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Abstract

Recent work shows that deep neural networks (DNNs) first learn clean samples1

and then memorize noisy samples. Early stopping can therefore be used to improve2

performance when training with noisy labels. It was also shown recently that the3

training trajectory of DNNs can be approximated in a low-dimensional subspace4

using PCA. The DNNs can then be trained in this subspace achieving similar or5

better generalization. These two observations were utilized together, to further6

boost the generalization performance of vanilla early stopping on noisy label7

datasets. In this paper, we probe this finding further on different real-world and8

synthetic label noises. First, we show that the prior method is sensitive to the9

early stopping hyper-parameter. Second, we investigate the effectiveness of PCA,10

for approximating the optimization trajectory under noisy label information. We11

propose to estimate low-rank subspace through robust and structured variants of12

PCA, namely Robust PCA, and Sparse PCA. We find that the subspace estimated13

through these variants can be less sensitive to early stopping, and can outperform14

PCA to achieve better test error when trained on noisy labels.15

1 Introduction16

Deep neural networks have been successful in a wide variety of real-world tasks. However, they owe17

a major chunk of their success to large, carefully curated, and manually annotated datasets [7, 20].18

In several applications, however, the annotations can be costly or difficult to obtain. Thus, several19

applications use unreliable annotation sources such as search engines, or crowd-sourcing [24, 22].20

Thus, the annotations/labels on training data may be noisy leading to a distribution shift at test time.21

Deep neural networks can easily memorize very large datasets [25], and they eventually memorize the22

noisy labels, leading to poor generalization. Several works have pointed out that deep neural networks23

tend to learn samples with clean labels early in training, and then memorize noisy labels during later24

stages [15, 19, 2]. This property has been leveraged in different ways to improve generalization25

performance when training labels are noisy.26

The recent work of [12, 13] showed that neural networks can be trained in very low-dimensional27

subspaces while achieving similar or better generalization. They then utilize this property, in28

conjunction with early stopping to train on datasets with noisy labels. They first sample the model29

trajectory formed by gradient descent and early stop so the model has not yet fitted to the noisy30

labels. Then, they use principal component analysis (PCA) on the model trajectory to construct a31

low-dimensional subspace of the trajectory. Finally, they train a new network from initialization in32

the subspace. By leveraging early stopping and the low-dimensional optimization objective, they33

show an impressive generalization boost over vanilla early stopping.34
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However, it is unclear whether the success of the above method stems from the use of early stopping35

or due to the low-dimensional subspace for training the neural network. In many scenarios, the36

choice of early stopping may be unclear due to noisy validation data. Also, while early stopping is a37

useful defense against label noise recent work has also shown that real-world label noises and some38

synthetic label noises can be learned early adversely affecting generalization [18, 23, 26]. Intuitively,39

fitting random labels for DNNs should require a larger dimensional optimization trajectory [14].40

Hence, restricting the optimization trajectory to be low-dimensional should provide a regularization41

against noisy labels. However, it is unclear whether PCA-based dimensionality reduction for the42

optimization trajectory is ideal for training with noisy labels.43

In this work, we attempt to probe these questions. We first show that leveraging a low-dimensional44

model trajectory to regularize against noisy labels is fragile to early stopping. We then explore the45

different subspace estimation algorithms, namely Robust-PCA and Sparse-PCA to better regularize46

the recovered subspace. These variants have additional properties, which we discuss in detail below47

that may be useful for training with noisy labels. We conduct experiments for these PCA variants on48

different synthetic and real-world noisy variations of the CIFAR-10 dataset [10]. We find that while49

Robust-PCA does not always outperform PCA, Sparse-PCA is consistently less sensitive to early50

stopping and often outperforms PCA to achieve better generalization.51

2 Background52

For a deep neural network (DNN), we let w ∈ Rn denote its parameters. Let the parameter trajectory53

during regular training be denoted by {ws
i }i=0,1,...,t, where ws

0 denotes initial parameters, and ws
i54

denotes the parameters of DNN after a specific number of update iterations (usually an epoch). The55

dynamic linear dimensionality reduction (DLDR) algorithm proposed by [12] shows that neural56

networks can be trained in low-dimensional subspaces. The algorithms consist of two stages, sampling57

the subspace, and training the model on the sampled subspace. [12] show that neural networks can58

show equal or better test accuracy in the generated subspace for common datasets such as CIFAR-59

10 [10] and Imagenet [4] on a variety of common architectures. The algorithms are detailed as60

Algorithm 1 and 2.61

Algorithm 1 DLDR Sampling
Sample parameter trajectory {ws

0, w
s
1 . . . w

s
t } along training;

w̄ = 1
t

∑t
i=1 w

s
i ;

