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Abstract

In the present study, we introduce an innovative structure for 3D medical image
segmentation that effectively integrates 2D U-Net-derived skip connections into
the architecture of 3D convolutional neural networks (3D CNNs). Conventional
3D segmentation techniques predominantly depend on isotropic 3D convolutions
for the extraction of volumetric features, which frequently engenders inefficiencies
due to the varying information density across the three orthogonal axes in medical
imaging modalities such as computed tomography (CT) and magnetic resonance
imaging (MRI). This disparity leads to a decline in axial-slice plane feature extrac-
tion efficiency, with slice plane features being comparatively underutilized relative
to features in the time-axial. To address this issue, we introduce the U-shaped
Connection (uC), utilizing simplified 2D U-Net in place of standard skip connec-
tions to augment the extraction of the axial-slice plane features while concurrently
preserving the volumetric context afforded by 3D convolutions. Based on uC, we
further present uC 3DU-Net, an enhanced 3D U-Net backbone that integrates the
uC approach to facilitate optimal axial-slice plane feature utilization. Through rig-
orous experimental validation on five publicly accessible datasets—FLARE2021,
OIMHS, FeTA2021, AbdomenCT-1K, and BTCV, the proposed method surpasses
contemporary state-of-the-art models. Notably, this performance is achieved while
reducing the number of parameters and computational complexity. This inves-
tigation underscores the efficacy of incorporating 2D convolutions within the
framework of 3D CNNs to overcome the intrinsic limitations of volumetric segmen-
tation, thereby potentially expanding the frontiers of medical image analysis. Our
implementation is available at https://github.com/IMOP-lab/U-Shaped-Connection.

1 Introduction

3D volumetric data segmentation extensively relies on the utilization of axial symmetrical 3D
convolutions to extract features based on a volumetric representation. Imaging modalities such as
CT [1, 2, 3, 4] and MRI [5, 6, 7, 8, 9] yield high-precision images along the slice plane and repeat
this process along the temporal axis, resulting in non-uniform information density across the three
axes. We visualize the difference in information density between the axial and the slice plane in
3D medical imaging in Fig. 1. The information density variance arising from non-simultaneous
imaging in three dimensions of volumetric data engenders distinctiveness between time-axial and
slice plane features, rendering them unsuitable for the same processing. Typically, features extracted
from the slice plane possess higher information density and are more adept at delineating the fine-
grained, voxel-level neighboring structures. These localized features are essential in understanding
the precise 3D structure of tissues, thereby surpassing the utility of time-axial features. However,

∗These authors contributed equally.
†Corresponding author. Email: hehong@hdu.edu.cn, jiangsw@hdu.edu.cn, syq@hdu.edu.cn

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/IMOP-lab/U-Shaped-Connection


（a） （b） （c）

Figure 1: Visualization of the difference in information density between the time-axial (Green) and
slice planes (Red). Panels (a), (b), and (c) respectively illustrate the information density differences
in time-axial and slice planes for volumetric data of the abdomen, retina, and brain tissues.

traditional 3D convolutions [10, 11, 12], although excelling in time-axial information extraction,
significantly increase computational complexity to accommodate time-axial information, leading
to axial-slice plane performance drop-off in 3D CNNs. Thus, the structural constraints of 3D
convolutions inherently weaken the rich local features of the slice plane. When confronted with
sequences abundant in slice plane features, symmetric 3D convolutions face substantial inefficiencies
and performance degradation.

To address the axial-slice plane performance drop-off issue, an efficient strategy involves increasing
channel depth to enhance feature extraction performance. The depth of the channels, indicative
of the high-dimensional feature richness, directly influences network performance. Increasing
channel depth can enhance the network’s capacity to capture more high-dimensional information
and improve feature representation quality. However, the relationship between channel depth and
network performance in 3D CNNs is intricate and nonlinear. While initially increasing channel depth
improves model performance by introducing more detailed and abstract features, this improvement
comes at the expense of ever-increasing computational overhead. Moreover, an excessive number of
channel depths can complicate the model’s information processing, potentially introducing noise and
redundancy, culminating in dimensional explosion and performance decline. The linear relationship
between channel depths and computational overhead means that increasing channel depth significantly
inflates computational costs, leading to reduced model efficiency under identical hardware constraints.
Conversely, 2D convolutions, with their focus on slice-wise information extraction, exhibit higher
efficiency and performance peaks, boasting a superior parameter performance ratio. For a kernel
size K, a 2D convolution requires only 1

K of the parameters compared to its 3D counterpart,
thereby significantly enhancing local feature extraction efficiency within a slice. Consequently,
2D convolutions present a key solution to the low parameter-to-performance ratio of 3D CNN
architectures, markedly increasing axial-slice plane feature extraction efficiency while minimizing
parameter count and computational load.
Given the excellent computational efficiency and parameter-to-performance ratio of 2D convolutions
for axial-slice plane feature utilization, and considering the prevalent use of skip connections in 3D
medical image segmentation architectures to integrate early layer details, we propose employing 2D
convolutions within skip connections to supplement axial-slice plane information. For this purpose,
we introduce a plug-and-play U-shaped Connection (uC), leveraging a simplified 2D U-Net to replace
skip connections in 3D segmentation architectures for improving the utilization efficiency of axial-
slice plane features. Using classical 3D U-Net as the backbone, we further propose the uC 3DU-Net,
which substitutes the original skip connections with uC, thereby enhancing the network’s ability to
comprehend slice plane information and efficiently utilize initial encoded layer details. For more
effective integration of 3D spatial features from 3D CNNs and 2D slice plane features introduced by
uC, we employ a Dual Feature Integration (DFi) module to combine multi-dimensional features.
Experimental evaluations demonstrate the incorporation of uC significantly enhances segmentation
performance even with reduced channels and surpasses parameter-to-performance ratios of state-of-
the-art networks. Comparative analyses on five publicly available datasets—FLARE2021, OIMHS,
FeTA2021, AbdomenCT-1K, and BTCV—corroborate the superiority of proposed uC 3DU-Net over
existing state-of-the-art methods, achieving persuasive performance with reduced computational
complexity and model parameters.
The principal contributions of our work can be summarized as follows:
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1. We proposed uC, utilizing simplified 2D U-Net to replace traditional skip connections in 3D
segmentation backbones, enhancing model capacity to capture axial-slice plane features.

2. uC 3DU-Net is further proposed, adopting uC to replace original skip connections, and applying
the DFi module to effectively merge 3D sequential spatial features with 2D axial-slice plane features,
thus improving feature utilization efficiency.

3. We explore the complementary relationship between uC and 3D CNNs, revealing that incorporating
2d convolutions in 3D CNNs can achieve superior performance with fewer parameters, striking perfect
balances between efficiency and performance in volumetric segmentation.

4. Comparative experiments on five public datasets—FLARE2021, OIMHS, FeTA2021, AbdomenCT-
1K, and BTCV—demonstrate that uC 3DU-Net surpasses all previous models, achieving SOTA
performance with fewer parameters and lower computational cost.

2 Related Work

2.1 3D medical image segmentation

The realm of 3D medical image segmentation has experienced substantial advancements, primarily
propelled by the progressive evolution of deep learning paradigms and the augmentation of computa-
tional prowess [13, 14]. At the key of these advancements lies the continuous enhancement of CNNs
[15, 16, 17, 18, 19] and the advent of Vision Transformers (ViTs) [20], both of which have signifi-
cantly promoted segmentation methodologies [21, 22, 23, 24, 25]. The 3D U-Net [26], a foundational
model in this field, the subsequent iterations have incorporated attention mechanisms, augmenting
feature extraction capabilities by prioritizing important regions while mitigating noise interference
[27, 28]. Transformer-based architectures, exemplified by the UNETR framework [29, 30], leverage
multi-head self-attention mechanisms to capture long-range dependencies, thus facilitating more
precise and meticulous segmentation. Hybrid models that combine CNNs with Transformers, such as
TransUNet [31] and TransBTS [32], effectively balance local spatial feature extraction with global
contextual understanding, culminating in superior segmentation performance [33, 34]. The nnU-Net
[35], an exemplary self-adaptive framework, has demonstrated exceptional performance across a
diverse array of medical imaging tasks by autonomously configuring itself to specific datasets.

Beyond architectural innovations, a multitude of research endeavors have concentrated on refining 3D
medical image segmentation mask techniques. Chen et al. [36] propose a novel method integrating
Active Appearance Models (AAM) with live wire (LW) and Graph Cuts (GC) techniques, thereby
enhancing the efficacy of 3D medical image segmentation. Zhang et al. [21] develop the 3D
Context Residual Network (ConResNet), which employs a context residual module to interlink the
segmentation decoder with the context residual decoder, explicitly learning inter-slice contextual
information to improve segmentation accuracy. Advanced loss functions and optimization strategies,
such as extensive implementations of Dice loss [37], have been designed to address class imbalance
issues, ensuring a more balanced learning process between easy and hard examples. Furthermore, data
augmentation and transfer learning techniques have been beneficial in enhancing model robustness
and generalization capabilities [38, 39]. These unremitting innovations promise increasingly precise
and reliable analysis of 3D medical images, significantly advancing the fields of medical diagnostics
and therapeutic planning.

2.2 Advancements in skip connection structures

Innovations in skip connection structures have further augmented the performance and computational
efficiency of CNNs [40, 41, 42] in the domain of medical image segmentation. Skip connections are
important in facilitating direct gradient propagation, thereby mitigating the vanishing gradient issue
and enabling the training of substantially deeper networks. This method permits unimpeded gradient
flow throughout the network, effectively circumventing intermediate layers, minimizing information
degradation, and achieving more stable and efficient optimization. Prominently exemplified in the
ResNet[43] architecture, skip connections mitigate the vanishing gradient dilemma, thereby fostering
the training of deep neural networks. In the U-Net[44] architecture, skip connections are crucial
in the transmission of initial detailed spatial information from the encoder to the decoder, thereby
preserving high-resolution details indispensable for precise segmentation tasks.
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Recent endeavors have extensively refined traditional skip connections to augment their functional
efficacy. Attention U-Net [45] replaces the normal application of skip connections by incorporating
attention mechanisms that dynamically emphasize important features while attenuating irrelevant
information. Dense U-Net [46] leverages densely connected convolutional networks (DenseNet)
[47] to facilitate feature reuse and improve gradient flow. Interconnecting each layer with every
other layer in a feed-forward manner facilitates the assimilation of richer and more diverse feature
representations. Skip connections in the Residual Channel Attention Network (RCAN) [48] network
mitigate the training difficulty of deep neural networks and enhance feature reuse and information
flow efficiency, thereby improving the network’s ability to learn high-frequency information. Hybrid
Densely Connected UNet (H-DenseUNet) [49] incorporates skip connections within dense blocks,
combining the strengths of DenseNet and U-Net. By harnessing advanced feature reuse, optimized
gradient flow facilitated by dense connectivity, and efficient multi-scale feature fusion, it produces a
robust architecture adept at capturing intricate details and nuanced contextual information.

3 Method
3.1 Preliminaries: 3D convolutional segmentation networks and skip connections
Current 3D medical image segmentation networks primarily utilize architectures based on 3D
convolutions, as exemplified by classic models such as 3D U-Net, SegResNet, and the recent 3D
UX-Net. These networks adopt an end-to-end encoder-decoder framework with skip connections. The
encoder progressively increases channel depth while downsampling spatial feature maps to abstract
and consolidate contextual information, thereby reducing parameter complexity and improving
computational efficiency. In contrast, the decoder gradually upsamples these encoded features to
restore the original resolution, refining segmentation boundaries and overall segmentation accuracy.
Skip connections effectively reintroduce fine-grained details from the original images during the
upsampling stage, aiding the refinement of segmentation results.
Several 3D medical image segmentation networks, such as UNETR, TransBTS, and SwinUNETR,
have incorporated multi-head self-attention and advanced skip connections within the 3D Conv-based
encoder-decoder framework. These hybrid approaches effectively capture long-range dependencies
and facilitate multi-scale feature utilization. Multi-head self-attention ensures global consistency,
while 3D convolution operations excel in preserving local spatial details. The combination of
self-attention with 3D convolutions ensures the model’s ability to retain image details while compre-
hending and processing global information more effectively. However, relying solely on transformer
architectures, such as Vision Transformers, would result in a substantial increase in parameters and
computational load. Additionally, without skip connections, it is difficult to achieve satisfactory
segmentation details. Hence, 3D convolutions and skip connections remain crucial for achieving
optimal segmentation performance in 3D medical image segmentation.

