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Abstract

Improvements in language model capabilities001
are often attributed to increasing model size or002
training data, but in some cases smaller mod-003
els trained on curated data or with different004
architectural decisions can outperform larger005
ones trained on more tokens. What accounts006
for this? To quantify the impact of these design007
choices, we meta-analyze 92 open-source pre-008
trained models across a wide array of scales, in-009
cluding state-of-the-art open-weights models as010
well as less performant models and those with011
less conventional design decisions. We find that012
by incorporating features besides model size013
and number of training tokens, we can achieve014
a relative 3-28% increase in ability to predict015
downstream performance compared with using016
scale alone. Analysis of model design decisions017
reveal insights into data composition, such as018
the trade-off between language and code tasks019
at 15-25% code, as well as the negative im-020
pact of web data on truthfulness. Broadly, our021
framework lays a foundation for more system-022
atic investigation of how model development023
choices shape final capabilities. 1024

1 Introduction025

The effectiveness of language model training de-026

pends critically on decisions made during pretrain-027

ing. For instance, the effectiveness of scaling up028

data depends on its composition – processing even029

a trillion tokens would be ineffective if they all030

consisted of the word “the”. Language model per-031

formance has been found to be fairly predictable032

through scaling laws (Kaplan et al. (2020), sec-033

tion 2) – extrapolations of model performance034

based on the parameter counts and number of to-035

kens the models were trained on. However, scaling036

laws based on only these two aspects do not always037

explain downstream task performance (Diaz and038

Madaio, 2024; Isik et al., 2024). The research com-039

1Code and data are available at https://anonymous.
4open.science/r/llm-pretraining-behaviours-FE80/
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Figure 1: We document design decisions from open-
weights models related to both architecture and data
composition, and train predictors for downstream task
performance. This allows us to examine the impact of
model design choices individually.

munity has made progress in understanding how 040

training decisions impact downstream performance 041

with respect to data composition. For instance, con- 042

trolled studies have demonstrated that training on 043

code data improves performance on certain reason- 044

ing benchmarks (Aryabumi et al., 2024; Petty et al., 045

2024), meta-features of data such as age and the 046

use of toxicity filters affect performance on many 047

QA tasks (Longpre et al., 2024), and the balance of 048

multilingual data affects performance on English 049

and other languages (Chang et al., 2023; Yue et al., 050

2025). These works uncover valuable insights, but 051

they tend to focus on changing only a single as- 052

pect of the training recipe while keeping the rest 053

fixed. Although rigorous, this is costly in compute 054

and development time. We instead ask: can we 055

leverage past findings from open language models 056

to examine how training decisions jointly impact 057

downstream performance? 058

To do so, we first catalog features regarding 059

the model architecture, and data of 92 base pre- 060

trained LMs from varied families (§3). The result- 061

ing database of model features spans most major 062

original pretrained decoder-only models released 063

open-weights between the years 2019-2024. 064

We then develop methodology to predict per- 065
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formance of these models across a wide array of066

benchmarks both based on traditional scaling fac-067

tors as well as architectural decisions and data com-068

position (§4). Specifically, we train regression mod-069

els that take in the extracted features and predict070

the benchmark results, and further use model inter-071

pretability techniques to identify the most salient072

features in making these predictions.073

We evaluate this methodology on predicting per-074

formance across 12 popular LLM benchmarks, and075

demonstrate that it is not just scaling that deter-076

mines model performance – on all benchmarks the077

regressor with all features outperforms a regressor078

based solely on scaling model features (§5.1). Our079

analysis of feature importance reveals potential im-080

pacts of data domains on task performance, recon-081

firming empirical results such as the best ratio of082

code to use in pretraining (§5.2). Furthermore, we083

find that features extracted from a model’s gener-084

ated text – such as the frequency of question-related085

words or the proportion of web-like text—help pre-086

dict performance on various benchmarks. This sug-087

gests that a model’s generation patterns can reflect088

underlying biases from its pretraining data that, in089

turn, influence downstream performance.090

By documenting open-source models trained by091

the entire community and extracting insights, we092

provide a practical resource for model developers093

to learn from collective experience. We discuss this094

and future work in (§8).095

2 Scaling Laws096

2.1 Definition097

We define scaling laws here as a relationship be-098

tween the number of parameters N and the num-099

ber of tokens D of a language model family, and100

the expected language-modelling loss at conver-101

gence L(N,D).2 Importantly, these laws are typi-102

cally examined while holding all other factors con-103

stant: keeping the same model architecture, train-104

ing data, and model parameters. Originally, Ka-105

plan et al. (2020) showed that over a wide range of106

transformer-based models, this relationship can be107

expressed as a power law:108

L(N,D) =

(Å
Nc

N

ãαN
αD

+
Dc

D

)αD

(1)109

2Please see §7.2 for more detailed discussion; scaling laws
can and do take into account other factors in various works,
but for simplicity we call N and D scale-related here, while
all other decisions in §3.2 are contrasted with these.

Later, Hoffmann et al. (2022a) introduced a similar 110

law, which differed in the coefficients fitted, but 111

was also based on a power law. 112

However, scaling laws are not absolute, and the 113

exact functional form and fitted coefficients may 114

depend on the architecture type, size range (Pearce 115

and Song, 2024), or other considerations such as 116

inference costs. See (§7.2) for further discussion. 117

2.2 Maybe it’s Not Just Scaling? 118

Are parameter count and number of training tokens 119

really all that are needed to accurately predict a 120

model’s downstream performance? Intuitively the 121

answer is “no” – there are a number of design deci- 122

sions that go into model training, and all of them 123

could have an effect on model performance. 124

Model Architecture Details While the majority 125

of modern language models follow the transformer 126

architecture, there are some details that differ. For 127

instance, the variety (Zhang and Sennrich, 2019) 128

and position (Xiong et al., 2020) of layer normal- 129

ization, and the type of positional encoding (Su 130

et al., 2021; Press et al., 2022) make significant 131

differences in model performance. Previous work, 132

such as Gu and Dao (2023), has demonstrated em- 133

pirically that holding all other factors equal, models 134

that make better architecture decisions (Touvron 135

et al., 2023a) outperform those that make worse 136

decisions (Vaswani et al., 2017). 137

Data Composition In addition, data composition 138

and quality plays a major role in the final quality of 139

a model. For instance, past work has demonstrated 140

that training on some quantity of code improves 141

performance on English reasoning tasks (Ma et al., 142

2023). Also, work has demonstrated that filtering 143

for “educational” content allows for more efficient 144

learning and higher performance on knowledge- 145

based question answering tasks (Gunasekar et al., 146

2023). 147

Task Setting Finally, there is an interplay of all 148

the above factors with how model performance is 149

measured. While previous work on scaling laws 150

has mostly measured loss values, downstream users 151

usually care about task performance, rather than 152

validation loss on a pretraining dataset. Although 153

there is often a correlation between the two for 154

many tasks, certain tasks may be harder to predict 155

from a model’s loss alone (Bhagia et al., 2024). 156

Moreover, certain tasks exhibit pathological scal- 157

ing behaviour, such as inverse or U-shaped scaling 158
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(Caballero et al., 2023; Wei et al., 2023; McKenzie159

et al., 2024), or simply more unpredictable perfor-160

mance (Isik et al., 2024).161

We ask: can we more effectively predict the per-162

formance of LLMs by devising a new set of “laws”163

that are not just reliant on scaling-based factors?164

3 Building a Database of165

Publicly-Available Language Models166

To address our research question, we built a167

database of publicly available language models168

spanning 11M to 110B parameters,3 limited to dis-169

tinct pretrained decoder-only base models.4 This170

section describes our inclusion criteria, model fea-171

turization, and evaluation approach.172

3.1 Data Collection173

To ensure that our analysis was consistent, we ap-174

plied the following criteria:175

Pretrained-only: Only base models that were176

pretrained from scratch were included. Fine-tuned177

variants, merged models, and models with addi-178

tional post-training were excluded.179

Architecture: Only transformer-based decoder-180

only models were included to maintain uniformity.181

Mixture-of-experts (MoEs) or other architectures182

were excluded.183

Publicly available information: Only models184

with publicly available metadata, documented185

through configuration files or papers, were in-186

cluded. In particular, both the total number of187

parameters and total number of tokens trained on188

were required for inclusion. A full list of models189

and model families can be found in Appendix A.190

3.2 Characterizing Models and Data191

We represent each model by the architectural192

choices it makes, as well as its choice of pretraining193

data. Formally, let A be the set of features related194

to model architecture, and D be the set of features195

related to the model’s pretraining dataset. For each196

task T we want to approximate a model M ’s true197

score sT with a prediction ŝT :198

ŝT (M) = fθ([AM ;DM ]). (2)199

3Including embedding parameters.
4By distinct, we mean unique combinations of training

data and architecture. Models trained on deduplicated datasets
are counted separately, but not variants with different curricu-
la/initializations.
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Code
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Humanities
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Figure 2: Taxonomy of pretraining data categories. We
sorted data sources into this taxonomy based on model
documentation.

This reduces to typical scaling laws when A = 200

{# params}, D = {# tokens}, and fθ is a power 201

law. 202

In total, we document 92 open models along the 203

dimensions of model features, high-level dataset 204

features, and features derived from that model’s 205

no-context generations. For the full set of features 206

and definitions, please see Appendix B. 207

3.2.1 Features from Model Documentation 208

We first collect information about each model by 209

reading source papers/blogs when available (see 210

Appendix A for original citations), as well as data 211

listed on the Hugging Face Hub (Wolf et al., 2020). 212

Architectural Features: These features capture 213

design decisions that determine model structure. 214

For example, total parameters (including embed- 215

ding parameters), the number of transformer layers, 216

the embedding and feed-forward dimensions, and 217

details such as the type of layer normalization or 218

attention variant used. 219

Data Features: These features summarize pre- 220

training data composition. Representative exam- 221

ples include total tokens trained on and the per- 222

centage breakdown of tokens sourced from vari- 223

ous domains defined in Figure 2, as well as the 224

proportion of English-language tokens. Our pre- 225

training data domains were derived from common 226

subdomains in open pretraining datasets (Gao et al., 227

2020; Soldaini et al., 2024). We use the top level 228

domains (web, code, books, reference, academic) 229

as this tends to be the granularity at which data 230

composition is described in papers. 231

3.2.2 Exploring Data Composition via 232

Generation 233

Although many models document some data com- 234

position details, relatively few release their full 235

pretraining corpus, resulting in missing values for 236

many models in our study. 237
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Commonsense Reasoning / NLI
ANLI (Nie et al., 2020) ∼ 163k Brier Score
HellaSwag (Zellers et al., 2019) ∼ 70k Accuracy
Winogrande (Sakaguchi et al., 2019) ∼ 44k Accuracy
XNLI (Conneau et al., 2018) ∼ 2.5k Brier Score

Math / Logic
GSM8K (Cobbe et al., 2021) 8 000 Accuracy
LogiQA2 (Wang et al., 2020) ∼ 8k Brier Score
MathQA (Saxton et al., 2019) ∼ 37k Brier Score

General Knowledge
ARC Challenge (Clark et al., 2018) ∼ 2.6k Accuracy
Lambada (Paperno et al., 2016) ∼ 10k Accuracy
MMLU (Hendrycks et al., 2020) ∼ 2.85k Accuracy

Other
TruthfulQA (Lin et al., 2021) 817 Accuracy
HumanEval (Chen et al., 2021) 164 Accuracy

Table 1: Overview of LM evaluation datasets with
approximate sample counts and evaluation metrics.
Datasets ANLI, XNLI, LogiQA2, and MathQA use
Brier Score, while the others use Accuracy.

