack point. keep other settings and hyperparameters to be the same.

Clean Mimic-LDT Mimic-LDT+Homo

0.4

0.6

0.8

1.0

Ho
mo

ph
ily

Dis
trib

uti
on 0.90938 0.90998 0.91007

Figure 7: Homophily distribution for clean and poisoned graph over arXiv. MimicLDT-homo refers to a
variant of MimicLDT that uses the node-centric homophily metric for its loss function.

Dataset Cora ArXiv PubMed Citeseer

EMD (homophily) 0.0205±0.0010 0.0008±0.0003 0.0123±0.0004 0.0164±0.0014

Table 11: The average graph homophily distribution changes for different datasets according to the
EMD metric.

D.3 More on attack graph homophily

In MimicLDT, we use feature vector similarity as a proxy for homophily. We also evaluate a variant of
MimicLDT, called MimicLDT-homo, that uses the original node homophily metric (Chen et al., 2022)
in the loss function. Figure 7 shows that both MimicLDT and MimicLDT-homo can preserve graph
homophily well.

We additionally measure changes in node homophily distribution after the attack using the EMD metric
for all datasets, shown in Table 11. As can be seen, the attacks only result in slight changes on graph
homophily distribution.

E Comparison to short-distance baselines

We compare against three existing short-distance attacks in the targeted poisoning setting: Net-
tack Zügner et al. (2018), FGA Chen et al. (2018) and IG-FGSM Wu et al. (2019).

E.1 Experiment settings

We use the implementation from DeepRobust’s2, but modify the loss function so that the attacker’s goal
is the same as ours, which is to flip the target node’s label to a specific label of the attacker’s choosing
instead of any arbitrary incorrect label.

2Open-sourced DeepRobust library: https://github.com/DSE-MSU/DeepRobust

18

Under review as a conference paper at ICLR 2024

Mimic-LDT Direct attacks Indirect attacks

Dataset Avg. Degree r perturbations perturbations influencers

Cora 3.84 0.01 34 34 10
ArXiv 13.67 0.005 N/A N/A N/A

PubMed 4.50 0.01 182 182 20
Citeseer 2.61 0.005 36 36 10

Table 12: Hyperparameter setups for baseline attacks. Direct attacks includes Nettack-direct, FGA and
IG-FGSM; Indirect attack includes Nettack-indirect.

The baselines are modification attacks, aka they can either perturb the graph structure or existing nodes’
features. By contrast, MetaLDT and MimicLDT are injection attacks. Thus, it is impossible to directly
compare them. Therefore, to make these baseline attacks somewhat comparable to ours, we limit the
existing attacks to perturb the graph structure only. From a practical perspective, it is much harder (or
even impossible) for an attacker to modify an existing node’s features than to create a link to it.

Baseline attacks setups.: In order to compare with MimicLDT attack, we did experiments on baseline
attacks (i.e., Nettack, FGA, IG-FGSM) according to the Table. 12. Because for each graph in MimicLDT
attack, in expectation, the new edges created to link with the real nodes is p∗∆=p∗Φ∗r|VL|. In our
experiment,Φ=4, p=0.5, therefore the average newly created edges is 2r|VL|. Thus, correspondingly,
we allow the number of perturbations in each baseline attack to be 2r|VL| (i.e., r=1% in Cora and
Citeseer; 0.5% for arXiv and PubMed). As for the indirect attack (i.e., Nettack-indirect), the number of
influencers (i.e., the attack perturbs the edges that connect to up to how many of the target’s neighbors)
should be at least greater than average degree. As mentioned in (Zügner et al., 2018), increasing
the number of influencers will greatly increase the running time for attacks. We set the number of
influencers to be 10 for Cora and Citeseer, and 20 for PubMed.

E.2 Comparing to baselines with varying edge perturbation budgets

Here, we show a comparison by varying the edge perturbation budgets in baseline attacks and Mimi-
cLDT attack for Cora dataset and GCN model. We used three settings (i.e., add one more setting) for
Nettack here: direct where the target node’s edges are perturbed; indirect with 2 influencers, where the
attack perturbs the edges that connect to up to 2 of the target’s direct neighbors; and indirect with 10
(which is more than Cora’s average node degree) influencers.

