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ABSTRACT

Recent advances in reinforcement learning for foundation models, such as Group
Relative Policy Optimization (GRPO), have significantly improved the perfor-
mance of foundation models on reasoning tasks. Notably, the advantage function
serves as a central mechanism in GRPO for ranking the trajectory importance.
However, existing explorations encounter both advantage reversion and advantage
mirror problems, which hinder the reasonable advantage allocation across differ-
ent query samples. In this work, we propose an easy but effective GRPO strategy,
Mixed Advantage Policy Optimization (MAPO). We reveal that the trajectory
appears with different certainty and propose the advantage percent deviation for
samples with high-certainty trajectories. Furthermore, we dynamically reweight
the advantage function for samples with varying trajectory certainty, thereby adap-
tively configuring the advantage function to account for sample-specific charac-
teristics. Comparison with related state-of-the-art methods, along with ablation
studies on different advantage variants, validates the effectiveness of our approach.

1 INTRODUCTION

Recent advances in the reasoning capabilities of Foundation Model (FM) Jaech et al. (2024); Team
et al. (2025); Guo et al. (2025); Wen et al. (2025); Guo et al. (2025); Wang et al. (2025b) have
been largely driven by improvements in long Chain of Thought (CoT) generation. Among various
enhancement strategies, Reinforcement Learning (RL) Ouyang et al. (2022); OpenAI (2023); Shao
et al. (2024); Hu et al. (2025); Xiong et al. (2025) has emerged as a powerful post-training technique,
enabling FM to refine their CoT reasoning through self-improvement. Therefore, RL serves as the
key mechanism for unlocking the reasoning ability in various domains.

Notably, Group Relative Policy Optimization (GRPO) Shao et al. (2024) is introduced as a pop-
ular reinforcement strategy. GRPO generates and refines a group of reasoning paths through the
group-relative advantage estimation based on rule-based reward functions. Thus, a key difference
with traditional reinforcement methods, such as proximal policy optimization Schulman et al. (2017)
and direct preference optimization Rafailov et al. (2023); Chen et al. (2024); Liu et al. (2025a), is
that GRPO eliminates the need for an additional learned reward critic model, instead leveraging
efficient sampling from the Foundation Model policy. Witnessing the success of Group Relative
Policy Optimization, its advantage function plays a key role in promoting trajectories with relatively
higher advantages, thereby guiding the policy model to update towards more reliable directions. De-
spite recent advancements, GRPO and its variants generally maintain a fixed advantage formulation
throughout the entire training cycle Guo et al. (2025); Yao et al. (2025); Guo et al. (2025). How-
ever, this approach overlooks a significant challenge: the fixed advantage fails to provide meaningful
signals for samples with varying trajectory certainty degrees.

To analyze the drawbacks of existing advantage formulations, we first define trajectory certainty
within the sampling group. The advantage is computed from verifiable rewards, typically format
and accuracy metrics, to jointly measure the trajectory score Guo et al. (2025); Shao et al. (2024);
Yao et al. (2025); Zhang et al. (2025); Liu et al. (2025b); Xu & Ding (2025). For a sampled trajectory,
we declare the success only if it achieves the correct answer on all reward metrics. Consequently,
each trajectory can be viewed as a Bernoulli trial with outcome: failure or success. Then, in the
group sampling, the number of successes over repeated draws follows a binomial distribution, and
high-certainty samples tend to yield nearly identical outcomes across draws, i.e., samples that are
too hard or too easy. We then formally derive the definition of trajectory certainty as follows:
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Figure 1: Observation. During the reinforcement, different samples appear with diverse successful trajectory
numbers N =

∑G
i=1 1{ri=1} (X-axis). Samples with lowest trajectory certainty ( ) tends to achieve most

diverse prediction pattern, i.e., N = 4. Experiments are conducted on the Geo3K with rollout number G = 8.

Trajectory Certainty in GRPO: High certainty corresponds to trajectories with

lower prediction variance, while low certainty reflects higher variance.

We analyze the sample behavior in fig. 1 and reveal two underlying limitations of the existing ad-
vantage paradigm. First, Advantage Reversion: high-certainty samples may receive more differ-
entiated advantage allocations than low-certainty ones. Specifically, a high-certainty sample ( )
with rewards rHigh = {0.9, 1.0, 1.0, 1.0} receives a more discriminative advantage allocation than a
low-certainty sample ( ) with rLow={0.1, 0.9, 1.0, 1.0} due to a small advantage standard devi-
ation σ. However, high-certainty samples do not require strong penalization, whereas low-certainty
trajectories benefit from stronger correction. Second, Advantage Mirror: high-certainty samples
( & ) also require distinct advantage allocation for extreme cases. In particular, the existing
advantage formulation does not take into account the monotonic advantage scores µ and therefore
treats easy and hard samples indistinguishably. The core issue is that the same advantage formu-
lation cannot be applied uniformly across samples with different trajectory certainty. In summary,
this motivates us to rethink the advantage design and decomposes it into two sub-questions: i) how
to design the advantage function for high-certainty samples? and ii) how to adaptively combine
advantage functions for samples with varying trajectory certainty?

To address the question i), we introduce the Advantage Percent Deviation (APD), which replaces
the advantage from standard z-score normalization to relative normalization. Specifically, the orig-
inal advantage formulation is expressed as Âi =

ri−µ
σ . For high-certainty sample trajectories, this

formulation fails to capture the overall level of reward scores. Besides, variance in the rollout tra-
jectory can yield a small σ = std(r), which in turn leads to numerical instability and uncontrollable
boundary on advantage allocation. To deal with this drawback, we introduce a novel advantage
function for high-certainty samples as ÂAPD

i = ri−µ
µ . Regarding question ii), we propose the Tra-

jectory Certainty Reweight (TCR) to determine the sample advantage function based on trajectory
certainty. Inspired by Bernoulli sampling, each trajectory is treated as either a success or a failure.
A trajectory group exhibits the highest uncertainty when the success-to-failure ratio is fifty percent.
Therefore, we use trajectory certainty to dynamically reweight the advantage function from Âi to
ÂAPD

i . In this work, we argue that the existing advantage formulation is not consistently appro-
priate for samples with varying levels of trajectory certainty. To address this issue, we propose a
simple yet effective method, Mixed Advantage Policy Optimization (MAPO), which rethinks the
advantage formulation in GRPO. To validate our approach, we conduct extensive experiments across
multiple datasets using the Qwen2.5-VL-7B architecture, demonstrating the superior performance
in both In-Domain and Out-of-Domain aspects. Our contributions are summarized as follows:

• We focus on the Group Relative Policy Optimization paradigm and reveal that existing advantage
formulation faces two unavoidable challenges: advantage reversion and advantage mirror.

• We propose Mixed Advantage Policy Optimization (MAPO), a simple yet effective method to
overcome existing advantage limitations. Preliminary, we introduce trajectory certainty to evalu-
ate sample behavior. We propose Advantage Percent Deviation for high-certainty advantage esti-
mation and utilize Trajectory Certainty Reweight to dynamically construct the advantage function.
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• We perform a comprehensive analysis on reasoning scenarios, including mathematics and emotion
fields. Through a series of ablation studies, the promising results empirically validate the effec-
tiveness of the proposed mixture advantage strategies in enhancing GRPO overall performance.