We propose estimating a model’s training data238

by generating from it with only a beginning-of-239

sequence token in context (or end-of-sequence if240

BOS is unavailable). Using temperature-based241

sampling with T = 1,5 we sample 5-10k free-242

generations per model and categorize them using243

an LM-based classifier (see Appendix E) according244

to the domains in Figure 2. A human annotator245

independently validated the classifier on 300 doc-246

uments from pretraining datasets (Appendix F),247

showing high agreement (Cohen’s κ = 0.746).248

We also extract lower-level linguistic features249

such as words per sentence, constituency tree depth,250

and dependency length. Our validation analysis251

(Appendix G) shows that domain-level features252

correlate well with actual pretraining data compo-253

sition (e.g., web content correlation: r = 0.916,254

p = 7.55× 10−12), while lower-level stylistic fea-255

tures show weaker correlations. However, holis-256

tic model-level correlations across all features are257

strong (typically r > 0.8), supporting our use of258

free-generations as proxies for pretraining composi-259

tion, while not substituting free-generation features260

for pretraining features.261

3.3 Evaluation Datasets and Metrics262

To assess how design choices affect reasoning capa-263

bilities, we evaluated models on datasets from the264

Open LLM leaderboard (Myrzakhan et al., 2024)265

that capture diverse aspects of reasoning (Table 1).6266

We collect results for some models directly from267

the leaderboard, and for models not on the leader-268

5this should in principle recover Praw(xt | x<t) ≈
P (xt | x<t) in the limit of sampling infinitely from an LM
that captures its distribution perfectly.

6We excluded Arithmetic and Minerva math tasks (Brown
et al., 2020; Hendrycks et al., 2021) as we focused on base
models, and few achieved non-zero scores.

board we use the Eleuther LM eval harness (Gao 269

et al., 2023) to conduct evaluations with exactly the 270

same setting. In addition, if there were multiple 271

versions of a task or sub-tasks, we evaluated all 272

of them and averaged them to get the overall task 273

score. For the full list of evaluation datasets and 274

settings, see Appendix C. 275

For an evaluation dataset T where the i-th sam- 276

ple is yi and model M , we define sT (M) with: 277

Accuracy We use unnormalized, exact-match ac- 278

curacy sT,acc = 1
|T |
∑|T |

i=1 1{yi = ŷi} for the ma- 279

jority of tasks. We use pass@1 for Humaneval, but 280

group it with accuracy tasks for convenience. 281

Brier score For tasks where smaller models 282

struggle to achieve non-zero accuracy, we fol- 283

low Schaeffer et al. (2023) in using multiclass 284

brier score as an alternate continuous metric for 285

multiple-choice tasks (Brier, 1950).7 For a task 286

with K classes, let pik be the predicted proba- 287

bility for class k on sample i. Then sT,BS = 288
1
|T |
∑|T |

i=1

∑K
k=1(pik − 1{yi = k})2. 289

3.4 Heterogeneity in Task-specific Scaling 290

Before adding in other factors, we examine differ- 291

ences in scaling along N and D between our se- 292

lected tasks. We fit a Kaplan et al. (2020) style law 293

to each task. As seen in Figure 3, we see that dif- 294

ferent tasks may exhibit marked differences both in 295

how well they follow scaling trends, as well as their 296

individual scaling contours. For instance, Truth- 297

fulQA appears to exhibit U-shaped scaling, while 298

Humaneval has more “outlier” models. A full list 299

of R2 values for tasks can be found in Appendix D. 300

4 Predictive Modeling 301

Next, given our database we fit a regressor to try to 302

predict performance. In traditional scaling laws, re- 303

gressors are fit based on power laws. However, we 304

are now dealing with a larger number of features, 305

some of which may not be captured well by simple 306

parametric forms. Hence, we follow previous work 307

on performance prediction (Xia et al., 2020; Ye 308

et al., 2021) utilizing tree-based regressors based 309

on XGBoost (Chen and Guestrin, 2016).8 310

7Note that lower is better for brier score. Multiclass brier
score ranges between 0-2.

8We also performed preliminary experiments with Light-
GBM (Ke et al., 2017) but it yielded very similar results in
both prediction accuracy and feature importance. The Light-
GBM version of the main results can be found in Appendix K.
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Figure 3: Performance of plotted against their total parameters and tokens. The background colour represents
Equation 1 fitted to the task, and the marker colours indicate true performance. Some tasks have different
performance trends with scale. Within each task, individual models may also perform unexpectedly.

For each evaluation benchmark, we train a model311

to predict the performance metric on that task based312

on architectural features A and data features D.313

For each task setting, we perform 3-fold cross-314

validation due to the relatively small number of315

models, with a nested inner cross-validation over316

the training set in each fold. The inner cross-317

validation conducted grid search over a small set318

of hyperparameters, allowing the model to slightly319

vary per task. See Appendix I for more details.320

Evaluation To evaluate the predictors, we use321

Mean Absolute Error averaged across all models322

and folds. In other words, for a task with N models323

evaluated, MAET = 1
|T |
∑N

i=1 |sT (Mi)−ŝT (Mi)|.324

We compare the scaling-laws predictor as well as325

the all-features predictor against each other, but326

also against the median baseline, which simply327

predicts the median score of the models in the train-328

ing set for each model in the test set of that fold,329

and the log-linear baseline, which fits a log-linear330

function to the number of parameters and number331

of tokens.332

Iterative Feature Selection As the full set of fea-333

tures is very large, we sequentially selected features334

from the full set greedily based on which reduced335

MAE the most, averaged across 5 random seeds.336

Features were added until no reduction of at least337

1× 10−4 was observed. We started using only the338

two scaling laws features, and refer to this as the339

scaling-laws model, though it does not have the340

form of a traditional power law.9 By then incor-341

porating additional architectural or data features,342

we can then directly quantify the incremental pre-343

dictive power afforded by these extra features. We344

refer to the model with the set of features as the345

all-features model. In all cases, we ran models346

with the same hyperparameter grid and the same347

9As we use a tree-based predictor to accommodate diverse
feature types (including non-numeric ones), our approach pri-
oritizes interpolation within observed bounds (10M-100B pa-
rameters, 50B-3T tokens) rather than extrapolation. Exploring
other prediction methods remains future work.

random seeds and splits. 348

Significance Testing Because the relative differ- 349

ence between baselines is small, we test both pre- 350

dictors across many seeds (50). We then ran paired 351

t-tests on the overall MAE values for each seed, and 352

corrected for multiple comparisons across tasks 353

with the False Discovery Rate (Benjamini and 354

Hochberg, 1995). 355

5 Results 356

5.1 Predictor Performance 357

Incorporating scale-independent features con- 358

sistently improves benchmark performance. We 359

find that incorporating extra features alongside tra- 360

ditional scaling laws features leads to substantial 361

improvements in prediction accuracy across multi- 362

ple benchmarks, as seen in Table 2. The all-features 363

predictor outperforms the scaling-laws-only predic- 364

tor in all evaluated cases, with improvements rang- 365

ing from approximately 3% (MathQA) to about 366

28% (Lambada) relative error reduction. No- 367

tably, the strongest improvements were observed in 368

language modeling and common-sense reasoning 369

tasks. 370

Certain tasks are more strongly dependent 371

on non-scale features. This pattern of improve- 372

ments suggests that architectural and training data 373

features may be more informative for predicting 374

performance on certain types of tasks more strongly 375

linked to a particular “genre” of data. Large im- 376

provements were observed for both code gener- 377

ation (HumanEval, 15% improvement) as well 378

as natural-language based reasoning tasks (e.g. 379

Lambada, 28% improvement). Even tasks with 380

narrower domains, such as mathematical reason- 381

ing (GSM8k, +16%) or knowledge-intensive eval- 382

uations (MMLU, +11–14%), see consistent, if 383

more moderate, enhancements. The Brier score 384

benchmarks, however, show smaller improvements 385

(around 3–6%). This may be because the Brier 386

score is inherently less sensitive to emergent effects 387
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Benchmark Setting Baseline MAE Log-Linear MAE Scaling Laws MAE All Features MAE p-val (corrected)

Accuracy

Arc Challenge 25-shot 13.23% 4.91% 4.36% ± 0.12% 3.67% ± 0.09%∗ 3.67× 10−19

GSM8k 5-shot 15.65% 11.03% 6.04% ± 0.21% 5.10% ± 0.23%∗ 5.41× 10−14

Hellaswag 10-shot 12.26% 4.29% 3.93% ± 0.13% 3.18% ± 0.09%∗ 4.44× 10−20

Humaneval 0-shot 11.79% 8.61% 8.08% ± 0.22% 6.93% ± 0.22%∗ 4.44× 10−20

Lambada 0-shot 16.89% 9.60% 9.51% ± 0.33% 6.85% ± 0.25%∗ 2.87× 10−22

MMLU (0-shot) 0-shot 11.98% 9.12% 4.76% ± 0.20% 4.10% ± 0.17%∗ 5.26× 10−13

MMLU (5-shot) 5-shot 12.25% 8.39% 3.97% ± 0.18% 3.54% ± 0.14%∗ 2.09× 10−10

TruthfulQA 0-shot 3.72% 3.40% 2.75% ± 0.08% 2.29% ± 0.06%∗ 1.02× 10−17

Winogrande 5-shot 10.14% 3.99% 3.39% ± 0.08% 3.09% ± 0.07%∗ 5.26× 10−13

Brier score

XNLI 0-shot 7.22 5.45 5.11 ± 0.11% 4.30± 0.11%∗ 1.37× 10−2

ANLI 0-shot 9.48 5.95 6.18 ± 0.19% 5.86± 0.21%∗ 3.16× 10−9

MathQA 0-shot 7.57 3.89 2.83 ± 0.06% 2.75± 0.07%∗ 1.63× 10−4

LogiQA2 0-shot 12.62 8.77 4.74 ± 0.12% 4.60± 0.15%∗ 3.84× 10−4

Table 2: Comparison of MAE values (mean ± 95% CI) for Scaling Laws and All Features predictors alongside
Baseline MAE and Log-Linear MAE. Lower MAE is bolded; * indicates significance (p < 0.05). Brier score values
are multiplied by 100 to be on a similar scale to accuracy.

in model performance, the specific choice of tasks388

limits the room for improvement, or a combination389

of both factors.390

5.2 What Features Does Task Performance391

Depend On?392

To understand factors influencing task performance,393

we examine Shapley (1953) (SHAP) values, which394

show how feature values affect predictions. Results395

for Arc Challenge, HumanEval, Winogrande, and396

TruthfulQA appear in Figure 4, with remaining397

benchmarks in Appendix L.398

A little code goes a long way, but too much is399

harmful to NLI. The percentage of code in pre-400

training is a critical non-scaling feature. Higher401

code composition benefits Humaneval performance402

but negatively impacts natural language reasoning403

tasks including Arc Challenge, Hellaswag, Wino-404

grande, and Lambada. As shown in Figure 5, mod-405

els with over 20-25% code show gains on Hu-406

maneval but penalties on language benchmarks.407

A moderate 15-25% code proportion appears to408

balance these competing demands.409

Other data domains show task-specific effects.410

From free-generation features, we observed recent411

models trained on synthetic data (Phi (Gunasekar412

et al., 2023), SmolLM (Allal et al., 2024)) gen-413

erate more question words, suggesting training414

on question-answering content. Reference-like or415

question-loaded generations correlate with better416

performance on Arc Challenge and Winogrande,417

while web-like generations correlate with worse418

TruthfulQA performance (Figure 4).419

Non-scale architectural decisions have minor420

effects. Most highly influential features were data-421

related or architectural features related to scale422

(e.g., dimension). However, both the type of layer 423

norm and the positional embedding were deemed 424

to have a significant effect in some cases. 425

6 Validating Performance Predictions 426

with Confirmatory Experiments 427

To validate findings from the meta-analysis, we 428

also ran confirmatory pretraining runs with 460M- 429

parameter models on the Dolma dataset. We aimed 430

to validate two data distributional findings: (1) 431

Around 8% code is optimal when only consider- 432

ing natural language inference, but 15-25% may 433

be best when balancing code and natural language, 434

and (2) TruthfulQA performance decreases with 435

an increasing proportion of web data. As this is a 436

small scale model and accuracy differences may 437

not be significant, we convert the relevant datasets 438

to use loss-based evaluations. Due to computa- 439

tional constraints, we train each checkpoint for 440

10B tokens, but use a cosine learning rate schedule 441

scaled to a 100B token run. See Appendix M for 442

details and exact loss figures. Overall, in Figure 6 443

find that the confirmatory runs largely validated our 444

meta-analysis predictions, with the exception that 445

our margin-based loss for truthfulQA was slightly 446

lower for the 50% web data checkpoint compared 447

to the 30% checkpoint, though the trend for ac- 448

curacy is as expected. This provides preliminary 449

evidence that our analysis method could be used to 450

intelligently predict LM training design decisions 451

a-priori. 452
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Feature Name Description

[D] Total Tokens (B) Total number of tokens used during pretraining, measured in billions
(log scale).