Figure 8 shows baseline attacks’ poison success rate as we vary their edge perturbation budget, while
Figure 9 shows MimicLDT’s success rate as we vary the number of edges between attack points and
injected nodes. As we probabilistically connect fake nodes to their associated attack points, the number
of edges between the two, as shown as the x-axis in Figure 9, is in expectation. We can see that all
baseline attacks, especially direct attacks (Nettack-direct, FGA, IG-FGSM), are much more efficient
than our attack in terms of the number of edge budget required. Indirect (aka influence) attacks are
much less efficient than direct ones, but they can still be more efficient than our attack under some
settings (e.g., Nettack indirect with 10 influencers when budget is 17). However, we note that an
indirect attack is not a long-distance attack, since it must modify the target’s neighbors. This shows
that long-distance attacks, which cannot change the target neighborhood, carry an efficiency cost.

E.3 Detecting baseline attacks using GNN explanability tools

By modifying the target node’s k-hop neighborhood, baseline attacks are vulnerable to existing GNN
explanability tools. We evaluate this by measuring the likelihood that GNNExplainer Ying et al. (2019)
can detect perturbations from the baseline attacks.

GNNExplainer takes as input a target node, graph and GNN model, and returns the subgraph that
has the largest influence on the target node’s prediction. Our experiments use the GNNExplainer
implementation included in the PyTorch-Geometric library3 to find this subgraph for the targeted node,
and we use this returned subgraph to compute precision and recall. The baseline attacks can both and

3https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.
html

19

https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html

Under review as a conference paper at ICLR 2024

2 5 17 22 28 34 85
Edge Budgets

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Nettack (direct)
Nettack-in-inf2
Nettack-in-inf10
FGA (direct)
IG-FGSM (direct)

Figure 8: Attack success rate when varying the
edge perturbation budget for direct Nettack, in-
direct Nettack with 2 or 10 influencers, FGA and
IG-FGSM.

2 5 17 22 28 34 85
E[# of edges to attack points]

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Ours

Figure 9: Attack success rate as a function of the
number of edges connecting injected nodes and
attack points.

thres.:0 thres.:0.6 thres.:0.8
Attacks Settings Avg

Rec.
Avg
Prec.

Avg
Rec.

Avg
Prec.

Avg
Rec.

Avg
Prec.

Nettack Direct; budget=5 0.99 0.19 0.98 0.27 0.84 0.45

Nettack Direct; budget=34 0.98 0.31 0.52 0.82 0.32 0.85

Nettack Indirect; budget=34 0.74 0.44 0.74 0.51 0.52 0.54n_influencers=2

Nettack Indirect; budget=34 0.79 0.48 0.79 0.49 0.44 0.57n_influencers=10

FGA Direct; budget=34 0.99 0.27 0.55 0.68 0.55 0.85

IG-FGSM Direct; budget=34 0.98 0.30 0.56 0.71 0.53 0.83

Table 13: Run GNNExplainer to detect short-distance baseline attacks.

remove edges. However, GNNExplainer cannot indicate removed edges in its explanation. Therefore,
we only consider edges added by the attack when computing precision and recall: recall is the fraction
of edges added by the attack contained in the GNNExplainer subgraph, while precision is the fraction
of edges in the subgraph that were added by the attack:

recall=
Number of attack-added edges exist in GNNExplainer subgraph

Number of total attack-added edges
(10)

precision=
Number of attack-added edges exist in GNNExplainer subgraph

Number of total edges in GNNExplainer subgraph
(11)

Table 13 shows the average recall and precision for different attacks and settings. GNNExplainer
allows users to specify a threshold, and selects only those edges whose importance score is above the
specified threshold. We show results for three thresholds: 0.0 (the default value), 0.6 and 0.8. We find
that GNNExplainer can find a significant fraction of the perturbed edges, and that at higher thresholds it
has a recall that is above 0.5 (so it finds more than half the added edges), while also having a precision
ranging from 0.4 — 0.85 thus making it a feasible tool for automated detection and defense against
such attacks.

F Detailed results over different datasets and short-distance baselines

In this section, we give the detailed results of MetaLDT over Cora and MimicLDT over all four datasets.
We report the results by datasets: Table 14 (Cora), Table 15 (Citeseer), Table 16 (Pubmed), and Table 17
(arXiv). These tables correspond to the same experiments as the summary tables presented in §6
(Table 1 and Table 3).

