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ABSTRACT

In recent years, protein language models (pLMs) have gained significant atten-
tion for their ability to capture the structure and function of proteins, accelerating
the discovery of new therapeutic drugs. These models are typically trained on
large, evolving corpora of proteins that are continuously updated by the biology
community. The dynamic nature of these datasets motivates the need for con-
tinual learning, not only to keep up with the ever-growing dataset sizes, but also
as an opportunity to take advantage of the temporal meta-information that is cre-
ated during this process. As a result, we introduce the Continual Pretraining of
Protein Language Models (CoPeP) benchmark, a novel benchmark for evaluating
continual learning approaches on pLMs. Specifically, we curate a sequence of
protein datasets from the UniProt database spanning 8 years and define metrics
to assess the performance of pLMs on diverse protein understanding tasks. We
evaluate several methods from the continual learning literature, including replay,
unlearning, and plasticity-based methods, some of which have never been applied
to models and data of this scale. Our findings reveal that incorporating tempo-
ral meta-information improves the perplexity over training on the latest snapshot
of the database by up to 20%, and several continual learning-based methods out-
perform naive continual pretraining. The CoPeP benchmark presents an exciting
opportunity for studying these methods at scale on an impactful, real-world appli-
cation.

1 INTRODUCTION

Proteins are the fundamental building blocks of life, acting as the primary machinery of all living
organisms. Their function is mostly determined by their three-dimensional shape, which in turn is
encoded into a linear sequence of 20 distinct amino acids. Predicting the properties of a protein from
its sequence is one of the core challenges in computational biology. Recently, protein language mod-
els (pLMs) have emerged as an effective and scalable solution (Rives et al., 2021; Lin et al., 2023;
Madani et al., 2023; Nijkamp et al., 2023; Fournier et al., 2024). By treating proteins as a language
where amino acids are the “letters”, assembling into regions as “words”, themselves assembling into
whole proteins as “sentences”, pLMs can discover the relationship between sequence, structure, and
function from large databases (Rives et al., 2021; Notin et al., 2023). This allows them to accurately
predict a protein’s properties and even to design new proteins for specific applications (Hayes et al.,
2025), greatly accelerating drug discovery.

Despite their effectiveness, pLMs face a significant challenge in the dynamic nature of their training
data (Fournier et al., 2024). These models are typically trained on enormous, ever-expanding public
databases like the UniProt Knowledgebase (The UniProt Consortium, 2025), which are continuously
updated. Each year, millions of new protein sequences are added, and millions of others are removed
after being identified as non-proteins or redundant. Consequently, the practice of retraining models
from scratch on each new data release is becoming computationally prohibitive. This challenge,
however, also presents a unique opportunity. The temporal evolution of these databases provides
valuable metadata. Sequences that persist over time serve as strong examples of true proteins, while
those that are later removed can be treated as implicit examples of likely non-proteins. By leveraging
this history, a model can more effectively learn the language of proteins.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Task 1 Task 2 Task 3

UniRef100

2017

UniRef100

2016

UniRef100

2015

Task n

UniRef100

20xx

...
...

Figure 1: Left: The process of curating the benchmark. For every year, we pull the latest available
UniRef100 Release. Each year, proteins are both added and removed the UniRef100 dataset as
biologists work on new proteins and curate out low quality proteins. Each task in our benchmark
consists of all the data available since the start of the benchmark. Right: The model takes in the
protein sequence. During training the method is also given access to temporal meta information
about the samples in the dataset, such as which releases each sample had been a part of up until
that point. This information can be used to run methods such as Temporally weighted replay, model
unlearning, or can simply be ignored.

Continual learning is a well-established research area (Wang et al., 2024), however, while there exist
many artificially created benchmarks, there is a demand for more realistic benchmarks. While these
controlled environments are perfect for measuring loss of plasticity and catastrophic forgetting, they
do not reflect the scale and complexity of real-world data. With the rise of Large Language Models
(LLMs), there has been much interest in the community to explore ways to continually update these
models with new information. One approach involves limited unlearning or updating a small number
of facts that the model might have memorized (Bourtoule et al., 2021; Yao et al., 2023). Other works
try to extend the pretraining process itself with new datasets (Gupta et al., 2023; Abbes et al., 2025;
Ke et al., 2022; Li et al., 2025). Despite this interest, however, there are not many general purpose
continual pretraining datasets where the goal is to extend the pretraining phase, and most academic
works end up using domain adaptive pretraining setups (Ke et al., 2022; Yıldız et al., 2025).

To bridge this gap, we introduce the Continual Pretraining for Protein Language Models (CoPeP)
benchmark. CoPeP provides a realistic, large-scale solution for evaluating continual learning ap-
proaches on pLMs. We curate a sequence of protein datasets from 8 yearly releases of the UniProt
database, giving us a unique opportunity to study how models adapt to continuously evolving data.
We evaluate several state-of-the-art methods from the continual learning literature, including Gra-
dient Ascent (Golatkar et al., 2020), Hare Tortoise (Lee et al., 2024), Replay (Rolnick et al., 2019;
Chaudhry et al., 2019), and Shrink and Perturb (Ash & Adams, 2020), applying some of them for
the first time at a scale comparable to real-world applications. We evaluate our models on two types
of tasks: (1) a high-quality validation set of experimentally verified proteins to assess performance
on natural protein distributions (Fournier et al., 2024); (2) ProteinGym (Notin et al., 2023), which
benchmarks the ability to predict the effects of protein mutations. Our findings reveal that several of
these methods improve performance over naive continual pretraining, and that leveraging temporal
metadata yields a measurable improvement over models trained on individual years.