3.2 U-shaped Connection
Considering the objective of skip connections to capture detailed features of original images, it is
essential to note that 3D medical images fundamentally represent a sequence of 2D images. Given the
anisotropic nature of medical images, the 2D slice plane shows richer feature information compared
to the temporal sequence axis. Although basic skip connection methods like cat and addition can
supplement original feature information to some extent, these methods fail to fully utilize the rich
axial-slice plane information in 3D medical images. To address the challenges posed by the anisotropy
of 3D medical images, the U-shaped Connection(uC) is proposed. It offers a solution to anisotropy
in medical imaging. This approach employs a simplified 2D U-Net to implement skip connections,
thereby supplementing the rich original 2D slice plane feature information, and enhancing the 2D
slice plane feature extraction capabilities of any 3D image segmentation network. The uC combines
features extracted by 2D convolution with those extracted by 3D upsampling, offering more efficient
feature extraction compared to pure 3D convolution, as detailed structure in Sec3.3.
The fundamental structure of uC is based on a 2D U-Net. In comparison to the basic 2D U-Net, uC
omits the initial and final conv layers, retaining only the downsampling and upsampling layers to
minimize computational load and enhance the extraction efficiency of original slice plane features.
Each downsampling layer comprises an average pooling layer and two conv layers, each consisting of
2D conv, Group Normalization (GN), and ReLU. The average pooling layer reduces the feature map
size by half, and the subsequent conv layers double the channel number, with the group number of
GN set to half the current channel number. Each upsampling layer includes a transposed convolution
layer and two conv layers, where the transposed convolution layer restores the feature map to its
original size, and the conv layers reduce the channel number back to its half.
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Figure 2: Overview of the proposed uC 3DU-Net architecture. The backbone is a 3D U-Net
with five encoding-decoding stages and each downsampling block comprises a max-pooling layer
followed by two 3D convolutional layers. In stages 1 to 3, 5D tensors are rearranged into 4D tensors
for 2D uC input by stacking slices along the batch dimension. Each upsampling layer employs a
transposed convolution to upsampling and a DFi block to effectively adjust the feature channel depth.

3.3 uC 3DU-Net

Based on uC, we proposed uC 3DU-Net, which employs the 3D U-Net as the backbone, incorporating
uC with a dual feature integration (DFi) module. The network architecture is illustrated in Fig. 2.
Given the input 3D volumetric image data denoted as x, we divide the encoder of the 3D U-Net
into five stages. Stage 1 is the initial Two Conv layer, comprising two 3D convolutions, expanding
the input feature channel depth to 24. Stages 2 to 5 are downsampling layers, each comprising a
max-pooling operation and two 3D convolutions, doubling the feature channels while halving the
feature map dimensions. The outputs of stages 1 to 5 are denoted as x(θ:1) to x(θ:5). The decoder is
also divided into five stages. Stages 5 to 2 utilize transposed convolutions to upsample, effectively
doubling the spatial dimensions of the feature maps. Stages 5 to 3 apply DFi to effectively halve
the feature channel depth, while Stage 2 retains two convolution layers. Stage 1 is the Final Conv
layer, converting the feature channels to the number of categories by a 3D convolution. All 3D
convolution operations are subsequently followed by Instance Normalization and a LeakyReLU
activation function, with the negative slope set to 0.1.

Considering the parameter-efficiency trade-off, we employ the uC in only stages 1 to 3, denoted as
uC1 to uC3. The inputs x(θ:1) to x(θ:3) are reshaped into 4D dimensions by stacking slices along
the batch dimension using a rearrange operation, resulting in x̂(θ:1) to x̂(θ:3). The structure of uC1

to uC3 resembles that of a simplified version of 2D U-Net, with detailed descriptions of the uC
architecture provided in Section 3.2. uC1, uC2, and uC3 consist of 4, 3, and 2 downsampling and
upsampling layers, respectively, to match the dimensions of the input 4D tensor. The outputs of x̂(θ:1)

to x̂(θ:3) after passing through the uC are x̃(θ:1) to x̃(θ:3), which are reshaped back to 5D dimensions
using a rearrange operation, resulting in x̂(ϕ:1) to x̂(ϕ:3).

We utilize the dual feature integration (DFi) module to seamlessly integrate the 3D spatial features
extracted by the 3D CNN with the rich axial-slice plane features introduced by the uC. Specifically,
x(θ:4) and x(θ:5) are fused using the DFi block to obtain xµ, xµ and x̂(ϕ:3) are fused to obtain xυ,
and xυ and x̂(ϕ:2) are fused to obtain xξ. Finally, xξ and x̂(ϕ:1) are fused using the DFi block and
undergo the final convolutional block to obtain the final output y.

Dual Feature Integration. In conventional 3D U-Net architectures, skip connections integrate the
original feature information from the encoder during the upsampling process through cat, followed
by two 3x3 convolutions to reduce the number of channels and consolidate useful information.
However, this basic feature fusion approach may lead to inefficiencies when reconciling the disparity
between 3D spatial features and 2D slice plane features. Therefore, we devise a streamlined, efficient
multi-scale feature fusion module DFi to better integrate the axial-slice plane information introduced
by uC. The 2D slice plane features extracted by uC and the 3D spatial features from the 3D CNN
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encoder are cat to retain maximal original feature information. However, subsequent convolution
operations to reduce channel depths are computationally intensive and inefficient. Utilizing addition
for feature fusion could result in information loss due to inherent discrepancies between the two types
of features. Hence, an approach combining cat, addition, and subsequent convolution layers, with
the aim of minimizing parameter count and FLOPs, resulting in the design of the DFi module. For
the 2D slice plane features F1 extracted by uC and the 3D spatial features F2 obtained during 3D
U-Net upsampling, branch 1 of the DFi module cats F1 and F2, then employs a 1x1 conv to halve the
channel count, preserving important features to produce feature map Fc. Branch 2 initially extracts
critical information from F1 and F2 using 1x1 convs, followed by addition and sigmoid activation to
generate the attention map Fa. The element-wise multiplication of Fc and Fa adjusts and integrates
the feature map Fc from branch 1, thereby learning the relative importance of F1 and F2 during the
fusion process. The proposed DFi module integrates and simplifies addition, cat, and subsequent
convolution layers, achieving a more lightweight and efficient fusion of 2D and 3D spatial features.

4 Experiments and results

4.1 Datasets

To validate the efficacy of the proposed method, multiple experiments are conducted on five widely-
used, publicly accessible datasets: FLARE2021 [50], OIMHS [51], FeTA2021 [52], AbdomenCT-1K
[53], and BTCV [54]. To ensure experimental rigor and fairness, we apply identical data preprocessing
and hyperparameter settings across all datasets, uniformly utilizing the LDiceCE for training.

FLARE2021. An anisotropic CT dataset dedicated to abdominal organ segmentation comprises 361
training instances, 50 validation instances, and 100 test instances, categorized into four organ classes:
spleen, kidney, liver, and pancreas. The spatial resolution ranges from 0.61 mm to 0.98 mm in-plane
and 0.5 mm to 7.5 mm through-plane. We utilize the full set of 361 publicly labeled instances.

OIMHS. A fundus retinal 3D OCT segmentation dataset comprises 125 sequences, each containing
19 to 73 scans, and is categorized into four classes: retina, choroid, macular hole, and macular edema.
It is a anisotropic dataset, the spacing ranges from 10.7 µm to 14.0 µm in-plane and 7.0 µm to 40.0
µm through-plane. All 125 publicly available sequences are utilized in the experiments.

FeTA2021. A dataset consists of 120 T2-weighted fetal brain MRI reconstructions, categorized into
seven classes: external cerebrospinal fluid, grey matter, white matter, ventriculus, cerebellum, deep
grey matter, and brainstem. It is a typical isotropic dataset, the spacing ranges from 0.43 mm to 1
mm across all dimensions. All 80 publicly available sequences are utilized in the experiment.

AbdomenCT-1K. A large-scale abdominal CT dataset comprises 1,112 instances, focusing on the
segmentation of four abdominal organs: liver, kidney, spleen, and pancreas. The spatial resolution
ranges from 0.45 mm to 1.04 mm in-plane and 0.45 mm to 8 mm through-plane. It is also an
anisotropic dataset, for our experiments, we utilize 361 instances from Task 2.

BTCV. A dataset consists of 50 abdominal CT instances, categorized into 13 classes. It is an
anisotropic dataset, with in-plane resolution ranging from 0.59 mm to 0.98 mm and through-plane
resolution ranging from 2.5 mm to 5.0 mm. All 30 labeled instances are selected for the experiments.

4.2 Implementation details and evaluation metrics

Implementation details. The datasets are randomly partitioned in an 8:1:1 ratio for training,
validation, and testing. To enhance segmentation performance, the data are resampled, intensity
clipped, and normalized using min-max normalization. Specifically, the intensity clipping ranges are
as follows: FLARE2021 [−125, 275], OIMHS [0, 300], FeTA [0, 1000], AbdomenCT-1K [−125, 300],
and BTCV [−175, 250]. During the training stage, random cropping to 96 × 96 × 96 volumes is
performed, and a sliding window method with a 0.5 overlap is used for validation.

All training utilizes the LDiceCE function with the AdamW [55] optimizer, a learning rate of 0.0001,
80,000 training iterations, and a batch size of 2. Data augmentation techniques, including random
flip, random rotation, random scaling, and random 3D elastic transformation, are applied to enhance
dataset diversity and model generalization. Validation occurs every 1000 iterations during training
to save the model weight with the best validation performance. The experiments are conducted
on identical hardware and software environments, each workstation equipped with two NVIDIA

6



Table 1: Comparative experimental results of uC 3DU-Net and 9 previous methods on the FLARE2021
and FeTA2021 datasets. The best values for each metric are bolded. Part of the data comes from [56].

Methods #Params FLOPs FLARE2021 FeTA2021
Mean Spleen Kidney Liver Pancreas Mean ECF GM WM Vent Cereb DGM BS

3D U-Net [57] 4.81M 135.9G 89.2 91.1 96.2 90.5 78.9 85.7 86.7 76.2 92.5 86.1 91.0 84.5 82.7
SegResNet [58] 1.18M 15.6G 90.2 96.3 93.4 96.5 74.5 86.2 86.8 77.0 92.7 86.5 91.1 86.7 82.5
RAP-Net [59] 38.2M 101.2G 91.3 94.6 96.7 94.0 79.9 86.5 88.0 77.1 92.7 86.2 90.7 87.9 83.2
nn-UNet [35] 31.2M 743.3G 92.6 97.1 96.6 97.6 79.2 87.0 88.3 77.5 93.0 86.8 92.0 88.0 84.0
TransBTS [32] 31.6M 110.4G 90.2 96.4 95.9 97.4 71.1 86.8 88.5 77.8 93.2 86.1 91.3 87.6 83.7
UNETR [29] 92.8M 82.6G 88.6 92.7 94.7 96.0 71.0 86.0 86.1 76.2 92.7 86.2 90.8 86.8 83.4
nnFormer [60] 149.3M 240.2G 90.6 97.3 96.0 97.5 71.7 86.3 88.0 77.0 93.0 85.7 90.3 87.6 82.8
SwinUNETR [34] 62.2M 328.4G 92.9 97.9 96.5 98.0 78.8 86.7 87.3 77.2 92.9 86.9 91.4 87.5 84.2
3D UX-Net [56] 53.0M 639.4G 93.4 98.1 96.9 98.2 80.1 87.4 88.2 78.0 93.4 87.2 91.7 88.6 84.5

uC 3DU-Net 21.7M 286.4G 94.1±1.61 98.0±1.02 96.7±1.45 98.3±0.76 83.2±5.37 87.8±1.99 87.8±2.57 80.7±2.29 92.6±1.89 89.1±3.52 91.0±2.47 86.3±5.01 87.5±2.32

Table 2: Comparative experimental results of uC
3DU-Net and 7 previous methods on the OIMHS
dataset. The best values for each metric are high-
lighted in bold. Part of the data comes from [25].

