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ABSTRACT

Representation similarity metrics are widely used to compare learned representa-
tions in neural networks, as is evident in extensive literature investigating metrics
that accurately captures information encoded in the network. However, aiming to
capture all of the information available in the network may have little to do with
what information is actually used by the network. One solution is to experiment
with causal measures of function. By ablating groups of units thought to carry
information and observing whether those ablations affect network performance,
we can focus on an outcome that causally links representations to function.
In this paper, we systematically test representation similarity metrics to evaluate
their sensitivity to causal functional changes induced by ablation. We use network
performance changes after ablation as way to causally measure the influence of
representation on function. These measures of function allow us to test how well
similarity metrics capture changes in network performance versus changes to lin-
ear decodability. Network performance measures index the information used by
the network, while linear decoding methods index available information in the
representation.
We show that all of the tested metrics are more sensitive to decodable features
than network performance. Within these metrics, Procrustes and CKA outper-
form regularized CCA-based methods on average. Although Procrustes and CKA
outperform on average, for AlexNet, Procrustes and CKA no longer outperform
CCA methods when looking at network performance. We provide causal tests of
the utility of different representational similarity metrics. Our results suggest that
interpretability methods will be more effective if they are based on representa-
tional similarity metrics that have been evaluated using causal tests.

1 INTRODUCTION

Neural networks already play a critical role in systems where understanding and interpretation are
paramount like in self-driving cars and the criminal justice system. To understand and interpret
neural networks, representation similarity metrics have been used to compare learned representations
between and across networks (Kornblith et al. (2019); Raghu et al. (2017); Morcos et al. (2018b);
Wang et al. (2018); Li et al. (2015); Feng et al. (2020); Nguyen et al. (2020)). Using these similarity
metrics, researchers evaluate whether networks trained from different random initializations learn
the same information, whether different layers learn redundant or complementary information, and
how different training data affect learning (Kornblith et al. (2019); Li et al. (2015); Wang et al.
(2018)). Apart from helping to answer these fundamental questions, similarity metrics have the
potential to provide a general-purpose metric over representations Boix-Adsera et al. (2022).

What it means for two representations to be similar, however, is not straightforward. Many similar-
ity metrics have been proposed with different underlying assumptions and strategies for comparing
representation spaces. For example, some similarity metrics are invariant under linear transforma-
tions while others are not (see Kornblith et al. (2019) for a theoretical comparison). These different
assumptions and strategies can lead to quantitatively different predictions. For instance, Ding et al.
(2021) show that certain metrics are insensitive to changes to the decodable information present in
representations. In another study, Davari et al. (2022) demonstrate that the centered kernel alignment
metric predicts a high similarity between random and fully trained representations. It is therefore
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unclear which representation similarity metrics capture the most important information from repre-
sentations and further tests are needed to evaluate them.

What important pieces of information do similar representations share? Previous studies into simi-
larity metrics have assumed that similar representations share linearly decodable information Boix-
Adsera et al. (2022); Ding et al. (2021); Feng et al. (2020). To measure the linearly decodable infor-
mation in a representation, researchers usually train linear probes for downstream tasks on learned
representations and compare the results. However, the features of a representation that carry the most
information may not be those actually used by the network during inference. Studies that remove
features from representations in trained networks have revealed a weak link between the relevance of
a feature for decoding and its effect when removed from the network Meyes et al. (2020); Zhou et al.
(2018); Donnelly & Roegiest (2019); Morcos et al. (2018b). Hayne et al. (2022) recently showed
that linear decoders specifically cannot single out the features of representations actually used by
the network. Consequently, two representations that are equally decodable using linear probes may
not actually be equal from the point of view of network performance. This distinction is crucial for
neural network interpretability where the aim is to develop human-understandable descriptions of
how neural networks actually rely on their internal representations.