Our contributions are three-fold. First, we introduce CoPeP, a new benchmark for continual learning
on real-world protein databases. Second, we are the first to apply and evaluate several state-of-the-art
continual learning methods on a problem of this scale and complexity. Finally, we demonstrate that
temporal metadata contained in the history of proteins being added or removed from the database
can be leveraged to improve the performance of pLMs beyond that of single years.

2 RELATED WORK

Continual Learning and Model Updating Continual learning is a machine learning paradigm in
which models are trained incrementally on a sequence of data or tasks, aiming to accumulate and
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update knowledge continuously much like humans do. Research in this area primarily focuses on
two key challenges: catastrophic forgetting, the loss of previously acquired knowledge (McCloskey
& Cohen, 1989; Kirkpatrick et al., 2017), and loss of plasticity, the reduced ability to adapt to new
data (Dohare et al., 2024). While some studies investigate continual learning under natural data
shifts (Koh et al., 2021; Lin et al., 2021; Cai et al., 2021; Bornschein et al., 2023), the datasets
used are typically much smaller than modern pretraining corpora. Most of the research in continual
learning considers smaller academic datasets like CIFAR-10 and MNIST (Goodfellow et al., 2013;
Zenke et al., 2017; Krizhevsky et al., 2009; Rebuffi et al., 2017) that allow for controlled experimen-
tal setups and the study of severe distribution shifts that may be rare in natural data. However, the
limited scale of these datasets raises questions about how well existing methods generalize to larger
and more complex scenarios.

More recently, the field has started to shift toward updating large pretrained models. This includes
model editing, which updates specific facts in the model without full retraining (Meng et al., 2022;
Mitchell et al., 2022), and model unlearning, which aims to remove the influence of specific data
points (Bourtoule et al., 2021; Jang et al., 2023). Another line of work involves continually fine-
tuning a pretrained model across a sequence of downstream tasks (Jin et al., 2021). Of particular
relevance to our work is continual pretraining, where the pretraining process itself is extended to
incorporate new data. This has been explored in domain-adaptive pretraining, in which models
are sequentially trained on datasets from distinct, specialized domains (Gururangan et al., 2020;
Chalkidis et al., 2020). However, these domains are often narrow in scope, and the datasets involved
remain relatively small compared to those used in general pretraining. A notable exception is the
work of Gupta et al. (2023), which studied the dynamics of training a large model on two datasets
in sequence. Nevertheless, practical applications often require methods that scale to much longer
sequences of datasets.

Protein Language Models Research in natural language processing (NLP) has recently been
adapted to biology by treating the amino-acid sequence of proteins as a form of language. This
perspective has led to the development of protein language models (pLMs), biologically inspired
analogues of NLP models. For example, the autoregressive ProGen2 (Nijkamp et al., 2023) is
based on GPT-2 (Radford et al.), while the masked ESM (Rives et al., 2021; Lin et al., 2023) and
AMPLIFY (Fournier et al., 2024) draw inspiration from BERT (Devlin et al., 2019). Trained on
large, diverse, and ever-growing protein sequence databases (Suzek et al., 2015; Jumper et al., 2021;
Richardson et al., 2023), these models aim to capture evolutionary relationships and discover the
underlying principles that govern protein structure and function. This approach has made pLMs an
essential tool in computational biology for a wide range of applications such as mutational effect
prediction, protein structure modeling, and de novo protein design (Hayes et al., 2025).

To evaluate the capabilities of protein language models, the community relies on several specialized
benchmarks targeting different aspects of protein understanding. For protein folding, the Critical
Assessment of protein Structure Prediction (CASP) is a biannual challenge that tests a model’s
ability to predict 3D structures from amino acid sequences (J et al., 2018). For protein engineering
and fitness prediction, the ProteinGym benchmark assesses how accurately models can predict the
functional effects of mutations (Notin et al., 2023). In addition, broader multi-task benchmarks like
TAPE (Rao et al., 2019) and PEER (Xu et al., 2022) evaluate model performance across a wide
range of tasks, including remote homology detection and secondary structure prediction. In this
work, we focus specifically on protein engineering and fitness prediction, given its crucial role in
the drug discovery pipeline.

3 COPEP BENCHMARK

To bridge the gap between continual learning research and its practical application, we introduce
CoPeP, the Continual Pretraining for Protein Language Models benchmark. Built from successive
UniProt releases, CoPeP reflects the challenge of keeping models updated with rapidly evolving
biological data. It serves as a complex and large-scale testbed for continual learning methods, with
significant implications for protein modeling and drug discovery.
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Figure 2: The number of proteins added and removed to the UniRef100 database for each year in
the benchmark. Despite millions of proteins being removed each year, the size of the dataset still
grows as even more proteins are added.