Method #Params FLOPs mIoU Dice VOE HD95 AdjRand

3D U-Net [57] 4.81M 135.9G 86.02 92.05 13.98 6.77 91.34
Swin UNETR [34] 62.2M 328.4G 86.73 92.53 13.27 5.09 91.85
3D UX-Net [56] 53.0M 639.4G 87.43 92.90 12.57 4.41 92.27
SASAN [61] 22.96M 282.92G 88.44 93.53 11.56 3.14 92.96
nnFormer [60] 149.3M 240.2G 72.16±7.91 81.60±7.41 27.84±25.07 23.49±7.91 80.36±7.73
TransBTS [32] 31.6M 110.4G 74.80±7.31 83.08±6.55 25.20±23.82 31.43±7.31 82.05±6.85
UNETR [29] 92.8M 82.6G 80.52±6.68 88.11±5.41 19.48±30.31 30.07±6.68 87.21±5.56

uC 3DU-Net 21.7M 286.43G 89.48±3.56 94.13±2.56 10.52±5.61 2.98±3.56 93.62±2.66

Table 3: Comparative experimental results of
uC 3DU-Net and 7 previous methods on the
AbdomenCT-1K dataset. The best values for each
metric are highlighted in bold.

Method #Params FLOPs mIoU Dice ASSD HD95 AdjRand

3D U-Net [57] 4.81M 135.9G 86.69±4.30 92.28±2.93 2.31±2.06 12.68±18.54 92.14±2.98

TransBTS [32] 31.6M 110.4G 70.06±9.11 79.64±8.12 4.88±1.59 35.75±10.00 79.35±8.19

UNETR [29] 92.8M 82.6G 84.17±5.12 90.42±3.75 2.36±1.68 13.41±16.77 90.27±3.81

nnFormer [60] 149.3M 240.2G 80.69±7.76 87.56±6.36 2.01±1.80 9.75±9.95 87.38±6.41

Swin UNETR [34] 62.2M 328.4G 86.76±4.94 92.36±3.20 2.67±1.81 14.87±18.78 92.22±3.26

3D UX-Net [56] 53.0M 639.4G 86.56±4.76 92.21±3.18 2.60±1.98 15.46±19.75 92.07±3.24

uC 3DU-Net 21.7M 286.4G 88.29±4.04 93.35±2.60 1.48±1.09 8.53±10.74 93.22±2.66

GeForce RTX 4090 GPUs and 128GB of memory. The framework employs Python 3.9, PyTorch
2.0.0, and MONAI 0.9.0 within a Distributed Data-Parallel (DDP) training framework.
Evaluation metrics. We utilize IoU/mIoU, Dice, ASSD, HD, HD95, VOE, and AdjRand as evaluation
metrics to comprehensively assess segmentation performance. IoU and mIoU measure the overlap
accuracy between predicted and ground truth regions, providing robustness across multiple classes.
Dice is particularly effective for medical images, especially in small target regions. ASSD calculates
average surface distances, while HD and HD95 assess boundary accuracy, with HD95 focusing on
the 95th percentile to reduce outliers. VOE examines volumetric overlap and AdjRand evaluates
clustering similarity, ensuring a thorough assessment of both overlap and boundary precision.

4.3 Comparison with state-of-the-art methods
Comparative experiments are conducted on proposed uC 3DU-Net and previous state-of-the-art
methods across five diverse, publicly available 3D medical image segmentation datasets: FLARE2021,
OIMHS, FeTA2021, AbdomenCT-1K, and BTCV. The results are presented in Table 1, Table 2,
Table 3, and Table 13 (provided as supplementary material in the Appendix). The FLARE2021,
FeTA2021, and OIMHS datasets are evaluated using five-fold cross-validations. The results from all
five folds pass the Wilcoxon signed-rank test with a significance level of α=0.05, indicating statistical
equivalence in data distributions. Additionally, the results from the AbdomenCT-1K dataset all pass
the one-tailed Wilcoxon signed-rank test with p<0.05, thereby validating the SOTA performance
of the uC 3D U-Net. Overall, the result indicates that the proposed uC 3DU-Net achieved SOTA
performance with fewer model parameters and reduced computational complexity compared to
previous segmentation methods. On the FLARE2021 and FeTA datasets, uC 3DU-Net’s parameter
count and FLOPs are only 40.9% and 44.7% of the suboptimal model, 3D UX-Net, yet the average
Dice scores improve by 0.7% and 0.4%, respectively, with a notable 3.1% increase in the pancreas
category. On the OIMHS and AbdomenCT-1K datasets, uC 3DU-Net outperformed previous models
by at least 0.6% and 0.99% in Dice scores, respectively, highlighting its superior overall segmentation
performance. Additionally, uC 3DU-Net showed significant improvements in boundary performance
metrics such as ASSD and HD95 on the OIMHS and AbdomenCT-1K datasets, demonstrating its
enhanced ability to identify and correct boundary pixels by focusing on axial-slice plane features.
These findings substantiate that the 2D Conv-based uC effectively compensates for the limitations of
3D convolutions in extracting in-plane slice information to enhance model performance. Notably, the
performance improvement observed on the anisotropic datasets surpasses that on the isotropic FeTA
dataset, further highlighting the efficiency of the proposed uC in enhancing in-slice plane information
extraction, especially for anisotropic datasets enriched with axial-slice plane features. Overall, uC
significantly improves in-plane feature extraction efficiency while maintaining robust axial spatial
feature representation, representing the pinnacle of current performance and parameter efficiency.

4.4 Analysis
4.4.1 Evaluation of 2D vs. 3D convolution for slice-plane information extraction
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Table 4: PSNR results of the reconstruction
experiments on the OIMHS dataset, includ-
ing three methods: 3D U-Net, 3D U-Net +
3D uC, and 3D U-Net + 2D uC.

3D U-Net(32) +3D uC +2D uC

PSNR 28.98db 34.93db 36.29db

Image Reconstruction Fidelity Comparison. We
evaluate three methods: 3D U-Net, 3D U-Net + 3D
uC, and 3D U-Net + 2D uC, on their ability to recon-
struct axial-slice plane images from input 3D sequence
images, with the results presented in Table 4. The high-
est PSNR achieved by 3D U-Net + 2D uC confirms the
proposed 2D uC’s superior slice-plane feature extrac-
tion and reconstruction abilities compared to 3D Conv.

Table 5: Results of 3D U-Net, 3D U-Net + 3D uC, and 3D U-Net
+ 2D uC across different channel depth numbers on the OIMHS
dataset. The best values for each metric are highlighted in bold.

Methods #Params FLOPs mIoU Dice ASSD HD95 AdjRand

3D U-Net (8) 0.37M 16.50G 83.17±4.51 90.20±3.20 2.88±2.16 16.92±21.89 89.51±3.23
+3D uC 5.56M 46.80G 85.58±3.60 91.84±2.35 2.25±1.35 8.64±14.07 91.19±2.40
+2D uC 2.85M 42.54G 89.59±2.61 94.31±1.62 0.52±0.48 2.57±4.74 93.84±1.65

3D U-Net (16) 1.47M 65.09G 87.08±3.43 92.77±2.24 0.92±0.92 4.57±8.92 92.20±2.29
+3D uC 22.21M 186.27G 87.50±3.34 93.08±2.11 4.61±1.25 43.45±19.56 92.41±2.15
+2D uC 11.38M 169.20G 89.98±3.43 94.50±2.23 0.39±0.42 2.56±4.96 94.06±2.26

3D U-Net (32) 4.81M 135.90G 87.08±3.32 92.79±2.09 1.31±1.35 7.39±14.69 92.22±2.15
+3D uC 88.67M 596.06G 87.93±3.33 93.32±2.09 3.09±1.31 14.13±16.99 92.73±2.12
+2D uC 45.33M 527.75G 90.52±2.77 94.84±1.68 0.35±0.33 2.20±4.07 94.43±1.76

Impact of Convolution Dimen-
sionality on uC Performance
and Parameters. We conduct ex-
periments on the OIMHS dataset
using 3D U-Net, 3D U-Net + 3D
uC, and 3D U-Net + 2D uC across
varying channel depths to evalu-
ate the impact of 2D and 3D con-
volutions on uC performance and
parameter count. As shown in Ta-
ble 5 and Fig. 5a (provided as supplementary material in the Appendix along with Fig. 5b), the 2D
uC consistently achieves a superior parameter-to-performance ratio. This performance difference,
independent of skip connections, is directly attributed to the differing feature extraction efficiencies
of the 2D and 3D convolutions within the uC structure. This result is consistent with Table 4, further
confirming the effectiveness of 2D convolutions for axial-slice plane feature extraction. Moreover,
Fig. 5b indicates that the 2D uC converges faster and achieves a higher performance ceiling in the
validation set, highlighting its greater performance in axial-slice plane feature extraction.

4.4.2 Impact of uC on various 3D segmentation backbones

Table 6: Analysis experiments to evaluate the effectiveness and ro-
bustness of the uC across different backbones on the FLARE2021.

Method #Params FLOPs mIoU Dice ASSD HD95 AdjRand

SegResNet 18.8M 244.4G 88.38±2.07 93.39±1.35 1.31±1.29 6.37±10.45 93.28±1.37
SegResNet +uC 20.5M 426.7G 89.42±1.71 94.04±1.05 0.80±0.45 2.35±1.03 93.94±1.08

TransBTS 31.6M 110.4G 87.63±2.74 92.84±1.86 1.04±0.64 3.54±2.64 92.73±1.88
TransBTS +uC 36.6M 176.4G 89.46±2.03 94.05±1.32 0.78±0.30 2.51±1.17 93.95±1.34

SwinUNETR 62.2M 328.4G 88.28±2.69 93.23±1.83 0.95±0.41 3.25±2.18 93.13±1.85
Swin UNETR +uC 75.4M 612.2G 89.07±2.60 93.72±1.83 0.76±0.41 2.56±1.14 93.62±1.85

3D UX-Net 53.0M 639.4G 88.62±2.90 93.43±1.98 2.59±6.00 13.27±46.73 93.32±2.00
3D UX-Net +uC 60.6M 867.91G 89.62±2.31 94.11±1.52 0.76±0.35 2.53±1.34 94.01±1.55

To assess uC’s efficacy in over-
coming axial-slice plane perfor-
mance drop-off, we conducted
quantitative analysis experiments
on the FLARE2021 dataset using
numerous state-of-the-art models.
As depicted in Table 6 and Fig.
3, replacing traditional skip con-
nections with uC can significantly
enhance axial-slice feature extraction capabilities and thereby improve overall performance. Incor-
porating uC exhibited improvements in mIoU and Dice scores by 0.79%-1.83% and 0.65%-1.21%,
respectively. Integrating uC into high-performing 3D medical image segmentation models such as
3D UX-Net, which initially achieved a 93.43% Dice score, resulted in a 1.0% mIoU and 0.77%
Dice score improvement. This demonstrates that even state-of-the-art models encounter inherent
axial-slice plane performance drop-off issues, which uC effectively mitigates, thereby enhancing
axial-slice plane feature extraction and overall performance.

4.4.3 Analysis on DFi

Table 7: Further analysis experiments on DFI are conducted to
validate its efficiency and effectiveness on the OIMHS dataset.
The best values for each metric are highlighted in bold.

