
Published in Transactions on Machine Learning Research (05/2025)

GRAPES: Learning to Sample Graphs for
Scalable Graph Neural Networks

Taraneh Younesian t.younesian@vu.nl
Vrije Universiteit Amsterdam

Daniel Daza d.f.dazacruz@amsterdamumc.nl
Amsterdam UMC

Emile van Krieken Emile.van.Krieken@ed.ac.uk
University of Edinburgh

Thiviyan Thanapalasingam t.singam@uva.nl
University of Amsterdam

Peter Bloem p.bloem@vu.nl
Vrije Universiteit Amsterdam

Reviewed on OpenReview: https: // openreview. net/ forum? id= QI0l842vSq

Abstract

Graph neural networks (GNNs) learn to represent nodes by aggregating information from
their neighbors. As GNNs increase in depth, their receptive field grows exponentially, leading
to high memory costs. Several works in the literature proposed to address this shortcoming by
sampling subgraphs or by using historical embeddings. These methods have mostly focused
on benchmarks of single-label node classification on homophilous graphs, where neighboring
nodes often share the same label. However, most of these methods rely on static heuristics
that may not generalize across different graphs or tasks. We argue that the sampling method
should be adaptive, adjusting to the complex structural properties of each graph. To this
end, we introduce GRAPES, an adaptive sampling method that learns to identify the set of
nodes crucial for training a GNN. GRAPES trains a second GNN to predict node sampling
probabilities by optimizing the downstream task objective. We evaluate GRAPES on various
node classification benchmarks involving homophilous as well as heterophilous graphs. We
demonstrate GRAPES’ effectiveness in accuracy and scalability, particularly in multi-label
heterophilous graphs. Additionally, GRAPES uses orders of magnitude less GPU memory
than a strong baseline based on historical embeddings. Unlike other sampling methods,
GRAPES maintains high accuracy even with smaller sample sizes and, therefore, can scale
to massive graphs. Our implementation is publicly available online.1

1 Introduction

Despite the broad range of applications of GNNs (Nettleton, 2013; Wu et al., 2022; Li et al., 2022; Kipf &
Welling, 2016; Velickovic et al., 2017; Yun et al., 2019), scalability remains a significant challenge (Serafini &
Guan, 2021). Unlike traditional machine learning problems, where data is assumed to be i.i.d., the graph
structure introduces dependencies between a node and its neighborhood. This complicates partitioning data
into mini-batches. Additionally, the number of nodes that a GNN needs to process increases exponentially
with the number of layers (Ma et al., 2025).

1Available at https://github.com/dfdazac/grapes.

1

https://openreview.net/forum?id=QI0l842vSq
https://github.com/dfdazac/grapes

Published in Transactions on Machine Learning Research (05/2025)

1-hop node sampling 2-hop node sampling

s0 s1 s2
sampling GNN cross-entropy

loss

classification reward

sampling
policy

GNN
classifiersampling

policy

GNN
sampling sampling

gradient update

Figure 1: Overview of GRAPES. First, GRAPES processes a target node (green) by computing node
inclusion probabilities on its 1-hop neighbors (shown by node color shade) with a sampling GNN. Given
these probabilities, GRAPES samples k nodes. Then, GRAPES repeats this process over nodes in the 2-hop
neighborhood. We pass the sampled subgraph to the classifier GNN for target node classification. Finally,
GRAPES uses the classification loss to update the classifier GNN and to reward the sampler GNN.

Most current graph sampling methods use a fixed heuristic to compute node inclusion probabilities: The
sampling process is independent of the node features, graph structure, or the GNN task performance (Chen
et al., 2018b; Zou et al., 2019; Zeng et al., 2019). For simple graphs like homophilous graphs (Zhu et al.,
2020; Zheng et al., 2022; Zhao et al., 2023) where there is a strong correlation between labels of a node and
its neighbors, a fixed heuristic typically suffices. However, these methods fall short when applied to graphs
in which only a few of the nodes in the neighborhood provide relevant information for the task at hand.
Consequently, we study adaptive sampling, where the sampling method adapts dynamically to the task by
learning which nodes should be included. Our adaptive sampling technique learns to sample by directly
minimizing the classification loss of the downstream GNN. This differs from most existing graph sampling
methods, which aim to approximate the full-batch GNN (Chen et al., 2018b; Zou et al., 2019; Zeng et al.,
2019; Huang et al., 2018), opting for an indirect approach to achieve high accuracy.

We introduce a straightforward adaptive sampling method called Graph Adaptive Sampling (GRAPES). As
illustrated in Figure 1, GRAPES samples a subgraph around the target nodes in a series of steps. At each
step, a sampling policy GNN computes inclusion probabilities for the nodes neighboring the current subgraph,
which the sampler uses to select a subset. Once the sampling is complete, the resulting subgraph is passed to
a second classifier GNN for classification. The classification loss is then backpropagated to train both GNNs.

To enable backpropagation through the sampling step, we need a gradient estimator. We compare a
reinforcement learning (RL) approach and a GFlowNet (GFN) approach (Bengio et al., 2021a). Both
approaches allow us to consider the sampling process and the GNN computation together and to train them
concurrently. This allows the sampler to adapt based on factors like the node features, the graph structure,
the sample size, and other contextual features.

In multi-class classification– where a node can be assigned only one of multiple classes– on homophilous
graphs, even a simple strategy like random sampling could be sufficient, since the neighborhood of a node
contains nodes with similar labels (see Fig. 2a). In the case of multi-label classification, on the other hand,
the number of possible labels assigned to a node is |2Y |, where Y is the unique set of labels. Furthermore, in
heterophilous graphs, the relationship between the neighborhood of a node and its label is more complex (see
Fig. 2b). We argue that in such cases, a sampling policy that directly adapts to the properties of the graph
and the downstream task is crucial.

Therefore, in addition to the datasets commonly used in the literature, we evaluate GRAPES on several
heterophilous and/or multi-label graphs and demonstrate its effectiveness on these complicated graphs.
Moreover, we spend significant effort on the evaluation protocol for fairly testing graph sampling methods. In
particular, we ensure that all sampling methods are evaluated under the same conditions and on the same
GNN architecture to eliminate any confounding factors and to ensure that any changes in performance can
only be attributed to the sampling method. To the best of our knowledge, we are the first to perform such a
rigorous comparison on twelve varied datasets.

2

Published in Transactions on Machine Learning Research (05/2025)

Artificial Intelligence

Cognitive Science

(a)

Binding

Signal transduction

Regulation

Biosynthesis

(b)

Figure 2: The downstream task and the structural properties of the graph affect the strategy used for
sampling. Fig. 2a shows a citation network where articles citing each other are likely to belong to the same
category. Fig. 2b shows a graph of interacting proteins, each with different biological functions.

Additionally, we provide a theoretical analysis indicating the effectiveness of adaptive sampling on a specific
category of heterophilous graphs, where only a subset of neighbors contains relevant information for an
accurate node classification.

We evaluate GRAPES on several node classification tasks and find that

1. Performance. GRAPES achieves state-of-the-art performance in multi-label classification bench-
marks over heterophilous graphs, while performing competitively on multi-class classification on
homophilous graphs.

2. Memory Efficiency. GRAPES uses orders of magnitude less GPU memory when compared with a
strong baseline that relies on historical embeddings for scaling GNN training.

3. Robustness. In comparison with other methods, GRAPES maintains good performance under
exponential reductions in sample size.

2 Related Work

Fixed Sampling Policy: In this category, the sampling policy is independent of the training of the GNN
and is based on a fixed heuristic that does not involve any training. Given a set of target nodes, i.e. the nodes
that are to be classified, node-wise sampling methods sample a given number of nodes for each target node.
GraphSage (Hamilton et al., 2017) is a node-wise sampling method that randomly samples nodes. However,
node-wise sampling can result in nodes being sampled multiple times redundantly because they can be the
neighbors of several nodes (Zou et al., 2019). A more efficient approach is layer-wise sampling, for example,
FastGCN (Chen et al., 2018b) and LADIES (Zou et al., 2019). They aim to minimize variance by sampling
nodes in each layer with probabilities proportional to their degree. MVS-GNN (Cong et al., 2020) proposes a
fixed sampling policy with the aim of minimizing sampling variance by decoupling it into two components.
The first component, embedding approximation variance, arises from neighbor sampling and is mitigated
through the use of historical embeddings. The second component, stochastic gradient variance, results from
mini-batching and is addressed by incorporating the norm of the node gradients into the sampling process.
Moreover, some techniques focus on sampling subgraphs in each mini-batch, like GraphSAINT (Zeng et al.,
2019) and ClusterGCN (Chiang et al., 2019). While these techniques effectively scale GNNs to larger graphs,
they do not adapt to the sampling policy based on the GNN’s performance on the task. In the graph signal
processing community, the authors in (Geng et al., 2023) propose a node sampling technique based on (Anis
et al., 2016) to sample nodes for a unique and stable graph signal reconstruction. However, this method is
only applied to small graphs.

Learnable Sampling Policy: A few methods learn the probability of including a node based on feedback
from the GNN. AS-GCN (Huang et al., 2018) is a method that learns a linear function that estimates the
node probabilities layer-wise. Similarly, PASS (Yoon et al., 2021) learns a mixture of a random distribution
and a learned policy with RL. Like GRAPES, it is task-adaptive; however, its sampling probability uses a

3

Published in Transactions on Machine Learning Research (05/2025)

bilinear similarity measure between neighboring node features, meaning the graph structure is not considered.
FairSample Cong et al. (2023) is a learnable sampling policy that borrows the PASS training mechanism
that utilizes reinforcement learning to combine classification loss and a fairness loss to balance accuracy and
fairness towards the underrepresented nodes. GNN-BS (Liu et al., 2020) formulates the node-wise sampling
problem as a bandit problem and updates the sampling policy according to a reward function that reduces the
sampling variance. SubMix (Abu-El-Haija et al., 2023) proposes a mixture distribution of sampling heuristics
with learnable mixture weights. DSKReG (Wang et al., 2021) learns the relevance of items in a user-item
knowledge graph by jointly optimizing the sampling strategy and the recommender model. The majority of
these methods focus on variance reduction and fail to consider the classification loss, unlike GRAPES. We
argue that adaptivity to the classification loss allows for sampling the influential nodes depending on the task
and results in better performance.