For the purpose of interpreting neural network function, we suggest that representations should
be judged as similar if they cause similar effects in a trained network. To observe these causal
effects, previous studies have removed features from a representation, a process called ablation, and
observed the effects LeCun et al. (1989). In this paper, we use ablation to evaluate how closely
representation similarity metrics are related to causal function. We first ablate groups of units from
AlexNet and MobileNet, compare the original representations to the ablated representations using
representation similarity metrics, and then compare metric outputs to the changes seen for linear
probe decoding or network performance. This way we can test how well representational changes
from ablations are captured by representational similarity metrics by comparing those metrics to
changes in linear decoding and causal differences in network performance.

Linear probes measure how much task-specific information is directly decodable from a given rep-
resentation. On the other hand, network performance measures quantify how the network trained
on the same task uses a given representation. Finally, we test how well representation similarity
metrics capture these two changes. By directly comparing linear probe accuracies and network per-
formances on the same task we can answer questions like: how much more sensitive are representa-
tion similarity metrics to the non-causal linear properties of representations compared to the causal
non-linear properties used by the network? Answering these questions may help in the development
of interpretability methods that are increasingly sensitive to actual network function.

In this work, we show that CKA, Procrustes, and regularized CCA-based representation similarity
metrics predict causal network performance changes significantly worse than non-causal decoding
changes. We also show that, on average, Procrustes and CKA outperform regularized CCA-based
methods. However, Procrustes and CKA do not outperform regularized CCA-based metrics on
all network and functional measure combinations. Overall, our results suggest that interpretability
methods will be more effective if they are based on representational similarity metrics that have been
evaluated using causal tests. In general, this paper documents the following contributions:

• We introduce a causal test of the utility of representation similarity metrics. We find that
five popular representation similarity metrics are significantly less sensitive to network per-
formance changes induced by ablation than linearly decodable changes.

• Within the tested metrics, we show that Procrustes and CKA tend to outperform regularized
CCA-based methods, but that tests using linear probes and network performance based
functional measures can produce different results in different networks.

2 METHODS

In Section 2.1, we describe the statistical testing methodology used in our experiments. In Section
2.2, we introduce the representation similarity measures we evaluate and reformulate them for use
on high dimensional representations. In Section 2.3, we describe how we use ablation to produce
representations with different functional properties. Finally, in Section 2.4, we describe how we
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use linear probe decoding deficits and class-specific performance deficits to measure decodable and
downstream network changes, respectively, in the ablated representations.

Figure 1: Elements of the experimental design. 1) A representation matrix X is generated from
a layer in a trained network. 2) Ablations are applied by deleting features from the representation
to generate the ablated matrix A. Representation matrices X and A are compared in three ways.
3) A representation metric similarity is calculated between them. 4) Linear probes are fit to each to
decode a target class and the linear probe accuracies are compared. 5) The representations are fed
back into the network and the network performance difference between them is calculated. 6) By
comparing metric similarities with both linear probe decoding changes and network performance
changes across many ablations (represented with multiple points in the correlation plots in panel 6),
we can assess to what extent each metric captures non-causal and causal measures of function.

2.1 STATISTICAL TESTING

Assume A ∈ Rn×p1 represents a matrix of activations for p1 neurons given n examples, and B ∈
Rn×p2 represents a matrix of activations for p2 neurons given the same n examples. The matrices
A and B are called representation matrices and have been preprocessed to have centered columns.
Let d(A,B) denote a representation similarity metric that returns zero if and only if A = B and for
which d(A,B) = d(B,A). These metrics do not satisfy the triangle inequality and are therefore
not formal distance metrics. For simplicity, we will refer to them as metrics in this work.

To quantify functional differences between representation matrices, we use functional behavior mea-
sures. Formally, let f : Rn×p → R denote a functional behavior measure that, given a representation
matrix, returns a scalar measure of the representation’s role in function. In this study, we utilize two
functionality measures, class-specific linear decoding accuracy (fdecoding) and class-specific network
performance (fperformance). In the case of linear decoding accuracy, fdecoding returns the average linear
probe accuracy achieved from decoding a target class identity from a representation matrix. On the
other hand, fperformance returns the average classification performance for a target class achieved by
feeding the representation matrix to the network at the appropriate layer. More details are presented
in Section 2.4.