Methods #Params FLOPs mIOU Dice ASSD HD95 AdjRand

uC(stage1) 30.38M 439.87G 90.06±3.41 94.55±2.16 0.96±1.85 7.93±19.51 94.14±2.20
+DFi 23.58M 377.19G 90.42±2.59 94.79±1.56 0.68±1.19 4.45±11.03 94.38±1.62

uC(stage2) 30.28M 330.01G 89.73±3.12 94.37±1.92 0.35±0.38 2.36±4.69 93.94±1.99
+DFi 23.49M 267.34G 90.03±3.09 94.53±1.93 0.49±0.50 2.50±5.19 94.11±1.99

uC(stage3) 29.92M 286.09G 88.71±3.31 93.75±2.12 0.43±0.42 2.70±5.17 93.26±2.18
+DFi 23.12M 223.39G 89.33±3.30 94.13±2.07 0.55±0.64 2.67±5.30 93.68±2.13

uC(stage1,2,3) 45.33M 527.75G 90.52±2.77 94.84±1.68 0.35±0.33 2.20±4.07 94.43±1.76
+DFi 38.53M 465.07G 90.86±2.75 95.03±1.68 0.34±0.45 2.34±5.23 94.63±1.73

To validate the efficiency of the
DFi module compared to the two
3x3 convolutions in uC 3DU-Net
for integrating 2D and 3D fea-
tures, we conduct analysis exper-
iments on the OIMHS dataset to
evaluate the impact of incorporat-
ing DFi on the performance of uC
3DU-Net(32), considering differ-
ent quantities and positions of uC
module. As presented in Table 7, the results indicate that DFi achieves a slight performance im-
provement with lower parameter and FLOPs counts than direct concatenation. This improvement
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Original Image GT SegresNet SegresNet +uCOriginal Image GT  3D UX-Net  3D UX-Net +uC

Figure 3: Qualitative results of the uC’s impact on segmentation performance in 3D UX-Net and
SegResNet backbones, applied to the FLARE2021 dataset. Segmentation results for different
categories are represented in distinct colors. For improved visual clarity, the images have been
cropped. Please kindly zoom in for a better view.

Table 8: Analysis experiments to evaluate parameters and performance of 3D UX-Net across various
channel depths and the integration of uC on FLARE2021 and OIMHS datasets.

Method #Params FLOPs FLARE2021 OIMHS
mIoU Dice ASSD HD95 AdjRand mIoU Dice ASSD HD95 AdjRand

3D UX-Net (16) 6.1M 72.2G 87.66±3.45 92.77±2.52 1.80±2.16 9.76±17.32 92.66±2.53 86.06±3.36 92.15±2.19 1.12±0.90 5.79±10.80 91.54±2.26
3D UX-Net (16) +uC 6.7M 97.1G 88.09±2.36 93.12±1.59 1.05±0.61 2.99±1.28 93.01±1.61 89.60±3.19 94.28±2.00 0.36±0.40 2.47±4.95 93.84±2.07

3D UX-Net (24) 13.4M 160.2G 88.19±2.54 93.24±1.64 1.63±2.11 7.46±11.84 93.12±1.67 87.86±3.15 93.27±1.95 0.64±0.67 3.68±6.63 92.74±2.03
3D UX-Net (24) +uC 15.4M 220.2G 88.75±2.69 93.53±1.97 0.92±0.59 2.74±1.44 93.43±1.98 90.23±2.82 94.67±1.72 0.39±0.44 2.37±5.09 94.25±1.79

3D UX-Net (48) 53.0M 639.4G 88.62±2.90 93.43±1.98 2.59±6.00 13.27±46.73 93.32±2.00 88.35±3.23 93.56±2.04 0.51±0.48 2.70±4.86 93.05±2.09
3D UX-Net (48) +uC 60.6M 867.91G 89.62±2.31 94.11±1.52 0.76±0.35 2.53±1.34 94.01±1.55 90.38±3.47 94.73±2.15 0.34±0.42 2.39±5.00 94.33±2.22

is consistently observed across different layers of uC, highlighting its robust and efficient feature
fusion capabilities. The focus of the proposed DFi thus shifts towards optimizing feature fusion
efficiency rather than merely achieving performance improvements. Continuous improvement efforts
will prioritize refining 2D and 3D feature integration while maintaining computational efficiency.

4.4.4 Performance Comparison with Varying Channel Depths in 3D UX-Net

The low parameter performance ratio observed in 3D CNNs is largely due to their reliance on axially
symmetric 3D convolutions, which extract spatial features well but struggle to capture critical axial-
slice plane details. Introducing the uC structure significantly enhances the capability of 3D CNNs to
extract axial-slice plane features. Can incorporating uC allow a reduction in channel count, thereby
decreasing computational cost? To explore this, we conduct an analytical experiment utilizing 3D UX-
Net as the backbone of FLARE2021 and OIMHS datasets to investigate the impact of channel depth
and uC integration on segmentation performance. As illustrated in Table 8, achieving a 0.66% Dice
improvement with the 3D UX-Net on FLARE2021 requires a tenfold model increase, highlighting the
challenge of enhancing performance with 3D CNNs. The incorporation of uC mitigates the axial-slice
plane performance drop-off, resulting in performance enhancements across 3D UX-Net with different
channel depths. Notably, a 24-channel depth uC 3D UX-Net surpasses the original 48-channel depth
3D UX-Net on both datasets, with parameter count and FLOPs reduced to only 29% and 34.3%,
respectively. This highlights uC’s capability to achieve superior performance with fewer parameters,
suggesting that substituting traditional skip connections with uC and reducing channel depth is a
viable approach to achieve substantial reductions in parameter count and computational load while
maintaining or even improving performance. The qualitative results are further illustrated in Fig. 4.

4.5 Ablation Studies

Table 9: Ablation study of different stage selection for uC inte-
gration on the OIMHS dataset.

Method mIoU Dice ASSD HD95 AdjRand

3D U-Net 87.08±3.32 92.79±2.09 1.31±1.35 7.39±14.69 92.22±2.15
+uC (stage 1) 90.06±3.41 94.55±2.16 0.96±1.85 7.93±19.51 94.14±2.20
+uC (stage 2) 89.73±3.12 94.37±1.92 0.35±0.38 2.36±4.69 93.94±1.99
+uC (stage 3) 88.71±3.31 93.75±2.12 0.43±0.42 2.70±5.17 93.26±2.18
+uC (stage 5) 87.32±3.46 92.93±2.27 0.69±0.63 3.05±5.19 92.37±2.31
+uC (stage 1, 2, 3) 90.52±2.77 94.84±1.68 0.35±0.33 2.20±4.07 94.43±1.76
+uC (stage 1, 2, 3) + DFI 90.86±2.75 95.03±1.68 0.34±0.45 2.34±5.23 94.63±1.73

Stage Selection for uC integra-
tion. By replacing skip connec-
tions with uC at different stages,
we validate the impact of intro-
ducing 2D axial-slice plane fea-
tures at varying network layers on
model performance. All models
had an initial channel depth of 32.
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Figure 4: Qualitative results of the segmentation performance on 3D UX-Net and 3D UXNET+uC
with various channel depths on the FLARE2021 and OIMHS datasets are presented. Segmentation
results for different categories are represented in distinct colors. For improved visual clarity, the
images have been cropped. Key regions of the qualitative results have been locally magnified for
better viewing.

As shown in Table 9, supplementing initial feature information in shallower layers, closer to the
original image, resulted in better performance improvements, with deeper layers showing diminishing
returns. Hence, to balance parameter efficiency, we only replace skip connections at stages 1 to 3.
Results indicate that using skip connections in the first three stages significantly enhances model
performance, with the DFi module effectively integrating features extracted by 3D CNNs and uC.

Table 10: Ablation study of different Channel depths of uC 3DU-
Net on the OIMHS dataset.

Method #Params FLOPs mIoU Dice ASSD HD95 AdjRand
3D U-Net (32) 4.81M 135.9G 87.08±3.32 92.79±2.09 1.31±1.35 7.39±14.69 92.22±2.15
uC 3DU-Net (16) 5.3M 134.3G 89.98±2.69 94.53±1.61 0.63±0.63 2.44±5.06 94.11±1.68
uC 3DU-Net (24) 21.7M 286.4G 90.67±2.95 94.91±1.84 0.34±0.46 2.35±5.22 94.53±1.89
uC 3DU-Net (32) 38.5M 465.1G 90.86±2.75 95.03±1.68 0.34±0.45 2.34±5.23 94.63±1.73

Channel Depth Configuration.
We experiment with channel
depths of 16, 24, and 32 for the
proposed uC 3DU-Net, all sur-
passing the original 32-channel
U-Net, as shown in Table 10. Per-
formance improved with increased channels, but efficiency dropped drastically at 32 channels
compared to 24. Notably, the 16-channel uC 3DU-Net performed better than the 32-channel U-Net
with similar parameter counts and FLOPs, demonstrating a 1.74% Dice score improvement and a 4.95
HD95 reduction. This underscores that efficiently capturing slice plane features with uC significantly
enhances computational efficiency in 3D CNN architecture. Thus, replacing skip connections with
uC and reducing channel depth is a straightforward strategy to achieve substantial parameter and
computational load reductions while maintaining or enhancing performance.

5 Conclusion and future work

In this paper, we propose a U-shaped Connection (uC) for enhancing 3D CNN-based medical image
segmentation architecture. This approach is specifically designed to address the inherent axial-slice
plane performance drop-off in 3D CNNs, characterized by their inefficiency in extracting high-density
axial-slice plane features, which are crucial for accurate 3D medical image segmentation. By replacing
traditional skip connections in 3D U-Net with uC, we further develop the uC 3DU-Net, capitalizing
on more efficient feature extraction capabilities of both 3D sequential spatial features and 2D axial-
slice plane features, reaching the best segmentation accuracy and computational efficiency ratio
among all previous SoTA methods. Empirical evaluations on diverse datasets demonstrate that uC
3DU-Net consistently outperforms previous SoTA 3D medical segmentation methods, with notably
reduced parameters and FLOPs. This underscores the transformative potential of the uC structure in
revolutionizing medical volumetric segmentation by breaking through the intrinsic limitations of 3D
convolutions. Future research will extend the application of the uC structure to a broader range of
volumetric segmentation tasks, with the aim of continually advancing the performance and efficiency
of 3D image segmentation models.
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Appendix

We first introduce the details of the datasets and implementation in Sec. A, followed by the supplementary
experiments and analysis in Sec. B. Furthermore, the experimental results are detailed in Sec. C. Lastly,
additional qualitative results are provided in Sec. D.

A Details of Datasets and Implementation

A.1 Public datasets details

Here, we provide detailed information on the five public datasets used for experiments in Table 11.

Table 11: Detailed information of five publicly available Datasets: FLARE2021, OIMHS, FeTA02021,
AbdomenCT-1K, and BTCV.

Datasets FLARE 2021 OIMHS

Imaging Modality Multi-Contrast CT OCT
Anatomical Region Abdomen Eye
Sample Size 361 125

Dimensions 512× 512× {37− 751} 512× 512× {19− 79}

Resolution {0.61− 0.98}mm× {0.61− 0.98}mm×
{0.50− 7.50}mm

{10.7− 14.0}um× {10.7− 14.0}um×
{7.0− 40.0}um

Anatomical Label Spleen, Kidney,
Liver, Pancreas

Retinal, Choroid,
Macular hole, Macular edema

Datasets FeTA2021 AbdomenCT-1K

Imaging Modality 1.5T & 3T MRI Multi-Contrast CT
Anatomical Region Infant Brain Abdomen
Sample Size 80 361

Dimensions 256× 256× 256 {512− 796} × {79− 512} × {31− 1026}

Resolution {0.43− 1.00}mm× {0.43− 1.00}mm×
{0.43− 1.00}mm

{0.45− 1.04}mm× {0.45− 3.00}mm×
{0.45− 8.00}mm

Anatomical Label
External cerebrospinal fluid, Grey matter,
White matter, Ventriculus, Cerebellum,

Deep grey matter, Brainstem

Spleen, Kidney,
Liver, Pancreas

Datasets BTCV

Imaging Modality Multi-Contrast CT
Anatomical Region Abdomen
Sample Size 30

Dimensions 512× 512× {85− 198}

Resolution {0.59− 0.98}mm× {0.59− 0.98}mm×
{2.50− 5.00}mm

Anatomical Label

Spleen, Kidney right, Kidney left, Gallbladder
Esophagus, Liver, Stomach, Aorta

Inferior vena cava, portal vein and splenic vein, pancreas
adrenal gland right, adrenal gland left

A.2 Data Preprocessing & Implementation Detail

In the 4.2, we provide a detailed description of our data preprocessing process and offer more comprehensive
hyperparameter settings in Table 12. For the BTCV dataset, we specifically incorporate resampling to specific
pixel spacing(1.5, 1.5, 2.0) and random intensity shift as additional data augmentation strategies.
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Table 12: Detail hyperparameters of training scenarios on five public datasets.
Training Steps 80000
Batch Size 2
AdamWϵ 1e−8
AdamWβ (0.9, 0.999)
Peak Learning Rate 1e−4
Learning Rate Scheduler ReduceLROnPlateau
Factor & Patience 0.9, 5

Data Augmentation Flip, Rotation, Scaling
Intensity Shift, 3D elastic transformation

Cropped Foreground ✓
Rotation Degree (−30°, +30°)
Scaling Factor 0.1
Intensity Offset 0.1

B Supplementary experiments and analysis
B.1 Benchmarking results on BTCV
We present comparative experiments of the proposed uC 3D-UNet against previous classic segmentation methods
on the BTCV dataset, as shown in Table 13. Given the smaller dataset size, CNN-based models outperformed
Transformer-based models. The results indicate that uC 3D-UNet maintains outstanding performance on the
challenging 13 classes BTCV segmentation dataset.