Other Scalable Methods: Authors of (You et al., 2022; Zhang et al., 2024) use graph lottery tickets to
eliminate unnecessary edges, while DSpar (Liu et al., 2023) uses a simple degree-based heuristic to sparsify the
graph. Ruiz et al. (2023) proposes a method to transfer the weights of a GNN trained on a mid-sized graph
to larger graphs, given the graphon similarity between the graphs. Another group of papers uses historical
embeddings of the nodes when updating the target nodes’ embeddings (Chen et al., 2018a; Fey et al., 2021;
Yu et al., 2022; Shi et al., 2023). GAS (Fey et al., 2021) approximates the embeddings of the 1-hop neighbors
using the historical embeddings of those nodes learned in the previous training iterations. These methods
reduce the GPU memory usage by training in mini-batches and learning from the 1-hop neighbors with the
historical embeddings saved in CPU memory. Unlike GRAPES, they process the whole graph.

3 Background: GNN Training and Sampling

We first provide the necessary background about GNNs and graph sampling. Although our method is
independent of the choice of GNN architecture, we limit our discussion to the GCN architecture for simplicity
(Kipf & Welling, 2016).

Let G = (V, E) be an undirected graph with a list of N nodes V = {1, . . . , N} and a set of edges E . The
adjacency matrix A ∈ {0, 1}N×N indicates a connection between a pair of nodes. Next, let Â = D̃−1/2ÃD̃−1/2,
where Ã = A + I and where D̃ is the degree matrix of Ã. Let X ∈ RN×f be the node embeddings and let Y
be the labels for the target nodes Vt ⊂ V, where Vt indexes the nodes with a label.

We consider a GCN with L layers. The output of the l-th layer of the GCN is H(l) = σ(ÃH(l−1)W (l)), where
W (l) is the weight matrix of GCN layer l and σ is a non-linear activation function. For a node i ∈ V, this
corresponds to the update

h
(l)
i = σ

 ∑
j∈N (i)∪{i}

Âijh
(l−1)
j W (l)

 , (1)

where N (i) : V → 2V is the set of i’s neighbors excluding i.

As the number of layers increases, the computation of the embedding of the node i involves neighbors from
further hops. As a result, the neighborhood size grows rapidly with the number of layers. We study how
to sample the graph to overcome this growth. We focus on layer-wise sampling, a common type of graph
sampling approach (Chen et al., 2018b; Zou et al., 2019; Huang et al., 2018). First, we divide the target
nodes into mini-batches of size b. Then, in each layer, we sample k nodes V(l) among the neighbors of the
nodes in the previous layer using the sampling policy q. To make this precise, we will need some additional
notation. The computation of the output of layer l is then:

for all i ∈ K(l), h
′(l)
i = σ

 ∑
j∈K(l−1)

Â
(l)
ij h

′(l−1)
j W (l)

with V(l−1),V(l) ∼ q(V(l−1),V(l)|k),

(2)

where

4

Published in Transactions on Machine Learning Research (05/2025)

1. K(0) = V(0) is the set of target nodes in the current mini-batch, where V(0) ⊂ Vt;
2. K(l) = V(l) ∪ V(0) for all l ∈ 1, . . . , L adds the batch nodes V(0) to the sampled nodes V(l) to ensure

self-loops between the batch nodes;
3. V(l) ⊆ N (K(l−1)) are the nodes sampled in layer l among the neighbors N (K(l−1)) of the nodes in

K(l−1). Note that V(l) cannot contain nodes in K(l−1);
4. Â(l) = D(l)−1/2

A(l)D(l)−1/2 is computed from the adjacency matrix A(l) containing the edges between
K(l) and K(l−1), and the corresponding degree matrix D(l).2 To be precise, the entries A

(l)
ij are 1 if

and only if i ∈ K(l), j ∈ K(l−1) and if there is an edge (i, j) in the original graph, that is, Ãij = 1;
5. q is a sampling policy that samples the k nodes V(l).

Existing layer-wise sampling methods, such as LADIES or FastGCN, use a fixed heuristic to determine q, for
instance, by computing node probabilities proportional to the node degrees. However, an adaptive method
learns the distribution q instead.

4 Graph Adaptive Neighbor Sampling (GRAPES)

We introduce Graph Adaptive Sampling (GRAPES). GRAPES is a layer-wise and layer-dependent adaptive
sampling method that learns a sampling policy that minimizes the training objective conditioned on the
input graph. In each layer l, we sample a subset V(l) that is much smaller than the neighborhood of the
previous layer. That is, |V(l)| = k ≪ |N (K(l−1))|, where again K(l−1) = V(0) ∪ V(l−1) adds the batch nodes
to the sampled nodes of the previous layer. We use a second GNN to compute the inclusion probability for
each node in N (K(l−1)). In the remainder of this section, we describe our sampling policy q and training
methods for the sampling policy. Furthermore, Algorithm 1 shows one epoch of GRAPES in pseudocode.

4.1 Sampling policy

Next, we specify the sampling policy GNN GCNS(K(l−1)), which computes inclusion probabilities on the
subgraph created from the nodes in K(l−1) and their neighbors N (l−1). The sampling policy q decomposes as
q(V(1), . . . ,V(L)|V(0)) =

∏L
l=1 q(V(l)|V(0), . . . ,V(l−1)). We compute each factor q(V(l)|V(0), . . . ,V(l−1)) as a

product of Bernoulli inclusion probabilities, given by GCNS, for each node i in the neighborhood N (K(l−1)):

q(V(l)|V(0), . . . ,V(l−1)) =
∏

i∈N (K(l−1))

Bern(i ∈ V(l)|pi), pi = GCNS(K(l−1))i. (3)

In addition to the regular embeddings X, the sampler GNN also has access to a one-hot vector of length
L + 1 that records the value l + 1 for nodes sampled in layer l (with 1 recorded for the target nodes). This
allows the sampler to differentiate between nodes sampled in different layers.

4.2 Sampling exactly k nodes

We have a clear constraint on the number of nodes we want to include in training: In Equation 2, we sample
exactly k nodes without replacement. However, our sampling policy q(V(l)|V(0), . . . ,V(l−1)) consists of many
independent Bernoulli distributions, and it is highly unlikely that we sample exactly k nodes from this
distribution.

Instead, we use the Gumbel-Top-k trick (Vieira, 2014; Huijben et al., 2022), which selects a set of exactly k
nodes V(l) by perturbing the log probabilities randomly and taking the top-k among those:

V(l) = top-k
i ∈ N (K(l−1))

log pi + ϵi, ϵi ∼ Gumbel(0, 1) (4)

This guarantees a sample from q(V(l)|V(0), . . . ,V(l−1), k) that conditions on the number of nodes sampled.
2Unlike the full-batch GCN, the adjacency matrix varies across layers when sampling because each layer involves a different

set of nodes. Note also that, unlike the full-batch setting, message passing is asymmetric: node i may be updated from node j
but not vice versa.

5

Published in Transactions on Machine Learning Research (05/2025)

While this results in a tractable and adaptive sampling procedure of exactly k nodes for the classifier GNN,
we have not yet given a method for learning the sampling policy. Unfortunately, a sampling operation, or
in this case, the top-k operation, provides no functional gradient (Mohamed et al., 2020). We will resort
to simple methods from the reinforcement learning and GFlowNet literature to still be able to train the
sampling policy, which we will explain next.

The choice of a Bernoulli distribution for sampling node neighborhoods is motivated by the idea that when
conditioned on a target node, we can sample a node independent of other nodes in the neighborhood to
maintain efficiency. Other assumptions could be more elaborate, such as sampling jointly pairs of nodes at a
time, but this would in turn increase the computational cost of computing probabilities and sampling. On the
other hand, the Gumbel top-k trick allows us to sample exactly k elements without replacement, and while
there are other applicable methods such as reservoir sampling, they are mathematically equivalent (Huijben
et al., 2022).

4.3 Training the Sampling Policy

We train the sampling policy to minimize the classification loss LC of the classifier GNN3. We use two methods
to train the sampling policy GCNS: a reinforcement learning (RL) method and a GFlowNet (GFN) method.
We also experimented with the straight-through estimator (Bengio et al., 2013) for learning in GRAPES,
which we observed not to perform well due to increased computation and high bias in the estimated gradients
(see Appendix G).

REINFORCE (GRAPES-RL) In the REINFORCE-based method, we use a simple REINFORCE
estimator (Williams, 1992) to compute an unbiased gradient of the classification loss.

LRL(X, Y,V(0)) = LC(X, Y, K(0), . . . , K(L)) log q(V(1), . . . ,V(L)|V(0)), (5)

where we sample V(1), . . . ,V(L) ∼ q(V(1), . . . ,V(L)|V(0), k). Taking the derivative with respect to the parame-
ters of q results in the standard REINFORCE estimator. Note that this is an off-policy estimator since we
sample from q conditioned on the number of samples k with the Gumbel-Top-k trick, but compute gradients
with respect to the distribution unconditioned on k. This is because computing likelihoods conditioned on k,
although possible (Ahmed et al., 2023), is computationally expensive. We discuss this issue in more detail in
Appendix A.

GFlowNets (GRAPES-GFN) The second method uses the Trajectory Balance loss (Malkin et al., 2022a)
from the GFlowNet literature (Bengio et al., 2021b;a), which is known to perform well in off-policy settings
(Malkin et al., 2022b).

LGFN(X, Y,V(0)) =
(

log Z(V(0)) + log q(V(1), . . . ,V(L)|V(0))

+ α · LC(X, Y, K(0), . . . , K(L))
)2

,
(6)

where log Z(V(0)) is a small GCN that predicts a scalar from the target nodes, and α is a tunable reward
scaling hyperparameter. For a detailed derivation, see Appendix F.3. GFlowNets minimize an objective
that ensures sampling in proportion to the negative classification loss, rather than minimizing it like in
REINFORCE. This may have benefits in the exploratory behavior of the sampler, as it encourages the
training of diverse sets of nodes, instead of only the single best set of nodes.

Memory complexity. Layer-wise sampling methods like GRAPES, FastGCN, and LADIES have a sampling
space complexity of O(Dbk), where D is the maximum node degree, b is the batch size, k is the sample size,
and L is the number of layers. In GAS time complexity is O(bk) due to the use of historical embeddings, and
memory complexity is O(DbL + N) where N is the extra overhead for storing historical embeddings for the
N nodes in the graph, which can be significantly larger than DbL.

3GRAPES can be extended to other tasks, but we focus on node classification in the current work.