As in Ding et al. (2021), we aim to statistically test representation similarity metrics using the same
methodology according to their paper:

1. Gather S, a set of representation matrices that vary along one or more dimensions. We note
that S contains unablated as well as ablated representation matrices (see Section 2.3).

2. Select an unablated reference matrix X ∈ S.
3. Compute the following for all Ai ∈ S where Ai ̸= X :

• D = d(X,Ai)

• F = |f(X)− f(A)|
4. Compute the correlation between D and F using Spearman’s correlation.
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This procedure quantifies the extent to which the representation similarity metrics, d(·), capture
the functionality differences, as measured by f(·), produced by ablating the representation matrix.
A high Spearman’s correlation value between a metric’s computed representation similarities and
the functionality differences produced by ablation implies that the chosen metric is sensitive to the
chosen functionality. Whereas, a low correlation implies the opposite: that the chosen metric is not
sensitive to the chosen functionality.

2.2 REPRESENTATION SIMILARITY METRICS

As in Ding et al. (2021), we study three main representation similarity metrics: centered kernel
alignment (CKA), Procrustes, and projection-weighted canonical correlation analysis (PWCCA).

Centered kernel alignment (CKA) is based on the idea that similar representations also have sim-
ilar relations between examples. In other words, representation matrices that store images of lettuce
and rabbits using similar vectors should be more similar to each other than with representation
matrices that encode images of lettuce and dinner plates using similar vectors. This idea leads Korn-
blith et al. (2019) to formulate linear CKA, which uses a linear kernel to compare example vectors
(henceforth referred to as just CKA):

dCKA(A,B) = 1− ∥ATB∥2F
∥ATA∥F∥BTB∥F

(1)

where ∥ · ∥F is the Frobenius norm and ∥ATB∥2F derives from the following relation:

⟨vec(AAT), vec(BBT)⟩ = tr(AATBBT) = ∥ATB∥2F (2)

Relation 2 shows that the similarity between pairwise example similarity matrices (far left) is equal
to the squared Frobenius norm of the feature covariance matrix between representations (far right).
Kornblith et al. (2019) use this relation to form Equation 1 which measures the normalized similarity
between the example similarity matrices of A and B. Unfortunately, computing and storing either
ATB, ATA, or BTB can be prohibitively expensive when both p1 and p2 grow too large. Therefore
we reformulate Equation 1 using relation 2 and the fact that ∥XTX∥F = ∥XXT∥F into:

dCKA(A,B) = 1− trace(AATBBT)

∥AAT∥F∥BBT∥F
(3)

This reformulation allows us to use CKA on layers with at least 100 times more neurons than previ-
ous studies.

Procrustes is an analytical solution to the orthogonal Procrustes problem which involves finding a
right rotation of matrix B that is as close as possible to A as measured by the Frobenius norm:

dProcrustes(A,B) = ∥A∥2F + ∥B∥2F − 2∥ATB∥∗ (4)

where ∥ · ∥∗ is the nuclear norm. As with CKA, ATB needs to be replaced to lighten the compu-
tational cost of working with large layers. Therefore, we utilize the fact that the nuclear norm of a
matrix is the sum of its singular values to reformulate Procrustes:

dProcrustes(A,B) = ∥A∥2F + ∥B∥2F − 2

n∑
i

√
λi(AATBBT) (5)

where λi(X) represents the ith eigenvalue of matrix X . Again, this reformulation saves us from
manipulating the large p1 × p2 matrix by replacing it with a much smaller n× n matrix (assuming
n ≪ p1, p2).