W = {ws
1 − w̄, ws

2 − w̄ . . . ws
t − w̄};

Perform SVD on WTW and truncate till d largest eigenvectors {v1, v2 . . . vd} and eigenvalues
{σ2

1 , σ
2
2 . . . σ

2
d} are obtained;

ui =
1
σi
Wvi;

P = [u1, u2 . . . ud];

Algorithm 2 Subspace Training
k ← 0;
w0 ← ws

1;
while not converged do

Sample batch of data Bk

Compute gradient gk on batch Bk

wk+1 ← wk − αPPT gk; ▷ α denotes learning rate
k ← k + 1;

end while

Intuitively, in order to fit random labels, the dimensionality of the subspace required should be larger.62

Thus, the DLDR algorithm controls the regularization by two mechanisms. First, sampling the63

subspace till an early epoch provides regularization, as the model learns clean labels in the early64

epochs [2, 15, 19]. Second, decreasing the dimensionality of the subspace provides an additional65

regularization, and reduces fitting to noisy labels. Thus, the early stop epoch and subspace dimension-66

ality control the regularization, with these denoted by t and d, respectively. The prior work of [12]67
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conducted experiments by synthetically creating corrupted CIFAR-10 labels, and using the above68

algorithm to show an impressive boost over vanilla SGD on clean test accuracy.69

3 Proposed Method70

By the Eckart-Young theorem, PCA provides optimal low-rank approximation by maximizing the71

Frobenius norm. As discussed, the DLDR framework uses SVD/PCA to create the low-rank subspace72

for optimization. For training with noisy labels, we instead propose alternative techniques for73

subspace estimation, namely Robust-PCA and Sparse-PCA to regularize the subspace estimate.74

While there exist multiple other variations of PCA with interesting properties, a detailed study of75

all these variants is beyond the scope of this paper. We leave further exploration of these variants76

as future work. We detail the advantages, Robust and Sparse-PCA have over PCA for training with77

noisy labels below.78

Robust-PCA: Since PCA focuses on finding subspaces that maximize the variance of data, it is79

sensitive to the presence of outliers [21, 5, 8]. Robust-PCA instead is much less susceptible to sparse80

large outliers compared to PCA [11, 5]. For classification with noisy labels, gradients from the noisy81

data can be considered outliers, and PCA may over-emphasize them. Robust-PCA may therefore82

function better for training with noisy labels.83

Sparse-PCA: Deep networks are usually over-parameterized allowing them to overfit to noisy84

labels [25]. A line of work has shown that only a few of these parameters are critical to general-85

ization [6, 17]. Recent work also showed training only the critical parameters can improve training86

on noisy labels [19], which proposed to update a pre-defined fraction of the parameters that they87

selected as critical. These ‘critical’ parameters are based on a heuristic inspired by the Lottery Ticket88

Hypothesis [6]. In a similar essence, we propose to use Sparse-PCA to create the model trajectory.89

Sparse-PCA functions similar to PCA with an additional constraint that the principal components90

should be sparse. Thus, with Sparse-PCA, only a fraction of network weights can be updated, provid-91

ing further regularization against noisy labels. The sparsity for each eigenvector is a hyper-parameter92

choice. Sparse-PCA also has an additional property of retaining consistency even when the number93

of samples is very few. PCA, however, is not consistent in this setting [16]. This property may be94

beneficial since DNNs have a very large number of parameters (in the order of millions), but the95

trajectory is approximated using very few samples (up to 100). Lastly, Sparse-PCA does not guarantee96

that different principal components are orthogonal (unlike PCA) without additional constraints. Since97

we only require the components to span a subspace, this property does not affect the algorithm.98

There are multiple algorithms present in the literature for solving Robust-PCA and Sparse-PCA.99

For Robust-PCA, we use the SGD solver implementation by HyperSpy [3]. For Sparse-PCA, we100

use the OPIT solver proposed in [1]. Thus, compared to DLDR we only change the subspace101

estimation algorithm and use Robust-PCA and Sparse-PCA instead of vanilla PCA and do not modify102

Algorithm 2. We find that Sparse-PCA often works better than PCA, and can often outperform it103

while being less susceptible to the choice of early stopping.104

4 Experiments105

We evaluate our proposed approach on the CIFAR-10 dataset [10]. For synthetic noise, we randomly106

perturb a fraction of labels in the training set, consistent with existing literature. We discuss the107

different forms of label noises below:108

1. Symmetric - This is a form of synthetic noise, where the noisy labels from every single109

class are uniformly split among all other classes.110

2. Pairflip - In this synthetic noise, the noisy labels from each class are flipped into its adjacent111

class. This form of noise simulates noisy labels in fine-grained classification and is generally112

more easily learned during early epochs than symmetric noise [23].113

3. CIFAR10-N - A collection of noisy human annotations of the CIFAR-10 training set [18].114

We use the ‘worst’ subset of annotations, which takes a union of noisy labels across the115

dataset by 3 independent annotators. The noise level for CIFAR10-N ‘worst’ is around 40%.116

This type of noise is also learned easily during early epochs.117
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Figure 1: Comparison of different PCA variants across different synthetic and real label noises on
CIFAR-10. Results are presented using PreActResnet-18, with subspace dimension kept as d = 15.