Table 13: Comparative experimental results of uC 3DU-Net and 4 previous methods on the BTCV
Standard dataset. The best values for each metric are highlighted in bold.

Methods #Params FLOPs mIoU Dice ASSD HD95 AdjRand
3D U-Net 4.8M 135.9G 72.25±3.30 82.24±2.99 1.06±0.40 4.22±1.35 82.19±3.00
TransBTS 31.6M 110.4G 67.85±3.55 78.38±3.50 2.01±1.03 8.70±4.60 78.31±3.51
UNETR 92.8M 82.6G 68.99±2.52 79.82±2.51 1.39±0.54 7.38±4.90 79.76±2.51
3D UX-Net 53.0M 639.4G 72.27±3.26 82.31±3.06 1.37±0.45 4.70±1.49 82.25±3.06
uC 3DU-Net 21.7M 286.4G 72.99±3.40 82.74±3.18 0.97±0.21 3.63±0.80 82.69±3.19

B.2 Additional comparative experiments
Here, we add two recently proposed models as baselines for comparative experiments across four publicly
available datasets: FLARE2021, OIMHS, FeTA2021, and AbdomenCT-1K. The experimental results in Table
14 demonstrate that our proposed uC 3D-UNet maintains superior performance compared to the latest models.

Table 14: Comparative experimental results of the proposed uC 3D-UNet against two added baselines
on the FLARE2021, FeTA2021, OIMHS, and AbdomenCT-1K datasets.

Datasets #Params FLOPs Methods mIoU Dice ASSD HD95 AdjRand

FLARE2021
UNETR++ [30] 68.59M 19.75G 83.98±4.45 89.92±3.73 1.10±0.51 4.14±1.93 89.79±3.75
D-LKA Net [62] 34.64M 55.32G 88.80±2.58 93.56±1.82 0.71±0.28 2.53±1.05 93.46±1.83
uC 3DU-Net 21.7M 286.4G 89.36±2.26 93.98±1.46 0.68±0.30 2.35±0.99 93.88±1.49

FeTA2021
UNETR++ [30] 68.59M 19.75G 72.90±2.60 84.04±1.82 1.19±0.11 3.37±0.85 83.56±1.75
D-LKA Net [62] 34.64M 55.32G 73.35±3.83 84.28±2.64 1.19±0.16 3.19±0.65 83.82±2.56
uC 3DU-Net 21.7M 286.4G 78.66±3.05 87.88±1.98 0.91±0.09 2.34±0.27 87.48±1.91

OIMHS
UNETR++ [30] 68.59M 19.75G 79.27±7.49 87.08±6.54 0.99±0.65 4.83±2.49 86.26±6.54
D-LKA Net [62] 34.64M 55.32G 86.55±4.11 92.39±2.83 0.44±0.27 2.28±1.12 91.84±2.87
uC 3DU-Net 21.7M 286.4G 90.67±2.95 94.91±1.84 0.34±0.46 2.35±5.22 94.53±1.89

AbdomenCT-1K
UNETR++ [30] 68.59M 19.75G 81.11±15.16 87.20±15.19 2.69±4.84 9.70±12.43 87.04±15.24
D-LKA Net [62] 34.64M 55.32G 87.84±3.35 93.08±2.13 1.49±0.94 7.16±9.08 92.95±2.18
uC 3DU-Net 21.7M 286.4G 88.29±4.04 93.35±2.60 1.48±1.09 8.53±10.74 93.22±2.66

B.3 Dimensional Slicing Analysis
To validate the effectiveness of the proposed uC in enhancing axial-slice plane feature extraction, we conduct
experiments with 3D U-Net + 2D uC by slicing input tensors along different dimensions. As shown in Table
15, although the 2D slicing augmentation with uC consistently enhances performance across all planes, slicing
along the time-axial slice plane dimension yields the best results. This result reflects the denser information
available in the axial-slice plane of 3D medical images, which improves performance when using the proposed
uC method. Furthermore, these findings support why 2D uC achieves superior parameter efficiency in 3D image
segmentation tasks compared to purely 3D convolutions.
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Table 15: The results of applying 2D uC on slices along the W, H, and D dimensions on the OIMHS
dataset. The best values for each metric are highlighted in bold.

Method Average Macular Hole
mIOU Dice ASSD HD95 AdjRand mIOU Dice ASSD HD95 AdjRand

3D U-Net(32) 87.08±3.32 92.79±2.09 1.31±1.35 7.39±14.69 92.22±2.15 77.89±6.74 87.42±4.28 3.94±5.25 24.03±58.65 87.28±4.30
+2D uC(W) 88.01±3.12 93.35±1.96 0.86±0.66 2.89±5.53 92.84±2.02 80.07±5.99 88.81±3.80 2.39±2.31 6.63±21.77 88.68±3.81
+2D uC(H) 87.74±3.74 93.16±2.46 0.48±0.47 2.91±5.03 92.63±2.50 79.96±7.08 88.69±4.59 0.88±1.68 6.28±19.91 88.56±4.60
+2D uC(D) 90.67±2.95 94.91±1.84 0.34±0.46 2.35±5.22 94.53±1.89 83.57±5.21 90.96±3.13 0.80±1.69 5.80±20.64 90.86±3.17

Retinal Macular Edema Choroid
mIOU Dice ASSD HD95 AdjRand mIOU Dice ASSD HD95 AdjRand mIOU Dice ASSD HD95 AdjRand

97.68±1.52 98.82±0.80 0.17±0.13 1.15±0.51 98.05±1.32 80.39±8.28 88.89±5.38 0.54±1.06 1.52±1.44 88.75±5.38 92.36±2.43 96.01±1.32 0.58±0.29 2.85±1.97 94.83±1.72
97.75±1.55 98.86±0.81 0.16±0.13 1.15±0.50 98.12±1.33 80.86±8.06 89.18±5.20 0.41±0.74 1.45±1.24 89.04±5.21 93.37±2.07 96.56±1.11 0.47±0.30 2.34±1.96 95.53±1.53
97.72±1.44 98.84±0.75 0.16±0.12 1.12±0.42 98.09±1.24 80.38±8.81 88.84±5.93 0.35±0.41 1.41±0.88 88.70±5.93 92.88±2.30 96.30±1.25 0.54±0.34 2.83±2.33 95.17±1.68
97.99±1.51 98.98±0.79 0.14±0.13 1.12±0.43 98.32±1.30 85.16±8.18 91.76±5.26 0.21±0.22 1.25±1.13 91.65±5.26 95.95±1.18 97.93±0.62 0.23±0.10 1.22±0.41 97.30±0.83

B.4 Visualization of the Impact of Convolution Dimensionality on uC Performance and
Parameters

Here, we present the visualization results from Sec. 4.4.1, as shown in Fig. 5.

(a) Performance comparison of 3D U-Net, 3D U-Net +
3D uC, and 3D U-Net + 2D uC across varying channel
depths, with circle size representing parameter count.
The horizontal axis represents channel depth numbers.

(b) Validation curve showing Dice scores on the
OIMHS dataset, with the channel depth for all three
models(3D U-Net, 3D U-Net + 3D uC, and 3D U-Net
+ 2D uC) set to 32. The horizontal axis represents the
number of training iterations.

Figure 5: Visualization of the impact of 2D and 3D Conv on uC. (a) depicts the relationship between
performance and channel depth. (b) shows the validation curve indicating the training efficiency.

C Details of experimental results

In this section, we present the details of our experimental results. For comparative experiments, as the baselines
for FLARE2021 and FeTA2021 utilize data from [56], we provide detailed experimental results for all categories
in the OIMHS and AbdomenCT-1K datasets (with part of OIMHS comparative data comes from [25], which
are not included here), as shown in Tables 16 and 17. Tables 18, 19, 20, 21, and 22 present detailed data for all
categories in the analytical experiments, while Tables 23 and 24 display the detailed data for all categories in the
ablation studies. The comprehensive results across all categories further demonstrate that integrating the uC
module significantly enhances the backbone models’ ability to extract 2D plane information from axial slices,
while retaining the extensive volumetric feature extraction capabilities of 3D convolutions. This integration
effectively addresses the challenge of anisotropic medical imaging, achieving superior performance with reduced
computational complexity and fewer parameters compared to previous models. As a result, the proposed
approach achieves an optimal parameter-to-performance ratio.
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Table 16: Detailed results of uC 3DU-Net and 4 previous methods on the OIMHS dataset. The best
values for each metric are highlighted in bold.

Method #Params FLOPs Average Macular Hole
IoU Dice VOE HD95 AdjRand IoU Dice VOE HD95 AdjRand

nnFormer 149.3M 240.2G 72.16±7.91 81.60±7.41 27.84±25.07 23.49±7.91 80.36±7.73 50.54±18.06 64.92±18.08 49.46±78.16 65.84±18.06 64.63±18.07
TransBTS 31.6M 110.4G 74.80±7.31 83.08±6.55 25.20±23.82 31.43±7.31 82.05±6.85 47.24±17.58 60.85±17.85 52.76±88.66 107.45±17.58 60.60±17.94
UNETR 92.8M 82.6G 80.52±6.68 88.11±5.41 19.48±30.31 30.07±6.68 87.21±5.56 64.53±15.37 77.17±12.99 35.47±99.84 93.03±15.37 76.96±12.99
uC 3DU-Net 21.7M 286.43G 89.48±3.56 94.13±2.56 10.52±5.61 2.98±3.56 93.62±2.66 80.89±7.40 89.22±4.84 19.11±21.67 7.41±7.40 89.09±4.86

Retinal Macular Edema Choroid
IoU Dice VOE HD95 AdjRand IoU Dice VOE HD95 AdjRand IoU Dice VOE HD95 AdjRand

95.69±3.07 97.76±1.70 4.31±8.94 3.52±3.07 96.30±2.84 58.84±12.87 72.94±12.29 41.16±30.74 15.66±12.87 72.58±12.33 83.56±8.03 90.79±5.26 16.44±8.92 8.95±8.03 87.93±6.69
96.66±2.43 98.30±1.30 3.34±1.34 1.40±2.43 97.24±2.14 68.78±12.50 80.52±10.60 31.22±16.76 6.18±12.50 80.25±10.69 87.15±5.95 92.99±3.59 12.85±15.82 10.48±5.95 90.70±5.06
96.96±1.87 98.45±0.98 3.04±1.91 1.53±1.87 97.43±1.63 73.01±12.36 83.59±10.42 26.99±39.50 20.31±12.36 83.36±10.43 87.56±5.94 93.24±3.58 12.44±5.02 5.41±5.94 91.09±4.72
97.96±1.22 98.97±0.63 2.04±0.28 1.06±1.22 98.29±1.07 85.12±8.71 91.53±6.80 14.88±1.83 1.35±8.71 91.39±6.85 93.92±3.37 96.83±1.87 6.08±2.11 2.11±3.37 95.72±2.73

Table 17: Detailed results of uC 3DU-Net and 7 previous methods on the AbdomenCT-1K dataset.
The best values for each metric are highlighted in bold.