2 RELATED WORKS

2.1 FOUNDATION MODEL

The development of Large Language Model (LLM) has revolutionized artificial intelligence, signifi-
cantly transforming the way machines understand and generate human language. Notable examples
of LLM include the GPT series Radford et al. (2019); Brown et al. (2020); OpenAI (2023), Meta
LLaMA Touvron et al. (2023), and Google PaLM Chowdhery et al. (2022); Anil et al. (2023), all of
which have demonstrated impressive capabilities in natural language understanding and generation.
These advancements have sparked considerable interest in extending LLM to handle multi-modal
inputs, particularly by incorporating vision components, which has led to the development of Mul-
timodal Large Language Model (MLLM). Building on the success of LLM, growing interest has
emerged in constructing end-to-end Multimodal Large Language Model (MLLM) systems, such as
Flamingo Alayrac et al. (2022), BLIP-2 Li et al. (2022; 2023), InstructBLIP Dai et al. (2023), QWen-
VL Bai et al. (2023b), LLaVA Liu et al. (2023b;a); Zhu et al. (2024); Li et al. (2024), and VILA Lin
et al. (2023); Fang et al. (2024); Liu et al. (2025d). Existing MLLM solutions typically rely on vi-
sual extractors Radford et al. (2021); Dosovitskiy et al. (2021); Caron et al. (2021) to encode visual
features, using a connector module to project visual tokens into the word embedding space of the
LLM, i.e., treating visual input as a foreign language Wang et al. (2023). Subsequently, the visual
and textual tokens are concatenated and fed into the LLM. The LLM is then used to perform various
vision-language tasks in an auto-regressive manner. As a result, foundation models are gradually
evolving from a single-textual modality to multimodal capabilities. However, existing works pre-
dominantly focus on supervised fine-tuning (SFT) on large-scale pre-training datasets. The success
of OpenAI o1 Radford et al. (2019); Jaech et al. (2024); Ouyang et al. (2022) highlights the powerful
potential of reinforcement learning in post-training to enhance model reasoning capabilities. With
the open-sourcing of Deepseek-R1 Guo et al. (2025) and Qwen Bai et al. (2023a;b); Yang et al.
(2025b;a), reasoning models are now widely deployed locally, drawing attention from the research
community to the efficiency of long chain-of-thought generation for foundation models. And uti-
lizing the reinforcement technique to empower foundation models with reasoning capabilities has
emerged as a pivotal methodology beyond the limitations of SFT.

2.2 GROUP RELATIVE POLICY OPTIMIZATION

Several methods have been proposed to elicit reasoning abilities on mathematical and scientific
problems, enabling foundation models to better handle inference and analysis. Especially, Group
Relative Policy Optimization (GRPO) has recently garnered significant attention in the research
field, as its rule-based reward function effectively enhances the reasoning capabilities of large mod-
els. Existing exploration or variants of GRPO could normally be divided into the following streams.
❶ Think Trajectory Diversity. This paradigm focuses on diversifying the thinking process to facili-
tate a more meaningful candidate rollout. Specifically, it boosts the trajectory from two angles: input
perturbation and process polish. First, constructing the data augmentation technique for Multimodal
Large Language Model to enhance both the quantity and quality of training data. NoisyRollout Liu
et al. (2025b) leverages the noise annealing schedule to construct the noisy image text pairs. VP Li
et al. (2025) introduces three targeted perturbations: distractor concatenation, dominance-preserving
mixup, and random rotation. Share-GRPO Yao et al. (2025) turns to expand the question space for
a given question via data transformation. Second, polishing the thinking process acts as a reliable
direction to monitor the thinking behavior. StepGRPO Zhang et al. (2025) requires the think process
to explicitly reveal key intermediate steps. Both SophiaVL-R1 Fan et al. (2025) and GRPO-CARE
Chen et al. (2025b) utilize an external thinking reward model that evaluates the quality of the entire
thinking process. MGRPO Ding et al. (2025) recycles previous think messages for self-correction
learning. Hint-GRPO Huang et al. (2025) adaptively provides hints to the samples. However, the
aforementioned solutions require constructing dedicated data augmentation strategies or modify-
ing the thinking process, which introduces additional computational costs or an external thinking
reward evaluation model. ❷ Reward Formulation Refinement. With respect to verifiable reward

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Weakness for different GRPO variants. Refer to Sec. 2.2 for details.
Methods Input Space Augmentation Think Cost Increase Specific Task Adaption Additional Hyper-Parameter

Think Trajectory Diversity
NoisyRollout ! (Noisy Distortion) ! (Initial Noise Strength)

VP ! (Visual Augmentation) ! (Perturbation Types)
Share-GRPO ! (Textual Enrichment) ! (Question Variants Number)

StepGRPO ! (Step Think) ! (Key Steps Number)
GRPO-CARE ! (Reference Model) ! (Consistency Coefficient)

Reward Formulation Refinement
Visual-RFT ! (Visual IoU Reward)

GRPO-λ ! (Length Penalty) ! (Top-λ Fraction)
GRPO-LEAD ! (Length Reward) ! (Advantage Rescale Factor)

Advantage Estimation Redesign
SEED-GRPO ! (Advantage Rescale Factor)

GPG ! (Valid Sample Threshold)

construction Bi et al. (2024); Team et al. (2025), it is the predefined rules and normally incorporates
the Format Reward and Accuracy Reward. The former requires the model output should meet the
required HTML tag format of <think> and <answer>. The latter is determined by comparing
the model output class with the ground truth class, yielding a value of 1 for correct classification
and 0 for incorrect classification. Thus, recent works design different verifiable reward functions
for different specific tasks. For instance, Visual-RFT Liu et al. (2025f) proposes the intersection
over union reward for object detection. VisionReasoner Liu et al. (2025c) introduces diverse per-
ception rewards in a unified framework. Both GRPO-λ Dai et al. (2025a) and GRPO-LEAD Zhang
& Zuo (2025) consider the over-length penalty reward. However, this pattern typically focuses on
adapting to specific tasks, which limits cross-task generalization. Additionally, it requires careful
tuning of hyperparameter reward weights for different reward metrics. Therefore, this pattern fails to
achieve robust performance across diverse real-world application settings. ❸ Advantage Estimation
Redesign. Towards advantage estimation, recent researches investigate better trajectory importance
measurement via reformulation or rescaling operation. Dr. GRPO Liu et al. (2025e) and GPG Chu
et al. (2025b) consider removing the standard deviation to alleviate the reward bias. SEED-GRPO
Chen et al. (2025a) reweights the advantages based on the semantic entropy to measure the output
uncertainty. KRPO Wang et al. (2025a) introduces a lightweight Kalman filter approach for accurate
advantage estimation. But this paradigm faces the hyperparameter selection dilemma, or consistent
advantages for different samples. We conclude the weakness of existing GRPO variants in Tab. 1. In
our work, we reveal that samples appear distinct trajectory certainty behavior and utilizing uniform
advantage strategy unavoidably degrades partial samples optimization. Therefore, we dynamically
set the advantage function based on the trajectory certainty to boost the overall reinforcement effect.