3.1 DATASET

The CoPeP benchmark is constructed from the UniRef100 database (Suzek et al., 2015), which
aggregates and clusters protein sequences curated by the UniProt Knowledgebase (The UniProt
Consortium, 2025), and constitutes the bulk of the training data for several pLMs (Rives et al., 2021;
Lin et al., 2022; Fournier et al., 2024; Nijkamp et al., 2023). UniProt is updated multiple times each
year, with millions of sequences added, removed, or replaced to reflect new biological knowledge
and improved data quality. This evolving nature makes it an ideal foundation for evaluating continual
pretraining.

For CoPeP, we select 8 consecutive yearly UniRef100 releases from 2015 to 2022, each correspond-
ing to one task in the benchmark (the specific release and dates are listed in Table 3). These releases
span hundreds of millions of protein sequences, with the dataset size increasing substantially year
over year (Figure 2). Importantly, proteins may appear, disappear, or persist across releases: new
sequences are introduced as biological discoveries accumulate, while others are removed if later
deemed redundant or incorrect. Moreover, the dataset size does not grow linearly over time as, each
year, an increasing number of new samples is added to the dataset.

Each sample is associated with an identifier and a protein sequence. However, the same identifier
can map to multiple sequences, and vice-versa. To ensure consistency, we remove duplicate en-
tries where both identifier and sequence are exact matches. Each dataset thus represents a faithful
snapshot of the biological knowledge available at that time, capturing both growth in coverage and
changes in curation practices. Together, these sequential datasets define the CoPeP training stream,
providing a realistic setting to investigate how continual learning methods cope with evolving large-
scale corpora.

3.2 STREAMING PROTOCOL

In traditional continual learning setups, training proceeds over a sequence D1, . . . ,Dn of n tasks,
where each dataset Di = {xj}mi

j=1 is drawn from a task-specific data distribution x ∼ Pi. The
challenge typically arises from distribution shifts between tasks, i.e., Pi ̸= Pi+1, which force the
model to balance stability (retaining knowledge of earlier tasks) with plasticity (adapting to new
tasks).

In CoPeP, the structure is slightly different. We also define a sequence D1, . . . ,Dn of n tasks, where
each Di corresponds to the UniRef release from year i. However, in our case, these datasets are noisy
snapshots of a common (unknown) underlying distribution P∗. Importantly, the noise is systematic
rather than random, as the protein datasets evolve over in a way reflecting community knowledge
and interest. However, it is unknown how representative Di is of P∗, with the challenge that yearly
increments of the dataset do not correlate with improvements of Pi w.r.t. P∗ (Fournier et al., 2024;
Spinner et al., 2025).
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Another difference between our setup and previous continual learning setups is that CoPeP does not
forbid access to past data. Rather, at for task i, the learner may leverage the union of all observed
datasets U⟩ =

⋃i
j=1 Dj . This makes it possible to exploit temporal meta-information about the

samples, such as the multiplicity c(x) of a sample, which counts how many consecutive years a
protein has persisted in UniRef, i.e., c(x) =

∑k
i=1 IDi

(x). Such information provides a signal
of sequence reliability, distinguishing consistently validated proteins from those that appear only
transiently.

By structuring the problem this way, CoPeP reflects the practical challenges of maintaining large-
scale models under real-world data evolution, while retaining the core challenges of continual learn-
ing paradigms.

3.3 EVALUATION

Unlike traditional continual learning setups, because the underlying distribution that we are trying
to learn is the same across all tasks, we are not concerned with metrics such as forgetting or transfer.
Instead, at each evaluation timestep, we only measure the performance of the model on our suite of
evaluation tasks at that specific timestep.

Validation Set We use the UniRef validation set introduced in Fournier et al. (2024) as part of
our evaluations. These sequences were curated to be high-quality, complete proteins with strong
experimental evidence for their existence. We deduplicated all of our training data against this
validation set at the 90% sequence identity level using MMSeqs2 (Steinegger & Söding, 2017;
Kallenborn et al., 2025) to ensure that the proteins in this validation set are not seen by the models
at training time. The UniRef dataset contains proteins from all three domains of the phylogenetic
tree of life (Bacteria, Archaea and Eukarya). Thus, performance on this set is an indicator of how
well the model is able to reconstruct a broad range of proteins. We track both validation perplexity
and accuracy.

ProteinGym ProteinGym (Notin et al., 2023) is a broad benchmark designed for protein design and
fitness prediction. It contains millions of mutated sequences from 217 deep mutational scanning
assays across different taxa (humans, other eukaryotes, prokaryotes, and viruses). For each original
sequence, the model ranks the mutations of that sequence by how likely they are, and this ranking
is compared to ground truth rankings generated from experimental data and clinical annotations,
computing the Spearman’s ρ between the two rankings. Across the set of assays, this results in more
than 217 Spearman rank coefficients which we aggregate and report.