6

Published in Transactions on Machine Learning Research (05/2025)

Algorithm 1 One GRAPES epoch
Require: Graph G, node embeddings X, node labels Y , target nodes Vt, batch size b, sample size k, GCN

for classification GCNC, and GCN for sampling policy GCNS.
1: Divide target nodes Vt into batches V(0) of size b
2: for each batch V(0) do
3: K(0) ← V(0)

4: for layer l = 1 to L do
5: for node i in N (K(l−1)) do
6: pi ← GCNS(K(l−1))i ▷ Compute probabilities of inclusion
7: ϵi ∼ Gumbel(0, 1) ▷ Sample Gumbel noise
8: V(l) ← top-ki∈N (K(l−1)) log pi + ϵi ▷ Get k best nodes (Eq. 4)
9: K(l) ← V(0) ∪ V(l) ▷ Add target nodes

10: ℓC ← LC(X, Y, K(0), . . . , K(L)) ▷ Compute classification loss
11: Compute sampling policy loss ℓS from Eq. 5 or 6
12: Update parameters of GCNS by minimizing ℓS
13: Update parameters of GCNC by minimizing ℓC

5 Theoretical Analysis

In this section, we provide theoretical insights on the performance difference between adaptive and non-
adaptive samplers, and we prove that adaptive sampling can achieve higher accuracy than non-adaptive
sampling for a specific category of heterophilous graphs. We show that if there exists specific crucial
information among the neighbors, there are adaptive sampling methods that perfectly identify these neighbors,
while non-adaptive sampling methods cannot distinguish them from the other neighbors.

Let G = (V, E) be an undirected graph with a set of N nodes V = {1, . . . , N} and a set of edges E = {eij}N
i,j=1

where eij denotes an edge between vi and vj . Let X ∈ RN×F be the node features and let Y = {yi}N
i=1 be a

set of node labels. The adjacency matrix A ∈ {0, 1}N×N indicates a connection between a pair of nodes. Let
N (vi) = {vj |eij ∈ E} indicate the set of vi’s neighbors and NL(vi) = {vj |l(vi, vj) ≤ L} indicate the L-hop
neighborhood of vi, where l(vi, vj) indicate the shortest path between vi and vj . In the following definitions
and theorems, for simplicity, we consider the batch size of one.
Definition 1 (Neigbor sampling). A neighbor sampling method is a method that assigns scores to neighbors
of a target node, and for a given sampling budget K, samples K neighbors proportional to their score. An
L-layer neighbor sampling method, for each layer l, assigns scores to the l-hop neighbors of a target node.
Definition 2 (Featureless and feature-based sampling). An L-layer feature-less sampling method is a neighbor
sampling method in which the sampling score for each node vi is a function of only its L-hop neighborhood,
i.e. s(vi) = g(vi,NL(vi)), where s(vi) is the sampling for node vi and g is the sampling function. In an
L-layer feature-based sampling method, the sampling function is a function of the node features in addition
to the L-hop neighborhood, that is, s(vi) = g′(vi, X,NL(vi)).

In practice, all feature-based sampling methods are adaptive since the sampling methods learns the sampling
score from the features, and all non-adaptive methods are featureless. Therefore, in this section, we refer to
the sampling methods as adaptive and non-adaptive.

Random sampling is a non-adaptive sampler with a constant sampling score. LADIES and FastGCN are
non-adaptive samplers whose sampling scores are proportional to the node degrees. GraphSAINT-RW, i.e.,
the random walk-based sampler of GraphSAINT, which we used in our experiments, is a non-adaptive sampler
where the score correlates with how frequently a node appears in L-hop neighborhoods, influenced by both
the node’s degree and its position in the graph. AS-GCN, PASS, and GRAPES are adaptive samplers.
Definition 3 (Zhu et al. (2020)). Edge homophily is the ratio of edges that connect two nodes of the same
label:

h = |{eij ∈ E : yi = yj}|
|E|

7

Published in Transactions on Machine Learning Research (05/2025)

In the next theorem, we show that the optimal adaptive and non-adaptive samplers perform differently
for a certain category of graphs, with adaptive samplers perfectly sampling the influential neighbors and
non-adaptive samplers sampling such nodes with a vanishing probability.
Theorem 1. There exist undirected graphs such that a GCN with an L-layer adaptive sampler and a sampling
rate of K neighbors per node per layer can perform with perfect accuracy, while GCNs with a non-adaptive
sampler can achieve an accuracy higher than chance level only with probability p ≤ LK

N .

For the proof of this theorem, please refer to Appendix H. In the proof, we construct a family of distributions
over graphs where the presence of a single neighbor is essential for a correct classification of a target node.
Then, we show that only feature-based samplers, by learning from the node features, can sample those
neighbors, while featureless samplers, with overwhelming probability, cannot. Since, in practice, all feature-
based samplers are adaptive and, inversely, all non-adaptive samplers are featureless, we conclude that
adaptive models can solve this task, while non-adaptive methods cannot.

Additionally, we show that such graphs are heterophilous. Moreover, often, multi-label graphs are heterophilous
because neighboring nodes are less likely to share the exact same set of labels. Even slight variations in
the labels of neighboring nodes can lead to heterophily. Therefore, adaptive sampling methods outperform
non-adaptive ones in such graphs.

6 Experiments

Our experiments aim at answering the following research question: given a fixed sampling budget and GNN
architecture, what is the effect of training with an adaptive policy for layer-wise sampling, in comparison with
the related work? While several works in the literature of sampling for GNNs have focused on classification
benchmarks to demonstrate the performance of sampling algorithms, several confounding factors in their
experimental setup prevent a proper understanding of whether the perceived performance improvements result
from the sampling method itself. Examples of such confounding factors found in related work include using
different architectures, like the GCN (Kipf & Welling, 2016) or GAT (Velickovic et al., 2017), different sizes
for the hidden layers, number of layers, batch sizes, number of nodes sampled per layer, and the number of
training epochs. These are factors independent of sampling algorithms that nonetheless affect the performance
in the benchmarks. We present a detailed overview of differences in the experimental setup of the related
work in Table 4 in the appendix.

To better understand the effect of sampling algorithms, we thus carry out experiments on a fixed GCN
architecture (Kipf & Welling, 2016) with two layers, a hidden size of 256, batch size of 256, sample size of 256
nodes per layer, and a fixed number of epochs per dataset (detailed in Appendix B). Under this setting, we
compare GRAPES with the following baselines: a Random baseline that uses the same setup as GRAPES but
with uniform inclusion probabilities; FastGCN (Chen et al., 2018b), LADIES (Zou et al., 2019), GraphSAINT
(Zeng et al., 2019), GAS (Fey et al., 2021), AS-GCN (Huang et al., 2018), and PASS Yoon et al. (2021).
With this setup, we aim to control our experiments in a way such that variations in performance can only be
attributed to the sampling method.

For all baselines (except Random), we rely on their publicly available implementations. For all methods,
we optimize the learning rate using the performance on the validation set. GRAPES requires selecting two
additional hyperparameters: the learning rate for the sampling policy and, for GRAPES-GFN, the reward
scaling parameter α. We tune these based on the classification performance on the validation set. These
hyperparameters are specific to our sampling method and do not explicitly affect the learning capacity of the
GCN classifier. We refer the reader to Appendix B for more details on hyperparameter settings.

6.1 Datasets

Most methods in the literature of sampling in GNNs are evaluated on homophilous graphs (where the
connected nodes are likely to have similar labels) and multi-class classification, where nodes are classified into
one of several classes (in contrast to multi-label). To further understand the effect of sampling, we carry out
experiments with heterophilous graphs, where nodes that are connected differ in their features and labels,

8

Published in Transactions on Machine Learning Research (05/2025)

Table 1: F1-scores (%) for different sampling methods trained on homophilous graphs, for a batch size of
256, and sample size of 256 per layer. We report the mean and standard deviation over 10 runs. The best
values among the sampling baselines (all except GAS) are in bold, and the second best are underlined. MC
stands for multi-class and ML stands for multi-label classification. OOM indicates out-of-memory.

Dataset Cora Citeseer Pubmed Reddit ogbn-arxiv ogbn-products DBLP
Homophily h = 0.81 h = 0.74 h = 0.80 h = 0.78 h = 0.65 h = 0.81 h = 0.76
Task MC MC MC MC MC MC ML
GAS 87.00 ± 0.19 85.87 ± 0.19 87.45 ± 0.23 94.75 ± 0.04 68.36 ± 0.55 74.69 ± 0.14 83.08 ± 0.31
FastGCN 76.17 ± 3.98 62.81 ± 7.19 53.52 ± 28.48 62.93 ± 3.28 39.49 ± 8.04 66.09 ± 3.04 62.93 ± 3.28
LADIES 76.02 ± 11.69 63.48 ± 12.21 72.81 ± 17.67 59.30 ± 2.69 43.52 ± 8.03 68.08 ± 1.95 59.97 ± 10.45
GraphSAINT 87.28 ± 0.49 77.28 ± 0.67 87.45 ± 0.75 91.47 ± 0.94 63.54 ± 1.75 67.66 ± 0.69 77.09 ± 0.56
AS-GCN 85.60 ± 0.54 79.21 ± 0.19 90.58 ± 0.40 93.52 ± 0.40 65.38 ± 1.80 73.94 ± 0.40 83.24 ± 0.51
PASS 82.03 ± 0.074 77.17 ± 0.69 88.33 ± 0.45 OOM 58.32 ± 0.05 OOM 54.40 ± 2.31
Random 86.58 ± 0.33 78.29 ± 0.52 90.09 ± 0.17 94.16 ± 0.06 61.35 ± 0.32 70.47 ± 0.32 76.87 ± 0.24
GRAPES-RL (ours) 87.62 ± 0.48 78.75 ± 0.35 89.40 ± 0.34 94.09 ± 0.05 62.58 ± 0.64 71.45 ± 0.20 76.88 ± 0.33
GRAPES-GFN (ours) 87.29 ± 0.32 78.75 ± 0.33 89.46 ± 0.34 94.30 ± 0.06 61.86 ± 0.51 70.66 ± 0.30 77.14 ± 0.48
Rank 1 2 3 1 3 2 2

Table 2: F1-scores (%) for different sampling methods trained on heterophilous graphs for a batch size of
256, and a sample size of 256 per layer. We report the mean and standard deviation over 10 runs. The best
values among the sampling baselines (all except GAS) are in bold, and the second best are underlined. MC
stands for multi-class and ML stands for multi-label classification. OOM indicates out of memory.