3 METHODOLOGY

3.1 PRELIMINARY

Group Relative Policy Optimization (GRPO) Shao et al. (2024) is a variant of Proximal Policy
Optimization (PPO) Schulman et al. (2017) originally developed to enhance mathematical reasoning
in LLM. However, it can also be effectively adapted to improve visual reasoning in Multimodal
Large Language Model. GRPO begins by constructing the current policy model πθ and a reference
model πold, where the latter represents the “old” policy or the policy from a previous iteration. Let
ρQ denote the distribution of prompts or questions. Given a prompt q ∼ ρQ, GRPO samples a
group of outputs o1, o2, . . . , oG from the old model πold. It then optimizes the policy model πθ by
maximizing the following objective function:

JGRPO(θ) = Eq∼ρQEo∼πold(·|q)

[
1

G

G∑
i

fϵ

(
πθ(oi|q)
πold(oi|q)

, Âi

)]
− βDKL[πθ||πref ], (1)

where β is the hyper-parameter. fϵ(x, y) = min(xy, clip(x, 1 − ϵ, 1 + ϵ)y). Âi is the advantage
calculated based on the relative rewards of the outputs inside each group. To be precise, for each
question q, a group of outputs {o1, o2, . . . , oG} are sampled from the old policy model πold. A
reward function (R) is then used to score the outputs, yielding G rewards r = {r1, r2, . . . , rG}
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Figure 2: Architecture illustration of MAPO. We reveal that the trajectory certainty varies across samples.
In general, we introduce the Advantage Percent Deviation to replace the advantage function for high-certainty
elements. We utilize the Trajectory Certainty Reweight to dynamically reweight the advantage function via
trajectory certainty. Assume rollout number G=4. Best viewed in color. Zoom in for details. See Sec. 3.2.

correspondingly, where ri = R(q, oi). The mean reward is then calculated as µ = 1
G

∑G
i=1 ri and

the standard deviation is defined as σ =
√

1
G

∑G
i=1 (ri − µ)

2. The default normalized advantage
for the ith rollout is defined as the following formulation:

Âi =
ri − µ

σ
. (2)

3.2 PROPOSED METHOD

Observation. We model the trajectory outcome as a Bernoulli random variable, X ∼
Bernoulli(p), X ∈ {0, 1}, where X = 1 denotes a successful trajectory and X = 0 denotes a
failure. The success probability p is defined by the expectation of X , E[X] = p, and the variance
of this distribution is Var(X) = p(1 − p), which quantifies the certainty of the trajectory outcome,
shown in fig. 1. However, directly measuring p is challenging, so we estimate it empirically using
the ratio p ≈ N

G , where G is the total number of sampled trajectories. N is the number of successful
trajectories and is defined as the following formulation:

N =

G∑
i=1

1{ri=1}. (3)

This empirical estimation approximates the true probability p via observed trajectories. Thus, we
reveal that samples exhibit varying certainty level within the GRPO sampling process.

Advantage Percent Deviation. Sample would appear high certainty, when the prediction variance
is close to zero (Var(X) → 0), i.e., p → 0 or p → 1, which typically corresponds to overly
easy or difficult instances. In such cases, existing advantage faces two key challenges: Advantage
Reversion and Advantage Mirror. Specifically, the advantage formulation, Âi =

ri−µ
σ , can produce

misleading behaviors between trajectories with high and low certainty. For instance, in the case
of Advantage Reversion, the high-certain trajectory with a relatively high reward of 0.9 in a batch
of rHigh = [0.9, 1, 1, 1] is assigned a large negative advantage (min Âi = −1.73), which is more
extreme than the low-certain ones like rLow = [0.1, 0.1, 1, 1], due to the small standard deviation
exaggerating deviations from the mean. Similarly, as for Advantage Mirror, two reward batches
that are symmetric around the center, such as [0, 0.1, 0.1, 0.1] and [0.9, 1, 1, 1], yield mirrored
normalized advantage scores [−1.73, 0.57, 0.57, 0.57], which makes semantically distinct cases to
appear structurally equivalent normalization. These examples show how reliance on µ and σ alone
can distort the relative evaluation of trajectories, especially when the variance is abnormally small
or the rewards are symmetrically distributed, thus echoing a more robust advantage function.

Therefore, in our work, to address the question i): high-certainty samples advantage reconstruction,
we introduce the Advantage Percent Deviation (APD), to effectively address the issues of Advantage
Reversion and Advantage Mirror. Instead of relying on z-score normalization, APD measures the
relative deviation of each trajectory reward from the batch mean reward, formulated as follows:

ÂAPD
i =

ri − µ

µ
. (4)
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ri−µ

σ
! !

Dr. GRPO ♦ Âi = ri − µ !
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Figure 3: Discussion on existed advantage functions. r means the group reward. We denote µ=mean(r)
and σ = std(r). The reward is defined as a combination of the format reward (rFormat) and the accuracy
reward (rAccuracy), with a weighting factor of β = 0.9, i.e., r = (1 − β)rFormat + βrAccuracy . α=0.6 is
the valid sample rescale parameter for GPG Chu et al. (2025b). Refer to Sec. 3.3 for details.

This design emphasizes the proportional difference between individual rewards and the central ten-
dency, ensuring that the advantage reflects not only the relative ordering but also the magnitude of
deviation in percentage terms. By doing so, APD mitigates the instability caused by abnormally
small standard deviations and prevents mirrored advantage allocation from being treated as equiva-
lent, thereby providing a more stable and reasonable trajectory quality evaluation.

Trajectory Certainty Reweight. Considering that samples are in various trajectory certainty con-
ditions, it is essential to dynamically adjust the advantage formulation across different samples.
We propose the Trajectory Certainty Reweight (TCR), which adaptively reconstructs the advantage
function based on trajectory certainty to address ii) various-certainty sample advantage reweighting.
This design ensures that sample-specific characteristics are preserved, leading to a more faithful and
stable evaluation of trajectory quality.

To be precise, we formalize TCR by introducing a certainty-aware weighting scheme. The key intu-
ition is that when a trajectory exhibits high uncertainty (immature stage), the advantage should rely
more on a variance-sensitive formulation (eq. (2)), while in highly certain (mature) stages it should
instead emphasize a mean-relative formulation (eq. (4)) that remains stable even when variance col-
lapses. To operationalize this idea, we use the estimated trajectory certainty p to interpolate these
two advantages for different samples. We denote the trajectory certainty degree as follows:

λ(p) = 1− 4p(1− p) ∈ [0, 1] (p ∈ [0, 1]). (5)
And, then we further construct the sample-wise advantage construction as follows:

Â∗
i = (1− λ(p)) ∗ ri − µ

σ︸ ︷︷ ︸
Deviation-based

+λ(p) ∗ ri − µ

µ︸ ︷︷ ︸
Mean-based

. (6)

The standard deviation–based advantage is weighted by 1 − λ(p), while the complementary factor
λ(p) is assigned to the mean-based advantage. In this way, the contribution shifts smoothly from
deviation-based signals under uncertainty to mean-based signals under certainty, ensuring a balanced
and robust construction of the advantage function across different trajectory certainty levels. Thus,
we replace the original advantage Âi to proposed Â∗

i in eq. (6) in eq. (1) for optimization. As a
result, our method reveals the trajectory certainty phenomenon and effectively mitigates existing
advantage limitations via dynamical advantage reweight operation. We provide the methodological
framework in fig. 2 and the algorithm description in algorithm 1.