[A] Total Parameters Total number of parameters in the model (log scale).
[D] % Code in Pretraining Percentage of pretraining data that consists of code.
[F] Question Words Ratio Ratio of question-related words generated by the model.
[A] Dimension Embedding dimension.
[A] Sequence length Sequence length.
[A] LayerNorm Type of layer normalization used (non-parametric, parametric, rmsnorm).
[A] Biases Presence of bias parameters in the model.
[A] Positional Embeddings Type of positional embedding used (alibi, learned, rope).
[F] % English Generated Percentage of English text generated by the model.
[D] % Academic in Pretraining Percentage of pretraining data from academic sources.
[D] % Reference in Pretraining Percentage of pretraining data from reference sources.
[F] % Generated Weblike Text Percentage of web-like text generated by the model.
[F] % Generated Reference Text Percentage of reference-like text generated by the model.
[D] % Books in Pretraining Percentage of pretraining data from books.
[D] % English in Pretraining Percentage of English text in the pretraining data.

Figure 4: In all tasks, the number of parameters and pretraining tokens heavily influences the predictions made
by the regressor. The percentage of code in pretraining often influences predictions negatively for NLI tasks but
positively for Humaneval. [D], [A] and [F] denote features derived from data, architecture, or free-generations of a
model respectively.

7 Related Work453

7.1 Empirical Data Composition Results454

Prior work has examined code in pretraining (Ma455

et al., 2023; Aryabumi et al., 2024) and domain456

ablations (Longpre et al., 2024). Data filtering im-457

proves performance beyond scaling alone (Sorscher458

et al., 2023; Goyal et al., 2024). Our results show459

code enhances natural language reasoning at mod-460

erate proportions (optimal ratio 15-25%), refining461

previous estimates of 25% (Aryabumi et al., 2024).462

Our approach of pooling insights from existing463

models complements empirical ablations by identi-464

fying promising axes for further testing.465

7.2 Observational and Task-Specific Scaling466

Law Fitting467

Task-specific scaling laws research shows parame-468

ter allocation affects machine translation outcomes469

(Ghorbani et al., 2021), and multitasking benefits470

English-target languages (Fernandes et al., 2023).471

Work on downstream tasks emphasizes alignment472

between pretraining and downstream data (Hernan- 473

dez et al., 2021; Isik et al., 2024). Various studies 474

address data repetition (Muennighoff et al., 2024), 475

multiple domains (Goyal et al., 2024), and factors 476

like sparsity (Frantar et al., 2023), precision (Ku- 477

mar et al., 2024), and inference costs (Hoffmann 478

et al., 2022b), while some find stability across train- 479

ing hyperparameters (DeepSeek-AI et al., 2024). 480

Ruan et al. (2024) also use observations from 481

open-source models to predict task performance, 482

but derive their predictions of one task’s perfor- 483

mance from performance on other tasks. We 484

find a similar result in identifying two axes of 485

performance– general natural language ability and 486

coding ability but are motivated instead by tracing 487

these capabilities back to pretraining decisions. 488

7.3 Pretraining Data Selection 489

Domain mixing has been studied in pretraining, 490

and other works have formulated this as a regres- 491

sion problem (Ye et al., 2024; Liu et al., 2025) or 492

used proxy models to select domain weights in 493
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Figure 5: SHAP impact of code percentage on Lambada
(reprentative NL task) and Humaneval on our regressors.
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Figure 6: Loss on 460M parameter models, early check-
points taken at 10% of final training length. Panel A
depicts the effects of code vs. natural language data
on natural language datasets and coding, while Panel B
depicts the effects of web vs. non-web based data on
truthfulQA. In Panel A, the optimal ranges for natural
language tasks only (green) and for balancing natural
language and code (blue) are highlighted.

the course of training (Xie et al., 2023; Albalak494

et al., 2023; Jiang et al., 2024b; Yu et al., 2025). In495

contrast, we retrospectively analyze how domain496

composition and training decisions influence per-497

formance across tasks, which is a complementary498

perspective to optimizing data weights for a single499

model during training.500

7.4 Tracing Capabilities to Data 501

Specific language model capabilities have been 502

linked to patterns in pretraining data. Performance 503

on numerical reasoning and syntactic rule learn- 504

ing depends on frequency of numerical terms in 505

the training data (Kassner et al., 2020; Wei et al., 506

2021). Ruis et al. (2024) found that influential data 507

for reasoning is dispersed across numerous doc- 508

uments and is associated with procedural content. 509

Similarly, Chen et al. (2024) observed that "parallel 510

structures" are closely tied to in-context learning 511

abilities. We currently focus on broader data do- 512

mains, but our framework can be extended with 513

more granular tasks or refined data features. 514

8 Conclusion and Future Work 515

We perform the first systematic analysis of the per- 516

formance of open language models across diverse 517

tasks and tie their performance to architectural and 518

data-compositional design decisions. Looking into 519

the future, there are a number of clear directions. 520

First, our database (§3) can be further expanded as 521

new models and benchmarks are released, and we 522

will release the code and data to help spur commu- 523

nity efforts for more systematic data documenta- 524

tion. Second, we hope our work will help discover 525

hypotheses to be tested in more controlled settings 526

– existing models intertwine a number of design 527

decisions, and further controlled pre-training exper- 528

iments that only involve one axis of variation could 529

further clarify the effect of each feature. Finally, 530

within our study, the great majority of pre-trained 531

models focused on dense transformer architectures, 532

while alternative architectures such as mixture-of- 533

experts (Jiang et al., 2024a; DeepSeek-AI, 2024) 534

and state-space models (Gu and Dao, 2023) have 535

also seen significant research interest. How to ap- 536

propriately featurize these more various model ar- 537

chitectures and use the information in performance 538

prediction is an interesting challenge that may un- 539

cover further insights. Lastly, although pretraining 540

data analysis and selection has mainly been fo- 541

cused on empirical findings so far, building a better 542

understanding of how training impacts model capa- 543

bilities through large-scale empirical studies could 544

also facilitate interpretability experiments and pos- 545

sible interventions on learned representations, with 546

controlled axes of variation providing case studies. 547
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Limitations548

Our current work has several limitations that can549

be improved in future work. First, although we550

document many open models, our sample size re-551

mains limited, particularly for larger (>50B) pa-552

rameter models. This limits our ability to draw553

robust conclusions about scaling behaviour in large554

models. Additionally, the models that we have are555

not evenly distributed across number of parameters,556

data size, and data distributions, with certain size557

ranges and data distributions being overrepresented.558

There are also likely selection effects in which mod-559

els are made open-weights, as well as likely time560

effects in popular architectural decisions or data561

compositions in different time periods.562

Second, our methodology also imposes some563

limitations. Because we do not systematically train564

all our own models (though we have a few of our565

own in Appendix A), our analyses are observational566

in nature. While we can observe interesting rela-567

tionships between design choices and performance,568

making causal claims requires experimental vali-569

dation. Additionally, while tree-based regressors570

are effective for capturing complex feature interac-571

tions, they limit our ability to extrapolate beyond572

the range of model sizes (in parameters and tokens)573

seen in our dataset.574

Last, we note that the scope of our work also has575

limitations. Namely, we focus on base pretrained576

decoder-only dense transformer models, which ex-577

cludes significant architectural variants such as578

mixture-of-experts models, non-transformer based579

architectures, as well as post-trained models. Ad-580

ditionally, we examine mostly English-language581

models as we do not focus on multilinguality in582

this work. Our feature set, while extensive, may583

also not capture all relevant details of model design584

and training, particularly optimization details as of585

now.586

These limitations suggest directions for future587

work: expanding the database to include more di-588

verse model types and language coverage, devel-589

oping more targeted functional forms that allow590

better extrapolation while also taking as input a591

heterogeneous feature set, as well as conducting592

targeted experiments with new pretrained models593

to validate the impact of specific design choices.594

Ethical Considerations595

In this work, we focus on understanding why mod-596

els may perform well on standard benchmarks, but597

do not focus on other important considerations such 598

as safety or societal bias. 599

Furthermore, our analysis focuses on English- 600

language models and benchmarks. This limitation 601

reflects but may also reinforce the field’s existing 602

bias toward English, potentially contributing to un- 603

derinvestment in developing effective architectures 604

for other languages. 605

Any opinions, findings, and conclusions or rec- 606

ommendations expressed in this material are those 607

of the author(s) and do not necessarily reflect the 608

views of the sponsors. 609

Use of AI Assistants 610

Claude 3.5 Sonnet and GPT-o3-mini-high were 611

used to help revise and shorten several parts of this 612

submission as well as to edit for clarity. The first 613

draft was entirely human-written. 614
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Klimczak-Plucińska, Harleen Batra, Harsh Dhand, 985
Ivan Nardini, Jacinda Mein, Jack Zhou, James Svens- 986
son, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana 987
Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fer- 988
nandez, Joost van Amersfoort, Josh Gordon, Josh 989
Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mo- 990
hamed, Kartikeya Badola, Kat Black, Katie Mil- 991
lican, Keelin McDonell, Kelvin Nguyen, Kiranbir 992
Sodhia, Kish Greene, Lars Lowe Sjoesund, Lau- 993
ren Usui, Laurent Sifre, Lena Heuermann, Leti- 994
cia Lago, Lilly McNealus, Livio Baldini Soares, 995
Logan Kilpatrick, Lucas Dixon, Luciano Martins, 996
Machel Reid, Manvinder Singh, Mark Iverson, Mar- 997
tin Görner, Mat Velloso, Mateo Wirth, Matt Davi- 998
dow, Matt Miller, Matthew Rahtz, Matthew Watson, 999
Meg Risdal, Mehran Kazemi, Michael Moynihan, 1000
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi 1001
Rahman, Mohit Khatwani, Natalie Dao, Nenshad 1002
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay 1003
Chauhan, Oscar Wahltinez, Pankil Botarda, Parker 1004
Barnes, Paul Barham, Paul Michel, Pengchong 1005
Jin, Petko Georgiev, Phil Culliton, Pradeep Kup- 1006
pala, Ramona Comanescu, Ramona Merhej, Reena 1007
Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan 1008
Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah 1009

12

https://arxiv.org/abs/2309.11568
https://arxiv.org/abs/2309.11568
https://arxiv.org/abs/2309.11568
https://arxiv.org/abs/2307.03201
https://arxiv.org/abs/2307.03201
https://arxiv.org/abs/2307.03201
https://huggingface.co/allenai/OLMo-7B-hf
https://huggingface.co/allenai/OLMo-7B-hf
https://huggingface.co/allenai/OLMo-7B-hf
https://openreview.net/forum?id=i9K2ZWkYIP
https://openreview.net/forum?id=i9K2ZWkYIP
https://openreview.net/forum?id=i9K2ZWkYIP
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295