Dataset Flickr snap-patents Yelp ogbn-proteins BlogCat
Homophily h = 0.31 h = 0.22 h = 0.22 h = 0.15 h = 0.1
Task MC MC ML ML ML
GAS 49.96 ± 0.28 38.04 ± 0.20 37.81 ± 0.07 7.55 ± 0.01 6.07 ± 0.04
FastGCN 46.40 ± 2.51 29.68 ± 0.61 29.29 ± 4.39 7.80 ± 0.55 6.44 ± 0.41
LADIES 47.19 ± 3.42 29.09 ± 1.88 18.92 ± 3.18 4.31 ± 0.11 6.74 ± 0.67
GraphSAINT 48.01 ± 1.44 28.01 ± 0.57 34.68 ± 0.70 9.94 ± 0.07 6.89 ± 0.96
AS-GCN 48.42 ± 1.20 31.04 ± 0.19 38.51 ± 1.45 5.20 ± 0.36 5.43 ± 0.54
PASS 44.49 ± 0.76 OOM OOM 7.71 ± 0.12 6.88 ± 0.59
Random 49.39 ± 0.23 29.74 ± 0.34 40.63 ± 0.13 10.82 ± 0.05 7.13 ± 0.97
GRAPES-RL (ours) 49.54 ± 0.67 29.16 ± 0.54 40.69 ± 0.55 11.78 ± 0.14 9.06 ± 0.68
GRAPES-GFN (ours) 49.29 ± 0.32 29.58 ± 0.24 44.57 ± 0.88 11.57 ± 0.18 9.22 ± 0.40
Rank 1 4 1 1 1

and multi-label datasets in which a node can be assigned one or more labels. As shown in the literature (Zhu
et al., 2020; Zhao et al., 2023), we argue that node classification with GCN is more challenging on these
datasets compared to multi-class classification on homophilous graphs, where an adaptive policy could be
beneficial. In particular, we run experiments with the following datasets for the node classification task:

• Homophilous graphs: citation networks (Cora, Citeseer, Pubmed with the “full” split) (Sen et al.,
2008; Yang et al., 2016), Reddit (Hamilton et al., 2017), ogbn-arxiv and ogbn-products (Hu et al.,
2020), and DBLP (Zhao et al., 2023).

• Heterophilous graphs: Flickr (Zeng et al., 2019), Yelp (Zeng et al., 2019), ogbn-proteins (Hu et al.,
2020), BlogCat (Zhao et al., 2023), and snap-patents (Leskovec & Krevl, 2014).

We included the edge homophily ratio (Zhu et al., 2020) of all the datasets in Table 1 and 2. For the multi-label
datasets, we followed the same framework in (Zhao et al., 2023) to calculate their label homophily ratio.
Statistics about the datasets can be found in Appendix C.

9

Published in Transactions on Machine Learning Research (05/2025)

6.2 Results

Comparison with sampling methods We present the F1 scores of GCNs trained via sampling for GRAPES
and the sampling-based baselines in Table 1 and 2. We observe that on the majority of heterophilous datasets,
and all the heterophilous multi-label datasets, both variations of GRAPES achieve the highest F1-score. As
we mentioned earlier, node classification on heterophilous graphs is a challenging task for GCNs, due to the
diversity of the neighbor nodes’ labels. Our results suggest that GRAPES’ ability to adapt the sampling policy
to particular features of the data allows GRAPES to learn the complex patterns across the heterophilous
datasets. Table 1 shows that on most homophilous graphs, AS-GCN achieves the highest F1-score, indicating
the importance of adaptive sampling. However, unlike GRAPES, this method is only adaptive to the sampling
variance and fails to outperform GRAPES on the heterophilous graphs. Moreover, our results show that
PASS, another adaptive method, is unable to compete with GRAPES and results in an out-of-memory error
on several large datasets. This is due to its node-wise sampling feature, which results in a disconnected
sampled graph.

FastGCN and LADIES, which use a fixed policy, fail to compete with the other methods in our experimental
setup. They assign a higher probability to nodes with higher degrees. This heuristic results in neglecting
informative low-degree nodes. Although outperforming LADIES and FastGCN, GraphSAINT, which also
uses a fixed sampling policy, fails to outperform the more competitive baselines. We observe that on some
datasets, Random sampling achieves a comparable F1-score to GRAPES and the baselines. This mainly
happens on simple datasets, such as homophilous graphs, indicating that on these graphs, a simple sampling
approach is sufficient.

Comparison with a non-sampling scalable method GAS (Fey et al., 2021) is a non-sampling
method that uses the historical embeddings of the 1-hop neighbors of the target nodes. We present
classification results in Table 2, and we visualize memory usage in Fig. 3. While GAS has higher clas-
sification F1-scores for some datasets, GRAPES achieves comparable F1-scores and significantly out-
performs GAS for Yelp, ogbn-proteins, and BlogCat, all heterophilous multi-label graphs. Once again,
these results indicate the effectiveness of the adaptivity of GRAPES in sampling influential nodes in
complex graphs. For the memory usage, we compare GAS with AS-GCN and the GFlowNet version of
GRAPES-32 and GRAPES-256, where 32 and 256 (the default value) indicate the sample size per layer.

Cora

Cite
see

r

Pubmed
Reddit

Flick
r

Yelp

ogbn-arxiv

ogbn-products

102

103

104

M
em

or
y

(M
B

)
-

L
og

S
ca

le

GRAPES-32

GRAPES-256

AS-GCN

GAS

Figure 3: GPU peak memory allocation
(MB) for GAS, and GRAPES-GFN-32 and
GRAPES-GFN-256.

The memory usage results show that, even with a large sam-
ple size, GRAPES can use up to an order of magnitude less
GPU memory than GAS, especially for large datasets. In large,
densely connected graphs such as Reddit, the 1-hop neighbor-
hood can be massive. Then, the difference in memory use for
GRAPES, which only sees a small set of neighbors, and GAS,
which uses all the neighbors, is significant. While GAS occa-
sionally achieves higher F1-scores, it consistently demands more
memory, indicating a potential compromise between accuracy
and computational efficiency. In contrast, GRAPES strikes
a balance, delivering comparable F1-score with more modest
memory footprints. In most cases, GRAPES also uses less
memory than AS-GCN, another sampling-based baseline. In
other cases, GRAPES uses more memory than AS-GCN, which
we attribute to the fact that there is an additional GNN in
GRAPES for learning the sampling policy. Some variations are
due to implementation details4, though in general we observe a
significant advantage of layer-wise sampling methods over historical embeddings.

GRAPES is robust to low sample sizes. A desirable property of sampling methods, in contrast with
full-batch GNNs or methods like GAS (which relies on historical embeddings), is the ability to control the
sample size to reduce memory usage as needed. To study this property, we show in Figure 4 the effects of

4We used PyTorch for our implementation, whereas AS-GCN is implemented in Tensorflow, which manages GPU memory
differently.

10

Published in Transactions on Machine Learning Research (05/2025)

25 26 27 28 29

60

70

80

90

Reddit

LADIES

FastGCN

GraphSAINT

AS-GCN

Random

GRAPES-RL

GRAPES-GFlowNet

25 26 27 28 29

43

44

45

46

47

48

49

Flickr

25 26 27 28 29

20

25

30

35

40

45

Yelp

25 26 27 28 29

30

35

40

45

50

55

60

65

70
ogbn-arxiv

N
o
d

e
C

la
ss

ifi
ca

ti
on

F
1-

sc
or

es

Sample Size (logarithmic base-2)

Figure 4: Comparative analysis of classification accuracy across different sampling sizes for sampling baseline
and GRAPES. We repeated each experiment five times: The shaded regions show the 95% confidence intervals.

0 10 20 30 40 50 60 70 80 90 100

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
E

nt
ro

py

ogbn-products

1-hop node sampling

2-hop node sampling

0 10 20 30 40 50 60 70 80 90 100

Epoch

DBLP

Figure 5: Entropy for the ogbn-products and DBLP datasets. The mean is the entropy in bits of the node
probability, averaged over nodes. The shaded region indicates the standard deviation of the entropy over all
nodes.

varying the sample size on Reddit, Flickr, Yelp, and ogbn-arxiv. Our results show that both the RL and GFN
variants of GRAPES are robust to low sample size, and achieve strong performance with fewer sampled nodes
needed than the baselines, enabling training GCNs on larger graphs while using less GPU memory. Random
sampling also exhibits robustness to sample size for all datasets except Yelp, where accuracy drops in larger
sample sizes. GRAPES-RL shows the same behavior while performing slightly better than Random on Yelp.
AS-GCN and GraphSAINT show the largest dependence on sample size, especially on Flickr and Yelp.

GRAPES learns strong preferences over nodes. The ability to selectively choose influential nodes is a
crucial property of GRAPES. Figure 5 shows the mean and standard deviation of base 2 entropy for the node
preference probabilities for the two layers of GCNS for ogbn-products and DBLP for GRAPES-GFN. The
probabilities show preference towards particular nodes with a Bernoulli distribution. A well-trained model
must have a high preference (probability close to 1) for some nodes and a low preference (probability close to
0) for the rest. Therefore, we would like a low average entropy with a high standard deviation. As the figure
shows, the mean entropy in both layers decreases from almost 1 and converges to a value above 0, while the
standard deviation increases. This indicates that for ogbn-products, the sampling policy initially assigned
a probability near 0.5, indicating little preference. However, after several training epochs, GRAPES starts
preferring some nodes, resulting in lower mean entropy. We observe similar behavior for most datasets (DBLP,
BlogCat, Yelp, ogbn-arxiv, and ogbn-proteins). However, we observe that the sampling policy exhibits no
preferences among the nodes for the other datasets. For more details about the other datasets, see Appendix
D.

11

Published in Transactions on Machine Learning Research (05/2025)

7 Known Limitations and Future Work

Our experimental results show that GRAPES outperforms the baselines on some, but not all, heterophilous
datasets. We provide a theoretical analysis that shows the effectiveness of adaptive sampling on certain types
of heterophilous graphs. Further analysis is required to understand which graph characteristics contribute to
the performance gain observed with adaptive sampling methods such as GRAPES.

Moreover, in our experiments, we focused only on the problem of node classification. However, GRAPES is
not tied to a particular downstream task. GRAPES assumes access to a tractable reward function (Bengio
et al., 2021b). Therefore, GRAPES will be applicable for other graph-related tasks, like link prediction and
unsupervised representation learning.