3.3 DISCUSSION AND LIMITATION

Advantage Exploration. The advantage function typically relies on group-based estimation from
trajectory rewards ri ∈ r. Existing explorations Liu et al. (2025e); Chu et al. (2025b); Yang et al.
(2025c) can be broadly classified as the following directions. First, methods such as Dr. GRPO
Liu et al. (2025e), GPG Chu et al. (2025b), S-GRPO Dai et al. (2025b), and wd1 Tang et al. (2025)
remove the standard variance normalization term to alleviate reward bias. More recently, Yang
et al. (2025c) identifies that conventional normalization fails to scale advantages properly under
continuous rewards, and proposes to rewrite the variance as σ = µ(1 − µ) to address this issue.
Meanwhile, KRPO Wang et al. (2025a) introduces a lightweight Kalman filter to dynamically esti-
mate latent reward mean and variance, enabling more adaptive advantage normalization. However,
these approaches fail to resolve both advantage reversion and advantage mirror problems in fig. 3.
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Figure 4: Performance comparison with different advantage formulations on the geometry task based on
Qwen2.5-VL-7B-Instruct model with rollout number G=12. Please refer to Sec. 3.3 for details.

Moreover, existing methods typically employ a uniform advantage formulation across all samples,
overlooking the uniqueness of individual sample conditions. In contrast, we observe that samples
exhibit varying degrees of certainty during optimization. Motivated by this insight, we propose a
novel advantage function that leverages relative deviation for high-certainty samples, and further in-
troduce a certainty-aware reweighting scheme that dynamically adjusts the advantage construction
based on trajectory certainty. This design ensures a more faithful and stable evaluation of the sample
situation across diverse training conditions. We further conduct the empirical experiments to validate
the proposed mixture advantage solutions in fig. 4 and MAPO achieves a satisfying performance.

Conceptual Difference. Utilizing GRPO to enhance foundation models with reasoning capabilities
has gained significant attention Liu et al. (2025e); Chen et al. (2025b); Chu et al. (2025a); Ma et al.
(2025). Recent studies have explored the contribution of sample selection to the effectiveness of
GRPO across three main streams. First, one line focuses on highlighting relatively simple samples
to achieve a stable optimization. For instance, SEED-GRPO Chen et al. (2025a) utilizes semantic
entropy to measure answer diversity and applies more conservative updates to hard questions. How-
ever, blindly emphasizing easy samples can restrict the model exploration ability Yue et al. (2025)
and face model entropy collapse Zhang et al. (2024a). Second, another paradigm seeks to high-
light hard samples. For example, GRPO-LEAD amplifies learning signals for challenging problems
using a difficulty-aware advantage reweight. Recently, Pikus et al. (2025) has pointed out that the
hardest examples consistently yield superior performance on reasoning benchmarks. However, this
approach leads to longer convergence times. The third group focuses on eliminating meaningless
samples. DAPO Yu et al. (2025) and GPG Chu et al. (2025b) aim to discard samples with vanish-
ing advantages, i.e., σ = 0. DAPO considers over-sampling and filtering out prompts with mean
accuracy µ ∈ {0, 1}, but this operation is not efficient in terms of training time. This inefficiency
arises because the time required to collect a batch of desired examples is uncontrollable and de-
pends on the task difficulty. In contrast, GPG seeks more accurate gradient estimation by rescaling
the gradient based on the valid samples ratio, with a validity threshold of 0.6. In summary, existing
work conducts a monotonic emphasis based on sample difficulty, which inevitably faces the pris-
oner dilemma of sample difficulty. In contrast, our work considers trajectory certainty and allocates
different mixture ratios for high- and low-certainty samples, thereby introducing a discriminative
emphasis. We reveal the gradient of MAPO compared with GRPO. Without loss of generality, we
simplify the gradient analysis by ignoring clipping and KL regularization and considering the reward
as a Bernoulli variable. We define the ratio between the gradients of MAPO and GRPO as:

ϱ(p) ≜
∇θJMAPO

∇θJGRPO
= (1− λ(p)) + λ(p)

√
1− p

p
, λ(p) = 1− 4p(1− p). (7)

By further analysis (see details in appendix C), we obtain the following formulation:
ϱ(p) > 1, p ∈ (0, 1

2 ),

ϱ(p) = 1, p = 1
2 ,

0 < ϱ(p) < 1, p ∈ ( 12 , 1).

(8)

This shows that the mixed reward, MAPO implicitly assigns larger gradients to harder samples
(with p < 1

2 ) and smaller gradients to easier ones (with p > 1
2 ), which aligns with prior insights that

appropriately emphasizing difficult samples enhances the performance GRPO Pikus et al. (2025).

7
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Table 2: Ablative study of key modules for MAPO viaQwen2.5-VL-7B-Instruct with rollout number G=12.
Incorporate sole Advantage Percent Deviation (APD) can be regarded as the advantage replacement. Involving
both APD and TCR achieves a satisfying performance. Please refer to Sec. 4.2. for details.

APD TCR Geo3K MathVision MathVista MathVerse AT Ā EmoSet WEBEmo Emotion6 AT Ā
Vanilla - - - - - - - - - - -

51.91 26.74 72.70 43.93 47.79 49.85 75.50 49.90 60.44 55.17 65.33
✓ 50.92 26.61 73.00 44.59 48.07 49.49 77.20 50.55 61.95 56.25 66.72
✓ Rand 53.41 24.90 71.20 43.38 46.49 49.95 76.90 50.20 62.12 56.16 66.53
✓ ✓ 54.41 27.30 73.20 43.81 48.10 51.26 77.86 50.75 60.61 55.68 66.77

Limitation. Despite achieving satisfactory performance with free hyperparameters, our research has
several limitations. First, our approach uses trajectory certainty to treat different samples selectively.
In extreme reinforcement scenarios or when foundational model capabilities are limited, it becomes
difficult to generate a diverse set of successful trajectories, as rollout may consistently fail. In
such cases, our method could reduce to a single function strategy. Second, although our method
assigns different reward mechanisms for samples with different trajectory maturity levels, a more
refined reward allocation method is still worth exploring. Third, due to computational constraints,
our experiments are limited to models with up to 7B parameters and datasets with a few thousand
samples. Future work would aim to extend these findings to larger-scale scenarios.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Environment and Datasets. We conduct experiments on two reasoning scenarios: mathematics and
emotion. For training, we utilize Geo3K [arXiv’21] Lu et al. (2021) and EmoSet [ICCV’23] Yang et al.
(2023). These two datasets are respectively comprised of 2.1K training samples. Furthermore, for
the out-of-domain validation, we respectively adopt out-of-domain datasets in the math and emotion
fields: MathVista [arXiv’23] Lu et al. (2023), MathVision [NeurIPS’24] Wang et al. (2024), MathVerse
[ECCV’24] Zhang et al. (2024b), WEBEmo [ECCV’18] Panda et al. (2018), and Emotion6 [CVPR’15]
Peng et al. (2015). We provide a detailed dataset illustration in appendix B.1.

Architecture and Counterparts. We utilize the popular open-source Qwen2.5-VL-7B-Instruct as
the base (Vanilla) model, which exhibits strong foundational capabilities well-suited for subsequent
RL training Yang et al. (2025b); Bai et al. (2025). We further conduct the comparison with the
GRPO Shao et al. (2024) and DAPO Yu et al. (2025) to validate the effectiveness of our method.

Implementation Details. Experiments are conducted on 8 A100 GPUs. Detail is in appendix B.2.

Evaluation Metrics. We evaluate both in-domain (AS ) and out-of-domain (AT ). Let T = {Tt}|T |
t=1

represent the unseen dataset set and S denote the training distribution. Thus, we derive the following
evaluation metrics forms AS = Acc.(S) and AT = 1

|T |
∑|T |

t Acc.(Ti). Acc. denotes the accuracy

metric. Furthermore, we use the Average metric to evaluate overall performance as Ā = AS+AT

2 .