Cogan, Sarah Perrin, Sébastien M. R. Arnold, Se-1010
bastian Krause, Shengyang Dai, Shruti Garg, Shruti1011
Sheth, Sue Ronstrom, Susan Chan, Timothy Jor-1012
dan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas1013
Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav,1014
Vilobh Meshram, Vishal Dharmadhikari, Warren1015
Barkley, Wei Wei, Wenming Ye, Woohyun Han,1016
Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong,1017
Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand1018
Rao, Minh Giang, Ludovic Peran, Tris Warkentin,1019
Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia1020
Hadsell, D. Sculley, Jeanine Banks, Anca Dragan,1021
Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hass-1022
abis, Koray Kavukcuoglu, Clement Farabet, Elena1023
Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Ar-1024
mand Joulin, Kathleen Kenealy, Robert Dadashi,1025
and Alek Andreev. 2024b. Gemma 2: Improving1026
open language models at a practical size. Preprint,1027
arXiv:2408.00118.1028

Xinyang Geng and Hao Liu. 2023. Openllama: An open1029
reproduction of llama.1030

Behrooz Ghorbani, Orhan Firat, Markus Freitag,1031
Ankur Bapna, Maxim Krikun, Xavier Garcia,1032
Ciprian Chelba, and Colin Cherry. 2021. Scal-1033
ing laws for neural machine translation. Preprint,1034
arXiv:2109.07740.1035

Sachin Goyal, Pratyush Maini, Zachary C. Lipton, Aditi1036
Raghunathan, and J. Zico Kolter. 2024. Scaling laws1037
for data filtering – data curation cannot be compute1038
agnostic. Preprint, arXiv:2404.07177.1039

Albert Gu and Tri Dao. 2023. Mamba: Linear-time1040
sequence modeling with selective state spaces. arXiv1041
preprint arXiv:2312.00752.1042

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio1043
César Teodoro Mendes, Allie Del Giorno, Sivakanth1044
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo1045
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,1046
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,1047
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee,1048
and Yuanzhi Li. 2023. Textbooks are all you need.1049
Preprint, arXiv:2306.11644.1050

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul1051
Arora, Steven Basart, Eric Tang, Dawn Song, and1052
Jacob Steinhardt. 2021. Measuring mathematical1053
problem solving with the math dataset. NeurIPS.1054

Dan Hendrycks et al. 2020. Measuring mas-1055
sive multitask language understanding. Preprint,1056
arXiv:2009.03300.1057

Danny Hernandez, Jared Kaplan, Tom Henighan, and1058
Sam McCandlish. 2021. Scaling Laws for Transfer.1059
arXiv preprint arXiv:2102.01293.1060

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,1061
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,1062
Diego de Las Casas, Lisa Anne Hendricks, Johannes1063
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,1064
Katie Millican, George van den Driessche, Bogdan1065

Damoc, Aurelia Guy, Simon Osindero, Karen Si- 1066
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, 1067
and Laurent Sifre. 2022a. Training compute-optimal 1068
large language models. Preprint, arXiv:2203.15556. 1069

Julian Hoffmann, Sebastian Borgeaud, Arthur Men- 1070
sch, Elena Buchatskaya, Tianyi Cai, Eric Ruther- 1071
ford, Daniel de la Casas, Lucy A Hendricks, Joshua 1072
Welbl, Alec Clark, et al. 2022b. Training compute- 1073
optimal large language models. arXiv preprint 1074
arXiv:2203.15556. 1075

Technology Innovation Institute. 2023. The fal- 1076
con series of open language models. Preprint, 1077
arXiv:2306.01116. 1078

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, 1079
Dimitris Paparas, Sergei Vassilvitskii, and Sanmi 1080
Koyejo. 2024. Scaling laws for downstream task per- 1081
formance of large language models. arXiv preprint 1082
arXiv:2402.04177. 1083

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 1084
Roux, Arthur Mensch, Blanche Savary, Chris 1085
Bamford, Devendra Singh Chaplot, Diego de las 1086
Casas, Emma Bou Hanna, Florian Bressand, Gi- 1087
anna Lengyel, Guillaume Bour, Guillaume Lam- 1088
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie- 1089
Anne Lachaux, Pierre Stock, Sandeep Subramanian, 1090
Sophia Yang, Szymon Antoniak, Teven Le Scao, 1091
Théophile Gervet, Thibaut Lavril, Thomas Wang, 1092
Timothée Lacroix, and William El Sayed. 2024a. 1093
Mixtral of experts. Preprint, arXiv:2401.04088. 1094

Yiding Jiang, Allan Zhou, Zhili Feng, Sadhika Malladi, 1095
and J. Zico Kolter. 2024b. Adaptive data optimiza- 1096
tion: Dynamic sample selection with scaling laws. 1097
Preprint, arXiv:2410.11820. 1098

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 1099
Brown, Benjamin Chess, Rewon Child, Scott Gray, 1100
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 1101
Scaling Laws for Neural Language Models. arXiv 1102
preprint arXiv:2001.08361. 1103

Nora Kassner, Benno Krojer, and Hinrich Schütze. 2020. 1104
Are Pretrained Language Models Symbolic Reason- 1105
ers over Knowledge? Proceedings of the Confer- 1106
ence on Computational Natural Language Learning 1107
(CoNLL). 1108

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, 1109
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 1110
2017. Lightgbm: A highly efficient gradient boosting 1111
decision tree. In Advances in Neural Information 1112
Processing Systems, volume 30. Curran Associates, 1113
Inc. 1114

Tanishq Kumar, Zachary Ankner, Benjamin F. Spector, 1115
Blake Bordelon, Niklas Muennighoff, Mansheej Paul, 1116
Cengiz Pehlevan, Christopher Ré, and Aditi Raghu- 1117
nathan. 2024. Scaling laws for precision. Preprint, 1118
arXiv:2411.04330. 1119

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie 1120
Del Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023. 1121

13

https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://arxiv.org/abs/2109.07740
https://arxiv.org/abs/2109.07740
https://arxiv.org/abs/2109.07740
https://arxiv.org/abs/2404.07177
https://arxiv.org/abs/2404.07177
https://arxiv.org/abs/2404.07177
https://arxiv.org/abs/2404.07177
https://arxiv.org/abs/2404.07177
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/pdf/2102.01293
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2410.11820
https://arxiv.org/abs/2410.11820
https://arxiv.org/abs/2410.11820
https://arxiv.org/pdf/2001.08361
https://aclanthology.org/2020.conll-1.45/
https://aclanthology.org/2020.conll-1.45/
https://aclanthology.org/2020.conll-1.45/
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://arxiv.org/abs/2411.04330


Textbooks are all you need ii: phi-1.5 technical re-1122
port. arXiv preprint arXiv:2309.05463.1123

Stephanie Lin et al. 2021. Truthfulqa: Measuring how1124
models mimic human falsehoods. In Proceedings of1125
EMNLP.1126

Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guang-1127
tao Zeng, Longxu Dou, Tianyu Pang, Jing Jiang,1128
and Min Lin. 2025. Regmix: Data mixture as re-1129
gression for language model pre-training. Preprint,1130
arXiv:2407.01492.1131

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger,1132
Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li,1133
Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard1134
Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei1135
He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ran-1136
jan, Zhiqiang Shen, Xuguang Ren, Roberto Iriondo,1137
Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov,1138
Tim Baldwin, and Eric P. Xing. 2023. Llm360: To-1139
wards fully transparent open-source llms. Preprint,1140
arXiv:2312.06550.1141

Shayne Longpre, Gregory Yauney, Emily Reif, Kather-1142
ine Lee, Adam Roberts, Barret Zoph, Denny Zhou,1143
Jason Wei, Kevin Robinson, David Mimno, and1144
Daphne Ippolito. 2024. A Pretrainer’s Guide to Train-1145
ing Data: Measuring the Effects of Data Age, Do-1146
main Coverage, Quality, & Toxicity. Proceedings of1147
the Conference of the North American Chapter of the1148
Association for Computational Linguistics: Human1149
Language Technologies (NAACL-HLT).1150

Lalita Lowphansirikul, Charin Polpanumas, Nawat1151
Jantrakulchai, and Sarana Nutanong. 2021.1152
Wangchanberta: Pretraining transformer-based thai1153
language models. Preprint, arXiv:2101.09635.1154

Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang,1155
Yu Jiang, Changjian Wang, and Shanshan Li. 2023.1156
At which training stage does code data help llms1157
reasoning? Preprint, arXiv:2309.16298.1158

Ian R. McKenzie, Alexander Lyzhov, Michael Pieler,1159
Alicia Parrish, Aaron Mueller, Ameya Prabhu, Euan1160
McLean, Aaron Kirtland, Alexis Ross, Alisa Liu,1161
Andrew Gritsevskiy, Daniel Wurgaft, Derik Kauff-1162
man, Gabriel Recchia, Jiacheng Liu, Joe Cavanagh,1163
Max Weiss, Sicong Huang, The Floating Droid, Tom1164
Tseng, Tomasz Korbak, Xudong Shen, Yuhui Zhang,1165
Zhengping Zhou, Najoung Kim, Samuel R. Bowman,1166
and Ethan Perez. 2024. Inverse scaling: When bigger1167
isn’t better. Preprint, arXiv:2306.09479.1168

Meta AI. 2022a. Opt: Open pre-trained transformer1169
language models. Preprint, arXiv:2205.01068.1170

Meta AI. 2022b. Xglm: Cross-lingual generative lan-1171
guage models. Preprint, arXiv:2204.07613.1172

MosaicML NLP Team. 2023. Introducing mpt-7b: A1173
new standard for open-source, commercially usable1174
llms. Accessed: 2023-05-05.1175

Niklas Muennighoff, Alexander Rush, Boaz Barak, 1176
Teven Le Scao, Nouamane Tazi, Aleksandra Piktus, 1177
Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. 1178
2024. Scaling data-constrained language models. 1179
Advances in Neural Information Processing Systems 1180
(NeurIPS), 36. 1181

Aidar Myrzakhan, Sondos Mahmoud Bsharat, and 1182
Zhiqiang Shen. 2024. Open-llm-leaderboard: From 1183
multi-choice to open-style questions for llms eval- 1184
uation, benchmark, and arena. arXiv preprint 1185
arXiv:2406.07545. 1186

Yixin Nie, Jing Wang, Mohit Bansal, and Kai-Wei 1187
Chang. 2020. Adversarial natural language inference. 1188
In Proceedings of ACL. 1189

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan 1190
Wang, Yingbo Zhou, Silvio Savarese, and Caiming 1191
Xiong. 2023. Codegen: An open large language 1192
model for code with multi-turn program synthesis. 1193
Preprint, arXiv:2203.13474. 1194

Denis Paperno et al. 2016. Lambada: Word prediction 1195
requiring a broad discourse context. In Proceedings 1196
of ACL (Long Papers). 1197

Tim Pearce and Jinyeop Song. 2024. Reconcil- 1198
ing kaplan and chinchilla scaling laws. Preprint, 1199
arXiv:2406.12907. 1200

Jackson Petty, Sjoerd van Steenkiste, and Tal Linzen. 1201
2024. How does code pretraining affect lan- 1202
guage model task performance? Preprint, 1203
arXiv:2409.04556. 1204

Ofir Press, Noah A. Smith, and Mike Lewis. 2022. Train 1205
short, test long: Attention with linear biases enables 1206
input length extrapolation. In International Confer- 1207
ence on Learning Representations. 1208

Tianyi Qi, Yichao Ouyang, Yu Liang, Lifu Huang, Xiao 1209
Dang, Kevin Gimpel, and Noah A. Smith. 2020. 1210
Stanza: A python nlp toolkit for many human lan- 1211
guages. In Proceedings of the 58th Annual Meet- 1212
ing of the Association for Computational Linguistics: 1213
System Demonstrations, pages 101–108. 1214