Additionally, there is room for a more thorough investigation of the properties of the subgraphs that GRAPES
samples. The experiments at the end of Section 6.2 and in Appendix D are a first step towards this. We
leave these directions for future work.

Another direction for future work is applying GRAPES to architectures designed to address heterophily,
such as the ones proposed by Zhu et al. (2020); Abu-El-Haija et al. (2019). By leveraging GRAPES, these
architectures could potentially overcome their scalability issues.

8 Discussion, Broader Impacts, and Conclusion

We propose GRAPES, an adaptive graph sampling method based on reinforcement learning and GFlowNet,
facilitating the scalability of training GNNs on massive graphs. GRAPES samples a subgraph of influential
nodes by learning node preferences that adapt to classification loss, which depends on node features, GNN
architecture, classification task, and graph topology. Our experiments demonstrate that GRAPES effectively
selects nodes from large-scale graphs and achieves state-of-the-art performance in multi-label classification
tasks on heterophilous graphs, while performing competitively for multi-class classification on homophilous
graphs. Compared to the other sampling methods, GRAPES can maintain high classification accuracy
even with lower sample sizes, indicating GRAPES’ ability to scale to larger graphs by sampling a small but
influential set of nodes. GRAPES achieves comparable performance to GAS, while using up to an order of
magnitude less memory.

Focus on Heterophily in Sampling. Previous works have overlooked the impact of sampling on
heterophilous and multi-label graphs. To our knowledge, this is the first work to compare sampling effects
on both homophilous and heterophilous graphs, where adaptive sampling is especially crucial due to the
diversity among neighbors, making node selection vital for GNN accuracy.

Lack of Uniform Evaluation Protocol. Existing methods in the literature report performance on graph
sampling under settings with different GCN architectures, regularization techniques, feature normalization
strategies, and data splits, among other differences. These differences made it challenging to determine the
benefits of each sampling method. This motivated us to implement a unified protocol across all methods,
where we keep the architecture fixed. We encourage future work to consider a similar methodology for a fair
evaluation, or an experimental review study, as is common in other areas of machine learning research on
graphs (Shchur et al., 2018; Ruffinelli et al., 2019).

Broader Impacts. Our paper focuses on fundamental research to understand and advance sampling in
large-scale graphs. There may be multiple potential societal consequences of our work, but there are none
that can be easily predicted and specifically highlighted.

Acknowledgements

Taraneh Younesian was funded by Huawei DREAMS Lab. All content represents the opinion of the authors,
which is not necessarily shared nor endorsed by their respective employers and/or sponsors in Huawei
DREAMS Lab. Daniel Daza was partially funded by Elsevier’s Discovery Lab. Emile van Krieken was

12

Published in Transactions on Machine Learning Research (05/2025)

funded by ELIAI (The Edinburgh Laboratory for Integrated Artificial Intelligence), EPSRC (grant no.
EP/W002876/1). We thank Michael Cochez and Ruud van Bakel for insightful discussions.

References
Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan,

Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional architectures via sparsified
neighborhood mixing. In international conference on machine learning, pp. 21–29. PMLR, 2019.

Sami Abu-El-Haija, Joshua V Dillon, Bahare Fatemi, Kyriakos Axiotis, Neslihan Bulut, Johannes Gasteiger,
Bryan Perozzi, and Mohammadhossein Bateni. Submix: Learning to mix graph sampling heuristics. In
Uncertainty in Artificial Intelligence, pp. 1–10. PMLR, 2023.

Kareem Ahmed, Zhe Zeng, Mathias Niepert, and Guy Van den Broeck. SIMPLE: A gradient estimator for
k-subset sampling. In The Eleventh International Conference on Learning Representations, 2023.

Aamir Anis, Akshay Gadde, and Antonio Ortega. Efficient sampling set selection for bandlimited graph
signals using graph spectral proxies. IEEE Transactions on Signal Processing, 64(14):3775–3789, 2016.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow network
based generative models for non-iterative diverse candidate generation. Advances in Neural Information
Processing Systems, 34:27381–27394, 2021a.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013. URL http://arxiv.org/
abs/1308.3432.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio. Gflownet
foundations. arXiv preprint arXiv:2111.09266, 2021b.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/. Software
available from wandb.com.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with variance
reduction. In International Conference on Machine Learning, pp. 942–950. PMLR, 2018a.

Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph convolutional networks via importance
sampling. In 6th International Conference on Learning Representations, ICLR 2018, Conference Track
Proceedings. OpenReview.net, 2018b.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 257–266, 2019.

Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. Minimal variance sampling with
provable guarantees for fast training of graph neural networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1393–1403, 2020.

Zicun Cong, Baoxu Shi, Shan Li, Jaewon Yang, Qi He, and Jian Pei. Fairsample: Training fair and accurate
graph convolutional neural networks efficiently. IEEE Transactions on Knowledge and Data Engineering,
36(4):1537–1551, 2023.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer, and
Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty in Artificial
Intelligence, pp. 518–528. PMLR, 2022.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

13

http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://www.wandb.com/

Published in Transactions on Machine Learning Research (05/2025)

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and expressive
graph neural networks via historical embeddings. In International conference on machine learning, pp.
3294–3304. PMLR, 2021.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a benchmark for
practical molecular optimization. Advances in Neural Information Processing Systems, 35:21342–21357,
2022.

Haoyu Geng, Chao Chen, Yixuan He, Gang Zeng, Zhaobing Han, Hua Chai, and Junchi Yan. Pyramid graph
neural network: A graph sampling and filtering approach for multi-scale disentangled representations. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 518–530,
2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in Neural Information Processing Systems, 30, 2017.

Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989. doi: 10.1016/0893-6080(89)90020-8. URL https:
//doi.org/10.1016/0893-6080(89)90020-8.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118–22133, 2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. Advances in neural information processing systems, 31, 2018.

Iris AM Huijben, Wouter Kool, Max B Paulus, and Ruud JG Van Sloun. A review of the gumbel-max trick
and its extensions for discrete stochasticity in machine learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(2):1353–1371, 2022.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP Dossou,
Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al. Biological sequence
design with gflownets. In International Conference on Machine Learning, pp. 9786–9801. PMLR, 2022.

Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernandez-Garcia, and Yoshua Bengio.
Gflownets for AI-driven scientific discovery. Digital Discovery, 2(3):557–577, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, 2014.

Michelle M Li, Kexin Huang, and Marinka Zitnik. Graph representation learning in biomedicine and
healthcare. Nature Biomedical Engineering, 6(12):1353–1369, 2022.

Wenqian Li, Yinchuan Li, Zhigang Li, Jianye Hao, and Yan Pang. Dag matters! gflownets enhanced explainer
for graph neural networks. arXiv preprint arXiv:2303.02448, 2023.

Ziqi Liu, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou, Shuang Yang, Le Song, and Yuan Qi. Bandit samplers for
training graph neural networks. Advances in Neural Information Processing Systems, 33:6878–6888, 2020.

Zirui Liu, Kaixiong Zhou, Zhimeng Jiang, Li Li, Rui Chen, Soo-Hyun Choi, and Xia Hu. Dspar: An
embarrassingly simple strategy for efficient gnn training and inference via degree-based sparsification.
Transactions on Machine Learning Research, 2023.

14

https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
http://snap.stanford.edu/data
http://snap.stanford.edu/data

Published in Transactions on Machine Learning Research (05/2025)

Lu Ma, Zeang Sheng, Xunkai Li, Xinyi Gao, Zhezheng Hao, Ling Yang, Xiaonan Nie, Jiawei Jiang, Wentao
Zhang, and Bin Cui. Acceleration algorithms in gnns: A survey. IEEE Transactions on Knowledge and
Data Engineering, 2025.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance: Improved
credit assignment in gflownets. Advances in Neural Information Processing Systems, 35:5955–5967, 2022a.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J Hu, Katie E Everett, Dinghuai Zhang, and
Yoshua Bengio. Gflownets and variational inference. In The Eleventh International Conference on Learning
Representations, 2022b.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient estimation in
machine learning. Journal of Machine Learning Research, 21:132:1–132:62, 2020.

David F Nettleton. Data mining of social networks represented as graphs. Computer Science Review, 7:1–34,
2013.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new tricks! on training
knowledge graph embeddings. In International Conference on Learning Representations, 2019.

Luana Ruiz, Luiz FO Chamon, and Alejandro Ribeiro. Transferability properties of graph neural networks.
IEEE Transactions on Signal Processing, 2023.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective
classification in network data. AI magazine, 29(3):93–93, 2008.

Marco Serafini and Hui Guan. Scalable graph neural network training: The case for sampling. ACM SIGOPS
Operating Systems Review, 55(1):68–76, 2021.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of graph
neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Zhihao Shi, Xize Liang, and Jie Wang. Lmc: Fast training of gnns via subgraph sampling with provable
convergence. arXiv preprint arXiv:2302.00924, 2023.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio, et al.
Graph attention networks. stat, 1050(20):10–48550, 2017.

Tim Vieira. Gumbel-max trick and weighted reservoir sampling, 2014. URL http://timvieira.github.io/
blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/.

Yu Wang, Zhiwei Liu, Ziwei Fan, Lichao Sun, and Philip S Yu. Dskreg: Differentiable sampling on knowledge
graph for recommendation with relational gnn. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, pp. 3513–3517, 2021.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 1992. ISSN 0885-6125. doi: 10.1007/bf00992696.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender systems:
a survey. ACM Computing Surveys, 55(5):1–37, 2022.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Minji Yoon, Théophile Gervet, Baoxu Shi, Sufeng Niu, Qi He, and Jaewon Yang. Performance-adaptive
sampling strategy towards fast and accurate graph neural networks. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2046–2056, 2021.

Haoran You, Zhihan Lu, Zijian Zhou, Yonggan Fu, and Yingyan Lin. Early-bird gcns: Graph-network
co-optimization towards more efficient gcn training and inference via drawing early-bird lottery tickets. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36(8), pp. 8910–8918, 2022.

15

http://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/
http://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/

Published in Transactions on Machine Learning Research (05/2025)

Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, and Shuiwang Ji. Graphfm: Improving
large-scale gnn training via feature momentum. In International Conference on Machine Learning, pp.
25684–25701. PMLR, 2022.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. GraphSAINT:
Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Guibin Zhang, Kun Wang, Wei Huang, Yanwei Yue, Yang Wang, Roger Zimmermann, Aojun Zhou, Dawei
Cheng, Jin Zeng, and Yuxuan Liang. Graph lottery ticket automated. In The Twelfth International
Conference on Learning Representations, 2024.