Projection-weighted canonical correlation analysis (PWCCA) is a special case of canonical cor-
relation analysis (CCA) proposed by Morcos et al. (2018a). CCA itself provides a solution to the
problem of linearly projecting A and B into a shared subspace where their correlations are max-
imized. CCA finds min(p1, p2) pairs of weight vectors (wA,wB) and the resulting correlation
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induced by projecting A and B using the ith weight vector is:

ρi = max
wi

A,wi
B

corr(Awi
A,Bwi

B)

subject to ∀j<i Awi
A ⊥ Awj

A

Bwi
B ⊥ Bwj

B

(6)

where the ρi is maximized subject to the constraint that the subspace features be or-
thogonal. Equation 6 can be solved for by performing singular value decomposition on
(ATA)

−1/2
ATB(BTB)

−1/2 where the singular values are equal to the correlations (ρi ∀ i ∈
[1, ...,min(p1, p2)]).

However, the inverses of the feature covariance matrices do not exist when the number of neurons
exceeds the number of examples. For these cases, we can use regularized or “ridge” CCA (Vinod
(1976)), which applies an L2 penalty to the weight vectors and can be solved by performing SVD
on (ATA+ κAI)

−1/2
ATB(BTB + κBI)

−1/2. However, we again run into the problem that the
feature covariance matrices are too costly to compute for large layers. So, we employ the “kernel
trick” introduced by Kuss & Graepel (2003) and Hardoon et al. (2004) and refined by Tuzhilina et al.
(2021) which allows us to substitute into the above expression RA for A where RA represents
an n × n matrix recovered by applying SVD on A, i.e. A = RAV T

A. The same trick can be
applied to B. These substitutions allows us to work with much smaller matrices and make CCA
computationally tractable for large layers. The only drawback is that if we apply the “kernel trick”
to both matrices, we recover only n canonical correlations rather than min(p1, p2).

Mean CCA (as used by Raghu et al. (2017)) and mean squared CCA (Ramsay et al. (1984)) average
raw and squared correlations recovered through CCA, respectively. However, PWCCA re-weights
each correlation value by its importance for the underlying representation. Formally, if representa-
tion matrix A has neuron activation vectors [z1, ...,zp1 ] and CCA vectors [h1, ...,hn], then PWCCA
computes a weighted mean as:

dPWCCA(A,B) = 1−
n∑

i=1

α̃iρi s.t. αi =
∑
j

|⟨hi, zj⟩|

where α̃i is a normalized version of αi. The preceding CCA reformulations represent regularized
forms of CCA-based metrics useful for high-dimensional representations, which we refer to as reg-
ularized CCA-based metrics in the text, but just CCA metrics in the figures for sake of brevity.

2.3 ABLATION

To study representation functionality changes, we needed a method for manipulating representations
to reliably produce network performance deficits at the output of the network. To reliably produce
network performance deficits, we followed the procedure of Hayne et al. (2022). Specifically, for
each of the 10 or 50 randomly chosen target classes and layer of the CNNs we tested, AlexNet and
MobileNetV2, we first projected every neuron onto two dimensions: class selectivity and activation
magnitude. Then, we constructed a grid to overlay on the activation space so that each cell of the grid
contained the same number of neurons. To supply the set S of representation matrices from Section
2.1, we ablated one cell of neurons at a time by setting the activation values for those neurons to
zero.

2.4 FUNCTIONALITY MEASURES

After collecting the set S of ablated representation matrices, we sought to compare two function-
ality measures. First, we fit linear probe decoders to each representation matrix in S. With the
linear probes we aimed to decode the identity of one target class, so we fit simple logistic regression
classifiers to distinguish the target class representations from all other representations in the repre-
sentation matrix. Because many of the CNN layers contained thousands of features, we randomly
selected 100 neurons as features in the logistic regression model and averaged the training accuracy
over 200 repetitions as in Alain & Bengio (2016). Intuitively, the accuracies measure how much
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information a representation matrix contains about the target class. We refer to the changes induced
in the decodability of the target class by ablation as decoding accuracy deficits.