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, 1215
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, 1216
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, 1217
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, 1218
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, 1219
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, 1220
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji 1221
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang 1222
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang 1223
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru 1224
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical 1225
report. Preprint, arXiv:2412.15115. 1226

Yangjun Ruan, Chris J. Maddison, and Tatsunori 1227
Hashimoto. 2024. Observational scaling laws and 1228
the predictability of language model performance. 1229
Preprint, arXiv:2405.10938. 1230

14

https://arxiv.org/abs/2407.01492
https://arxiv.org/abs/2407.01492
https://arxiv.org/abs/2407.01492
https://arxiv.org/abs/2312.06550
https://arxiv.org/abs/2312.06550
https://arxiv.org/abs/2312.06550
https://aclanthology.org/2024.naacl-long.179/
https://aclanthology.org/2024.naacl-long.179/
https://aclanthology.org/2024.naacl-long.179/
https://aclanthology.org/2024.naacl-long.179/
https://aclanthology.org/2024.naacl-long.179/
https://arxiv.org/abs/2101.09635
https://arxiv.org/abs/2101.09635
https://arxiv.org/abs/2101.09635
https://arxiv.org/abs/2309.16298
https://arxiv.org/abs/2309.16298
https://arxiv.org/abs/2309.16298
https://arxiv.org/abs/2306.09479
https://arxiv.org/abs/2306.09479
https://arxiv.org/abs/2306.09479
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2204.07613
https://arxiv.org/abs/2204.07613
https://arxiv.org/abs/2204.07613
https://openreview.net/pdf?id=j5BuTrEj35
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2406.12907
https://arxiv.org/abs/2406.12907
https://arxiv.org/abs/2406.12907
https://arxiv.org/abs/2409.04556
https://arxiv.org/abs/2409.04556
https://arxiv.org/abs/2409.04556
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2405.10938
https://arxiv.org/abs/2405.10938
https://arxiv.org/abs/2405.10938


Laura Ruis, Maximilian Mozes, Juhan Bae, Sid-1231
dhartha Rao Kamalakara, Dwarak Talupuru, Acyr1232
Locatelli, Robert Kirk, Tim Rocktäschel, Edward1233
Grefenstette, and Max Bartolo. 2024. Procedural1234
knowledge in pretraining drives reasoning in large1235
language models. Preprint, arXiv:2411.12580.1236

Rei Sakaguchi et al. 2019. Winogrande: An adversarial1237
winograd schema challenge at scale. In Proceedings1238
of ACL.1239

Kei Sawada, Tianyu Zhao, Makoto Shing, Kentaro Mit-1240
sui, Akio Kaga, Yukiya Hono, Toshiaki Wakatsuki,1241
and Koh Mitsuda. 2024. Release of pre-trained mod-1242
els for the Japanese language. In Proceedings of the1243
2024 Joint International Conference on Computa-1244
tional Linguistics, Language Resources and Evalu-1245
ation (LREC-COLING 2024), pages 13898–13905.1246
https://arxiv.org/abs/2404.01657.1247

William Saxton, Edward Grefenstette, et al. 2019.1248
Mathqa: A challenge dataset for solving math word1249
problems. In Proceedings of EMNLP.1250

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.1251
2023. Are emergent abilities of large language mod-1252
els a mirage? Preprint, arXiv:2304.15004.1253

Lloyd S Shapley. 1953. A value for n-person games.1254
In Contributions to the Theory of Games, pages 307–1255
317. Princeton University Press.1256

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin1257
Schwenk, David Atkinson, Russell Authur, Ben Bo-1258
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,1259
Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar,1260
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson,1261
Jacob Morrison, Niklas Muennighoff, Aakanksha1262
Naik, Crystal Nam, Matthew E. Peters, Abhilasha1263
Ravichander, Kyle Richardson, Zejiang Shen, Emma1264
Strubell, Nishant Subramani, Oyvind Tafjord, Pete1265
Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh1266
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,1267
and Kyle Lo. 2024. Dolma: An Open Corpus of1268
Three Trillion Tokens for Language Model Pretrain-1269
ing Research. arXiv preprint.1270

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya1271
Ganguli, and Ari S. Morcos. 2023. Beyond neural1272
scaling laws: beating power law scaling via data1273
pruning. Preprint, arXiv:2206.14486.1274

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,1275
Bo Wen, and Yunfeng Liu. 2021. Roformer: En-1276
hanced transformer with rotary position embedding.1277
arXiv preprint arXiv:2104.09864.1278

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier1279
Martinet, Marie-Anne Lachaux, Timothée Lacroix,1280
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal1281
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard1282
Grave, and Guillaume Lample. 2023a. LLaMA:1283
Open and Efficient Foundation Language Models.1284
ArXiv, abs/2302.13971.1285

Hugo Touvron et al. 2023b. Llama 2: Open founda- 1286
tion and fine-tuned chat models. https://ai.meta. 1287
com/llama2/. Accessed: 2025-02-21. 1288

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 1289
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 1290
Kaiser, and Illia Polosukhin. 2017. Attention is all 1291
you need. In Advances in Neural Information Pro- 1292
cessing Systems, pages 5998–6008. 1293

Ben Wang and Aran Komatsuzaki. 2021. GPT-J- 1294
6B: A 6 Billion Parameter Autoregressive Lan- 1295
guage Model. https://github.com/kingoflolz/ 1296
mesh-transformer-jax. 1297

Yichong Wang, Yuxuan Feng, et al. 2020. Logiqa: A 1298
challenge dataset for machine reading comprehen- 1299
sion with logical reasoning. In Proceedings of ACL. 1300

Jason Wei, Dan Garrette, Tal Linzen, and Ellie Pavlick. 1301
2021. Frequency Effects on Syntactic Rule Learning 1302
in Transformers. Proceedings of the Conference on 1303
Empirical Methods in Natural Language Processing 1304
(EMNLP). 1305

Jason Wei, Najoung Kim, Yi Tay, and Quoc V. Le. 2023. 1306
Inverse scaling can become u-shaped. Preprint, 1307
arXiv:2211.02011. 1308

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 1309
Chaumond, Clement Delangue, Anthony Moi, Pier- 1310
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- 1311
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 1312
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 1313
Teven Le Scao, Sylvain Gugger, Mariama Drame, 1314
Quentin Lhoest, and Alexander Rush. 2020. Trans- 1315
formers: State-of-the-art natural language processing. 1316
In Proceedings of the 2020 Conference on Empirical 1317
Methods in Natural Language Processing: System 1318
Demonstrations, pages 38–45. Association for Com- 1319
putational Linguistics. 1320

Mengzhou Xia, Antonios Anastasopoulos, Ruochen Xu, 1321
Yiming Yang, and Graham Neubig. 2020. Predicting 1322
performance for natural language processing tasks. 1323
In Proceedings of the 58th Annual Meeting of the As- 1324
sociation for Computational Linguistics, pages 8625– 1325
8646, Online. Association for Computational Lin- 1326
guistics. 1327

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, 1328
Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V. Le, 1329
Tengyu Ma, and Adams Wei Yu. 2023. Doremi: 1330
Optimizing data mixtures speeds up language model 1331
pretraining. Preprint, arXiv:2305.10429. 1332

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, 1333
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan 1334
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer 1335
normalization in the transformer architecture. In Pro- 1336
ceedings of the 37th International Conference on 1337
Machine Learning, volume 119 of Proceedings of 1338
Machine Learning Research, pages 10524–10533. 1339
PMLR. 1340

15

https://arxiv.org/abs/2411.12580
https://arxiv.org/abs/2411.12580
https://arxiv.org/abs/2411.12580
https://arxiv.org/abs/2411.12580
https://arxiv.org/abs/2411.12580
https://aclanthology.org/2024.lrec-main.1213
https://aclanthology.org/2024.lrec-main.1213
https://aclanthology.org/2024.lrec-main.1213
https://arxiv.org/abs/2404.01657
https://arxiv.org/abs/2304.15004
https://arxiv.org/abs/2304.15004
https://arxiv.org/abs/2304.15004
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://ai.meta.com/llama2/
https://ai.meta.com/llama2/
https://ai.meta.com/llama2/
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://aclanthology.org/2021.emnlp-main.72.pdf
https://aclanthology.org/2021.emnlp-main.72.pdf
https://aclanthology.org/2021.emnlp-main.72.pdf
https://arxiv.org/abs/2211.02011
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.acl-main.764
https://doi.org/10.18653/v1/2020.acl-main.764
https://doi.org/10.18653/v1/2020.acl-main.764
https://arxiv.org/abs/2305.10429
https://arxiv.org/abs/2305.10429
https://arxiv.org/abs/2305.10429
https://arxiv.org/abs/2305.10429
https://arxiv.org/abs/2305.10429
https://proceedings.mlr.press/v119/xiong20b.html
https://proceedings.mlr.press/v119/xiong20b.html
https://proceedings.mlr.press/v119/xiong20b.html


Frank F. Xu, Uri Alon, Graham Neubig, and Vin-1341
cent J. Hellendoorn. 2022. A systematic evalua-1342
tion of large language models of code. Preprint,1343
arXiv:2202.13169.1344

Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou,1345
Jun Zhan, and Xipeng Qiu. 2024. Data mixing laws:1346
Optimizing data mixtures by predicting language1347
modeling performance. Preprint, arXiv:2403.16952.1348

Zihuiwen Ye, Pengfei Liu, Jinlan Fu, and Graham Neu-1349
big. 2021. Towards more fine-grained and reliable1350
NLP performance prediction. In Proceedings of the1351
16th Conference of the European Chapter of the Asso-1352
ciation for Computational Linguistics: Main Volume,1353
pages 3703–3714, Online. Association for Computa-1354
tional Linguistics.1355

Zichun Yu, Fei Peng, Jie Lei, Arnold Overwijk, Wen1356
tau Yih, and Chenyan Xiong. 2025. Data-efficient1357
pretraining with group-level data influence modeling.1358
Preprint, arXiv:2502.14709.1359

Xiang Yue, Yueqi Song, Akari Asai, Seungone Kim,1360
Jean de Dieu Nyandwi, Simran Khanuja, Anjali Kan-1361
tharuban, Lintang Sutawika, Sathyanarayanan Ra-1362
mamoorthy, and Graham Neubig. 2025. Pangea: A1363
fully open multilingual multimodal llm for 39 lan-1364
guages. Preprint, arXiv:2410.16153.1365

Rowan Zellers, Ari Holtzman, Hannah Rashkin,1366
Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019.1367
Hellaswag: Can a machine really finish your sen-1368
tence? In Proceedings of ACL.1369

Biao Zhang and Rico Sennrich. 2019. Root mean square1370
layer normalization. Preprint, arXiv:1910.07467.1371

A List of all models1372

All models are listed in Table 3.1373

16

https://arxiv.org/abs/2202.13169
https://arxiv.org/abs/2202.13169
https://arxiv.org/abs/2202.13169
https://arxiv.org/abs/2403.16952
https://arxiv.org/abs/2403.16952
https://arxiv.org/abs/2403.16952
https://arxiv.org/abs/2403.16952
https://arxiv.org/abs/2403.16952
https://doi.org/10.18653/v1/2021.eacl-main.324
https://doi.org/10.18653/v1/2021.eacl-main.324
https://doi.org/10.18653/v1/2021.eacl-main.324
https://arxiv.org/abs/2502.14709
https://arxiv.org/abs/2502.14709
https://arxiv.org/abs/2502.14709
https://arxiv.org/abs/2410.16153
https://arxiv.org/abs/2410.16153
https://arxiv.org/abs/2410.16153
https://arxiv.org/abs/2410.16153
https://arxiv.org/abs/2410.16153
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467


Table 3: Model Parameter Counts by Organization (sorted by size)