Tianqi Zhao, Ngan Thi Dong, Alan Hanjalic, and Megha Khosla. Multi-label node classification on graph-
structured data. Trans. Mach. Learn. Res., 2023, 2023.

Xin Zheng, Yi Wang, Yixin Liu, Ming Li, Miao Zhang, Di Jin, Philip S Yu, and Shirui Pan. Graph neural
networks for graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond homophily
in graph neural networks: Current limitations and effective designs. Advances in neural information
processing systems, 33:7793–7804, 2020.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent importance
sampling for training deep and large graph convolutional networks. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
pp. 11247–11256, 2019.

A Off-Policy Sampling Setup

In this Appendix, we discuss the technical and mathematical challenges around our setup that resulted in our
off-policy learning setup. In each layer l of the GFlowNet, we aim to sample exactly k out of n nodes. An
initially natural setup would be to use the distribution over k-subsets of N (K(l−1)) (Ahmed et al., 2023).
Using Bayes theorem,

q(V(l)|V(0), . . . ,V(l−1), k) = I[|V(l)| = k]q(V(l)|V(0), . . . ,V(l−1))∑
V′(l+1) I[|V ′(l+1)| = k]q(V(l)|V(0), . . . ,V(l−1)) . (7)

When conditioned on k, q assigns 0 probability to sets of nodes V(l) that do not sample exactly k new nodes
(that is, when |V(l)| ≠ k). However, this requires renormalizing the distribution, which is the function of the
denominator term on the right-hand side. Note that this sum is over an exponential number of elements,
namely 2|N (K(l−1))|, and naive computation is clearly intractable. SIMPLE (Ahmed et al., 2023) provides an
optimized dynamic programming algorithm for computing this normalization constant. However, it scales
polynomially in |N (K(l−1))| and k, and in our experiments, computing the normalizer is a bottleneck already
for mid-sized graphs like Reddit.

Therefore, we decided to circumvent having to compute q(V(l)|V(0), . . . ,V(l−1), k) by sampling using the
Gumbel-Top-k trick (Equation 4) to ensure we always add exactly k nodes. However, we are now in
an off-policy setting: The samples using Equation 4 are distributed by q(V(l)|V(0), . . . ,V(l−1), k), not by
q(V(l)|V(0), . . . ,V(l−1)), and so we sample from a different distribution than the one we use to compute the
loss. Previous work (Malkin et al., 2022b) showed that the Trajectory Balance loss is amenable to off-policy
training without importance sampling and weighting without introducing high variance. This is important
since importance weighting would require us to weight by q(V(l)|V(0), . . . ,V(l−1))/q(V(l)|V(0), . . . ,V(l−1), k),
reintroducing the need to compute q(V(l)|V(0), . . . ,V(l−1), k).

The off-policy benefits of the Trajectory Balance loss provide a strong argument over more common Reinforce-
ment Learning setups. Off-policy training in Reinforcement Learning usually requires importance weighting
to be stable, which is not tractable in our setting.

16

Published in Transactions on Machine Learning Research (05/2025)

B Experimental Details

For all experiments, we used as architecture the Graph Convolutional Network (Kipf & Welling, 2016),
with two layers, a hidden size of 256, a batch size of 256, and a sampling size of 256 nodes per layer. We
implemented the GCNs in GRAPES via PyTorch Geometric (Fey & Lenssen, 2019). We train for 50 epochs
on Cora, Citeseer, and Reddit; 100 epochs on BlogCat, DBLP, Flickr, ogbn-products, Pubmed, snap-patents,
and Yelp; and 150 epochs on ogbn-arxiv and ogbn-proteins. The ogbn-proteins and BlogCat datasets do not
contain node features, and instead we learn node embeddings for them of dimension 128 for ogbn-proteins,
and 64 for BlogCat.

Our experiments were carried out in a single-node cluster setup. We conducted our experiments on a machine
with Nvidia RTX A4000 GPU (16GB GPU memory), Nvidia A100 (40GB GPU memory), and Nvidia RTX
A6000 GPU (48GB GPU memory) and each machine had 48 CPUs. In total, we estimate that our experiments
took 200 compute days.

B.1 Hyperparameter Tuning

We tune the hyperparameters of GRAPES using a random search strategy with the goal of maximizing
the accuracy of the validation dataset. We used Weights and Biases for hyperparameter tuning 5. The
best-performing hyperparameters for every dataset can be found in our repository https://anonymous.
4open.science/r/GRAPES. The following are the hyperparameters that we tuned: the learning rate of the
GFlowNet, the learning rate of the classification GCN, and the scaling parameter α. We used the log
uniform distribution to sample the aforementioned hyperparameters with the values from the following ranges,
respectively, [1e− 6, 1e− 2], [1e− 6, 1e− 2], and [1e2, 1e6]. We kept the other hyperparameters, such as the
batch size and hidden dimension of the GCN. We used the Adam optimizer (Kingma & Ba, 2014) for GCNC
and GCNS.

We did a hyperparameter sensitivity analysis performed using Weights & Biases Biewald (2020) for training of
GRAPES-GFN on Yelp. Importance measures how strongly each parameter influences the validation accuracy
(higher = more critical), while correlation shows the direction and magnitude of the linear relationship
(positive = increasing the parameter tends to increase the accuracy, negative = the opposite). From the
table below, lrgc, the learning rate for the classification GCN, has the strongest effect on accuracy and is
negatively correlated, suggesting that higher learning rates can harm performance. Meanwhile, lrgf and α
show smaller impacts and weaker correlations, indicating that the model is less affected by changes in these
two parameters.

Table 3: Importance and correlation of configuration parameters for training GRAPES-GFN on Yelp.

Config Parameter Importance Correlation
lr_gc 0.633 -0.610
lr_gf GCN) 0.280 0.055
α 0.087 0.097

B.2 Baselines

For a fair comparison, we adjusted the implementations of the baselines so that the only difference is the
sampling methods and the rest of the training conditions are kept the same. In the following, we explain the
details of the modifications to each of the baselines.

For LADIES, we used the official implementation, which also contains an implementation of FastGCN. We
changed the nonlinear activation function from ELU to ReLU, and we removed any linear layers after the
two layers of the GCN, set dropout to zero, and disabled early stopping. We also noticed that the original
LADIES implementation divided the target nodes into mini-batches, not from the entire graphs as we do,

5https://wandb.ai

17

https://anonymous.4open.science/r/GRAPES
https://anonymous.4open.science/r/GRAPES
https://wandb.ai

Published in Transactions on Machine Learning Research (05/2025)

Table 4: Differences in experimental setups in related work, obtained from the original publications and their
official implementations. *This indicates the total budget in terms of nodes sampled across all layers.

FastGCN (Chen et al., 2018b) LADIES (Zou et al., 2019) GraphSAINT (Zeng et al., 2019) AS-GCN (Huang et al., 2018) GAS (Fey et al., 2021)
Architecture GCN GCN GCN GCN+attention GCN,GCNII,GAT,GIN,APPNP,PNA
Hidden size (16, 128) 256 (128, 256, 512, 2048) (16,256) (256, 512, 1024, 2048)
Number of layers 2 5 (2, 4, 5) 2 (2, 4, 64)
Batch size (256, 1024) 512 (400, 512, 1000) 256 (1,2,5,40,12,100)
Nodes per layer (100, 400) (5, 64, 512) (4500, 6000, 8000)* (128, 256, 512) No sampling
Training epochs (100, 200, 300) 300 2000 (50,100,300) (300, 400, 500, 1000)

but into random fragments. This means that LADIES and FastGCN do not see all the target nodes in the
training data. We kept this setting unchanged because otherwise it would have significantly slowed down the
training of these two methods.

For GraphSAINT, we noticed that the GNN consists of two layers of higher-order aggregators, which are a
combination of GraphSage-mean (Hamilton et al., 2017) and MixHop (Abu-El-Haija et al., 2019), and a linear
classification layer at the end. Moreover, the original implementation of GraphSAINT is only applicable to
inductive learning on the graphs, where the training graph only contains the training nodes and is entirely
different from the validation and test graphs, where only the nodes from the validation set and test are
available, respectively. We argue that in transductive learning, unlike inductive learning, the motivation to
scale to larger graphs is higher since the validation and test nodes are also available during training, and
therefore, the processed graph is larger. Finally, to keep all the configurations the same as GRAPES, we
used PyTorch Geometric’s function for GraphSAINT Random Walk sampler with depth two, which showed
the best performance across the three variations of GraphSAINT. Therefore, we use the same GCN and
data loader (transductive) as ours and use GraphSAINT to sample a subgraph of nodes for training. We use
the node sampler setting since it is the only setting that allows specifying different sampling budgets, and
therefore, can be compared to layer-wise methods with the same sampling budget. We also removed the early
stopping and used the same number of epochs as GRAPES. Note that for Figure 4, we need to change the
sample size while the Random Walk sampler can only sample equal to the batch size per layer. Therefore,
for these experiments, we used the Node Sampler version of GraphSAINT, which allows us to change the
sample size. For instance, for sample size 32 per layer, we set GraphSAINT’s Node Sampler’s sample size to
256 + 32 + 32 = 320 to sample a subgraph with 320 nodes. Please refer to our repository for more details
about the implementation of GraphSAINT.

For GAS, we used the original implementation. However, we changed the configuration of the GCN to have a
two-layer GCN with 256 hidden units. We turned off dropout, batch normalization and residual connections
in the GCN. We also removed early stopping for the training.

For AS-GCN we removed the attention mechanism used in the GCN classifier. Their method also uses
attention in the sampler, which is separate from the classifier, so we keep it.

For PASS, we changed the inference to full-batch to match the rest of the baselines. We set the parameter
sampling_scope to 512, because in the original experiments of the paper, this value was set to twice the
batch size. For Flickr, ogbn-arxiv, and ogbn-proteins, this value results in OOM; therefore, we set it to 128,
128, and 256, respectively. For the datasets that we report OOM in tables 1 and 2, we tested all possible
sampling_scope between 512 and 16.