4.2 DIAGNOSTIC ANALYSIS

We perform ablation studies on the Geo3K and EmoSet datasets, utilizing the Qwen2.5-VL-7B-
Instruct model to facilitate an in-depth analysis. We quantitatively analyze the proposed Mixed
Advantage Policy Optimization (MAPO) in Tab. 2. The ablation demonstrates that solely replacing
the advantage function from the original Âi=

ri−µ
σ to ÂAPD

i = ri−µ
µ leads to limited performance

improvement or even degradation, which underscores the necessity for a dynamic advantage func-
tion. Furthermore, utilizing random weight allocation (λ(p) ∼ U(0, 1) in eq. (6)) fails to achieve
stable performance improvements. Thus, incorporating the Trajectory Certainty Reweight, which
accounts for trajectory certainty, further enhances overall performance.

4.3 COMPARISON TO STATE-OF-THE-ARTS

We benchmark MAPO against state-of-the-art reinforcement learning frameworks in reasoning
tasks. As illustrated in Tab. 3, MAPO consistently outperforms Vanilla, GRPO, and DAPO across

8
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Table 3: Performance comparison with GRPO variants on the geometry and emotional reasoning tasks. We
mark the Best in bold an Second in underline across different methods. Refer to Sec. 4.3.

Methods Geo3K MathVision MathVista MathVerse AT Ā EmoSet WEBEmo Emotion6 AT Ā

Vanilla 37.43 24.51 67.20 40.02 43.91 40.67 53.65 46.85 52.19 49.52 51.58
Qwen2.5-VL-7B-Instruct with Rollout Number G = 12

GRPO 51.91 26.74 72.70 43.93 47.79 49.85 77.20 49.90 60.44 55.17 66.18
DAPO 52.91 26.51 73.50 44.59 48.20 50.56 76.05 50.60 60.61 55.60 65.82
MAPO 54.41 27.30 73.20 43.81 48.10 51.26 77.86 50.75 60.61 55.68 66.77

Qwen2.5-VL-7B-Instruct with Rollout Number G = 8

GRPO 50.92 26.38 72.60 43.45 47.48 49.20 76.40 49.90 60.27 55.08 65.74
DAPO 50.42 26.41 72.40 43.15 47.32 48.87 68.44 47.80 58.08 52.94 60.69
MAPO 54.24 27.37 71.30 43.40 47.36 50.80 77.46 50.05 61.28 55.66 66.56
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Figure 5: Training and testing accuracy during the training process. DAPO fails to conduct complete
training due to dynamic sampling failure in EmoSet scenario. Refer to Sec. 4.3.

both in-domain, e.g., Geo3K and out-of-domain, e.g., MathVision, MathVista, and MathVerse,
showing strong generalization performance under different rollout numbers. With G = 12, it
achieves the highest overall accuracies (51.26 on math and 66.77 on emotion), and even with G = 8,
it maintains superior results (50.80 and 66.55), validating that its mixed advantage formulation effec-
tively mitigates advantage reversion and mirror issues while ensuring reliable optimization. Overall,
it advances state-of-the-art performance with consistent gains across diverse reasoning tasks.

5 CONCLUSION

In our work, we focus on Group Relative Policy Optimization (GRPO) and observe that the ad-
vantage function plays a crucial role in evaluating trajectory importance. However, existing ad-
vantage formulations face two challenges: advantage reversion and advantage mirror. To address
these issues, we propose Mixed Advantage Policy Optimization (MAPO). In particular, we uncover
the trajectory certainty property and introduce advantage percent deviation for high-certainty tra-
jectories. Furthermore, we dynamically reweight the advantage function according to trajectory
certainty, thereby adaptively tailoring the advantage to sample-specific characteristics. Our method
offers three key advantages: First, No Architecture Dependency: MAPO operates without addi-
tional model architectures, ensuring high transferability across different architectures. Second, No
Thinking Pattern Conflict: our approach directly evaluates trajectory advantages while maintaining
compatibility with diverse reasoning formats. Third, No Hyper-Parameter Configuration: by lever-
aging trajectory certainty to adaptively reweight sample advantage formulations, our method avoids
the need for additional hyperparameters, thereby improving reinforcement effectiveness. MAPO has
been validated across diverse scenarios, underscoring its potential for broader applications.
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REPRODUCIBILITY

To facilitate the reproducibility, we provide the source code for both the training and evaluating
framework in the supplementary material. All experimental settings, including key hyperparameter
for training, are detailed in appendix B.2. We experiment on 8 NVIDIA A100 GPUs.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We disclose using LLMs solely to aid and polish writing—enhancing academic expression accuracy,
argument coherence, and text logic. All core ideas, research designs, experiments, and conclusions
are independently developed by the authors.

ETHICS AND SOCIAL IMPACT

This work is purely methodological, focusing on enhancing foundation model reasoning through
Mixed Advantage Policy Optimization. It uses only public benchmark datasets and involves no per-
sonal data, or sensitive content. The method does not create or process private data, nor is it deployed
in real-world applications. While stronger reasoning may indirectly influence downstream uses, our
study does not explore deployment, bias, or misuse. The research is academic in purpose and poses
no direct ethical or societal risks, aligning with responsible and trustworthy AI development.
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APPENDIX

A NOTATION AND ALGORITHM

We provide the notation table in Tab. 4 and proposed method algorithm in algorithm 1.

Algorithm 1: MAPO
Input: Reference model πref , old model πold, current policy model πθ , group size G, Training Step E,

Current Step e, Training Batch B, Question Distribution ρQ, Query Prompt q
Initialize πθ ← πref

for e = 1, 2, ..., E do
πold ← πθ

q ∼ ρQ, o = {oi}Gi=1 ∼ πold(·|q) ; // Sample prompt with G trajectory.

r = {ri}Gi=1 = R(o) ; // Measure trajectory reward.

µ = 1
G

∑
ri∈r ri, σ =

√
1
G

∑G
i=1 (ri − µ)2 ; // Calculate static information.

Advantage Percent Deviation;
Âi ← (r, µ, σ) via eq. (2), ÂAPD

i ← (r, µ) via eq. (4) ; // Measure advantage.

Trajectory Certainty Reweight;
N =

∑G
i=1 1{ri=1}, p = N

G
; // Calculate trajectory success ratio.

λ(p) = 1− 4p(1− p) ; // Measure trajectory maturity degree.

Â∗
i ← (Âi, Â

APD
i , λ) through eq. (6) ; // Mixed advantage.

JGRPO(θ)← (Â∗
i , o, πθ, πold, πref ), θ = θ − η∇JGRPO(θ) ; // Update Weight.

end

Table 4: Notation used in MAPO. Summary of key variables and operations in our method. The Definition
column indicates where each symbol first appears in the main text.