20

Under review as a conference paper at ICLR 2024

Long-distance Short-distance (targeted, modification)

MetaLDT MimicLDT Nettack-direct Nettack-indirect FGA IGSM
V

an
ill

a GCN 0.96 0.67 1.00 0.79 0.98 1.00
GraphSAGE 0.87 0.63 0.96 0.42 0.58 0.70
GAT 0.84 0.60 0.97 0.53 0.72 0.86

R
ob

us
t

GNNGuard (0.53) 0.70 1.00 0.98 0.94 0.96
SoftMedianGDC (0.58) 0.55 1.00 0.46 0.88 0.94
JaccardGCN 0.91 0.66 1.00 0.47 0.90 0.96
SVDGCN 0.83 0.74 1.00 0.18 0.96 1.00
ProGNN (0.55) 0.59 1.00 0.60 0.90 0.97

Table 14: Detailed Results on Cora.

Long-distance Short-distance (targeted, modification)

MimicLDT Nettack-direct Nettack-indirect FGA IGSM

V
an

ill
a GCN 0.72 0.98 0.82 1.00 0.88

GraphSAGE 0.69 1.00 0.74 0.94 0.98
GAT 0.66 0.97 0.75 0.92 0.94

R
ob

us
t

GNNGuard 0.70 0.88 0.98 1.00 1.00
SoftMedianGDC 0.59 1.00 0.38 0.98 0.95
JaccardGCN 0.64 1.00 0.74 0.96 0.94
SVDGCN 0.67 0.96 0.78 0.98 1.00
ProGNN 0.61 0.98 0.92 1.00 0.97

Table 15: Detailed Results on Citeseer.

Long-distance Short-distance (targeted, modification)

MimicLDT Nettack-direct Nettack-indirect FGA IGSM

V
an

ill
a GCN 0.71 1.00 1.00 1.00 1.00

GraphSAGE 0.69 1.00 0.84 1.00 OOM
GAT 0.69 1.00 0.82 1.00 OOM

R
ob

us
t

GNNGuard 0.70 1.00 1.00 1.00 OOM
SoftMedianGDC 0.56 1.00 0.45 1.00 OOM
JaccardGCN 0.67 1.00 1.00 1.00 1.00
SVDGCN 0.60 1.00 0.09 1.00 0.97
ProGNN 0.57 1.00 0.58 1.00 OOM

Table 16: Detailed Results on PubMed. OOM means out-of-memory under the GPU limitation.

Long-distance Short-distance (targeted, modification)

MimicLDT Nettack-direct Nettack-indirect FGA IGSM

V
an

ill
a GCN 0.74 OOM OOM OOM OOM

GraphSAGE 0.73 OOM OOM OOM OOM
GAT 0.70 OOM OOM OOM OOM

R
ob

us
t

GNNGuard 0.64 OOM OOM OOM OOM
SoftMedianGDC 0.59 OOM OOM OOM OOM
JaccardGCN 0.63 OOM OOM OOM OOM
SVDGCN 0.62 OOM OOM OOM OOM
ProGNN 0.58 OOM OOM OOM OOM

Table 17: Detailed Results on ArXiv. OOM means out-of-memory under the GPU limitation.

21

Under review as a conference paper at ICLR 2024

0.0 0.1 0.2 0.3 0.4 0.5 0.6
1-CosineSimilarity Loss

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Figure 10: An example of successfully poisoned end-to-end attack: the CDF of the 1-CosineSimilarity
loss of fopt and f ′

opt for all injected nodes.

G Design and evaluation of end-to-end attacks

We describe our extension to MimicLDT that allows it to generate textual features for fake nodes to
attack GNN models over citation graphs.

G.1 End-to-end attack design

We assume that the attacker has access to the encoder model weights used by the GNN to embed textual
node features. This assumption is reasonable as pretrained language models, such as SciBERT (Beltagy
et al., 2019), are widely available for embedding purpose.

Our design requires the attacker to use the encoder and some corpus of text to train a decoder model
that can be used to generate fake texts from arbitrary embedding. The decoder model is modified from
an existing encoder-decode architecture such as SciBERT. We change the decoder to take a single
embedding vector as input instead of an embedding matrix containing a vector for each token. We
also modify the overall encoder-decoder so that the encoder’s output is the final embedding of the
classification token ([CLS]) which is then used as the decoder’s input.

To train the decoder, we fine-tune a pre-trained encoder-decoder model. During the fine-tuning process,
we use the victim’s encoder weights (which are provided as an input) and freeze them. The fine-tuning
process can thus only update decoder weights, and must do so to ensure that the output sequence is
close to the input sequence.