C Dataset statistics

We present the statistics of the datasets used in our experiments in Table 5. The splits that we used for Cora,
Citeseer, and Pubmed correspond to the “full” splits, in which the label rate is higher than in the “public”
splits. For BlogCat, we take the average accuracy of all the methods across the three available splits provided
by (Zhao et al., 2023). For DBLP and snap-patents, we use the average of ten random splits because these
two datasets had no predefined splits.

18

Published in Transactions on Machine Learning Research (05/2025)

Table 5: Statistics of the datasets used in our experiments. The label rate indicates the percentage of nodes
used for training. ogbn-proteins and BlogCat do not contain node features, and instead, we learn embeddings
for nodes in these datasets.

Dataset Task Nodes Edges Features Classes Label Rate (%)
Cora multi-class 2,708 5,278 1,433 7 44.61
CiteSeer multi-class 3,327 4,552 3,703 6 54.91
PubMed multi-class 19,717 44,324 500 3 92.39
Reddit multi-class 232,965 11,606,919 602 41 65.86
DBLP multi-label 28,702 136,670 300 4 80.00
Flickr multi-class 89,250 449,878 500 7 50.00
snap-patents multi-class 2,923,922 27,945,092 269 5 50.00
Yelp multi-label 716,847 6,977,409 300 100 75.00
ogbn-proteins multi-label 132,534 79,122,504 — 112 65.30
BlogCat multi-label 10,312 667,966 — 39 60.00
ogbn-arxiv multi-class 169,343 1,157,799 128 40 53.70
ogbn-products multi-class 2,449,029 61,859,076 100 47 8.03

D Entropy as Node preference measure

Figures 6 and 7 show the mean and standard deviation of entropy in base two of all the datasets. We calculate
the mean entropy as the following:

E = 1
n

n∑
i=1

pi · log2(pi) + (1− pi) · log2(1− pi) (8)

where n is the number of neighbors of the nodes sampled in the previous layer and pi is the probability of
inclusion for each node, which is the output of the GFlowNet. As the figures show, for certain small datasets
(Cora, Citeseer, Pubmed, Flickr) the mean entropy is: 1) very close to 1, indicating that GRAPES prefers
every nodes with the probability close to 0.5, or 2) close to 0 but also with a low standard deviation, meaning
that it equally prefers the majority of the nodes with the probability 1 or 0. On the contrary, for the large
datasets (Reddit, Yelp, ogbn-arxiv, ogbn-products) by the end of training, the average entropy is lower than
1, with a standard deviation around 0.3 indicating that GRAPES learns different preferences over different
nodes, some with a probability close to 1, and some close to 0.

We analyzed the label distribution of the sampled subgraphs via GRAPES-GF for Yelp, by counting the
percentage of nodes having each label and calculating the difference between the original and sampled graphs,
i.e., percentage of nodes having label c in the original graph minus percentage of nodes having label c in the
sampled graph. As shown in the figure, all the values are positive, indicating that a higher ratio of nodes have
each label in the original graph. Moreover, this difference increases at the end of training. This means that
among the 100 labels in Yelp, GRAPES prefers the nodes with fewer labels or that are even single-labeled.
This may make the classification task easier and result in a lower loss. Moreover, among the 100 classes, some
are sampled the most and some the least. Figure 8 below shows this trend.

E GPU Memory usage comparison between GRAPES and GAS

We compared different variants of GRAPES, with different sample sizes (32, 256), with GAS (Fey et al., 2021),
which is a non-sampling method. Figure 3 shows the GPU memory allocation (MB), on a logarithmic scale for
GRAPES-32, GRAPES-256, and GAS. The three graph methods exhibit distinct performance characteristics
across various datasets. We used the max_memory_allocated function in PyTorch to measure the GPU

19

Published in Transactions on Machine Learning Research (05/2025)

0 5 10 15 20 25 30 35 40 45 500.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
E

nt
ro

py
Citeseer

1-hop node sampling

2-hop node sampling

0 5 10 15 20 25 30 35 40 45 50

Cora

0 10 20 30 40 50 60 70 80 90 1000.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
E

nt
ro

py

Flickr

0 15 30 45 60 75 90 105 120 135 150

ogbn-arxiv

0 10 20 30 40 50 60 70 80 90 1000.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
E

nt
ro

py

ogbn-products

0 10 20 30 40 50 60 70 80 90 100

Pubmed

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
E

nt
ro

py

Reddit

0 10 20 30 40 50 60 70 80 90 100

Epoch

Yelp

Figure 6: Combined entropy plots for Citeseer, Cora, Flickr, ogbn-arxiv, ogbn-products, Pubmed, Reddit,
and Yelp showcasing the mean entropy. The shaded region indicates the standard deviation of the entropy
across nodes. The plots compare 1-hop node sampling against 2-hop node sampling.

memory allocation.6 Since this function measures the maximum memory allocation since the beginning of
the program, where the memory measurement is done is not relevant.

F GFlowNet details

This section provides additional details on GFlowNets in general and the GFlowNet version of GRAPES.

6https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html

20

https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html

Published in Transactions on Machine Learning Research (05/2025)

0 10 20 30 40 50 60 70 80 90 1000.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
E

nt
ro

py
BlogCat

1-hop node sampling

2-hop node sampling

0 10 20 30 40 50 60 70 80 90 100

snap-patents

0 10 20 30 40 50 60 70 80 90 100

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
E

nt
ro

py

DBLP

0 15 30 45 60 75 90 105 120 135 150

Epoch

ogbn-proteins

Figure 7: Combined entropy plots for BlogCat, snap-patents, DBLP, and ogbn-proteins, showcasing the mean
entropy across epochs. The shaded region indicates the standard deviation of the entropy across nodes. The
plots compare 1-hop node sampling against 2-hop node sampling.

0 20 40 60 80 100
Label

0

10

20

30

40

50

60

70

80

No
de

s h
av

in
g

th
e

la
be

l(%
)

Original vs Sampled Last Epoch
Original Graph
Sampled Graph

0 20 40 60 80 100
Label

0

2

4

6

8

10

12

14

16

Di
ffe

re
nc

e
in

 N
od

es
 h

av
in

g
th

e
la

be
l(%

)

Diff First Epoch vs Last Epoch
Diff First Epoch
Diff Last Epoch

Figure 8: Comparison of Label distributions between GRSAPES-GFN and the original graph for Yelp. The
left figure shows the percentage of nodes in the last epoch of both graphs that have each label. The right
shows the difference between those percentages in the original graph and the sampled graph at the beginning
and end of training.

F.1 Generative Flow Networks

Generative Flow Networks (GFlowNets) (Bengio et al., 2021a;b) are generative models that can sample from
a very large structured space. GFlowNets construct the structure in multiple generation steps. Compared to
Reinforcement Learning approaches, GFlowNets learn to sample in proportion to a given reward function, while
in Reinforcement Learning, reward functions are maximized. This feature of GFlowNets encourages sampling
diverse sets of high-quality structures, instead of only considering the single best structure. GFlowNets have
been used in several applications like molecule design and material science (Bengio et al., 2021a; Gao et al.,
2022; Jain et al., 2022), Bayesian structure learning (Deleu et al., 2022), scientific discovery (Jain et al., 2023),
and GNN explainability (Li et al., 2023). Similar to our work, the latter utilizes a GFlowNet to sample

21

Published in Transactions on Machine Learning Research (05/2025)

subgraphs. However, this method explains a trained GNN and is not used to scale GNN training to large
graphs.

F.2 GFlowNet and Trajectory Balance Loss

We first give a brief overview of GFlowNets (Bengio et al., 2021a;b) and the trajectory balance loss (Malkin
et al., 2022a). Let GF = (S,A,S0,Sf , R) denote a GFlowNet learning problem. Here, S is a finite set of
states that forms a directed graph with A, a set of directed edges representing actions or transitions between
states. S0 ⊂ S is the set of initial states, Sf ⊂ S is the set of terminating states,7 and R : Sf → R+ is the
reward function defined on terminating states. At time t, a particular at ∈ A indicates the action taken
to transition from state s(t−1) to s(t). A trajectory τ is a path through the graph from an initial state s(0)

to a terminating state s(n) ∈ Sf : τ = (s(0) → . . .→ s(n)). A GFlowNet is a neural network that learns to
transition from an initial state s(0) to a terminating state where the reward R(s(n)) is given. The goal of the
GFlowNet is to ensure that following the forward transition probabilities PF (s(t)|s(t−1)) leads to final states
s ∈ Sf with probability in proportion to the reward R (Bengio et al., 2021a). The Trajectory Balance (TB)
loss (Malkin et al., 2022a) is developed with this goal. For a trajectory τ = (s(0) → . . .→ s(n)), the TB loss
is:

LT B(τ) =
(

log Z(s(0))
∏n

t=1 PF (s(t)|s(t−1))
R(s(n))

∏n
t=1 PB(s(t−1)|s(t))

)2

, (9)

where Z : S0 → R+ computes the total flow of the network from the starting state s(0) and PF and PB are
the forward and the backward transition probabilities between the states, where both can be parameterized
by a neural network (Malkin et al., 2022a).

F.3 GFlowNet Design: States, Actions, and Reward

Next, we explain our choice of GF , that is, the states, actions, terminating states, and reward function, and
the coupling of our GFlowNet with the sampling policy q. A state s(l−1) ∈ S represents a sequence of sets of
nodes s(l−1) = (V(0), . . . ,V(l−1)) sampled so far. An action from s(l−1) represents choosing k nodes without
replacement among N (K(l−1)). This forms the set of nodes V(l) in the next layer. Therefore, in an L layer
GCN, we construct a sequence of L sets of nodes to reach a terminating state.

We define the optimal sampling policy as having the lowest classification loss in expectation. Therefore, a set
of k nodes with a lower classification loss than another set must have a higher probability. Our goal is to
design GF so that it learns the forward and backward transition probabilities proportional to a given reward.
We define the reward function as below:

R(s(L)) = R(V(0), . . . ,V(L)) := exp(−α · LC(X, Y, K(0), . . . , K(L))), (10)

where LC is the classification loss and α is a scaling parameter, which we explain in Section F.4.

Forward Probability. The forward probability PF (s(l−1)|s(l)) in GRAPES is the sampling policy
q(V(l)|V(0), . . . ,V(l−1)) defined in Section 4.1.