Method #Params FLOPs Average Liver
IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand

3D U-Net 4.81M 135.9G 86.69±4.30 92.28±2.93 2.31±2.06 12.68±18.54 92.14±2.98 93.97±4.06 96.85±2.21 3.57±3.66 22.45±38.69 96.53±2.38
TransBTS 31.6M 110.4G 70.06±9.11 79.64±8.12 4.88±1.59 35.75±10.00 79.35±8.19 87.79±6.29 93.37±3.85 10.65±3.67 106.69±28.27 92.70±4.14
UNETR 92.8M 82.6G 84.17±5.12 90.42±3.75 2.36±1.68 13.41±16.77 90.27±3.81 93.34±3.81 96.51±2.06 3.98±3.33 25.80±39.37 96.17±2.22
nnFormer 149.3M 240.2G 80.69±7.76 87.56±6.36 2.01±1.80 9.75±9.95 87.38±6.41 92.52±4.81 96.05±2.70 1.14±1.16 5.35±8.41 95.66±2.90
Swin UNETR 62.2M 328.4G 86.76±4.94 92.36±3.20 2.67±1.81 14.87±18.78 92.22±3.26 94.15±3.84 96.95±2.08 4.11±2.83 21.27±34.64 96.64±2.25
3D UX-Net 53.0M 639.4G 86.56±4.76 92.21±3.18 2.60±1.98 15.46±19.75 92.07±3.24 94.34±3.73 97.05±2.01 3.84±3.57 27.27±49.39 96.75±2.19

uC 3DU-Net 21.7M 286.4G 88.29±4.04 93.35±2.60 1.48±1.09 8.53±10.74 93.22±2.66 95.07±3.53 97.44±1.90 1.71±1.70 7.92±19.60 97.18±2.07

Kidney Spleen Pancreas
IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand

91.61±4.17 95.57±2.31 1.12±1.06 4.75±7.98 95.47±2.36 93.74±3.80 96.73±2.08 2.01±3.07 10.51±27.27 96.68±2.10 67.44±11.37 79.97±8.93 2.55±3.35 13.00±33.34 79.88±8.97
90.76±4.91 95.09±2.77 0.76±0.56 2.51±1.76 94.97±2.81 42.68±19.15 57.32±19.45 4.94±2.91 16.42±11.67 57.05±19.46 59.02±16.40 72.76±14.88 3.16±3.16 17.37±30.75 72.65±14.92
90.11±5.82 94.70±3.34 1.55±3.38 8.62±24.73 94.58±3.40 93.37±4.06 96.53±2.26 0.75±1.03 1.83±1.68 96.48±2.28 59.85±13.22 73.96±11.67 3.14±2.76 17.40±31.12 73.84±11.72
88.53±6.20 93.79±3.77 1.19±1.23 6.66±16.43 93.65±3.83 89.71±13.66 93.80±11.31 0.90±1.78 3.94±8.91 93.73±11.35 52.01±17.19 66.60±16.91 4.80±6.40 23.06±34.00 66.48±16.94
91.75±4.87 95.63±2.73 1.29±1.07 5.08±9.57 95.53±2.79 92.63±6.25 96.06±3.60 3.22±5.07 23.96±44.92 96.01±3.64 68.49±10.65 80.81±8.07 2.04±1.65 9.18±11.35 80.72±8.12
91.51±4.70 95.50±2.62 0.95±0.81 3.66±4.82 95.40±2.68 92.33±6.04 95.91±3.41 3.88±5.84 25.07±45.80 95.85±3.45 68.07±11.80 80.38±9.18 1.74±0.98 5.84±5.12 80.29±9.22

92.21±4.37 95.89±2.44 0.95±1.07 4.58±10.93 95.79±2.49 94.14±4.77 96.92±2.69 1.88±3.36 16.88±39.37 96.88±2.72 71.72±9.72 83.14±7.21 1.39±0.68 4.73±3.77 83.05±7.25

Table 18: The detailed results of 3D U-Net, 3D U-Net + 3D uC, and 3D U-Net + 2D uC across different
channel depth numbers on the OIMHS dataset. The best values for each metric are highlighted in
bold.

Method #Params FLOPs Average Macular Hole
mIoU Dice ASSD HD95 AdjRand mIoU Dice ASSD HD95 AdjRand

3D U-Net(8) 0.37M 16.50G 83.17±4.51 90.20±3.20 2.88±2.16 16.92±21.89 89.51±3.23 71.22±8.29 82.91±5.84 9.48±8.42 60.45±87.91 82.73±5.83
±3D uC 5.56M 46.80G 85.58±3.60 91.84±2.35 2.25±1.35 8.64±14.07 91.19±2.40 74.04±5.84 84.95±3.86 5.01±4.69 27.70±55.93 84.79±3.86
±2D uC 2.85M 42.54G 89.59±2.61 94.31±1.62 0.52±0.48 2.57±4.74 93.84±1.65 82.09±4.74 90.09±2.91 1.13±1.70 5.99±19.05 89.97±2.94

3D U-Net(16) 1.47M 65.09G 87.08±3.43 92.77±2.24 0.92±0.92 4.57±8.92 92.20±2.29 79.15±6.19 88.23±3.96 1.57±1.85 6.54±19.86 88.10±3.97
±3D uC 22.21M 186.27G 87.50±3.34 93.08±2.11 4.61±1.25 43.45±19.56 92.41±2.15 79.53±6.99 88.42±4.52 1.23±1.93 7.36±22.24 88.29±4.53
±2D uC 11.38M 169.20G 89.98±3.43 94.50±2.23 0.39±0.42 2.56±4.96 94.06±2.26 81.69±7.32 89.72±4.92 0.80±1.57 6.11±19.75 89.61±4.94

3D U-Net(32) 4.81M 135.90G 87.08±3.32 92.79±2.09 1.31±1.35 7.39±14.69 92.22±2.15 77.89±6.74 87.42±4.28 3.94±5.25 24.03±58.65 87.28±4.30
±3D uC 88.67M 596.06G 87.93±3.33 93.32±2.09 3.09±1.31 14.13±16.99 92.73±2.12 79.63±6.31 88.52±4.02 2.13±3.46 14.86±43.19 88.39±4.04
±2D uC 45.33M 527.75G 90.52±2.77 94.84±1.68 0.35±0.33 2.20±4.07 94.43±1.76 82.66±5.63 90.40±3.48 0.76±1.16 5.11±16.15 90.29±3.51

Retinal Macular Edema Choroid
mIoU Dice ASSD HD95 AdjRand mIoU Dice ASSD HD95 AdjRand mIoU Dice ASSD HD95 AdjRand

97.23±1.71 98.59±0.90 0.34±0.51 1.25±0.67 97.67±1.50 73.46±11.47 84.14±8.41 0.93±1.54 2.22±2.19 83.95±8.40 90.78±2.76 95.15±1.54 0.77±0.39 3.75±2.44 93.68±1.94
97.02±1.54 98.48±0.81 1.75±1.05 1.31±0.64 97.50±1.33 79.22±9.15 88.09±6.14 1.21±1.59 2.17±2.92 87.93±6.14 92.02±2.57 95.83±1.41 1.04±0.47 3.38±2.32 94.55±1.89
97.85±1.40 98.91±0.73 0.15±0.12 1.12±0.42 98.20±1.21 84.49±7.46 91.40±4.72 0.28±0.30 1.22±0.88 91.29±4.72 93.91±1.85 96.85±0.99 0.53±0.53 1.94±0.92 95.89±1.27

97.61±1.55 98.78±0.81 0.18±0.14 1.15±0.52 97.99±1.34 79.26±9.11 88.12±6.20 1.03±2.94 7.53±30.75 87.96±6.20 92.28±2.35 95.97±1.29 0.92±1.45 3.07±2.28 94.74±1.67
97.77±1.62 98.87±0.84 0.25±0.12 1.15±0.52 98.13±1.39 83.54±8.32 90.79±5.33 0.34±0.34 1.31±0.83 90.67±5.34 89.16±3.30 94.23±1.85 16.61±4.80 164.00±75.55 92.55±2.14
97.96±1.47 98.96±0.76 0.14±0.12 1.13±0.45 98.29±1.27 85.72±7.31 92.13±4.57 0.25±0.29 1.02±0.59 92.02±4.58 94.57±1.93 97.20±1.03 0.36±0.23 1.97±1.57 96.32±1.46

97.68±1.52 98.82±0.80 0.17±0.13 1.15±0.51 98.05±1.32 80.39±8.28 88.89±5.38 0.54±1.06 1.52±1.44 88.75±5.38 92.36±2.43 96.01±1.32 0.58±0.29 2.85±1.97 94.83±1.72
97.86±1.54 98.91±0.81 0.21±0.14 1.15±0.52 98.20±1.33 83.22±8.51 90.58±5.49 0.92±2.29 6.62±26.38 90.46±5.50 91.01±2.74 95.27±1.51 9.11±2.76 33.90±45.50 93.86±1.89
98.03±1.48 99.00±0.77 0.13±0.12 1.12±0.43 98.35±1.27 85.94±6.96 92.29±4.28 0.22±0.22 1.02±0.51 92.18±4.28 95.44±1.60 97.66±0.84 0.29±0.19 1.55±1.15 96.92±1.30

Table 19: The detailed results of the analysis experiments evaluating the effectiveness and robustness
of the uC across different backbones on the FLARE2021 dataset.

Method #Params FLOPs Average Liver
IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand

SegResNet 18.8M 244.4G 88.38±2.07 93.39±1.35 1.31±1.29 6.37±10.45 93.28±1.37 96.48±1.14 98.20±0.59 0.55±0.33 1.48±0.45 98.00±0.70
SegResNet +uC 20.5M 426.7G 89.42±1.71 94.04±1.05 0.80±0.45 2.35±1.03 93.94±1.08 96.61±1.31 98.27±0.68 0.50±0.32 1.55±0.76 98.07±0.79

TransBTS 31.6M 110.4G 87.63±2.74 92.84±1.86 1.04±0.64 3.54±2.64 92.73±1.88 96.27±1.11 98.09±0.57 0.52±0.26 1.58±0.49 97.88±0.67
TransBTS +uC 36.6M 176.4G 89.46±2.03 94.05±1.32 0.78±0.30 2.51±1.17 93.95±1.34 96.45±1.22 98.19±0.64 0.50±0.22 1.53±0.44 97.98±0.73

Swin UNETR 62.2M 328.4G 88.28±2.69 93.23±1.83 0.95±0.41 3.25±2.18 93.13±1.85 96.42±1.24 98.17±0.64 0.53±0.29 1.63±0.56 97.97±0.74
Swin UNETR +uC 75.4M 612.2G 89.07±2.60 93.72±1.83 0.76±0.41 2.56±1.14 93.62±1.85 96.58±1.17 98.26±0.60 0.50±0.27 1.54±0.51 98.05±0.72

3D UX-Net 53.0M 639.4G 88.62±2.90 93.43±1.98 2.59±6.00 13.27±46.73 93.32±2.00 96.48±1.33 98.20±0.69 1.49±2.83 9.76±35.47 98.00±0.79
3D UX-Net +uC 60.6M 867.9G 89.62±2.31 94.11±1.52 0.76±0.35 2.53±1.34 94.01±1.55 96.73±1.24 98.34±0.64 0.46±0.25 1.47±0.46 98.14±0.76

Kidney Spleen Pancreas
IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand

92.30±2.58 95.98±1.41 0.82±0.46 2.76±2.00 95.88±1.45 95.49±1.51 97.69±0.79 0.63±0.78 1.18±0.38 97.65±0.80 69.26±6.21 81.68±4.38 3.25±4.05 20.07±39.91 81.59±4.39
94.02±2.68 96.90±1.44 0.56±0.43 2.14±2.59 96.82±1.48 95.69±1.63 97.79±0.86 0.71±0.88 1.17±0.33 97.75±0.87 71.36±4.56 83.21±3.13 1.45±0.54 4.53±1.75 83.12±3.15

92.15±2.96 95.89±1.62 1.15±1.09 3.87±6.12 95.79±1.66 95.39±1.58 97.63±0.83 0.48±0.33 1.20±0.37 97.59±0.84 66.70±8.00 79.76±5.91 2.01±1.54 7.52±6.99 79.66±5.93
93.50±2.57 96.62±1.39 0.62±0.42 2.18±2.27 96.54±1.42 96.13±1.43 98.02±0.75 0.56±0.52 1.13±0.23 97.99±0.76 71.78±7.02 83.38±4.85 1.44±0.62 5.19±3.48 83.30±4.87

93.03±3.34 96.36±1.80 1.01±0.83 4.39±8.93 96.27±1.86 95.81±1.50 97.85±0.79 0.62±0.85 1.28±0.68 97.82±0.80 67.85±8.49 80.55±6.23 1.64±0.71 5.72±2.69 80.45±6.25
94.13±3.04 96.95±1.63 0.54±0.46 2.31±2.67 96.88±1.67 96.30±1.44 98.11±0.75 0.32±0.18 1.11±0.19 98.08±0.76 69.29±8.14 81.57±6.28 1.68±1.03 5.27±2.86 81.48±6.29

93.87±3.01 96.81±1.62 0.62±0.46 2.27±2.56 96.74±1.66 95.73±1.84 97.81±0.97 3.28±9.21 20.42±83.86 97.77±0.98 68.40±9.31 80.88±6.78 4.98±12.51 20.64±67.90 80.79±6.81
94.05±2.90 96.91±1.56 0.63±0.46 2.29±2.52 96.84±1.60 96.34±1.33 98.13±0.69 0.51±0.48 1.13±0.23 98.10±0.70 71.35±7.46 83.06±5.27 1.45±0.63 5.25±4.41 82.98±5.29
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Table 20: The detailed results of the analysis experiments on DFI are presented to demonstrate its
efficiency and effectiveness on the OIMHS dataset. The best values for each metric are highlighted in
bold.