3.4 BASE EXPERIMENTAL SETUP

The base model for all of our experiments is the AMPLIFY-120M (Fournier et al., 2024). It is an
encoder model based on the BERT transformer (Devlin et al., 2019). For each task, we train for
100k steps using the AdamW optimizer (Loshchilov & Hutter, 2018) with weight decay set to .01
and an effective batch size of 4096. Fournier et al. (2024) use a cosine learning rate decay schedule,
however, given the difficulty of rewarming up the learning rate after decay in continual learning
(Gupta et al., 2023), we opt to use the warmup-stable-decay schedule (Hu et al., 2024; Li et al.,
2025) which is more conducive to continuous training. For the first task, we linearly warm up the
learning rate in the first 10k steps to .0005. At the end of each task, we linearly decay the learning
rate to 0 over the final 10k steps of the task. When restarting training for the next task, we reset to
the pre-decay checkpoint (i.e. the checkpoint right before the learning rate decay at 90k steps into
training on the task). Thus, when starting on the sixth task in the benchmark, even though we have
done 600k steps of training, the checkpoint we start with has only done 540k gradient steps.

3.5 USING TEMPORAL META-INFORMATION

As a preliminary experiment to validate the usefulness of the temporal meta-information described
in Section 3.1, we test the hypothesis that data that stays in the UniProt database for longer is of
higher quality and leads to better models. For this study, we take the releases for the first two years
of our benchmark and releases from the four years prior to our benchmark (i.e. 2011-2016). For
each pair of years, we only train on protein sequences that are in the intersection of both releases.
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(a) Validation accuracy on the UniProt validation
dataset for the filtered datasets. The diagonals are un-
filtered yearly releases, while each square in the top
half shows the accuracy when the model was trained
on the intersection of the data in the two years.
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(b) Dataset sizes for filtered data experiments. Each
square shows the number of protein sequences used
in the training of the models in Figure 3a.

Figure 3: We train models on datasets that are the intersection of two yearly releases. Despite this
filtering process creating smaller datasets, the validation accuracy actually improves for most years.

Each model is trained for 100k steps according to the procedure outlined in Section 3.4. There are
two hypothetical competing effects that this filtering could have: the smaller dataset size could lead
to a decrease in performance or the potential increase in quality of data could lead to an increase in
performance. We see the results in Figure 3. The performance of models trained on the unfiltered
versions of the dataset are along the diagonal. From 2013 onwards, there is an increase in perfor-
mance going from the unfiltered to filtered version of the datasets, even though the filtered datasets
are smaller, implying that the benefit of the higher data quality wins out. For the first two years,
since the datasets are already fairly small to begin with, filtering to an even smaller dataset has a
deleterious effect. Across all years, however, we see there is an eventual increase in performance
as you filter across a longer timespan. Furthermore, the best performance across all datasets comes
from the intersection of 2014 and 2015 data, even though that dataset is a fraction of the size of the
2015 dataset, clearly showing the value of using temporal meta-information about the proteins.

4 METHODS

As shown in Section 3.5, the curation of data through the yearly updates of the UniProt Knowl-
edgebase affects the prediction accuracy of the trained model. We now perform a large-scale study
of 6 different methods to continually pretrain the AMPLIFY-120M model, that takes into account
this temporality information. We focus on a set of representative methods spanning across 3 groups:
continual learning, plasticity-focused and unlearning methods, with 2 algorithms for each group. Fi-
nally, we compare these methods with individual models trained on each yearly release separately,
as is current standard practice (Fournier et al., 2024; Hayes et al., 2025).

4.1 CONTINUAL LEARNING

Sequential Training This method is the simple baseline of training on each dataset in sequence,
without any additional interventions or regularization. There are no additional hyperparameters for
this method.

Temporally Weighted Replay Experience Replay (Rolnick et al., 2019; Abbes et al., 2025) is a
commonly used technique in continual learning where a small subset of data from previous tasks is
saved and rehearsed by the model while training on future tasks to prevent catastrophic forgetting.
Given we can access all previous datasets and based on the results in Section 3.5, we use a modified
version of this idea where we do not limit ourselves to a fixed size replay buffer. Instead, we

6
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continue sampling all samples according to how many previous datasets they appeared in. Let
S = {D1,D2, . . . ,Dt−1} be the sequence of datasets up until the current task, and let U =

⋃t−1
i=1 Di

be their union. For any example x ∈ U , let its multiplicity be c(x) =
∑k

i=1 IDi
(x), where IDi

(x)
is the indicator function. The probability of sampling an example x from U is proportional to

its multiplicity and is given by: P (x) = c(x)∑
y∈U c(y) =

∑k
i=1 IDi

(x)∑k
i=1 |Di|

. The total loss is given by

(1 − λreplay)Lce(bi) + λreplayLce(breplay), where bi is a batch sampled from the novel protein
sequences added in task i, breplay a batch of samples from previous tasks sampled according to their
multiplicity, and λreplay weights the importance of current task compared to previous tasks.

4.2 PLASTICITY

Loss of plasticity is a phenomenon in continual learning where as the model trains, it becomes less
able to adapt to changes in data distributions. The plasticity preserving methods we use in our
experiments are agnostic to the past data distributions and do not use any extra data.