In contrast to linear decoding accuracies, we also measured the network’s class-specific classifica-
tion performance when utilizing the representations in the representation matrix during inference.
Specifically, we recorded the average classification rank of the target class. For instance, if the
CNN’s softmax layer predicted that the Junco bird class was the third most likely class given an
image of a Junco bird, then that image received a rank of three. The average class-specific ranks
intuitively measure how functionally useful the representations from the representation matrix were
to the network. We refer to the changes induced in class-specific classification rank by ablation as
network performance deficits.

3 RESULTS

In this section, we detail the results of aggregating our statistical tests across each layer and class
from AlexNet and MobileNetV2. We conducted a hierarchical linear model to evaluate the predic-
tion of the rank correlation values as a function of two factors: 1) metric, i.e. CKA, Procrustes, and
regularized CCA-based methods and 2) functionality, i.e. network performance deficits and decod-
ing accuracy deficits. To allow for comparable correlation coefficients, we fisher-z transformed each
rank correlation value, then, averaged them across layers for each each metric and functionality. Af-
terwards, we inverse transformed the fisher-z back to correlation coefficients. We modeled classes
as random units. To sum, the transformed correlation values were modeled as a function of metric
type and functionality measure. All analyses were conducted using the “lme4” package in R (Bates
et al. (2014)). Figures were generated using “ggplot2” (Wickham (2016), “raincloudplots” (Allen
et al. (2021)), and “smplot” package (Min & Zhou (2021)) in R.

3.1 REPRESENTATION SIMILARITY METRICS ARE SIGNIFICANTLY LESS SENSITIVE TO
CAUSAL FUNCTION

Figure 2a shows the distribution of correlation values across functionality measures. In both cases,
the rank correlation values of both functionality measures are significantly different from 0, suggest-
ing that the correlation values are sensitive to functional behavioral changes in the representations,
(F(1,49) = 470.37, p < .001 for AlexNet, F(1,9) = 1464.06, p < .001 for MobileNetV2). The anal-
ysis of interest demonstrates these correlation values are significantly different between network
performance deficits and decoding accuracy deficits, when averaging across the five similarity met-
rics — CKA, Procrustes, and regularized CCA-based metrics (F(1,441) = 633.85, p < .001). In
other words, there is a significant main effect of functionality. Likewise, Figure 2b shows the same
results for MobileNetV2 (F(1,81) = 5770.04, p < .001).

3.2 CKA AND PROCRUSTES TEND TO OUTPERFORM OTHER METRICS

Figures 3a and 3b show that CKA and Procrustes have, on average, higher rank correlation values
compared to the other CCA-based metrics (t(441) = 6.33, p < .001 for AlexNet; t(81) = 15.70,
p < .001 for MobileNetV2). Again, higher rank correlation values indicate a higher coupling be-
tween functionality measures and representation similarity metrics, thereby suggesting that CKA
and Procrustes are better metrics at capturing functionality.

3.3 FUNCTIONALITIES PRODUCE DIFFERENT RESULTS FOR DIFFERENT NETWORKS

Figure 4 (top) shows a significant interaction between functionality measures and similarity met-
rics for AlexNet (F(4,441) = 12.21, p < .001). Figure 4 (bottom) shows the same model for Mo-
bileNetV2, however, interaction is non-significant (F(4,81) = .88, p = .48) In the case of AlexNet,
with the plotted means, it is evident that the interaction is driven by the metric differences within de-
coding accuracy deficits. As for the similarity metrics within network performance deficits, no single
metric outperforms the other; instead, each metric achieves a similarly low correlation amongst the
network performance deficit group. As for the decoding accuracy deficit group, on the other hand,
CKA and Procrustes outperform the CCA-based metrics (t(441) = 9.31, p < .0001). In the case of
MobileNetV2, there is no significant interaction. CKA and Procrustes outperform the CCA-based
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metrics on both decoding (t(81) = 12.41, p < .0001) and network performance tests (t(81) = 9.79, p
< .0001), thereby canceling out an interaction effect.