Method #Params FLOPs Average Macular Hole
mIOU Dice ASSD HD95 AdjRand mIOU Dice ASSD HD95 AdjRand

uC(stage1) 30.38M 439.87G 90.06±3.41 94.55±2.16 0.96±1.85 7.93±19.51 94.14±2.20 82.49±6.14 90.28±3.85 0.72±1.68 5.89±20.82 90.17±3.88
+DFi 23.58M 377.19G 90.42±2.59 94.79±1.56 0.68±1.19 4.45±11.03 94.38±1.62 82.34±4.92 90.23±3.03 2.06±4.71 14.18±44.01 90.12±3.06

uC(stage2) 30.28M 330.01G 89.73±3.12 94.37±1.92 0.35±0.38 2.36±4.69 93.94±1.99 82.47±5.66 90.29±3.48 0.69±1.34 5.57±18.48 90.18±3.50
+DFi 23.49M 267.34G 90.03±3.09 94.53±1.93 0.49±0.50 2.50±5.19 94.11±1.99 82.76±5.71 90.45±3.54 1.30±1.83 6.05±20.53 90.34±3.56

uC(stage3) 29.92M 286.09G 88.71±3.31 93.75±2.12 0.43±0.42 2.70±5.17 93.26±2.18 81.85±5.77 89.91±3.63 0.86±1.61 5.84±20.54 89.79±3.65
+DFi 23.12M 223.39G 89.33±3.30 94.13±2.07 0.55±0.64 2.67±5.30 93.68±2.13 82.19±6.36 90.09±4.02 1.41±2.47 6.27±21.00 89.97±4.04

uC(stage1,2,3) 45.33M 527.75G 90.52±2.77 94.84±1.68 0.35±0.33 2.20±4.07 94.43±1.76 82.66±5.63 90.40±3.48 0.76±1.16 5.11±16.15 90.29±3.51
+DFi 38.53M 465.07G 90.86±2.75 95.03±1.68 0.34±0.45 2.34±5.23 94.63±1.73 83.68±5.31 91.03±3.24 0.70±1.66 5.73±20.69 90.92±3.26

Retinal Macular Edema Choroid
mIOU Dice ASSD HD95 AdjRand mIOU Dice ASSD HD95 AdjRand mIOU Dice ASSD HD95 AdjRand

98.01±1.52 98.99±0.79 0.14±0.13 1.12±0.43 98.33±1.31 84.74±8.36 91.51±5.34 0.23±0.21 1.16±0.74 91.40±5.35 94.99±1.84 97.42±0.98 2.76±7.33 23.52±76.65 96.64±1.25
97.97±1.45 98.97±0.76 0.15±0.12 1.12±0.42 98.30±1.25 86.04±6.84 92.34±4.19 0.21±0.22 1.02±0.72 92.24±4.20 95.32±1.25 97.60±0.66 0.30±0.15 1.48±0.78 96.85±0.96

97.93±1.60 98.95±0.84 0.15±0.14 1.15±0.51 98.26±1.38 83.70±8.09 90.91±5.13 0.22±0.22 1.19±0.67 90.79±5.14 94.82±1.49 97.33±0.79 0.32±0.15 1.52±0.77 96.52±1.12
97.90±1.51 98.93±0.79 0.15±0.13 1.15±0.50 98.24±1.30 84.21±8.35 91.18±5.44 0.23±0.22 1.25±1.11 91.07±5.44 95.24±1.40 97.56±0.74 0.30±0.16 1.55±0.75 96.80±1.09

97.70±1.59 98.83±0.83 0.17±0.14 1.15±0.53 98.07±1.37 81.27±9.28 89.36±6.21 0.26±0.21 1.37±0.94 89.22±6.22 94.04±2.07 96.92±1.11 0.45±0.32 2.43±2.12 95.97±1.53
97.85±1.53 98.91±0.80 0.15±0.13 1.15±0.50 98.20±1.32 82.76±7.92 90.34±5.10 0.28±0.25 1.21±0.61 90.22±5.10 94.53±1.70 97.18±0.91 0.38±0.23 2.05±1.56 96.33±1.18

98.03±1.48 99.00±0.77 0.13±0.12 1.12±0.43 98.35±1.27 85.94±6.96 92.29±4.28 0.22±0.22 1.02±0.51 92.18±4.28 95.44±1.60 97.66±0.84 0.29±0.19 1.55±1.15 96.92±1.30
98.03±1.49 99.00±0.78 0.14±0.12 1.12±0.43 98.35±1.29 86.46±7.87 92.54±4.94 0.22±0.23 1.00±0.78 92.44±4.95 95.27±1.62 97.57±0.85 0.30±0.14 1.51±0.70 96.82±1.16

Table 21: The detailed results of the analysis experiments evaluating parameters and performance of
3D UX-Net across various channel depths and the integration of uC on the FLARE2021 dataset. The
best values for each metric are highlighted in bold.

Method #Params FLOPs Average Liver
IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand

3D UX-Net (16) 6.1M 72.2G 87.66±3.45 92.77±2.52 1.80±2.16 9.76±17.32 92.66±2.53 96.06±1.49 97.98±0.78 1.83±4.00 10.81±39.39 97.75±0.90
3D UX-Net (16) +uC 6.7M 97.1G 88.09±2.36 93.12±1.59 1.05±0.61 2.99±1.28 93.01±1.61 96.41±1.16 98.17±0.60 0.51±0.28 1.55±0.49 97.96±0.70

3D UX-Net (24) 13.4M 160.2G 88.19±2.54 93.24±1.64 1.63±2.11 7.46±11.84 93.12±1.67 95.40±3.75 97.61±2.09 2.57±7.19 13.50±43.47 97.35±2.25
3D UX-Net (24) +uC 15.4M 220.2G 88.75±2.69 93.53±1.97 0.92±0.59 2.74±1.44 93.43±1.98 96.48±1.36 98.21±0.71 0.53±0.30 1.57±0.58 98.00±0.83

3D UX-Net (48) 53.0M 639.4G 88.62±2.90 93.43±1.98 2.59±6.00 13.27±46.73 93.32±2.00 96.48±1.33 98.20±0.69 1.49±2.83 9.76±35.47 98.00±0.79
3D UX-Net (48) +uC 60.6M 867.91G 89.62±2.31 94.11±1.52 0.76±0.35 2.53±1.34 94.01±1.55 96.73±1.24 98.34±0.64 0.46±0.25 1.47±0.46 98.14±0.76

Kidney Spleen Pancreas
IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand

93.12±2.87 96.41±1.55 1.47±3.41 12.89±45.20 96.33±1.59 95.33±2.02 97.60±1.07 1.76±3.20 8.98±23.76 97.56±1.08 66.15±11.09 79.07±8.72 2.13±1.23 6.35±4.13 78.98±8.74
92.87±3.21 96.28±1.73 0.66±0.45 2.63±2.54 96.19±1.78 95.91±1.84 97.90±0.97 0.39±0.27 1.29±0.76 97.87±0.98 67.17±7.47 80.13±5.44 2.64±2.04 6.50±3.90 80.03±5.45

93.48±3.10 96.60±1.67 0.68±0.61 2.57±2.98 96.52±1.72 95.37±2.73 97.61±1.47 1.14±1.90 7.62±21.20 97.57±1.49 68.52±6.56 81.15±4.71 2.13±1.28 6.15±3.42 81.05±4.73
93.04±3.11 96.37±1.68 0.67±0.49 2.56±2.65 96.28±1.72 96.05±1.48 97.98±0.77 0.81±1.44 1.16±0.28 97.95±0.78 69.43±9.29 81.59±7.21 1.68±0.99 5.68±4.40 81.50±7.23

93.87±3.01 96.81±1.62 0.62±0.46 2.27±2.56 96.74±1.66 95.73±1.84 97.81±0.97 3.28±9.21 20.42±83.86 97.77±0.98 68.40±9.31 80.88±6.78 4.98±12.51 20.64±67.90 80.79±6.81
94.05±2.90 96.91±1.56 0.63±0.46 2.29±2.52 96.84±1.60 96.34±1.33 98.13±0.69 0.51±0.48 1.13±0.23 98.10±0.70 71.35±7.46 83.06±5.27 1.45±0.63 5.25±4.41 82.98±5.29

Table 22: The detailed results of the analysis experiments evaluating parameters and performance of
3D UX-Net across various channel depths and the integration of uC on the OIMHS dataset. The best
values for each metric are highlighted in bold.

Method #Params FLOPs Average Macular Hole
IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand

3D UX-Net (16) 6.1M 72.2G 86.06±3.36 92.15±2.19 1.12±0.90 5.79±10.80 91.54±2.26 77.11±6.52 86.93±4.29 2.89±3.32 16.77±43.16 86.78±4.30
3D UX-Net (16) +uC 6.7M 97.1G 89.60±3.19 94.28±2.00 0.36±0.40 2.47±4.95 93.84±2.07 81.48±6.53 89.66±4.08 0.76±1.55 5.97±19.84 89.54±4.10

3D UX-Net (16) 13.4M 160.2G 87.86±3.15 93.27±1.95 0.64±0.67 3.68±6.63 92.74±2.03 79.58±5.88 88.51±3.71 1.23±1.89 6.70±22.04 88.38±3.73
3D UX-Net (24) +uC 15.4M 220.2G 90.23±2.82 94.67±1.72 0.39±0.44 2.37±5.09 94.25±1.79 82.48±5.32 90.31±3.22 0.89±1.65 5.80±20.19 90.19±3.25

3D UX-Net (48) 53.0M 639.4G 88.35±3.23 93.56±2.04 0.51±0.48 2.70±4.86 93.05±2.09 80.12±6.29 88.83±4.03 1.07±1.74 6.00±19.30 88.71±4.03
3D UX-Net (48) +uC 60.6M 867.91G 90.38±3.47 94.73±2.15 0.34±0.42 2.39±5.00 94.33±2.22 82.20±6.23 90.10±3.86 0.74±1.53 5.93±19.73 89.99±3.89

Retinal Macular Edema Choroid
IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand

97.35±1.62 98.65±0.85 0.27±0.29 1.15±0.53 97.77±1.41 77.92±8.83 87.30±5.93 0.70±1.12 2.01±3.53 87.13±5.93 91.85±2.56 95.73±1.40 0.64±0.44 3.23±2.84 94.46±1.92
97.87±1.45 98.92±0.75 0.16±0.13 1.12±0.43 98.21±1.25 84.03±8.11 91.10±5.22 0.20±0.15 1.08±0.57 90.99±5.23 95.00±1.60 97.43±0.85 0.33±0.17 1.69±0.92 96.62±1.21

97.73±1.59 98.85±0.83 0.20±0.16 1.15±0.53 98.10±1.38 81.05±7.90 89.32±5.02 0.59±1.60 4.37±15.58 89.18±5.03 93.06±2.22 96.39±1.20 0.54±0.32 2.50±1.84 95.29±1.66
97.96±1.46 98.96±0.76 0.15±0.12 1.12±0.43 98.29±1.26 85.33±7.84 91.88±4.95 0.21±0.20 1.12±0.83 91.77±4.96 95.15±1.51 97.51±0.80 0.29±0.14 1.45±0.75 96.75±1.08

97.81±1.54 98.89±0.80 0.16±0.13 1.15±0.53 98.16±1.33 82.08±7.93 89.94±5.06 0.34±0.46 1.21±0.75 89.81±5.06 93.40±2.06 96.57±1.11 0.47±0.28 2.43±1.98 95.53±1.53
98.08±1.48 99.03±0.77 0.14±0.13 1.08±0.49 98.39±1.28 85.97±8.26 92.23±5.20 0.20±0.21 1.07±0.90 92.13±5.21 95.27±1.56 97.57±0.82 0.29±0.15 1.47±0.81 96.83±1.11
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Table 23: Detailed results of the ablation study on different stage selections for uC integration in 3D
U-Net. The best values for each metric are highlighted in bold.