Shrink and Perturb Shrink and Perturb (Ash & Adams, 2020) involves periodically shrinking and
then adding noise to the weights of a neural network as a means of restoring plasticity to the network.
In our experiments, at the start of every task, we set the weights as θt = λshrinkθt−1 + λnoisep,
where p are random weights drawn from the initialization distribution of the network.

Hare and Tortoise Hare and Tortoise (Lee et al., 2024) maintains two sets of network weights, slow
and fast. The slow weights are an exponential moving average of the fast weights, i.e. at every
step the slow weights are set to θslow = λht momθslow + (1− λht mom)θfast. Periodically, the fast
weights are reset to the slow weights according to λreset freq .

4.3 UNLEARNING

Unlearning involves actively trying to remove knowledge about specific samples from the network.
In our experiments, the forget set for task t, Ft is defined as the set of examples present in task t− 1
but not in task t. With each step, we sample one batch from the current task bi ∼ Dt and one batch
from the forget set bforget ∼ Ft.

Gradient Ascent Gradient ascent (Golatkar et al., 2020) attempts to unlearn knowledge by per-
forming a gradient ascent step on data from the forget set. To prevent divergence, it also performs
a descent step on data that is to be retained. This is implemented as optimizing the following loss:
Lce(bi)− λascLce(bforget) where Lce is the standard cross entropy loss used in training.

Random Labels Random labels (Golatkar et al., 2020) tries removing the knowledge in the forget
set by sampling the targets of the forget set from the uniform distribution and performing gradient
steps. The loss for the forget set is weighted by λrand.

4.4 DESCRIPTION OF HYPERPARAMETER SEARCH AND OTHER EXPERIMENTAL DETAILS

For each method, we use the same base hyperparameters (e.g. learning rate, weight decay, batch
size), and search over the method specific hyperparameters. Given the fact that several of these
methods have not been used on such a scale, there does not exist much guidance in the literature
on suitable ranges for many of these hyperparameters. We instead use an iterative, pruning based
approach to our hyperparameter search to try a wide range for each method, and quickly prune
suboptimal configurations. For each method, we evaluate 8 random configurations at 50k steps of
total training. We then seed a Bayesian sampler with the results of those trials and sample 8 more
configurations that are also evaluated at 50k steps of total training. The best 4 configurations from
the 16 total trials are trained for another 150k steps, at which the best configuration is selected and
trained for the remaining tasks in the benchmark. No method other than Hare and Tortoise deviates
from the standard training for the first task in the benchmark, so every method (except for Hare and
Tortoise) is started on task 2 from the pre-decay checkpoint of task 1. Hare and Tortoise is started
from scratch on task 1. We use validation loss as the selection criterion in the search.
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Figure 4: Validation perplexity on the UniProt validation set described in Section 3.3. All continual
methods in our study beat the naive continual baseline and single year baseline.

5 RESULTS

5.1 UNIPROT VALIDATION SET

In Figure 4, we show the performance of our models on the UniProt validation set. We notice
several trends with our results. First, we see that performance generally seems to improve over time
for the continual baselines. While this may seem trivial, it validates taking a continual approach to
the problem. The steady improvement shows that continual training does not saturate the network
or prime the network too heavily so that it cannot learn from future data. Furthermore, there is a
big gap between the single year baseline and the continual baselines. This is partly because the
continual models trained for longer, but this establishes that training from a continual checkpoint is
effective. With each release, if the choice is to train for a certain number of steps from scratch or
from a continual checkpoint, the continual checkpoint is a much more effective starting point.

We should also note that several models start reaching the performance level of AMPLIFY 1M (the
base model trained for 1 million steps according to Fournier et al. (2024)) with considerably fewer
steps and access to less data throughout training. In fact, the temporal replay method essentially
matches the performance of AMPLIFY-1M at 8 tasks, which is the equivalent of 730k steps, with
much of the training taking place with access to much less data.

Finally, comparing the methods amongst each other, we see that every method offers better per-
formance compared to the naive continual baseline and (other than the temporal replay baseline)
relatively similar performance to each other. This is highly encouraging, as essentially none of these
methods were developed for this specific setup, and yet they are all showing positive performance.
Hare and Tortoise and Shrink and Perturb are both plasticity preserving methods, but to our knowl-
edge have never been applied to a model or training scale of this size. Gradient Ascent and Random
Labels have been used with LLMs, but generally on more limited forget sets and not as a part of
continual pretraining. The relative success of these methods shows that all of these approaches to
continual learning (forgetting, plasticity, unlearning) have ideas to contribute in this setup.

5.2 PROTEINGYM

The trends for the ProteinGym evaluation (Figure 5) are slightly harder to define compared to
the UniProt Validation set. Hare and Tortoise performs the best across all methods, and 3 of the
non-naive continual learning methods outperform both naive continual learning and AMPLIFY-1M.
There does seem to be a measure of early saturation, as the improvement in performance for most of
the methods seems to happen in the first 3 tasks, after which performance. In fact, Gradient Ascent,
Hare and Tortoise, and Shrink and Perturb all outperform AMPLIFY-1M after only 280k steps of
training. The exception to this is Random Label, whose improvement comes in the later tasks.