4 DISCUSSION

In this work, we systematically test representation similarity metrics on ImageNet-trained CNNs
to determine how sensitive they are to network performance and decoding changes in representa-
tions. To facilitate these tests, we reformulate previously proposed similarity metrics to make them
computationally tractable for use on high-dimensional representations. Our tests revealed that, while
similarity metrics are significantly sensitive to network performance and decoding measures of func-
tionality, they are significantly less sensitive to network performance. Additionally, in most of our
tests CKA and Procrustes significantly outperform CCA-based methods. However, we do find that
different networks and different functionality choices can eliminate their advantages.

Previously, Ding et al. (2021) performed some general stress tests on representation similarity met-
rics. In their work they showed that PWCCA distances were easily influenced by changes to random
seed, predicting that the same layers in two different networks were more similar to other distant
layers in the network than to each other. In another test, the CKA metric suffered from a different
problem where it failed to distinguish representations from their low rank counterparts. Davari et al.
(2022) pointed out other weaknesses associated with CKA. Among other findings, they demon-
strated that CKA judged random and fully trained representations to be highly similar, especially in
early layers of a network. Both studies used functional and intuitive tests for evaluation.

Although our work utilizes a framework introduced by Ding et al. (2021), we aim to test a funda-
mentally different hypothesis not addressed by their tests. Specifically, we aim to test how sensitive
representation similarity metrics are to the functional properties of a representation actually used by
a trained network during inference. In our tests we directly compare linear probe accuracy changes
on in-distribution inputs to network performance changes on the same inputs after ablation. On the
other hand Ding et al. (2021) do not test this direct comparison. Instead, they perform more general
stress tests on similarity metrics using either in-distribution linear probes or out-of-distribution net-

(a) AlexNet (b) MobileNetV2

Figure 2: Correlation values overall are significantly sensitive to ablation changes in the repre-
sentations, however, decoding accuracy has a higher value than network performance deficits.
This figure shows the distribution of rank correlation values between functionality measures, i.e., the
main effect of functionality measure on AlexNet (a) and MobileNetV2 (b). Each data point repre-
sents a value from the ten classes; within each class, we average the five metrics of CKA, Procrustes,
PWCCA, mean CCA and mean squared CCA. The distribution is further depicted by the violin plots
and boxplots, which illustrates the median and upper/lower quartile of the distribution. Overall, both
functionality measures are significantly different from 0, indicating that the rank correlation values
are sensitive to changes produced by ablations in the representations. Further examining the differ-
ence between functionality measures, we see that the rank correlation values of decoding accuracy
deficit are higher than that of network performance deficits. Note that all CCA-based metrics are
regularized in our formulations.
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(a) AlexNet (b) MobileNetV2

Figure 3: CKA and Procrustes outperform CCA-based metrics. This figure shows the distri-
bution of rank correlation values across each metric, averaged between functionality measures on
AlexNet (a) and MobileNetV2 (b). Within each distribution, each data point represents the aver-
age rank correlation value from the ten classes, collapsed across network performance deficits and
decoding accuracy deficits. Higher rank correlation values in the CKA and Procrustes condition
indicate that these metrics are sensitive to the perturbations in the representations compared to other
CCA-based metrics. Note that all CCA-based metrics are regularized in our formulations.

work performance scores and different methods of perturbing representations. Through this direct
comparison, we are able to show that similarity metrics are significantly less sensitive to the features
of representations that are actually used by the network compared to its decodable features.

All of the representation similarity metrics we tested are significantly less sensitive to causal changes
induced by ablation than non-causal decoding changes. This finding reflects the considerations made
in developing these similarity metrics. Representation similarity metrics were designed to compare
the linear geometric properties of two representation spaces. So, it is not surprising that similarity
metrics correlate with changes in decoding accuracies. On the other hand, network performance
measures of function reflect how the network utilizes representations. In this case, functionally sim-
ilar representations are those representations that remain similar after a series of non-linear trans-
formations through layers of the network. Perhaps it is not surprising that this non-linear notion of
similarity is harder to capture using current similarity metrics. However, it is the ultimate goal of
interpretability to link representation and non-linear network function.