Method Average Macular Hole
IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand

3D U-Net 87.08±3.32 92.79±2.09 1.31±1.35 7.39±14.69 92.22±2.15 77.89±6.74 87.42±4.28 3.94±5.25 24.03±58.65 87.28±4.30
+uC (stage 1) 90.06±3.41 94.55±2.16 0.96±1.85 7.93±19.51 94.14±2.20 82.49±6.14 90.28±3.85 0.72±1.68 5.89±20.82 90.17±3.88
+uC (stage 2) 89.73±3.12 94.37±1.92 0.35±0.38 2.36±4.69 93.94±1.99 82.47±5.66 90.29±3.48 0.69±1.34 5.57±18.48 90.18±3.50
+uC (stage 3) 88.71±3.31 93.75±2.12 0.43±0.42 2.70±5.17 93.26±2.18 81.85±5.77 89.91±3.63 0.86±1.61 5.84±20.54 89.79±3.65
+uC (stage 5) 87.32±3.46 92.93±2.27 0.69±0.63 3.05±5.19 92.37±2.31 78.68±6.11 87.93±4.01 1.44±1.92 6.65±20.58 87.80±4.01
+uC (stage 1, 2, 3) 90.52±2.77 94.84±1.68 0.35±0.33 2.20±4.07 94.43±1.76 82.66±5.63 90.40±3.48 0.76±1.16 5.11±16.15 90.29±3.51
+uC (stage 1, 2, 3) + DFI 90.86±2.75 95.03±1.68 0.34±0.45 2.34±5.23 94.63±1.73 83.68±5.31 91.03±3.24 0.70±1.66 5.73±20.69 90.92±3.26

Retinal Macular Edema Choroid
IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand

97.68±1.52 98.82±0.80 0.17±0.13 1.15±0.51 98.05±1.32 80.39±8.28 88.89±5.38 0.54±1.06 1.52±1.44 88.75±5.38 92.36±2.43 96.01±1.32 0.58±0.29 2.85±1.97 94.83±1.72
98.01±1.52 98.99±0.79 0.14±0.13 1.12±0.43 98.33±1.31 84.74±8.36 91.51±5.34 0.23±0.21 1.16±0.74 91.40±5.35 94.99±1.84 97.42±0.98 2.76±7.33 23.52±76.65 96.64±1.25
97.93±1.60 98.95±0.84 0.15±0.14 1.15±0.51 98.26±1.38 83.70±8.09 90.91±5.13 0.22±0.22 1.19±0.67 90.79±5.14 94.82±1.49 97.33±0.79 0.32±0.15 1.52±0.77 96.52±1.12
97.70±1.59 98.83±0.83 0.17±0.14 1.15±0.53 98.07±1.37 81.27±9.28 89.36±6.21 0.26±0.21 1.37±0.94 89.22±6.22 94.04±2.07 96.92±1.11 0.45±0.32 2.43±2.12 95.97±1.53
97.70±1.53 98.83±0.80 0.17±0.13 1.15±0.51 98.07±1.32 80.42±8.99 88.86±6.10 0.49±1.15 1.47±1.14 88.71±6.09 92.48±2.27 96.08±1.23 0.64±0.55 2.94±2.36 94.88±1.70
98.03±1.48 99.00±0.77 0.13±0.12 1.12±0.43 98.35±1.27 85.94±6.96 92.29±4.28 0.22±0.22 1.02±0.51 92.18±4.28 95.44±1.60 97.66±0.84 0.29±0.19 1.55±1.15 96.92±1.30
98.03±1.49 99.00±0.78 0.14±0.12 1.12±0.43 98.35±1.29 86.46±7.87 92.54±4.94 0.22±0.23 1.00±0.78 92.44±4.95 95.27±1.62 97.57±0.85 0.30±0.14 1.51±0.70 96.82±1.16

Table 24: Detailed results of the ablation study on different channel depth configurations of uC
3DU-Net on the OIMHS dataset. The best values for each metric are highlighted in bold.

Method #Params FLOPs Average Macular Hole
IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand

3D U-Net 4.8M 135.9G 87.08±3.32 92.79±2.09 1.31±1.35 7.39±14.69 92.22±2.15 77.89±6.74 87.42±4.28 3.94±5.25 24.03±58.65 87.28±4.30
uC 3DU-Net (16) 5.3M 134.3G 89.98±2.69 94.53±1.61 0.63±0.63 2.44±5.06 94.11±1.68 82.31±5.58 90.20±3.38 1.75±2.47 6.10±20.11 90.08±3.41
uC 3DU-Net (24) 21.7M 286.4G 90.67±2.95 94.91±1.84 0.34±0.46 2.35±5.22 94.53±1.89 83.57±5.21 90.96±3.13 0.80±1.69 5.80±20.64 90.86±3.17
uC 3DU-Net (32) 38.5M 465.1G 90.86±2.75 95.03±1.68 0.34±0.45 2.34±5.23 94.63±1.73 83.68±5.31 91.03±3.24 0.70±1.66 5.73±20.69 90.92±3.26

Retinal Macular Edema Choroid
IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand IoU Dice ASSD HD95 AdjRand

97.68±1.52 98.82±0.80 0.17±0.13 1.15±0.51 98.05±1.32 80.39±8.28 88.89±5.38 0.54±1.06 1.52±1.44 88.75±5.38 92.36±2.43 96.01±1.32 0.58±0.29 2.85±1.97 94.83±1.72
97.95±1.56 98.96±0.81 0.14±0.13 1.15±0.51 98.28±1.34 84.86±6.96 91.66±4.23 0.21±0.17 1.04±0.50 91.54±4.25 94.80±1.90 97.32±1.02 0.44±0.34 1.47±0.57 96.52±1.28
97.99±1.51 98.98±0.79 0.14±0.13 1.12±0.43 98.32±1.30 85.16±8.18 91.76±5.26 0.21±0.22 1.25±1.13 91.65±5.26 95.95±1.18 97.93±0.62 0.23±0.10 1.22±0.41 97.30±0.83
98.03±1.49 99.00±0.78 0.14±0.12 1.12±0.43 98.35±1.29 86.46±7.87 92.54±4.94 0.22±0.23 1.00±0.78 92.44±4.95 95.27±1.62 97.57±0.85 0.30±0.14 1.51±0.70 96.82±1.16

D Qualitative Results

In this section, we present additional qualitative results. Fig. 6, Fig. 7, Fig. 8, and Fig. 9 further show the
superior segmentation accuracy of the proposed uC 3D U-Net compared to previous models on the FLARE2021,
FeTA2021, OIMHS, and AbdomenCT-1K datasets. Fig. 10 visualizes the impact of integrating the uC module
with backbone models on the FLARE2021 dataset. These visualizations demonstrate that the integration of
uC effectively enhances the model’s ability to extract axial-slice plane information while retaining effective
volumetric feature extraction, addressing challenges related to anisotropic medical imaging. This integration
achieves improved performance with reduced computational cost and fewer parameters, resulting in an optimal
parameter-to-performance ratio compared to previous models.

O
ri

g
in

a
l 

Im
a
g

e
G

T
u

C
 3

D
U

-N
e
t

Figure 6: More visual results of the proposed uC 3DU-Net on the FLARE2021 dataset. For enhanced
visual clarity, the displayed images have been cropped. Please kindly zoom in for a better view.
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Figure 7: More visual results of the proposed uC 3DU-Net on the FeTA2021 dataset. For enhanced
visual clarity, the displayed images have been cropped. Please kindly zoom in for a better view.

Original Image nnFormer TransBTS UNETR uC 3DU-NetGT

Figure 8: The visual comparison of the validation results on the OIMHS dataset for uC 3DU-Net,
and 6 previous segmentation methods. We have selected 6 representative sequences for display. For
enhanced visual clarity, the displayed images have been cropped. Please zoom in for a better view.
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Original Image nnFormer TransBTS UNETR uC 3DU-Net3D U-Net Swin UNETR 3D UX-NetGT

Figure 9: The visual comparison of the validation results on the ABCT1K dataset for uC 3DU-Net,
and 3 previous segmentation methods. We have selected 5 representative sequences for display. For
enhanced visual clarity, the displayed images have been cropped. Please zoom in for a better view.

Original Image  3D UX-Net  3D UX-Net+uC Original Image SegresNet SegresNet+uC

Original Image Swin UNETR Swin UNETR+uC Original Image TransBTS TransBTS+uC

GT GT

GT GT

Figure 10: Visual results showcasing the differences in integrating uC for 3D UX-Net, SegResNet,
SwinUNETR, and TransBTS. For each model, We have selected two representative sequences for
display. For enhanced visual clarity, the displayed images have been cropped. Please zoom in for a
better view.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The primary claims focus on the integration of 2D U-Net-derived skip connections into
3D CNN architectures, specifically addressing the inefficiencies in volumetric feature extraction due to
varying information densities along different axes, presented as the uC and the enhanced uC 3DU-Net,
is rigorously validated through various experiments on multiple datasets, improving performance with
reduced computational complexity.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification: We have not identified any apparent deficiencies in the proposed method at this time.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: The paper meticulously details the assumptions and provides comprehensive proofs for
all theoretical results, ensuring clarity and correctness. This includes the full set of mathematical
assumptions and derivations presented in Section 4 and Appendix, which underpin the proposed uC
3DU-Net architecture’s performance improvements.
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Specific experimental setups, dataset descriptions, hyperparameters, and detailed ar-
chitecture of uC 3DU-Net are provided in the paper. The code is accessible on GitHub, and all five
datasets used are publicly available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The paper provides open access to its code on GitHub, along with detailed instructions
and descriptions. All data utilized in this study is widely recognized and publicly accessible.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper meticulously delineates the training and testing specifics, including data splits,
hyperparameter choices, optimizer type, and the rationale behind these selections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars and statistical significance to ensure robust experimental
validation. Details are meticulously documented in the Experiments and Results section and Appendix.
The metrics used, such as IoU, Dice, ASSD, HD, HD95, VOE, and AdjRand, provide comprehensive
statistical evaluations across multiple datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?
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Answer: [Yes]

Justification: The paper delineates the specifications of the computational resources employed, in-
cluding compute workers, memory capacity, and execution time. Detailed information includes
hardware: (NVIDIA GeForce RTX 4090 GPUs, 128GB memory), software environment: (Python 3.9,
PyTorch 2.0.0, MONAI 0.9.0), and the execution framework: (Distributed Data-Parallel), ensuring
reproducibility of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research meticulously adheres to the NeurIPS Code of Ethics, prioritizing ethical
considerations throughout the methodology.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: The paper outlines the heightened efficiency and accuracy achieved in 3D medical image
segmentation, potentially enhancing diagnostic precision and patient outcomes.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]

Justification: The paper outlines rigorous validation on public datasets, ensuring reproducibility and
mitigating misuse risks with transparent methodologies and ethical considerations for model release
and application.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: This paper thoroughly acknowledges the original creators of all utilized assets, including
code, datasets, and models, within the text. Each asset’s license and terms of use are meticulously
observed, ensuring full compliance with all legal and ethical standards. For further details, refer to the
’Datasets’ and ’Implementation Details’ sections where attributions are explicitly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: The proposed U-shaped Connection (uC) and its integration into the 3DU-Net are
comprehensively detailed in the method chapter, including their architecture, implementation, and the
datasets used for validation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: This paper focuses on the technical advancements in medical image segmentation using
the uC 3DU-Net architecture and does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This study focuses on the development of a novel 3D medical image segmentation
technique. As it does not involve direct engagement with study participants, IRB approval is not
required.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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