5.3 TRADEOFFS

Drug discovery is a long process and requires many different capabilities with respect to proteins,
including generation, property prediction, fitness prediction, and optimization. It is difficult to create
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Figure 5: Results on the ProteinGym benchmark. Several continual methods outperform the naive
continual baseline, as well as the AMPLIFY-1M baseline, a version of our model that was trained
for 1 million steps.

an evaluation that is able to cover all of these capabilities. In this section we discuss the tradeoffs of
the two evaluations we use in our benchmark.

Both the UniProt validation set and ProteinGym were curated from natural proteins, which means
that models that do well on them would be helpful in creating therapeutic drugs, but not necessarily
industrial proteins. The UniProt validation set was constructed to be as close as possible to the
natural distribution of proteins, with the idea that nature is a good inductive bias. The proteins were
selected to be from diverse and highly studied proteomes. A consequence of the latter point is that
the highly studied proteomes were likely in the earlier UniRef100 releases which could explain the
success of a method like temporal replay that upweights such samples. Because we deduplicated
our training set against the validation set, however, the evaluation rewards models that do not overfit
to specific samples or mutations that they see in the data, and instead learn to generalize to the larger
patterns. On the other hand, ProteinGym rewards models that can properly evaluate the fitness of
specific mutations in a protein. Given we did not deduplicate our training set against ProteinGym
and that memorizing specific sequences could provide an advantage to the model, it is also possible
that ProteinGym would reward models that overfit the data slightly.

6 DISCUSSION

We present CoPeP, a benchmark for continual pretraining of protein language models. The datasets
used in our benchmark are curated from the regular releases of UniProt, and thus naturally evolve as
the biologist community’s knowledge and interest evolve. CoPeP is regularly extensible as each new
UniProt release becomes available, making it more difficult to saturate the benchmark. In our work,
we show that several different approaches to continual learning and unlearning are able to improve
on naive continual learning, and our benchmark is an opportunity for those communities to develop
and test their methods on a realistic, large scale setting. Several of the methods we present are also
fairly orthogonal to each other, and future work can investigate how to combine them to create a
better method. Although not explored in our work, the closely related field of model editing could
also potentially apply contribute to this problem.

Our work also explores the idea of using temporal meta-information about each sample to guide
training. We use this information as both a filter and as a replay strategy, and and show that both
approaches improves performance. Future work should explore protein specific learning methods
that can better leverage this temporal meta-information.

We hope that this benchmark can accelerate progress in protein language model learning. For large
biomedical companies, it may be cost-feasible to simply retrain from scratch on large data, but hav-
ing to do so takes time that can lengthen experiment cycles. Effective continual training could also
enable academic labs to perform relevant and cost-effective research and further push the frontier of
drug discovery.
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7 REPRODUCIBILITY STATEMENT

The details of our model training and hyperparameter selection are provided in Sections 3.4, 4.4, C,
and D. The details of our dataset curation are provided in Sections 3.1, 3.3, and E. Upon acceptance,
we also intend to release the code, checkpoints, and datasets used to conduct all of our experiments.
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Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold.
Nature, 596(7873):583–589, August 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2.

Felix Kallenborn, Alejandro Chacon, Christian Hundt, Hassan Sirelkhatim, Kieran Didi, Sooyoung
Cha, Christian Dallago, Milot Mirdita, Bertil Schmidt, and Martin Steinegger. GPU-accelerated
homology search with MMseqs2. Nat Methods, pp. 1–4, September 2025. ISSN 1548-7105. doi:
10.1038/s41592-025-02819-8.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual Pre-
training of Language Models. In The Eleventh International Conference on Learning Represen-
tations, September 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International conference on machine learning,
pp. 5637–5664. PMLR, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Hojoon Lee, Hyeonseo Cho, Hyunseung Kim, Donghu Kim, Dugki Min, Jaegul Choo, and Clare
Lyle. Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks,
June 2024.

Yunshui Li, Yiyuan Ma, Shen Yan, Chaoyi Zhang, Jing Liu, Jianqiao Lu, Ziwen Xu, Mengzhao
Chen, Minrui Wang, Shiyi Zhan, Jin Ma, Xunhao Lai, Yao Luo, Xingyan Bin, Hongbin Ren,
Mingji Han, Wenhao Hao, Bairen Yi, LingJun Liu, Bole Ma, Xiaoying Jia, Zhou Xun, Liang
Xiang, and Yonghui Wu. Model Merging in Pre-training of Large Language Models, May 2025.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos
Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, and Alexander Rives. Language models
of protein sequences at the scale of evolution enable accurate structure prediction, July 2022.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom
Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, March 2023. doi:
10.1126/science.ade2574.

Zhiqiu Lin, Jia Shi, Deepak Pathak, and Deva Ramanan. The clear benchmark: Continual learn-
ing on real-world imagery. In Thirty-fifth conference on neural information processing systems
datasets and benchmarks track (round 2), 2021.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International Con-
ference on Learning Representations, September 2018.