Like previous studies, we show that some metrics tend to outperform others. Ding et al. (2021)
previously showed that Procrustes tends to outperform CKA and CCA-based methods on language
models. In our experiments on larger image classification models, both CKA and Procrustes tend
to perform better than regularized CCA-based methods adapted for larger representations. These
results are hinted at by Ding et al. (2021) who show that CKA and Procrustes perform well on image
decoding tests, but omit comparisons to CCA-based metrics. Interestingly, CKA and Procrustes did
not outperform other methods in all of our experiments. For AlexNet, network performance tests
show that all the similarity metrics equally capture network function (Figure 4). In other words, the
best representation similarity metric can change according to the network tested and the functionality
used. To employ representation similarity metrics for interpretability, metrics should be developed
that can capture the functional properties of representations across many networks. These causal
tests can help future interpretability studies identify similarity metrics that are sensitive to causal
function.

5 LIMITATIONS

We acknowledge the following limitation in this work. Reformulating CCA-based measures to
accommodate representations with more neurons than examples required using a regularized version
of CCA called “ridge” CCA. In utilizing “ridge” CCA we had to choose regularization penalties to
apply to each representation matrix. These penalties were chosen to be consistent across all tests, but
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Figure 4: Pattern of similarity metrics differs depending on functionality measure. This
figure shows a significant interaction between functionality and metric for Alexnet (top) and a non-
significant interaction for MobileNetV2 (bottom). In the case of AlexNet, each of the five metrics
behave differently depending on functionality type: the five similarity metrics within the network
performance deficits condition are not significantly different, whereas metrics do differ within the
decoding accuracy deficits condition. Specifically, the CKA and Procrustes metric is significantly
different from the CCA-based metrics, only in the decoding accuracy deficit condition. In contrast,
in the case of MobileNetV2, this interaction is no longer prominent: CKA and Procrustes consis-
tently outperform CCA-based measures on both functionality tests in MobileNetV2. Note that all
CCA-based metrics are regularized in our formulations.

were not cross-validated. Future works would benefit from testing more penalty settings to explore
their effect on similarity results.

6 CONCLUSION

Taken altogether, the results of this study suggest that representation similarity metrics may already
serve well as tools for comparing the geometries of representational spaces, but could be enhanced
in order to capture non-linear network function. Similarity metrics achieve high correlations with
linear probe decoding accuracy changes in a representation induced by ablation. This sensitivity
reveals that existing similarity metrics do a good job of predicting how useful two representations
will be for linear downstream tasks. However, trained networks do not necessarily use the features
of a representation that are relevant for linear decoding during inference Hayne et al. (2022); Zhou
et al. (2018); Meyes et al. (2020); Donnelly & Roegiest (2019). This discrepancy reveals that rep-
resentation similarity metrics could be improved by taking into account the non-linear features of
representations used during inference.
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the current work, we have included the code used to conduct and
run each of the experiments with the submission. In addition to the code, we have also included
in the submission the raw data collected during each of our conducted experiments. At the request
of reviewers or other interested parties, additional data sources (i.e. the exact image set used, the
representation matrices, etc.) can be made available.

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

Micah Allen, Davide Poggiali, Kirstie Whitaker, Tom Rhys Marshall, Jordy van Langen, and Ro-
gier A. Kievit. Raincloud plots: a multi-platform tool for robust data visualization. Wellcome
Open Research, 4(63), 2021.
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A APPENDIX

Figure 5: Decoding accuracy and network performance deficits correlate in later layers of
AlexNet. This figure shows the the relationship between network performance deficit and decoding
accuracy deficit across layers and classes in AlexNet, using Local Polynomial Regression Fitting.
In later layers of the network, ablations that produce high decoding accuracy deficits also tend to
produce high network performance deficits (as illustrated by the fitted lines in the later layers). This
relationship does not typically hold for early layers. Note that some points are missing in the case
where ablations for certain layer and class combinations did not produce decoding deficits.
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