Organization Model Name Parameters

EleutherAI (Biderman et al., 2023) pythia-14m 14M
EleutherAI pythia-70m-deduped 70M
EleutherAI pythia-70m 70M
facebook (Meta AI, 2022a) opt-125m 125M
EleutherAI (Black et al., 2021) gpt-neo-125m 125M
HuggingFaceTB (Allal et al., 2024) SmolLM-135M 135M
EleutherAI pythia-160m 160M
EleutherAI pythia-160m-deduped 160M
None (this paper) llama2_220M_nl_100_code_0 220M
None (this paper) llama_220M_nl_80_code_20 220M
None (this paper) llama2_220M_nl_40_code_60 220M
None (this paper) llama2_220M_nl_20_code_80 220M
None (this paper) llama2_220M_nl_0_code_100 220M
Salesforce (Nijkamp et al., 2023) codegen-350M-mono 350M
Salesforce codegen-350M-multi 350M
Salesforce codegen-350M-nl 350M
facebook opt-350m 350M
HuggingFaceTB SmolLM-360M 360M
EleutherAI pythia-410m-deduped 410M
EleutherAI pythia-410m 410M
facebook (Meta AI, 2022b) xglm-564M 564M
EleutherAI pythia-1b-deduped 1B
bigscience (BigScience Workshop
et al., 2023)

bloom-1b7 1B

EleutherAI pythia-1b 1B
cerebras (Cerebras Systems, 2023) Cerebras-GPT-1.3B 1.3B
microsoft (Li et al., 2023) phi 1.5 1.3B
EleutherAI gpt-neo-1.3B 1.3B
EleutherAI pythia-1.4b 1.4B
EleutherAI pythia-1.4b-deduped 1.4B
HuggingFaceTB SmolLM-1.7B 1.7B
Salesforce codegen-2B-mono 2B
Salesforce codegen-2B-nl 2B
Salesforce codegen-2B-multi 2B
google (Gemma Team et al., 2024b) gemma-2-2b 2B
cerebras Cerebras-GPT-2.7B 2.7B
EleutherAI gpt-neo-2.7B 2.7B
NinedayWang (Xu et al., 2022) PolyCoder-2.7B 2.7B
facebook opt-2.7b 2.7B
microsoft (Abdin et al., 2023) phi 2 2.7B
EleutherAI pythia-2.8b 2.8B
EleutherAI pythia-2.8b-deduped 2.8B
facebook xglm-2.9B 2.9B
Qwen (Qwen et al., 2025) Qwen2.5-3B 3B
cerebras (Dey et al., 2023) btlm-3b-8k-base 3B

Continued on next page
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Table 3 – Continued from previous page

Organization Model Name Parameters

openlm-research (Geng and Liu,
2023)

open_llama_3b_v2 3B

rinna (Sawada et al., 2024) bilingual-gpt-neox-4b 4B
Dampish StellarX-4B-V0 4B
facebook xglm-4.5B 4.5B
Salesforce codegen-6B-multi 6B
EleutherAI (Wang and Komatsuzaki,
2021)

gpt-j-6b 6B

Salesforce codegen-6B-nl 6B
Salesforce codegen-6B-mono 6B
cerebras Cerebras-GPT-6.7B 6.7B
facebook opt-6.7b 6.7B
EleutherAI pythia-6.9b-deduped 6.9B
EleutherAI pythia-6.9b 6.9B
Qwen (Bai et al., 2023) Qwen-7B 7B
aisingapore (Lowphansirikul et al.,
2021)

sea-lion-7b 7B

bigscience bloom-7b1 7B
google (Gemma Team et al., 2024a) gemma-7b 7B
mosaicml (MosaicML NLP Team,
2023)

mpt-7b 7B

openlm-research open_llama_7b 7B
tiiuae (Institute, 2023) falcon-7b 7B
allenai (for AI, 2024) OLMo-7B-hf 7B
huggyllama (Touvron et al., 2023a) llama-7b 7B
LLM360 (Liu et al., 2023) Amber 7B
LLM360 CrystalCoder 7B
facebook xglm-7.5B 7.5B
meta-llama (AI, 2023) Meta-Llama-3-8B 8B
google gemma-2-9b 9B
01-ai (01. AI et al., 2025) Yi-9B 9B
EleutherAI pythia-12b 12B
EleutherAI pythia-12b-deduped 12B
cerebras Cerebras-GPT-13B 13B
meta-llama (Touvron et al., 2023b) Llama-2-13b-hf 13B
Qwen Qwen1.5-14B 14B
Qwen Qwen2.5-14B 14B
Salesforce codegen-16B-nl 16B
Salesforce codegen-16B-mono 16B
EleutherAI gpt-neox-20b 20B
mosaicml mpt-30b 30B
Qwen Qwen2.5-32B 32B
Qwen Qwen1.5-32B 32B
AbacusResearch Jallabi-34B 34B
01-ai Yi-34B 34B
01-ai Yi-34B-200K 34B
meta-llama Llama-2-70b-hf 70B
meta-llama (AI, 2023) Meta-Llama-3.1-70B 70B

Continued on next page
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Table 3 – Continued from previous page

Organization Model Name Parameters

meta-llama Meta-Llama-3-70B 70B
Qwen (Qwen et al., 2025) Qwen2-72B 72B
Qwen Qwen2.5-72B 72B
Qwen Qwen1.5-110B 110B
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B List of all architectural and data1374

features1375

B.1 Architectural Features1376

Note that features in this section are collected from1377

official documentation (e.g. huggingface model/-1378

data cards or original papers).1379

• Total parameters - the total number of pa-1380

rameters (embedding included) in the model.1381

Note that we only include decoder-only dense1382

models.1383

• Dimension - the embedding dimension.1384

• Num heads - the number of attention heads.1385

• MLP ratio - the ratio of FFN dimension
embedding dimension .1386

• Positional Embeddings - the type of po-1387

sitional embedding. This is either non-1388

parametric (sinusoidal or fixed embeddings),1389

learned (just learned as a vector per position),1390

rope (rope embeddings), or alibi (technically1391

not an embedding, but included here due to1392

its functional purpose)1393

• LayerNorm - the type of layernorm applied.1394

This is either non-parametric (just an arith-1395

metic based normalization), parametric (simi-1396

lar, but with some learnable parameters such1397

as scaling/biases), and RMSNorm (a simpli-1398

fied version of parametric)1399

• Attention variant - The broad type of atten-1400

tion used. This is either full (vanilla attention),1401

local (each token position only attends to posi-1402

tions around it), mqa (multi-query attention),1403

or gqa (grouped-query attention)1404

• Biases - whether or not bias terms are present1405

in parts of the model. Either none (no biases),1406

attn only (only in attention layers), ln only1407

(only in layer norm)1408

• Block type - whether or not the transformer1409

blocks are computed in parallel at all. Se-1410

quential indicates not, while parallel indicates1411

some parallelism in attention or FFN layers.1412

• Activation - the activation function used. Ei-1413

ther relu, gelu/gelu variations, silu, or swiglu.1414

• Sequence length - the sequence length.1415

• Batch instances - the batch size used during1416

pretraining.1417

B.2 Data Features 1418

Note that features in this section are collected from 1419

official documentation (e.g. huggingface model/- 1420

data cards or original papers). 1421

• Total tokens (B) - total number of tokens used 1422

during pretraining, measured in billions (con- 1423

verted to log scale) 1424

• % Web in Pretraining - Percentage of pre- 1425

training data from general web sources. 1426

• % Code in Pretraining - Percentage of pre- 1427

training data that consists of code. 1428

• % Books in Pretraining - Percentage of pre- 1429

training data from books. 1430

• % Reference in Pretraining - Percentage of 1431

pretraining data from reference sources. 1432

• % Academic in Pretraining - Percentage of 1433

pretraining data from academic sources. 1434

• % English in Pretraining - Percentage of 1435

English text in the pretraining data. 1436

B.3 Freegen-derived Features 1437

These features are derived from model generations. 1438

For each model, 5–10k generations are extracted 1439

and the following metrics are aggregated (by mean 1440

and standard deviation). However, bigram entropy, 1441

the educational classifier score, and domain classi- 1442

fications are exceptions, as they are computed once 1443

across all generations. 1444

We use Stanza (Qi et al., 2020) to generate the 1445

parse-based features after classifying generations 1446

by language. We only include languages that are 1447

supported by stanza in the final set of generations 1448

that the parse features are based on. 1449

B.3.1 Generation Length & Basic Statistics 1450

• Mean Character Length – Average number 1451

of characters per generation (capped at 2048). 1452

• Mean Tokens Generated – Average number 1453

of tokens per generation. 1454

• Mean Sentences – Average number of sen- 1455

tences per generation. 1456

• Mean Words – Average number of words per 1457

generation. 1458

• Mean Words per Sentence – Average num- 1459

ber of words per sentence. 1460
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B.3.2 Constituency Parse Features1461

• Mean Depth of Deepest Parse Tree – Av-1462

erage maximum constituency tree depth per1463

generation.1464

• Mean Depth of Parse Trees – Aver-1465

age constituency tree depth across all sen-1466

tences/phrases.1467

• Mean Word Depth – Average depth of words1468

within constituency trees.1469

• Mean Word Depth Variation – Average stan-1470

dard deviation of word depths across sen-1471

tences/phrases.1472

B.3.3 Dependency Parse Features1473

• Mean 90th-Percentile Dependency Head1474

Distances – For each generation, compute1475

the 90th-percentile of the linear distances be-1476

tween words and their dependency head, then1477

average these values.1478

• Mean Maximum Dependency Head Dis-1479

tances – Average maximum distance from any1480

word to its dependency head per generation.1481

• Mean Median Dependency Head Distances1482

– Average median dependency-head distance1483

per generation.1484

• Mean Maximum Dependency Root Dis-1485

tances – Average maximum distance from1486

any word to the sentence root per generation.1487

• Mean Mean Dependency Root Distances –1488

Average of the mean distances from words to1489

the sentence root per generation.1490

• Mean Median Dependency Root Distances1491

– Average of the median distances from words1492

to the sentence root per generation.1493

B.3.4 Domain Classification Features1494

• % Generated Academic-like Text – Percent-1495

age of generations classified as academic-like.1496

• % Generated Books-like Text – Percentage1497

of generations classified as books-like.1498

• % Generated Code-like Text – Percentage1499

of generations classified as code-like.1500

• % Generated Reference-like Text – Percent-1501

age of generations classified as reference-like.1502

• % Generated Specialized Text – Percentage 1503

of generations classified as specialized (e.g., 1504

music scores, chess PGNs, biomedical data). 1505

• % Generated Web-like Text – Percentage of 1506

generations classified as web-like. 1507

B.3.5 Classifier and Language Metrics 1508

• Mean Educational Classifier Score – Aver- 1509

age score assigned by the educational classi- 1510

fier. 1511

• % Generated English Text – Average per- 1512

centage of text generated in English. 1513

B.3.6 Lexical Diversity and Entropy Metrics 1514

• Mean Bigram Entropy – Average entropy 1515

computed on bigrams across generations. 1516

• Type-Token Ratio – Average ratio of unique 1517

tokens to total tokens. 1518

• Unique Tokens – Average number of unique 1519

tokens per generation. 1520

B.3.7 Lexical and Stylistic Features 1521

• Content-Function Ratio – Ratio of content 1522

words (nouns, verbs, adjectives, adverbs) to 1523

function words. 1524

• Question Words Ratio – Ratio of question- 1525

related words (e.g. how, what, why, when, 1526

where, who, which, whose) per 100k words. 1527

• Imperative Words Ratio – Ratio of impera- 1528

tive words (e.g. do, make, consider, take, use, 1529

ensure, check, build, apply, run, create, find, 1530

go, try, turn, start, stop, put, keep, leave, get, 1531

move) per 100k words. 1532

• Conjunctions Ratio – Ratio of conjunction 1533

words (e.g. and, but, or, so, because, although, 1534

however, therefore, yet) per 100k words. 1535

• Instruction Words Ratio – Ratio of 1536

instruction-oriented phrases (e.g. “Question:”, 1537

“Answer:”, “Instruction:”, “User:”, “Assis- 1538

tant:”, “Q:”, “A:”) per 100k words. 1539

• Numbers Ratio – Ratio of numerical tokens 1540

in the generated text. 1541
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Task Name # Models Evaluated
Commonsense Reasoning / NLI

ANLI 82
HellaSwag 92
Winogrande 92
XNLI 82

Math / Logic
GSM8K 92
LogiQA2 82
MathQA 82

General Knowledge
ARC Challenge 92
Lambada 92
MMLU 92

Other
TruthfulQA 92
HumanEval 91

Table 4: Number of models evaluated for each bench-
mark task. Note that some models encountered technical
errors when being loaded or in lm-eval-harness. The
number of models will continue to be updated.