Ali Madani, Ben Krause, Eric R Greene, Subu Subramanian, Benjamin P Mohr, James M Holton,
Jose Luis Olmos Jr, Caiming Xiong, Zachary Z Sun, Richard Socher, et al. Large language
models generate functional protein sequences across diverse families. Nature biotechnology, 41
(8):1099–1106, 2023.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. Umap: Uniform manifold
approximation and projection. The Journal of Open Source Software, 3(29):861, 2018.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In Proceedings of the 36th International Conference on Neural Information
Processing Systems, NIPS ’22, pp. 17359–17372, Red Hook, NY, USA, November 2022. Curran
Associates Inc. ISBN 978-1-7138-7108-8.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn. Memory-
Based Model Editing at Scale. In Proceedings of the 39th International Conference on Machine
Learning, pp. 15817–15831. PMLR, June 2022.

Erik Nijkamp, Jeffrey A. Ruffolo, Eli N. Weinstein, Nikhil Naik, and Ali Madani. ProGen2: Ex-
ploring the boundaries of protein language models. Cell Systems, 14(11):968–978.e3, November
2023. ISSN 2405-4712. doi: 10.1016/j.cels.2023.10.002.

Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood Van Niekerk, Steffanie Paul, Han Spinner, Nathan
Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, et al. Proteingym: Large-scale benchmarks
for protein fitness prediction and design. Advances in Neural Information Processing Systems, 36:
64331–64379, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners.

Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter Abbeel,
and Yun S. Song. Evaluating protein transfer learning with TAPE. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems, number 869, pp. 9689–
9701. Curran Associates Inc., Red Hook, NY, USA, December 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Lorna Richardson, Ben Allen, Germana Baldi, Martin Beracochea, Maxwell L Bileschi, Tony Bur-
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A EVOLUTION OF DATA

In this experiment, we analyze how protein sequence datasets evolve over years by visualizing their
structure in embedding space. We use representations from AMPLIFY (trained with 1 million steps)
and apply UMAP (McInnes et al., 2018) to project high-dimensional protein embeddings into two
dimensions. This enables us to observe broad patterns in the data and how they change across
consecutive UniRef100 releases.

Added in 2011 Added in 2012 Added in 2013 Added in 2014 Added in 2015 Added in 2016 Added in 2017 Added in 2018 Added in 2019 Added in 2020 Added in 2021 Added in 2022 Added in 2023 Added in 2024

Removed from 2011 Removed from 2012 Removed from 2013 Removed from 2014 Removed from 2015 Removed from 2016 Removed from 2017 Removed from 2018 Removed from 2019 Removed from 2020 Removed from 2021 Removed from 2022 Removed from 2023 Removed from 2024Figure 6: UMAP projection of protein embeddings from all UniRef100 releases (AMPLIFY 1M
representations). The plot shows a stable global structure with a dense core and branches, indicating
natural groupings of proteins.

Figure 6 shows the embedding of the full dataseti i.e., sequences from all years. The plot reveals a
global structure with a dense central region and branches, suggesting natural groupings of proteins.
Differences in density highlight areas where certain types of sequences are more common.

Each UniRef100 release both adds and removes sequences, reflecting the expansion of biological
knowledge and ongoing curation. To illustrate these dynamics, Figure 7 compares additions (blue,
top row) with removals (red, bottom row) per year. Overall, while the global structure of protein
embeddings is stable, Figure 7 indicates local shifts such as density increases and cluster expansion.
This underscores why continual learning is critical for protein language models. Instead of treating
each release as an isolated datasets, continual methods can exploit temporal information to adapt to
new proteins as well as retain knowledge.

Added in 2011 Added in 2012 Added in 2013 Added in 2014 Added in 2015 Added in 2016 Added in 2017 Added in 2018 Added in 2019 Added in 2020 Added in 2021 Added in 2022 Added in 2023 Added in 2024

Removed from 2011 Removed from 2012 Removed from 2013 Removed from 2014 Removed from 2015 Removed from 2016 Removed from 2017 Removed from 2018 Removed from 2019 Removed from 2020 Removed from 2021 Removed from 2022 Removed from 2023 Removed from 2024

Figure 7: Yearly dynamics of UniRef100 embeddings. Top row (blue): proteins added in each year;
bottom row (red): proteins removed. While the global organization of protein embeddings is stable,
the local shifts such as density increases and cluster expansion are indicate yearly shift in underlying
distribution.

B FINE GRAINED RESULTS ON PROTEINGYM

We also visualized two variants of the ProteinGym evaluation, similar to Figure 5: the best perfor-
mance achieved in each year of training and the fine-grained trajectory of performance across all
steps.

In Figure 8, we observe that Hare Tortoise consistently delivers the strongest results, with Gradient
Ascent and Shrink Perturb close behind. All three methods perform better than the AMPLIFY 1M
baseline across nearly all year releases, while continual learning and replay result in modest gains.
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Figure 8: Best mean Spearman correlation for continual training on ProteinGym. Hare Tortoise
achieves the best performance across nearly all years, with Gradient Ascent and Shrink Perturb
close behind. These methods consistently perform better than AMPLIFY 1M.