Symbol Description Definition
q Query prompt sampled from distribution ρQ eq. (1)
oi i-th trajectory (rollout) sampled from πold eq. (1)
ri Reward assigned to trajectory oi eq. (1)
G Group size (number of rollouts per query) eq. (1)

πθ, πold, πref Current, old, and reference policy models eq. (1)
JGRPO(θ) Group Relative Policy Optimization objective eq. (1)

β KL regularization coefficient eq. (1)
fϵ(x, y) Clipping function min(xy, clip(x, 1− ϵ, 1 + ϵ)y) eq. (1)

DKL[πθ∥πref] KL divergence between policy and reference model eq. (1)
R(q, oi) Reward function Sec. 3.1
µ, σ Mean and standard deviation of rewards in group eq. (2)
Âi Standardized advantage ri−µ

σ
eq. (2)

N Number of successful trajectories in a group eq. (3)
p Empirical success ratio p = N

G
eq. (3)

ÂAPD
i Advantage Percent Deviation ri−µ

µ+ϵ
eq. (4)

λ(p) Trajectory maturity degree 1− 4p(1− p) eq. (5)
Â∗

i Mixed advantage combining Âi and ÂAPD
i eq. (6)

rFormat, rAccuracy Format reward and accuracy reward fig. 3
ϱ(p) Gradient ratio∇θJMAPO/∇θJGRPO eq. (7)
S Training distribution Sec. 4.1

T = {Tt}|T |
t=1 Set of unseen test datasets Sec. 4.1

|T | Number of unseen test datasets Sec. 4.1
AS ,AT , Ā In-domain, out-of-domain and average accuracy Sec. 4.1

B EXPERIMENTAL INFORMATAION

B.1 DATASET INTRODUCTION

We use the following two datasets from the mathematics and emotional tasks for experiments.
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• Geo3K [arXiv’21] Lu et al. (2021) Designed for geometry problem solving, this dataset contains
images, text, and formulas that require models to perform joint visual–symbolic reasoning.

• EmoSet [ICCV’23] Yang et al. (2023) This large-scale collection targets visual emotion recog-
nition, covering diverse scenes and a broad range of emotion categories.

Furthermore, for above two scenarios, we respectively conduct the evaluation on the following out-
of-domain datasets to vaildate its generalization ability.
• MathVista [arXiv’23] Lu et al. (2023) Serving as a benchmark for visual mathematical reason-

ing, spanning algebra, geometry, and word problems for cross-domain generalization.
• MathVision [NeurIPS’24] Wang et al. (2024) Proposed for multimodal mathematical reasoning,

it emphasizes inference across visual diagrams and natural language expressions.
• MathVerse [ECCV’24] Zhang et al. (2024b) Built to assess model understanding of complex

charts, geometric figures, and formula-rich inputs, emphasizing visual interpretation in reasoning.
• WEBEmo [ECCV’18] Panda et al. (2018) Comprising millions of web images, this dataset spans

7 high-level emotion categories and supports recognition and cross-domain emotion analysis.
• Emotion6 [CVPR’15] Peng et al. (2015) A classic benchmark for visual emotion recognition,

consisting of 6 basic emotion categories and widely used for standard evaluation.

We plot a detailed dataset case illustration in fig. 6.

In Domain Out of Domain

Em
ot

io
n

D
at

as
et

s

Wh i ch emot i on best
describes the image?
Answer the question using
one emotional category…
Answer: Amusement

EmoSet Emotion6WEBEmo

Which emotion best describes
t h e i m a g e ? A n s w e r t h e
question using one emotional
category…
Answer: Joy

W h i c h e m o t i o n b e s t
describes the image?
Answer the question using
one emotional category…
Answer: Sadness

M
at

h
D
at

as
et

s

Circle O has a radius
of 13 inches. Radius O
B is perpendicular to
chord C D which is 24
inches long. Find O X.

Geo3K

Answer: 5

MathVista MathVision MathVerse

Subtract all large
rubber spheres.
Subtract all big
shiny cylinders.
How many objects
are left?
Answer: 4

There are more
grey squares than
white. How many
more?
Answer: 9

As shown in the
figure, DE parallel
BC, then the size
of angle CED is ()
A:40 B:60 C:120
D:140
Answer: D

Figure 6: Data Visualization from the In Domain and Out of Domain datasets used in our experiments.

B.2 IMPLEMENTATION DETAILS

We conduct the experiments on the EasyR11Zheng et al. (2025) as our reinforcement learning train-
ing framework, which is built on Verl2 Sheng et al. (2025). The rollout batch size is set to 512, and
the global batch size is 128. The rollout temperature during training is fixed at 1.0, with Top-p set
to 0.99. To mitigate token-length bias, we compute the policy loss using a token-mean aggrega-
tion strategy. The vision tower of Qwen2.5-VL-7B is fine-tuned without freezing. The optimizer is
AdamW Kingma & Ba (2014) with a learning rate of 1 × 10−6, and the KL coefficient β is set to
1× 10−2. For the validation setting, we set the temperature to 0.5. The maximum number of tokens
to generate is 2048, and Top-p sampling is 0.95. The training epoch is respectively set as T = 20
and T = 15 for Geo3K and EmoSet. Consequently, the training step is E = 80 for Geo3K and
E = 60 EmoSet. These configurations are consistent with the EasyR1.

1https://github.com/hiyouga/EasyR1
2https://github.com/volcengine/verl
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🙋: You are a helpful assistant. $\overline{EB} \| \overline{DC}$. Find $AB$. You FIRST think about the reasoning process as an internal monologue 
and then provide the final answer. The reasoning process MUST BE enclosed within <think> </think> tags. The final answer MUST BE put in \boxed{}.

<think> To find the length of \( AB \), we need to use the properties of similar triangles. Since 
\( \overline{EB} \| \overline{DC} \), triangles \( AEB \) and \( ADC \) are similar by the Basic 
Proportionality Theorem (also known as Thales' theorem). The Basic Proportionality Theorem 
states that if a line is drawn parallel to one side of a triangle intersecting the other two sides, 
then it divides those two sides proportionally. Therefore, we have: \[ \frac{AE}{ED} = 
\frac{AB}{BC} \] We know the following lengths: - \( AE = 10 - 4 = 6 \) - \( ED = 4 \) - \( AB 
= x - 2 \) - \( BC = 5 \) Using the proportionality, we can write: \[ \frac{6}{4} = \frac{x - 2}{5} 
\] Solving for \( x \): \[ \frac{3}{2} = \frac{x - 2}{5} \] Cross-multiplying to solve for \( x \): 
\[ 3 \cdot 5 = 2 \cdot (x - 2) \] \[ 15 = 2x - 4 \] \[ 19 = 2x \] \[ x = \frac{19}{2} = 9.5 \] 
Therefore, the length of \( AB \) is \( x - 2 = 9.5 - 2 = 7.5 \). </think> \boxed{7.5}

<think> To find the length of \( AB \), we need to use the properties of similar triangles. 
Since \( \overline{EB} \| \overline{DC} \), triangles \( AEB \) and \( ADC \) are similar by the 
Basic Proportionality Theorem (also known as the Side-Side-Side Similarity criterion for 
triangles). The ratio of the corresponding sides of similar triangles is equal. Therefore, we can 
set up the following proportion based on the sides of the triangles: \[ \frac{AB}{AC} = 
\frac{EB}{DC} \] We know the following lengths: - \( EB = 4 \) - \( DC = 5 \) - \( AD = 10 \) -
\( AC = x - 2 \) Since \( \triangle AEB \sim \triangle ADC \), the ratio of the corresponding 
sides is: \[ \frac{AB}{x-2} = \frac{4}{5} \] Let's denote \( AB = y \). Then we have: 
\[ \frac{y}{x-2} = \frac{4}{5} \] Cross-multiplying gives: \[ 5y = 4(x - 2) \] Expanding the 
right side: \[ 5y = 4x - 8 \] Solving for \( y \): \[ y = \frac{4x - 8}{5} \] Since \( AB = x - 2 \), 
we equate: \ </think> \boxed{8}