C List of all evaluations and settings1542

Although we ideally would evaluate the full cross-1543

product of models and tasks, we found that due to1544

some models being incompatible with LM Evalu-1545

ation Harness and compute constraints we could1546

not evaluate all 92 models on every dataset. We list1547

in Table 4 the number of evaluations we currently1548

have for each benchmark and will continue to fill1549

out evaluations in the database.1550

D Task Deviations from Kaplan-style1551

Scaling Laws1552

In Table 5, we document the R2 value for a fitted1553

power law on the performance of each model.1554

E Free-generation Domain Classification1555

We classify model generations into top-level do-1556

mains with GPT-4o-mini. We found that this1557

multi-stage prompt Listing 1, Listing 2 had rea-1558

sonable precision on a sample of Dolma by domain1559

(Soldaini et al., 2024), so use it to classify free-1560

generations.1561

Benchmark R2

gsm8k 0.85
arc challenge 0.82
hellaswag 0.80
winogrande 0.80
mmlu 5-shot 0.80
mmlu 0-shot 0.74
mathqa 0.70
ANLI 0.61
humaneval 0.61
lambada 0.55
LogiQA2 0.50
XNLI 0.41
truthfulqa 0.29

Table 5: Overview of R2 values by benchmark.

F Domain Classifier Validation 1562

To validate the reliability of the 4o-mini based clas- 1563

sifier, we had an author of this paper annotate 300 1564

selected samples from three pretraining datasets 1565

(the Pile, the SmolLM corpus, and RefinedWeb) 1566

according to the same annotation standards used 1567

in Appendix E. Samples annotated as "unknown" 1568

or "incoherent" by either the model or the human 1569

annotator were excluded, as these samples are not 1570

included in computing the domain mix. 1571

After filtering, we analyzed 258 text samples and 1572

found that the human annotator and the model had 1573

an 85.8% absolute agreement, and a Cohen’s κ of 1574

0.746, indicating high agreement between human 1575

classifications and the model’s classifications. 1576

G Free-generation Validation 1577

To validate our free-generation approach as a proxy 1578

for pretraining data composition, we analyzed cor- 1579

relations between the free-generation features of 1580

models and their pretraining data. 1581

Namely, for models trained on three open pre- 1582

training datasets (the Pile, the SmolLM corpus, and 1583

Refinedweb), we compared the features of their 1584

free-generations to features produced by the same 1585

taggers and the LM-based classifier (Appendix E) 1586

on a randomly sampled 1M document subset of the 1587

pretraining corpora. Due to costs, for the domain 1588

classification 5k examples from the 1M were used 1589

per corpus. The 1M documents were uniformly 1590

sampled with reservoir sampling. 1591

Additionally, we calculated two holistic model- 1592

wise correlations, which measure how well each 1593

22



Domain Pearson r p-value

web 0.917 7.55e-12
reference 0.832 3.99e-08
academic 0.824 7.21e-08
code 0.679 7.14e-05
books 0.374 5.02e-02

Table 6: Domain correlations between pretraining data
and free-generations. Web content shows the strongest
Pearson correlation, suggesting models most faithfully
reproduce web distribution patterns, while books con-
tent shows the weakest relationship.

Feature Pearson r p-value

conjunctions_ratio 0.690 4.80e-05
question_words_ratio 0.554 2.21e-03
numbers_ratio 0.449 1.66e-02
imperative_verbs_ratio 0.443 1.83e-02
char_len 0.214 2.75e-01

Table 7: Linguistic feature correlations between pre-
training data and free-generations. Connective elements
like conjunctions show stronger correlations, while
structural features like character length are less pre-
served in model generations.

model’s complete generation profile matches its1594

training data:1595

1. Domain-level correlations: For each domain1596

category (web, code, academic, books, refer-1597

ence), we computed the correlation between1598

the percentage of that domain in the model’s1599

documented pretraining data and the percent-1600

age of free-generations classified into that cat-1601

egory.1602

2. Feature-level correlations: For linguistic fea-1603

tures (conjunctions ratio, imperative verbs ra-1604

tio, question words ratio, numbers ratio, char-1605

acter length), we assessed how well each fea-1606

ture in free-generations correlates with corre-1607

sponding features in pretraining data.1608

These model-wise correlations are notably1609

higher than individual feature correlations, indicat-1610

ing that models preserve the overall "fingerprint" of1611

their training data better than any single dimension1612

alone.1613

H Free-generation Examples1614

Llama-2-70B, web-like: Gwen Stefani Couldn’t1615

Recognize Her First Song at an Event with Blake1616

Shelton What’s the first song you ever wrote and1617

or recorded? And how would you feel if you never1618

heard it again until you were Facetiming with hun- 1619

dreds of thousands of people while attending a big 1620

country music event? That’s exactly what hap- 1621

pened to Gwen Stefani, when she was honored 1622

at the Country Radio Seminar event this week. 1623

In Nashville, . One can only imagine that when 1624

you’ve had as crazy a career as she’s had, it may be 1625

a chore to actually remember all of the milestones 1626

over the years, but just imagine also doing it on 1627

the spot, for everyone to see. Well, as it turns out, 1628

the doubly talented Dolly Parton was set to intro- 1629

duce Gwen as “an artist who broke barriers” when 1630

she cited the lyrics from one of Stefani’s first-ever 1631

“country” songs. . . “year 3,000.” The diplomatic 1632

“The Voice” coach Blake Shelton interjected at the 1633

video she was showing at that moment, asking “was 1634

there other work done .... 1635

phi-2, books-like: The sun glistened brightly 1636

in the evening sky, casting warm rays across the 1637

quaint little kitchen where a pair of diligent par- 1638

ents were preparing a scrumptious meal. The air 1639

was filled with anticipation as they embarked on a 1640

culinary adventure, their hearts filled with love and 1641

joy. 1642

With their sleeves rolled up, the parents deftly 1643

wielded an assortment of sharp knives, each one 1644

an extension of their skill and precision. Like 1645

artists with their brushes, they delicately maneu- 1646

vered through the ingredients, dancing with knives 1647

as their partners. The blades moved with a swift- 1648

ness that defied the physics of everyday movements, 1649

gliding through the air with grace and purpose. 1650

... 1651

Qwen2-72B, reference (instruct)-like: Chil- 1652

dren: Family ticket (at most 2 adults and 2 chil- 1653

dren) $23.00 (1) Mr Black wants to see the film 1654

with his wife and two sons (they’re both over 9), 1655

how much should he pay?____ A. $23. B. $46. C. 1656

$48. D. $49. (2)Mr Brown wants to see the film 1657

with his 5-year-old twin sons, how much should 1658

he pay____. A. $18. B. $23. C. $28.5 D. $32 1659

(3)Lisa can’t see snow in this film.____ A. True B. 1660

False (4). Jane is a maths teacher and she has two 1661

daughters (she’s 12 and her sister is 8). They want 1662

to see the film. How much should she pay?____ A. 1663

$28.5 B. $27 C. $33 D. $26.5 (5) Mike is sixteen. 1664

Today is Saturday and he wants to see the film with 1665

his 40-year-old parents. They will pay____ for the 1666

tickets. A. $22. 1667

OPT-6.7B, web-like: I don’t think this is a ques- 1668

tion. It’s a statement. I say get a dog, the world is 1669

better with dogs. 1670
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I said to myself the exact same thing. I don’t1671

know why you were down-voted.1672

because reddit is a bunch of people who hate1673

dogs.1674

Codegen-16B-mono, code-like: 1675
1676

1 from typing import Optional 1677
2 1678
3 from fastapi import FastAPI 1679
4 from pydantic import BaseModel 1680
5 1681
6 app = FastAPI () 1682
7 1683
8 1684
9 class Item(BaseModel): 1685

10 name: str 1686
11 price: float 1687
12 is_offer: Optional[bool] = None 1688
13 1689
14 1690
15 @app.get("/") 1691
16 def read_root (): 1692
17 return {"Hello": "World␣from␣ 1693

FastAPI"} 1694
18 1695
19 1696
20 @app.get("/items/{ item_id}") 1697
21 def read_item(item_id: int , q: 1698

Optional[str] = None): 1699
22 return {"item_id": item_id , "q": q} 1700
23 1701
24 1702
25 @app.put("/items/{ item_id}") 1703
26 def update_item(item_id: int , item: 1704

Item): 1705
27 return {"item_name": item.name , 1706

"item_id": item_id} 17071708

Pythia-410M, academic-like (patent): This 1709

invention relates to new and improved methods 1710

and apparatus for removing solid waste material 1711

from the waste stream of a power station where the 1712

solid waste material is intended for disposal after 1713

completion of the power plant. 1714

Various attempts have previously been made to 1715

remove solid waste from the waste stream of plants. 1716

This is true, for example, to the discharge of sludge 1717

which is generally collected into a sludge tank and 1718

washed out of the plant in a washing tank which 1719

is generally connected to an open drain outlet of 1720

the plant. This prior art is discussed by U.S. Pat. 1721

No. 3,623,579 which issued to G. R. Clark and 1722

described a method for treating the waste stream to 1723

remove solid waste by flocculating and flocculating 1724

and agitating the solids in a tank to break bonds 1725

between the solid particles. 1726

Furthermore, an apparatus was described by 1727

U.S. Pat. No. 4,016,823 which describes a 1728

method in which liquid sewage is removed from 1729

the waste stream and from the sewage treatment 1730

plant where the solid waste being removed is to 1731

be treated to produce ammonia-purified water for 1732

use in bathing baths or soaps and where the sewage 1733

from the wastewater treatment plant is removed to 1734

the sewage processing plant where this sewage is 1735
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mixed with water or treated as a fertilizer.1736

...1737

I XGBoost Settings1738

For the inner grid search, the maximum depth of1739

trees was in [2, 3, 5], while the learning rate was1740

in [0.01, 0.1, 0.3] and the number of trees was in1741

[50, 100].1742

J Selected Features by Task1743

In Table 8, we show the selected features per bench-1744

mark.1745

K LightGBM Results1746

The LightGBM version of Table 2 can be found in1747

Table 9.1748

L SHAP Plots for remaining benchmarks1749

SHAP plots for the remaining benchmarks can be1750

found in Figure 7 – Figure 15. Please note that1751

lower scores are better for Brier score tasks (ANLI,1752

XNLI, MathQA, LogiQA2)1753
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0.2 0.1 0.0 0.1 0.2 0.3 0.4
SHAP value (impact on model output)

[D] % Reference in Pretraining

[F] % English Generated

[F] Imperative Verbs Generated

[A] Total Parameters

[D] Total Tokens (B)

mmlu_0-shot_0-shot

Low

High

Fe
at

ur
e 

va
lu

e

Figure 10: SHAP values for MMLU 0-shot
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Figure 11: SHAP values for MMLU 5-shot
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Figure 12: SHAP values for ANLI
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Figure 13: SHAP values for XNLI
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Figure 14: SHAP values for MathQA
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Figure 15: SHAP values for LogiQA2