Once we have trained the decoder model, we can use it for end-to-end attack as follows. First,
we generate the fake nodes using MimicLDT (or MetaLDT) and attach them to the existing graph
accordingly. Then, we take the continuous feature vectors of each injected node and pass them as input
to the decoder model, which generates text that the attacker can use to create the corresponding fake
nodes with raw textual features.

G.2 End-to-end attack evaluation

We evaluate the end-to-end attack for GraphSAGE over arXiv with SciBERT embedding. We refer
to this dataset as SciBERT-embed-arXiv which is generated by passing the title and abstract of each
paper in the Ogbn-arXiv dataset through SciBERT, and using the encoder’s output (i.e., the [CLS]
token embedding after the final pooling layer) as the node’s feature in the graph. As we previously
stated (§5), across 50 experiments, we observed a poison success rate of 84%. Furthermore, our manual
inspection showed that the generated title and abstract are readable, and we show examples in Table 18
and Table 19.

Finally, we also found that the text generated by the decoder lead to node features that are close to
what was generated by the attack optimization formulation: Figure 10 shows a CDF of node feature
similarity between nodes injected by the end-to-end attack (after they have been passed through an
encoder) and injected node features generated by the attack optimization, and over 80% of the nodes
have a cosine distance smaller than 0.1.

22

Under review as a conference paper at ICLR 2024

A fast volume integral equation solver
with linear basis functions...for the
accurate and efficient computation of
the electro- magnetic scattering from
highly inhomogeneous ...Numerical
experiments are conducted to study
the accuracy and convergence
properties of the proposed
framework...

Target Text
(Unlabeled)

Petri nets with time and cost. We
consider timed Petri nets, i.e.,
unbounded Petri nets where each
token carries a real-valued clock.
Transition arcs are labeled with time
intervals...

Attack Point Text
(Label: Logic in Computer Science)

petri net reachability. we study the
reachability problem for petri nets, i.e.,
the problem of computing the set of
configurations reachable from a given
initial state to a given target state... the
costs incurred by the algorithms are
bounded by a parameter that captures
the complexity of the problem
studied.we exhibit how to compute …

Injected attack text
(Unlabeled)

Figure 11: An example text generated for a fake node. The attack manages to flip the target node’s
label from Numerical Analysis to Logic in Computer Science.

Case study. In Fig 11, we show an example text generated for an unlabeled fake node to flip the target
node’s label from “Numerical Analysis” to “Logic in Computer Science”. Addtional examples can be
found in Table 18 and Table 19.

23

Under review as a conference paper at ICLR 2024

Table 18: More examples (Part-1) of target node, one base node, and one of the generated fake-text
link to this base. The category (i.e., labels) of the base/target node shown in first column, generated
injected node is unlabelled. Due to space limit, only show partial of the contents.

Generated
fake-text (link

to base)

petri net reachability. we study the reachability problem for petri
nets, i.e., the problem of computing the set of configurations reach-
able from a given initial state to a given target state... the costs
incurred by the algorithms are bounded by a parameter that cap-
tures the complexity of the problem studied.we exhibit how to
compute optimal solutions...

Logic in
Computer
Science

Base: Title
and Abstract

Petri nets with time and cost. We consider timed Petri nets, i.e.,
unbounded Petri nets where each token carries a real-valued clock.
Transition arcs are labeled with time intervals...

Numerical
Analysis

Target: Title
and Abstract

A fast volume integral equation solver with linear basis func-
tions...for the accurate and efficient computation of the electro-
magnetic scattering from highly inhomogeneous ...Numerical ex-
periments are conducted to study the accuracy and convergence
properties of the proposed framework...

Generated
fake-text (link

to base)

on the performance of real time text and speech enhancement
in mobile communication systems. in this paper, we present a
comprehensive study on the effectiveness of a real - time text - and
- speech enhancement technique for automatic speech recognition
(asr) applications. we consider a scenario in which a mobile
phone communicates with a user through a background noise
- free background noise channel, while the phone continuously
monitors the speech signal and provides feedback to the user about
the quality of its speech enhancement...as a complement to an
extensive performance evaluation in real - life applications...

Information
Theory

Base: Title
and Abstract

On the performance of selection cooperation with imperfect chan-
nel estimation. In this paper, we investigate the performance of
selection cooperation in the presence of imperfect channel esti-
mation. In particular, we consider a cooperative scenario with
multiple relays and amplifyand-forward protocol over frequency
flat fading channels...outage probability and average capacity per
bandwidth of the received signal in the presence of channel esti-
mation errors. A simulation study...