<think> Since \(\overline{EB} \| \overline{DC}\), triangles \(AEB\) and \(ADC\) are similar 
by the AA (Angle-Angle) similarity criterion. This means that the corresponding sides of 
these triangles are proportional. Given: - \(\overline{AD} = 10\) - \(\overline{DC} = 5\) -
\(\overline{AE} = x - 2\) - \(\overline{EB} = 4\) The ratio of the sides of the triangles is: 
\[ \frac{\overline{AE}}{\overline{AD}} = \frac{\overline{EB}}{\overline{DC}} \] 
Substitute the known values: \[ \frac{x - 2}{10} = \frac{4}{5} \] To find \(x\), solve the 
equation: \[ 5(x - 2) = 4 \cdot 10 \] \[ 5x - 10 = 40 \] \[ 5x = 50 \] \[ x = 10 \] Now, find \(AB\): 
\[ AB = \overline{AE} + \overline{EB} = (x - 2) + 4 = 10 - 2 + 4 = 12 \] Thus, the final 
answer is: \boxed{12} </think>

<think> The image shows that \(\overline{EB} \parallel \overline{DC}\). According to the 
Basic Proportionality Theorem (also known as Thales' theorem), the ratios of the segments 
created by a transversal parallel to one side of a triangle are equal. Therefore, we have: 
\[ \frac{AB}{BC} = \frac{AE}{ED} \] Substituting the given values: \[ \frac{x-2}{5} = 
\frac{10}{4} \] Cross-multiplying to solve for \(x\): \[ 4(x-2) = 5 \cdot 10 \] \[ 4x - 8 = 50 \] 
\[ 4x = 58 \] \[ x = 14.5 \] Thus, \(AB = x - 2 = 14.5 - 2 = 12.5\). </think> \boxed{12.5}

GRPO (𝒓 = 𝟎. 𝟏)Vanilla (𝒓 = 𝟎)

Our (𝒓 = 𝟏)DAPO (𝒓 = 𝟎. 𝟏)

🙋: You are a helpful assistant. Which emotion best describes the image? Answer the question using one emotional category: amusement, anger, awe, 
contentment, disgust, excitement, fear, or sadness. You FIRST think about the reasoning process as an internal monologue and then provide the final 
answer. The reasoning process MUST BE enclosed within <think> </think> tags. The final answer MUST BE put in \boxed{}.

<think>The image shows a child holding a camera, smiling, and dressed in a warm outfit. The 
child appears to be enjoying the moment, possibly outdoors in a natural setting. The overall 
atmosphere suggests a sense of happiness and contentment. The child‘s smile and the relaxed 
pose indicate that the child is comfortable and enjoying the activity.
</think>\boxed{amusement}

<think> The image shows a child holding a camera, smiling, and dressed in a warm outfit. 
The child's expression is bright and cheerful, suggesting a positive and content mood. The 
background of trees and the warm lighting further contribute to a relaxed and pleasant 
atmosphere. Given these observations, the emotion that best describes the image is 
contentment. </think> \boxed{contentment}

<think> The image shows a child holding a camera, smiling, and dressed in a warm outfit. 
The child's expression is bright and cheerful, suggesting a positive and happy mood. The 
background of trees and the warm lighting further contribute to a relaxed and pleasant 
atmosphere. Given these observations, the emotion that best describes the image is 
contentment. </think> \boxed{contentment}

<think> The image shows a child holding a camera, smiling, and dressed in a warm outfit. 
The background is a natural setting with trees, suggesting a pleasant, outdoor environment. 
The child's expression and the overall composition of the image convey a sense of joy and 
contentment. There are no signs of anger, fear, disgust, or sadness. The warm lighting and the 
child's cheerful demeanor indicate a positive and happy mood. </think> \boxed{contentment}

GRPO (𝒓 = 𝟎. 𝟏)Vanilla (𝒓 = 𝟏)

Our (𝒓 = 𝟏)DAPO (𝒓 = 𝟎. 𝟏)

💡:  7.5
Geo3k

💡:  amusement
EmoSet

Figure 7: In-Domain Case visualization.

🙋: You are a helpful assistant. The area of $\\triangle ABC$ is 6 square centimeters. $\\overline{AB}\\|\\overline{DE}$. $BD=4BC$. What is the 
number of square centimeters in the area of $\\triangle CDE$?The reasoning process MUST BE enclosed within <think> </think> tags. The final answer 
MUST BE put in \boxed{}.

<think>\nTo find the area of \\(\\triangle CDE\\), we need to use the given information and 
properties of similar triangles.\n\n1. Since \\(\\overline{AB} \\parallel \\overline{DE}\\), 
\\(\\triangle ABC\\) is similar to \\(\\triangle ECD\\) by the Basic Proportionality Theorem (also 
known as Thales' theorem). This means the ratios of the corresponding sides of these triangles 
are equal.\n2. We are given that \\(BD = 4BC\\). This implies that \\(BC : CD = 1 : 3\\) because 
\\(BD = BC + CD\\) and \\(BD = 4BC\\) implies \\(CD = 3BC\\).\n3. The ratio of the areas of 
two similar triangles is the square of the ratio of their corresponding sides. Therefore, the ratio 
of the area of \\(\\triangle ABC\\) to the area of \\(\\triangle CDE\\) is 
\\(\\left(\\frac{BC}{CD}\\right)^2 = \\left(\\frac{1}{3}\\right)^2 = \\frac{1}{9}\\).\n4. Since the 
area of \\(\\triangle ABC\\) is 6 square centimeters, the area of \\(\\triangle CDE\\) is \\(6 \\times 
9 = 54\\) square centimeters.\n\nThus, the area of \\(\\triangle CDE\\) is 54 square 
centimeters.\n\n</think>\n\\boxed{54},

<think>\nTo find the area of \\(\\triangle CDE\\), we need to use the properties of similar 
triangles and the given ratio of the sides.\n\n1. Since \\(\\overline{AB} \\parallel 
\\overline{DE}\\), \\(\\triangle ABC \\sim \\triangle ECD\\) by the Basic Proportionality 
Theorem (also known as Thales' theorem).\n\n2. The ratio of the corresponding sides of 
similar triangles is equal to the ratio of their areas. Given that \\(BD = 4BC\\), we have \\(BC : 
BD = 1 : 4\\).\n\n3. This ratio of the sides implies that the ratio of the areas of \\(\\triangle 
ABC\\) to \\(\\triangle CDE\\) is the square of the ratio of their corresponding sides. Therefore, 
the ratio of the areas is \\((1 : 4)^2 = 1 : 16\\).\n\n4. The area of \\(\\triangle ABC\\) is 6 square 
centimeters. Let the area of \\(\\triangle CDE\\) be \\(A\\). Then, we have:\n   \\[\n   
\\frac{\\text{Area of } \\triangle ABC}{\\text{Area of } \\triangle CDE} = \\frac{1}{16}\n   
\\]\n   \\[\n   \\frac{6}{A} = \\frac{1}{16}\n   \\]\n   Solving for \\(A\\):\n   \\[\n   A = 6 \\times 
16 = 96\n   \\]\n\nTherefore, the area of \\(\\triangle CDE\\) is 96 square 
centimeters.\n\n</think>\n\\boxed{96}