Random Labels again shows improvement relative to the naive Single Year baseline, but it does not
reach the same level as the other methods.
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Figure 9: Mean Spearman correlation on ProteinGym across training steps for continual training on
ProteinGym. While the naive Single Year baseline resets each year and lags substantially, continual
learning methods such as Hare Tortoise, Gradient Ascent, and Shrink Perturb maintain strong per-
formance throughout training and consistently perform better than AMPLIFY 1M.

Figure 9 highlight the shortcomings of Single Year most clearly as the model start from scratch. By
contrast, Hare Tortoise, Gradient Ascent, and Shrink Perturb maintain strong performance through-
out training, suggesting that these methods provide more stable and reliable learning dynamics.

Apart from these results, we also provide the boxplots of Spearman correlations across methods
in Figure 10. In all cases, Hare Tortoise, Gradient Ascent, and Shrink Perturb consistently cluster
above the AMPLIFY 1M baseline, with relatively tight distributions indicating robust improve-
ments. Replay and Continual show more variance, often overlapping with the baseline but generally
outperforming the naive Single Year approach.
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Figure 10: Distribution of Spearman correlations for each method from 2016–2022 on ProteinGym
benchmarks. Hare Tortoise, Gradient Ascent, and Shrink Perturb consistently center above the
AMPLIFY 1M baseline with tight variance, indicating strong and stable performance.

Single Year Continual Gradient Ascent Hare Tortoise Random Labels Replay Shrink Perturb

2015 0.700 0.700 0.700 0.704 0.700 0.700 0.700

2016 0.705 0.703 0.707 0.708 0.701 0.704 0.707

2017 0.702 0.706 0.709 0.709 0.703 0.707 0.709

2018 0.707 0.709 0.711 0.711 0.700 0.706 0.708

2019 0.707 0.708 0.708 0.710 0.701 0.704 0.708

2020 0.703 0.709 0.709 0.710 0.704 0.705 0.707

2021 0.708 0.707 0.711 0.711 0.708 0.707 0.710

2022 0.705 0.709 0.710 0.709 0.705 0.706 0.709

Table 1: Area Under the Curve (AUC) performance on ProteinGym across different methods per
year. Consistent with the Spearman correlation in Figure 5, Hare Tortoise achieves the strongest
performance across all years, with Gradient Ascent and Shrink Perturb close behind.

Table 1 summarizes the AUC performance of different methods on ProteinGym. We again observe
that Hare Tortoise consistently achieves the best or tied-best results across nearly all years, with Gra-
dient Ascent and Shrink Perturb closely following. These findings align with the our observations
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Figure 11: Both the cosine learning rate schedule and the warmup stable decay achieve approxi-
mately the same performance.

Method Hyperparameter Distribution Selected Value

Continual None

Replay λreplay Uniform(0, 1.0) 0.357495045651384

Hare and Tortoise λht mom Uniform(.5, 1.0) .931247906596137
λreset freq LogInt(10, 10000) 559

Gradient Ascent λasc Uniform(0, 1.0) 0.0150798214665966

Random Labels λrand Uniform(0, 1.0) 0.00176366392582128

Shrink and Perturb λshrink Uniform(0, 0.9) 0.310430229773085
λnoise Uniform(0, 1.0) 0.713412708958246

Table 2: The hyperparameter ranges and the selected hyperparameters for each method in our study.

in Figure 5, By contrast, continual learning and replay provide moderate gains over the naive Single
Year baseline.

C WSD VS COSINE LEARNING RATE

In this section, we clarify the learning rate schedule used by our models. Our model is based off
of AMPLIFY (Fournier et al., 2024), which used a cosine learning rate schedule in its training
run. Unfortunately, because the cosine learning rate schedule has a fixed span it is unsuitable for
continual training. Instead we use the warmup-stable-decay (WSD) schedule which has been used
for continual pretraining (Li et al., 2025). In Figure 11, we can see that after decay, the two schedules
perform about equivalently.

In our experiments, after each decay period, we reset to the checkpoint right before the decay before
moving to the next task. Thus, only 90k out of the 100k gradient steps on a task are used to contribute
to the continual training, but it offers a good balance between needing to decay the learning rate and
being able to restart the run.

D HYPERPARAMETER SEARCH GRID

In Table 2, we describe the hyperparameter ranges and the selected value for each hyperparameter
that was searched over in our study. Each hyperparameter was sampled independently, and we
evaluated 16 trials for each method.
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Year Release Date Number of Proteins

2015 2015 12 December 9, 2015 70,511,308
2016 2016 11 November 30, 2016 92,558,090
2017 2017 12 December 20, 2017 128,263,573
2018 2018 11 December 5, 2018 168,593,206
2019 2019 11 December 11, 2019 213,522,593
2020 2020 06 December 2, 2020 261,174,669
2021 2021 04 November 17, 2021 280,483,851
2022 2022 05 December 14, 2022 323,519,324

Table 3: The selected UniRef100 releases in our benchmark. The number of proteins listed are the
numbers listed on the UniRef website, before we do any processing and deduplicating.

E UNIREF STATISTICS

In Table 3, we list the specific releases we used to construct our benchmark.
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