Multimedia Target: Title
and Abstract

High quality low delay music coding in the opus codec. The IETF
recently standardized the Opus codec as RFC6716. Opus targets
a wide range of real-time Internet applications by combining a
linear prediction coder with a transform coder. We describe the
transform coder, with particular attention to the psychoacoustic
knowledge built into the format. The result out-performs existing
audio codecs that do not operate under real-time constraints.

24

Under review as a conference paper at ICLR 2024

Table 19: More examples (Part-2) of target node, one base node, and one of the generated fake-text
link to this base. The category (i.e., labels) of the base/target node shown in first column, generated
injected node is unlabelled. Due to space limit, only show partial of the contents.

Generated
fake-text (link

to base)

uncertainty quantification in automated planning and verification
of automated control systems. this paper presents an uncertainty
quantification framework for automated control system verifica-
tion. uncertainty quantification is carried out in three steps ...
verification of the generated probabilistic model against real -
world constraints. the uncertainty quantification problem is for-
mulated as a mixed integer linear program (milp) and solved
using a branch - and - bound approach. the results are applied to
a case study of the automated control of a heating, ventilation and
air conditioning (hvac) system in a residential building...

Computational
Engineering

Base: Title
and Abstract

Heuristic optimization for automated distribution system planning
in network integration studies. Network integration studies try
to assess the impact of future developments, such as the increase
of Renewable Energy Sources or the introduction of Smart Grid
Technologies... This allows the estimation of the expected cost
in massive probabilistic simulations of large numbers of real net-
works...

Numerical
Analysis

Target: Title
and Abstract

Numerical verification of affine systems with up to a billion dimen-
sions. Affine systems reachability is the basis of many verification
methods. With further computation, methods exist to reason about
richer models with inputs, nonlinear differential equations, and
hybrid dynamics... In this paper, we improve the scalability of
affine systems verification... this direct approach requires an in-
tractable amount of memory while using an intractable amount of
computation time...

Generated
fake-text (link

to base)

reactive planning and control of autonomous vehicles in uncer-
tain environments. this paper deals with the problem of reactively
driving an autonomous vehicle in a uncertain environment. in
particular, we assume that the vehicle is equipped with a collision
avoidance system, and that the environment is uncertain... the
proposed reactive strategy is able to perform reactively and reli-
ably, while taking into consideration the uncertainties of both the
environment and the vehicle dynamics.

Machine
Learning

Base: Title
and Abstract

Neural networks trained with wifi traces to predict airport pas-
senger behavior. The use of neural networks to predict airport
passenger activity choices inside the terminal is presented in this
paper. Three network architectures are proposed...A real-world
case study exemplifies the application of these models, using
anonymous WiFi traces collected at Bologna Airport to train the
networks...

Systems and
Control

Target: Title
and Abstract

An unconditionally stable first order constraint solver for multi-
body systems. This article describes an absolutely stable, first-
order constraint solverfor multi-rigid body systems that calculates
(predicts) constraint forces for typical bilateral and unilateral con-
straints, contact constraints with friction, and many other con-
straint types...I assess the approach on some fundamental multi-
body dynamics problems.

25

	Introduction
	Related work
	Background and Problem Definition
	Attack Model
	Problem Formulation

	The MetaLDT Attack via Optimization
	Changing Graph Structure
	Changing Node Features

	The MimicLDT Attack via Embedding Collision
	Determining Graph Structure
	Determining Injected Node Features

	Experiments
	Effectiveness of MetaLDT Attack
	Effectiveness of MimicLDT Attack
	End-to-end attacks

	Conclusion
	Design details of MetaLDT and MimicLDT
	Pseudocode of MetaLDT
	Pseudocode of MimicLDT
	More Detailed Explanation for MimicLDT Attack

	Details of experimental setup
	Additional evaluations on MetaLDT
	Alternating vs. combined optimization of adj. matrix and node feature
	Benefits of optimizing the adjacency matrix
	Importance of constraining edges between injected and existing nodes
	Effects of hyperparameters
	Importance of adapting MetaLDT to GNN defenses

	Additional evaluations on MimicLDT
	Effect of
	More on attack graph's node degree distribution
	More on attack graph homophily

	Comparison to short-distance baselines
	Experiment settings
	Comparing to baselines with varying edge perturbation budgets
	Detecting baseline attacks using GNN explanability tools

	Detailed results over different datasets and short-distance baselines
	Design and evaluation of end-to-end attacks
	End-to-end attack design
	End-to-end attack evaluation