<think>\n1. Given that \\( \\overline{AB} \\parallel \\overline{DE} \\), triangles \\( \\triangle 
ABC \\) and \\( \\triangle CDE \\) are similar by the AA (Angle-Angle) similarity criterion. 
This is because they share the same angles due to the parallel lines.\n\n2. The ratio of the 
corresponding sides of similar triangles is equal to the ratio of their areas. If \\( BD = 4BC \\), 
then the ratio of \\( BC \\) to \\( BD \\) is \\( \\frac{BC}{BD} = \\frac{1}{4} \\).\n\n3. Since 
the triangles are similar and the ratio of the sides is \\( \\frac{1}{4} \\), the ratio of the areas of 
the triangles is the square of the ratio of their corresponding sides. Therefore, the ratio of the 
area of \\( \\triangle ABC \\) to the area of \\( \\triangle CDE \\) is \\( \\left( \\frac{1}{4} 
\\right)^2 = \\frac{1}{16} \\).\n\n4. Let the area of \\( \\triangle CDE \\) be \\( A \\). Then we 
have:\n   \\[\n   \\frac{\\text{Area of } \\triangle ABC}{\\text{Area of } \\triangle CDE} = 
\\frac{6}{A} = \\frac{1}{16}\n   \\]\n\n5. Solving for \\( A \\):\n   \\[\n   \\frac{6}{A} = 
\\frac{1}{16} \\implies 6 \\times 16 = A \\implies A = 96\n   \\]\n\nThe final answer is 
\\(\\boxed{96}\\)

<think>\nGiven that \\( \\overline{AB} \\parallel \\overline{DE} \\), triangles \\( \\triangle 
ABC \\) and \\( \\triangle CDE \\) are similar by the Basic Proportionality Theorem (also 
known as Thales' theorem). The ratio of the corresponding sides \\( BD \\) to \\( BC \\) is 4, 
which means the ratio of the areas of \\( \\triangle CDE \\) to \\( \\triangle ABC \\) is \\( 4^2 = 
16 \\).\n\nThe area of \\( \\triangle ABC \\) is 6 square centimeters. Therefore, the area of 
\\( \\triangle CDE \\) is \\( 16 \\times 6 = 96 \\) square centimeters.\n</think>\n\\boxed{96}

Vanilla (𝒓 = 𝟎)

DAPO (𝒓 = 𝟎. 𝟏)

🙋: You are a helpful assistant. Which emotion best describes the image?\nAnswer the question using one emotional category: love, joy, confusion, anger, 
fear, sadness, or surprise. You FIRST think about the reasoning process as an internal monologue and then provide the final answer. The reasoning 
process MUST BE enclosed within <think> </think> tags. The final answer MUST BE put in \boxed{}.

<think>\nThe image depicts a cat lying on a cushion in a relaxed and comfortable position. 
The cat appears to be sleeping peacefully, which suggests a calm and content mood. There are 
no signs of distress or agitation that would indicate any of the other emotions listed. Therefore, 
the emotion that best describes the image is likely to be one of contentment or 
relaxation.\n</think>\n\\boxed{joy}

<think>\nThe image depicts a cat sleeping on a cushion in a cozy room. The cat appears 
relaxed and comfortable, which suggests a sense of peace and contentment. There are no signs 
of distress or agitation that would indicate confusion, anger, fear, sadness, or surprise. The 
overall atmosphere of the image is calm and serene, which aligns with the emotion of love, as 
it evokes feelings of warmth and affection.\n</think>\n\\boxed{love}

<think>\nThe image depicts a peaceful scene of a cat sleeping on a cushion. The cat appears 
to be in a relaxed and comfortable position, with its eyes closed, suggesting a state of rest or 
contentment. The background includes soft, warm elements like blankets and a cozy 
atmosphere, which further contributes to the overall sense of tranquility. There are no signs of 
distress, anger, or any other negative emotions. The scene evokes a feeling of calm and 
serenity, which aligns most closely with the emotion of love or happiness, but the primary 
emotion here seems to be one of peace and contentment.\n</think>\n\\boxed{joy}

<think>\nThe image depicts a serene and peaceful scene with a cat sleeping on a cushion. 
The setting appears cozy and calm, with soft lighting and a relaxed atmosphere. There are no 
signs of distress, anger, fear, sadness, or surprise. The overall mood is one of tranquility and 
contentment.\n</think>\n\\boxed{love}

Vanilla (𝒓 = 𝟏. 𝟎)

DAPO (𝒓 = 𝟎. 𝟏)

💡:  54
MathVision

💡:  joy
WEBEmo

GRPO (𝒓 = 𝟎. 𝟏)

Our (𝒓 = 𝟏)

GRPO (𝒓 = 𝟎. 𝟏)

Our (𝒓 = 𝟏)

Figure 8: Out-of-Domain Case Visualization.

B.3 VISUALIZATION ANALYSIS

We present the output cases for both in-domain (fig. 7) and out-of-domain distributions (fig. 8). For
samples with high certainty, the existing GRPO leads to abnormal behavior. Both GRPO and DAPO
exhibit degradation on the in-domain dataset EmoSet and the out-of-domain dataset WEBEmo in
cases where the vanilla Qwen2.5-VL-7B-Instructversion could correctly answer. This suggests that
the existing advantage distorts the optimization direction for samples with high trajectory certainty,
ultimately leading to a performance decrease.
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C THEORETICAL ANALYSIS

To better understand how proposed MAPO reshapes the optimization dynamics compared with
GRPO, we provide a gradient-level analysis. Without loss of generality, we simplify the gradi-
ent analysis by ignoring clipping and KL regularization and modeling the reward as accuracy,
i.e., a Bernoulli variable. For a prompt with G rollouts and Bernoulli rewards Ri ∈ {0, 1}, de-
fine Ai = Ri − µ and let p = N

G , where N =
∑G

i=1 1{Ri=1}. Then µ = 1
G

∑
i Ri = p and

σ =
√
p(1− p). Ignoring clipping and KL modules, the gradient of the objective is

∇θJ = E
[∑

i,t

ri,t Âi ∇θ log πθ(ai,t | si,t)
]
, ri,t =

πθ(ai,t | si,t)
πold(ai,t | si,t)

. (9)

For GRPO, the advantage is ÂG
i = Ai/σ.

For MAPO,

ÂM
i = (1− λ(p))

Ai

σ
+ λ(p)

Ai

p
, λ(p) = 1− 4p(1− p). (10)

Hence, for any trajectory, we define the ratio of the gradient as:

ϱ(p) ≜
∇θJMAPO

∇θJGRPO
=

ÂM
i

ÂG
i

= (1− λ(p)) + λ(p)
σ

p
= (1− λ(p)) + λ(p)h(p) (11)

where h(p) =
√

1−p
p .

Next, we analyze the property of ϱ(p). Since h is smooth on (0, 1) with

h′(p) = − 1

2p2 h(p)
= − 1

2 p3/2
√
1− p

< 0, (12)

the derivative of ϱ is

ϱ′(p) = 4(1− 2p)
(
1− h(p)

)
+

(
1− 4p(1− p)

)
h′(p). (13)

For p ∈ (0, 1), we obtain that ϱ′(p) ≤ 0, and ϱ( 12 ) = 1. Thus, we have:
ϱ(p) > 1, p ∈ (0, 1

2 ),

ϱ(p) = 1, p = 1
2 ,

0 < ϱ(p) < 1, p ∈ ( 12 , 1).

(14)

Which implies that MAPO leads to amplified gradients than GRPO on harder samples (with p < 1
2 ),

and smaller updates on easier samples (with p > 1
2 ). This leads to the conclusion in Sec. 3.3.
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