M Details on confirmatory pretraining1754

runs1755

M.1 Training1756

For our confirmatory experiments, we trained1757

460M parameter Llama-2 architecture models from1758

scratch using the Megatron-Deepspeed library. We1759

capped training tokens to 10B, while using a co-1760

sine learning rate schedule set to a length of 100B1761

tokens (meaning that each checkpoint is approx-1762

imately 10% through a “full” pretraining run).1763

Training took place on one node per checkpoint,1764

with 8 H100 GPUs. Each checkpoint took roughly1765

6 hours to train.1766

For our data mixes, we constructed various1767

mixes by using the subsets of the Dolma v1 dataset.1768

In the web vs. other experiments, we fixed the rel-1769

ative percentages of all other data sources while1770

varying the web percentage.1771

The training configuration is as follows:1772

training:1773

num_layers: 141774

num_attention_heads: 121775

seq_length: 20481776

num_kv_heads: 121777

hidden_size: 15361778

ffn_hidden_size: 41281779

tune_steps: 10001780

lr: 0.000151781

min_lr: 1.0e-51782

weight_decay: 1e-21783

grad_clip: 1.01784

lr_warmup_steps: 1001785

save_interval: 20001786

eval_interval: 20001787

train_epochs: 11788

tp: 11789

micro_batch_size: 161790

global_batch_size: 5121791

seed: 421792

1793

Aside from data mix, all experiments used iden-1794

tical hyperparameters to ensure fair comparison.1795

M.2 Evaluation 1796

To assess the impact of different data mixes on 1797

model performance, we evaluated our models on 1798

the following tasks: 1799

1. Natural language inference: Lambada, 1800

winogrande, arc challenge 1801

2. Code generation: Humaneval 1802

3. Math: GSM8K 1803

4. Factuality: TruthfulQA 1804

Note that we do not select the full evaluation 1805

set due to time constraints. As LM eval harness 1806

does not implement perplexity/loss based evalua- 1807

tions for all tasks, we manually convert multiple- 1808

choice tasks to loss-based metrics, and mask out 1809

the prompt or question when calculating loss for 1810

all tasks. 1811

M.3 Conversion to Loss-Based Metrics 1812

To ensure consistent evaluation across different 1813

tasks and models, we converted various benchmark 1814

datasets to loss-based metrics. This approach al- 1815

lows for more direct comparison between models 1816

and clearer interpretation of improvements. Here’s 1817

how we implemented loss calculations for each 1818

dataset type: 1819

Multiple Choice Tasks (ARC Challenge, Wino- 1820

grande, HellaSwag, TruthfulQA): For these 1821

datasets, we calculated two primary loss-based met- 1822

rics: 1823

• Average Loss: We computed the negative nor- 1824

malized log probability of the correct answer. 1825

For each question, we formatted the input as 1826

"Question + Answer Choice", then calculated 1827

the sequence log probability normalized by 1828

token length for each choice. The negative 1829

log probability of the correct answer was used 1830

as the loss. 1831

• Margin-based Loss: For TruthfulQA specifi- 1832

cally, we calculated a margin between truthful 1833

and non-truthful answers. This was computed 1834

as the negative of the difference between the 1835

best truthful answer’s log probability and the 1836

best non-truthful answer’s log probability. A 1837

lower loss indicates better differentiation be- 1838

tween truthful and non-truthful information. 1839
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Generation Tasks (GSM8K, HumanEval, Lam-1840

bada): For generation tasks, we calculated:1841

• Answer Loss: We computed the cross-1842

entropy loss on the solution tokens only. Note1843

that for Lambada, this is only the last word.1844

All log probabilities were normalized by se-1845

quence length as well.1846

M.4 Full Results1847

Exact loss values for the code vs. natural language1848

mixes and the web vs. other mixes can be found1849

respectively in Table 10 and Table 11.1850
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Listing 1: Multistage classification prompt.

<PROMPT 1>. [SYSTEM] You are a system tasked with classifying documents. First, determine if this
document is relatively coherent. These documents are generated by language models, so they may
not make sense. Classify a document as incoherent ONLY if it shows extreme repetition, code
mixes in a way that does not make sense (such as different languages referencing entirely
different subjects), or if it is mostly gibberish. Don’t worry about logic errors or factual
inconsistencies. If multiple documents are mixed into one, classify it as incoherent. Respond
ONLY with "incoherent" if the document is incoherent, otherwise respond with "not_incoherent"

[USER] Please classify the document as incoherent or not_incoherent.\nDocument: {document}

If not incoherent...
<PROMPT 2>. [SYSTEM] Determine if this document contains programming code. Look for:
1. Programming language keywords (def, class, import, etc)
2. Code blocks (marked with backticks, indentation patterns)
3. Stack Overflow-style Q&A about programming
4. File extensions (.py, .js, etc)
5. Documentation about code/config files

Respond ONLY with:
- "code" if ANY of these are present
- "not_code" otherwise
[USER] Please classify the document as code or not_code.\nDocument: {document}

If not code...
<PROMPT 3> [SYSTEM] For documents WITHOUT programming code, determine if this is web content. Web

content includes news articles, social media and online forums, blog posts, shopping websites,
and other general websites. This includes a wide variety of content, and anything that looks
like it may be a web article at all should be included. Look for:

1. URLs or hyperlinks
2. Social media formatting (@mentions, #hashtags)
3. "Click here" or UI elements
4. Comment threads or forum posts
5. Shopping/e-commerce language
6. Bylines or author names
7. Descriptions of products or product features

Respond ONLY with:
- "web" if ANY of these are present
- "not_web" otherwise

[USER] Please classify the document as web or not_web.\nDocument: {document}

If not web...
<PROMPT 4> [SYSTEM] For documents WITHOUT programming code, determine if this is academic or

patent-related content. Academic content consists of research papers and snippets of research
in both sciences and humanities, as well as patent applications. Student essays or assignments
should also be included in this category. Look for:

1. Citations or references
2. Latex formatting such as equations or tables
3. Formal academic language, not aimed at educating a general audience
4. Technical jargon or domain-specific terminology
5. Patent numbers or legal language (but not court documents, only patents)

Do NOT classify as academic if the document:
- Only uses occasional technical terms
- Is a popular science article or description of a scientific study, rather than the study itself
- Is educational but aimed at a general audience

Respond ONLY with:
- "academic" if ANY of these are present
- "not_academic" otherwise
[USER] Please classify the document as academic or not_academic.\nDocument: {document}
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Listing 2: Multistage classification prompt (contd).
If not academic...
<PROMPT 5> [SYSTEM] For documents WITHOUT programming code, determine if this is a book, reference

material (including media content), or a specific dataset. Books include literary works,
fiction, and narrative nonfiction. Reference material includes wikipedia, dictionaries,
textbooks and textbook like content, and encyclopedias. Please note that reference should also
include instruction or human preference datasets for language model training. Media content
includes podcasts, subtitles, and other media-related text. Specific datasets are unique and
not covered by the other categories, such as biomedical datasets or molecules, chess PGNs or
specific data formats not covered by any other category. Look for:

For the books category:
1. Chapter headings or book titles
2. Fictional character names or dialogue
3. For literary nonfiction, look for a more narrative and less didactic tone
4. Extended narrative prose or dialogue
Do NOT classify as books if the document:
- Only has a single dialogue snippet
- Could be a web article
- Is primarily informational or educational (use reference instead)

For the reference category:
1. Definitions or explanations of terms
2. Encyclopedic formatting
3. Textbook-like language
4. Explanations or examples meant to educate a reader
5. Chat formatting like ’User:/Assistant:’ or similar tokens
6. Court documents or legal language (NOT patents)
7. Wikipedia headers such as ’references’ or ’external links’

For the media category (should be classified as reference):
1. Audio or video timestamps
2. Subtitles or captions

For the specific datasets category:
1. Unique names or identifiers
2. Dataset-specific formatting
3. Data or metadata descriptions

If this seems to be a web document (social media, news, blogs, forums, shopping), you can also back
off to the ’web’ category.

Respond ONLY with:
- "books" if the document is a book
- "reference" if the document is reference material
- "specific_datasets" if the document is a specific dataset
- "web" if the document is web content
- "unknown" if none of these are present

[USER] Please classify the document as books, reference, media, specific_datasets, or
unknown.\nDocument: {document}"
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Table 8: Greedily-selected features per benchmark.

Benchmark Selected Features

arc challenge (25-shot) total params, pretraining summary total tokens billions, question words
ratio, layer norm type, dimension, pretraining summary percentage code

gsm8k (5-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage reference, edu classifier std, pretraining summary per-
centage books

hellaswag (10-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage code, pretraining summary percentage reference, posi-
tional embeddings, pretraining summary percentage academic

mmlu 0-shot (0-shot) total params, pretraining summary total tokens billions, layer norm type,
activation, pretraining summary percentage code

truthfulqa (0-shot) total params, pretraining summary total tokens billions, domain web pct
mean, dep parse dep root dist max mean, pretraining summary percentage
english, entropy mean, layer norm type

winogrande (5-shot) total params, pretraining summary total tokens billions, question words ra-
tio, layer norm type, pct english mean, positional embeddings, pretraining
summary percentage books, pretraining summary percentage code, block
type

anli (0-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage code, pretraining summary percentage web, pretraining
summary percentage books, positional embeddings

logiqa2 (0-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage web, domain reference pct mean, dep parse dep root dist
mean std, dep parse dep root dist median std

mathqa (5-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage books, num heads

xnli (0-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage web

lambada (0-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage code, block type

mmlu 5-shot (5-shot) total params, pretraining summary total tokens billions, sequence length,
biases, num heads, dimension, edu classifier mean, pretraining summary
percentage academic

humaneval (0-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage code, layer norm type, pretraining summary percentage
english, biases
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Benchmark Setting Baseline MAE Scaling Laws MAE All Features MAE

Accuracy

Arc Challenge 25-shot 13.23% 4.91% 3.61%
GSM8k 5-shot 15.65% 11.03% 5.78%
Hellaswag 10-shot 12.26% 4.29% 3.14%
Humaneval 0-shot 11.79% 8.61% 6.80%
Lambada 0-shot 16.89% 9.60% 6.39%
MMLU (0-shot) 0-shot 11.98% 9.12% 4.21%
MMLU (5-shot) 5-shot 12.25% 8.39% 3.05%
TruthfulQA 0-shot 3.72% 3.40% 2.61%
Winogrande 5-shot 10.14% 3.99% 3.09%

Brier score (×100)

XNLI 0-shot 7.22 4.70 4.32
ANLI 0-shot 9.48 6.14 6.05
MathQA 0-shot 7.57 3.89 2.95
LogiQA2 0-shot 12.74 8.77 8.29

Table 9: MAE comparison of Scaling Laws and All Features predictors versus Baseline. Note that a significance test
was not carried out for LGBM, so this reflects results for one run, though a hyperparameter search is still carried out
over the same values as in Appendix I for both predictors. Brier scores are scaled ×100 for comparability. Both
predictors here use LGBM.

Data Mix Lambada Humaneval Winogrande Arc challenge GSM8k

NL 70/Code 30 3.426 1.331 3.967 3.967 2.295
NL 75/Code 25 3.426 1.331 3.966 3.651 2.295
NL 80/Code 20 3.419 1.350 3.989 3.685 2.293
NL 90/Code 10 3.406 1.533 3.944 3.620 2.300

Table 10: Loss-based evaluation metrics across different data mix ratios

Data Mix Margin Loss Accuracy (%)

Web 30/Other 70 0.2363 28.86
Web 50/Other 50 0.2342 28.40
Web 90/Other 10 0.2462 28.03

Table 11: TruthfulQA evaluation metrics across different web/other ratios
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