We evaluate the performance of all the models using the test split of CIFAR-10. We train a118

PreActResNet-18 [9] model with batch size 128 and use the common data augmentations, i.e.,119

random crop with a padding of 4 pixels on each side, and horizontal flipping. For the first phase of120

training, while sampling the model checkpoints for subspace estimation, we use an SGD optimizer121

with 0.9 momentum, and weight decay of 5e− 4. We train for a total of 100 epochs with an initial122

learning rate of 0.1 and decay it by a factor of 10 at the 50th and 75th epochs. We sample checkpoints123

at every epoch for the subspace estimation. We use the same model checkpoints for PCA, Robust124

PCA, and Sparse-PCA for a fair comparison.125

For the second phase of training, after the subspace is estimated, we train the network for 20 epochs126

projecting the gradient to the subspace after each iteration as shown in Algorithm 2. We set the127

initial learning rate to 1, and decay it by a factor of 10 at the 10th and 15th epochs. The learning128

rate can be set fairly high, due to subspace projection [12]. We use an SGD optimizer with 0.9129

momentum and no weight decay. We experiment with different subspace early stop epoch t, and130

keep the subspace dimensionality d = 15 for all algorithms. We report additional experiments131

varying subspace dimension, d in Appendix A.1. For Sparse-PCA, we use a sparsity level of 90%132

for each eigenvector. For Robust PCA, we use default hyperparameters defined by HyperSpy. For133

PCA, we use the default implementation provided by the authors [12]. Figure 1 shows experimental134

results of different PCA variants on various types of label noises. We also show two baselines, SGD135

performance at the optimal early stop (SGD Best), and SGD final checkpoint performance.136

We observe that for pairflip noise of 45%, Sparse-PCA can always outperform PCA and always137

obtains higher accuracy than SGD best accuracy. PCA however is extremely sensitive to early138

stopping and often performs even worse than optimal SGD early stop. Robust-PCA is slightly less139

sensitive to early-stopping than PCA for t > 60. For symmetric noise, Sparse-PCA does not clearly140

outperform PCA but shows similar or better performance when t > 50. Sparse-PCA also consistently141

performs better than SGD with optimal early stopping. Robust-PCA shows worse performance142

than PCA for symmetric noise. For the worst subset of CIFAR-10N annotations, Sparse PCA can143

outperform PCA when t > 40, and more consistently outperforms SGD with optimal early stopping.144

Robust-PCA shows similar performance to PCA, with no clear distinction. While none of the PCA145

variants consistently outperform PCA across all early-stopping thresholds, Sparse-PCA is often less146

sensitive to it. Sparse-PCA also achieves better generalization compared to PCA, on the challenging147

forms of label noise that are learned early, i.e., Pairflip and CIFAR10-N worst.148

5 Conclusion149

In this work, we probe how early stopping combined with learning in low-dimensional subspaces150

can improve generalization when training with noisy labels. We first show that the prior work on151

this topic is sensitive to the choice of early stopping, and may not offer much benefit for challenging152

forms of label noise that may be learned early. We then investigate the use of PCA variants to recover153

a low-dimensional subspace and find that Sparse-PCA often outperforms the prior method. We hope154

this work will open new theoretical and empirical studies on exploiting low-dimensional subspaces155

for noisy label training.156
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Figure 2: Comparison of PCA variants on noisy CIFAR-10. Subspace dimension, d = 10.

Figure 3: Comparison of PCA variants on noisy CIFAR-10. Subspace dimension, d = 20

A Appendix221

A.1 Subspace Dimension222

[12], relies on subspace dimension as a regularization mechanism, in addition to early stopping. Thus,223

in this section, we experiment with modifying the subspace dimension for all the PCA variants, to224

d = 10 and d = 20 as shown in Figure 2 and 3. We observe similar trends as discussed previously.225

Sparse PCA tends to be less susceptible to early stopping compared to PCA. Sparse PCA also still226

outperforms PCA across all the noisy datasets and obtains better generalization.227
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