Backward Probability. Trajectory balance (Equation 9) also requires defining the probability of transi-
tioning backwards through the states. The backward probability is a distribution over all parents of a state.
This distribution is not required in our setup, as the state representation s(l) = (V(0), . . . ,V(l)) saves the
trajectory taken through GF to get to s(l). This means the graph for the GFlowNet learning problem GF

is a tree, as each state s(l) = (V(0), . . . ,V(l−1),V(l)) has exactly 1 parent, namely s(l−1) = (V(0), . . . ,V(l−1)).
Since each state has a single parent, we find that PB(s(l−1)|s(l)) = 1 when we retrace the trajectory. We pass
the information on when a node is added to the GFlowNet by adding an identifier to the nodes’ embeddings
that indicates in what layer it was sampled, as explained in Section 4.1.

7Technically, GFlowNets have unique source and terminal (or ‘sink’) states ss and sf . The source state has an edge to all
initial states, and all terminating states have an edge to the terminal state.

22

Published in Transactions on Machine Learning Research (05/2025)

Table 6: Comparison between GRAPES and variants using the straight-through estimator (STE).

Cora Flickr ogbn-arxiv Yelp
Best GRAPES 87.62 ± 0.48 49.54 ± 0.67 62.58 ± 0.64 44.57 ± 0.88

STE 87.95 ± 0.18 46.33 ± 1.39 61.95 ± 0.32 37.29 ± 0.15
STEN 87.03 ± 0.35 46.29 ± 1.47 60.13 ± 0.41 15.63 ± 0.10

Loss derivation Combining our setup with the trajectory balance loss (Equation 9), the GRAPES loss is

LGFN(X, Y,V(0)) =
(

log Z(V(0))
∏L

l=1 PF (s(l)|s(l−1))
R(s(l))

)2
(11)

=
(

log Z(V(0)) +
L∑

l=1
log q(V(l)|V(0), . . . ,V(l−1))+ (12)

α · LC(X, Y, K(0), . . . , K(L))
)2

We model the initial-state-dependent normalizer Z(s(0)) in Equation 9 with a trainable GCN, namely
GCNZ(V(0)). It predicts the normalizer conditioned on the target nodes given. It is trained together with
GCNS by minimizing the trajectory balance loss.

We note that, like in GRAPES-RL, we use off-policy sampling from q(V(l)|V(0), . . . ,V(l−1), k) to train the
GFlowNet. See Appendix A for additional details.

F.4 Reward scaling

In our experiments, we noticed that with the bigger datasets, the GFlowNet is more affected by
the log-probabilities than the reward from the classification GCNC. The reason that the term
log q(V(l)|V(0), . . . ,V(l−1)) dominates LGFN is that log q(V(l)|V(0), . . . ,V(l−1)) =

∑
i∈N (K(l−1)) log pi, which

sums over |N (K(l−1))| elements. Given a batch size of 256, this neighborhood can be as big as 52, 000
nodes, resulting in summing 52, 000 log-probabilities. The majority of the probabilities pi are values close to
zero. Therefore, the above sum would be a large negative number. Since the loss LC is, in our experiments,
often quite close to zero, the log-probability and its variance dominate the loss. Therefore, we add the
hyperparameter α to the reward and tune it in our experiments.

G GRAPES and the straight-through estimator

The straight-through estimator Bengio et al. (2013) (STE) has been proposed as a method for learning in
computation graphs involving a non-differentiable function f of an input x, by replacing f with the identity
in the backward pass during computation of the gradients.

In practice, applying the STE for learning in GRAPES requires ensuring that the gradients flow through the
sampled nodes, for example by treating the top-k sampled nodes at each layer as a mask which multiplies the
messages from these nodes to all their neighbors. Such a computation over all neighboring nodes defeats the
purpose of sampling, increasing memory usage.

An alternative to keep memory usage low is to keep the gradients only for the top-k probabilities, though
this results in a biased estimate of the gradient. We implemented two versions of this approach. In the first
version (STE), we simply use the perturbed log probability (log probability plus the Gumbel noise) of the
top-k nodes as additional weights for the classification GCN. In the second version, we normalized these
weights to have a mean equal to one (STEN). We present results in Table 6. While in Cora the results
are relatively similar to our implementation of GRAPES, as we experiment with larger graphs, there is a
significant drop in performance when employing either variant of the STE.

23

Published in Transactions on Machine Learning Research (05/2025)

H Proof of Theorem 1

H.1 Proof

In this section, we prove Theorem 1 in section 5 as follows:

Proof. Let G = (V, E) be an undirected fully connected simple graph with an even number of nodes
N, V = {1, . . . , N}, a set of edges E = {eij}N

i,j=1, where eij denotes an edge between vi and vj . Let
Y = {yi|i ∈ {1, . . . , N}, yi ∈ {0, 1}} be the set of node labels and let X ∈ RN×2 be the node features. Let E1
and E2 be one partition of E , where E1 consists of N/2 edges with two conditions: 1) eij ∈ E1, if and only if
the first feature of nodes vi and vj are equal, i.e. eij ∈ E1 ⇔ xi1 = xj1, and 2) each node appears only at
one edge in E1. The second condition implies that each value for the first feature appears only in the nodes
connected by one edge in E1, i.e., for two distinct edges eij , ekl ∈ E1, x1i ̸= x1k.

For each edge eij in E1, sample xi2 ∼ Bern(0.5) on {0, 1}. Then, set the node label yj to xi2. That is,
the label of each node is equal to the second feature of its corresponding neighbor in E1. Since G is fully
connected, the L-hop neighborhood for all nodes is V. Therefore, non-adaptive methods cannot prefer any
node over another: a GCN with a non-adaptive sampler can only achieve accuracy above chance by sampling
K nodes such that for each target node, the neighbor with the same first feature is sampled. The probability
of sampling such a neighbor is p = (N−2

K−1)
(N−1

K) = K
N−1 . The nominator indicates choosing the desired neighbor

connected to the target node in E1 and then choosing the remaining K − 1 nodes among the N − 2 nodes.
The denominator indicates choosing K nodes among N − 1 nodes (excluding the target node). Repeating the
sampling for L layers, eliminating K nodes from the candidate neighbors for sampling for the next layer, will
result in p =

∑L−1
i=0

K
N−iK−1 ≤

LK
N .

However, there is a GCN with an adaptive sampler that classifies nodes with an accuracy of 100%. Specifically,
such an adaptive sampler compares the first node feature of the neighbors with the target node vi, and then
always samples the unique vj where eij ∈ E1. Subsequently, it samples K − 1 additional neighbors randomly.
If the sampler perfectly samples the informative neighbors in E1, we assume there exists a GCN that can
classify the target nodes correctly. We show a construction of such a GCN in section H.2. Figure 9 shows an
example of such a graph with eight nodes and a homophily ratio of 0.43.

In the above proof, we show that there are graphs for which there is a performance gap between adaptive
and non-adaptive samplers. Usually LK ≪ N ; therefore, the probability p ≤ LK

N for non-adaptive sampling
methods to perform better than the chance level becomes very small. These graphs are heterophilous, with
an expected homophily ratio equal to 0.5. We calculate this expectation below:

E(hG) = E

((
m
2
)

+
(

N−m
2
)(

N
2
))

, m ∼ Binomial(N, 0.5)

For that, we need E
((

m
2
))

= 1
2E (m(m− 1)). Because E(m) = N

2 and V ar(m) = N
4 , we have

E(m(m− 1)) = E(m2 −m) = E(m2)− E(m) = V ar(m) + (E(m))2 − E(m)

= N

4 +
(

N

2

)2
− N

2 = N2 −N

4 ,

so we have

E
((

m

2

))
= 1

2 ×
N2 −N

4 = N2 −N

8 .

24

Published in Transactions on Machine Learning Research (05/2025)

Figure 9: An example of a graph for Theorem 1 with eight nodes. Red edges belong to E1, features xi and
labels yi are shown beside every node. For nodes v1 and v2 we show the edge e12 as an example. As shown,
the label of each node is the second feature of its neighbor, where a red edge connects them. The edge
homophily ratio is h = 12

28 = 0.43.

Similarly, E
((

N−m
2
))

= N2−N
8 . Therefore, the expected homophily ratio is

E(hG) =
N2−N

8 + N2−N
8(

N
2
) = 0.5.

H.2 GCN Construction

In this section, we construct a GCN that can compute the classification rule assumed in the proof of Theorem
1. Let xi ∈ R2 be an input feature vector of a node vi ∈ V. We construct a GCN where the first layer
computes a 4-dimensional vector for a target node vi:

h(1)
i = W̃1xi + 1

|N (vi)|
∑

vj∈N (vi)

W1xj . (13)

Here, W̃1 is the self-loop weight, and W1 is the weight for the neighbors of a target node. We define the
following:

W̃1 =

1 0
0 1
0 0
0 0

 , W1 =

0 0
0 0
1 0
0 1

 (14)

For a given target node, the output of this layer is a vector h(1)
i ∈ R4 where the first two values correspond

to the target node’s features, and the other two values are the average of the features of its neighbors. The
next layer implements the following function: if values h

(1)
i1 and h

(1)
i3 are the same, then the output is the

second value of this vector, otherwise it is zero. We denote this function as h
(2)
i = f(h(1)

i) ∈ R, which can
be implemented with a multi-layer perceptron due to its universal approximation properties (Hornik et al.,
1989). An MLP can be implemented in a GCN by omitting the neighbors and using a self-loop weight matrix
only. The last layer of the GCN selects the average value in the neighborhood of a target node from the
scalars computed by f , which can be computed using a simple GCN where the self-loop weight is set to zero:
h

(3)
i = 1

|N (vi)|
∑

vj∈N (vi) h
(2)
j . This output corresponds to the classification rule required for Theorem 1.

25

	Introduction
	Related Work
	Background: GNN Training and Sampling
	Graph Adaptive Neighbor Sampling (GRAPES)
	Sampling policy
	Sampling exactly k nodes
	Training the Sampling Policy

	Theoretical Analysis
	Experiments
	Datasets
	Results

	Known Limitations and Future Work
	Discussion, Broader Impacts, and Conclusion
	Off-Policy Sampling Setup
	Experimental Details
	Hyperparameter Tuning
	Baselines

	Dataset statistics
	Entropy as Node preference measure
	GPU Memory usage comparison between GRAPES and GAS
	GFlowNet details
	Generative Flow Networks
	GFlowNet and Trajectory Balance Loss
	GFlowNet Design: States, Actions, and Reward
	Reward scaling

	GRAPES and the straight-through estimator
	Proof of Theorem 1
	Proof
	GCN Construction

