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ABSTRACT

This position paper argues LLM and LVLM reliability should go beyond halluci-
nations and integrate uncertainties. Furthermore, the commonly used token-level
uncertainty is insufficient and semantic-level uncertainty is key. Token-based cri-
teria, such as next-token entropy or maximum probability, work well in closed-
world tasks where the output space is predefined and bounded. However, founda-
tion models increasingly operate in open-world settings. The space of answers is
unbounded and queries may involve unseen entities, ambiguous phrasing, or com-
plex reasoning. In such cases, token-level confidences may be misleading; outputs
with high probability may be semantically wrong, irrelevant, or hallucinatory.
We advocate shifting toward semantic-level uncertainty to capture uncertainty
in the meaning of generated outputs. By doing so, we can better characterize
phenomena such as ambiguity, reasoning failures, and hallucination. We further
argue that semantic uncertainty should become the primary lens through which we
assess the reliability of foundation models in high-stakes applications, enabling
more faithful, trustworthy, and transparent AI systems.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Achiam et al., 2023; Touvron et al., 2023;
Jiang et al., 2024) and Large Vision-Language Models (LVLMs) (Zhou et al., 2024; Bommasani
et al., 2021) have remarkable generalization capabilities. They have quickly shifted from research
prototypes to products used by millions of people daily. They are used in a wide range of high-stake
settings, such as as medical diagnosis, autonomous driving, or legal decision support and personal
health recommendations, education, etc. This raises profound questions about their reliability and
safety as they exhibit provide confident answers without an explicit notion of how uncertain the
answers may be. This drawback is often generically denoted as hallucinations can emerge in diverse
and unpredictable ways that are difficult to anticipate or control fully.

Classic machine learning responds to this issue with uncertainty estimation and robust predic-
tion (Kendall & Gal, 2017; Senge et al., 2014; Hüllermeier & Waegeman, 2021). It distinguishes
two main categories of uncertainty: (i) aleatoric uncertainty, which arises from inherent random-
ness or noise in the data; it is irreducible even with infinite data, as it arises from e.g., ambiguity
in labeling or stochastic real-world effects; (ii) epistemic uncertainty, due to lack of knowledge or
limited model capacity; such uncertainty is reducible with more data or better modeling. When ex-
tending these ideas to LLMs and LVLMs, important complications arise. These models must handle
multi-modal inputs (e.g., images and text) and generate free-form text outputs. Since many different
token sequences can express the same meaning, uncertainty cannot be fully understood at the token
level alone, making classical definitions harder to apply directly.

Uncertainty for LLMs and LVLMs is often quantified at a token level based on next-token proba-
bilities or entropies, since the models conveniently provide output token likelihoods. Consider the
query “What is the capital of Switzerland?”, to which the model responds “I am not sure but I
think it is Zurich.” At the token level, the model may exhibit low entropy, indicating that it is con-
fident in producing this particular sequence of words. Yet from a semantic standpoint, the model
has expressed uncertainty about the question. This reveals a gap: token-level uncertainty does not
necessarily align with the uncertainty expressed by the model (or perceived by the user).
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In the past years, the reliability of LLMs and LVLMs has been studied largely through the lens of
hallucinations. LLMs and LVLMs often produce outputs that are fluent and plausible but factu-
ally incorrect or inconsistent with the input. For example, given a medical image, an LVLM might
confidently generate “Two tumors are visible” when asked “How many tumors are present in this
scan?”, even if one or no tumor is present. Token-level measures may misleadingly suggest high
certainty because the sequence is produced with high probability. This issue becomes clearer when
contrasting closed-world and open-world learning scenarios. In a closed-world setting, the model is
trained and evaluated on a well-defined set of classes or tasks, and all possible outputs are assumed
to lie within this known universe. For instance, in regular image classification on ImageNet (Rus-
sakovsky et al., 2015), every test image is assumed to belong to one of the fixed 1000 categories. In
such settings, token-level uncertainty (e.g., the entropy of predicted class labels or next-token prob-
abilities) often provides a reasonable proxy for model confidence (Hu et al., 2023), since the space
of outcomes is bounded and well-specified. In contrast, LLMs and LVLMs can operate in inher-
ently open-world environments. Users may ask about new concepts, unseen entities, or ambiguous
queries, and the space of possible answers is effectively unbounded.

To address this issue, semantic entropy (Farquhar et al., 2024; Kossen et al., 2024) can measure
semantic uncertainty at a sequence level by leveraging an external model to predict the entailment
of multiple generated answers and quantify uncertainty from the clusters of answers. Semantic
uncertainty presents a significant step forward but is still not widely adopted.

Position

Our position is that traditional token-level uncertainty is not sufficient for LLMs and LVLMs.
We argue that the field must shift its focus toward semantic-level uncertainty, which reflects
uncertainty in the meaning supported by the sequence of output tokens. Moreover, relia-
bility of LLMs and LVLMs should go beyond the generic traditional sources of uncertainty
(aleatoric, epistemic) and beyond the widely studied but inconsistently defined hallucination
problem. Reliability of such models should take into consideration the specific sources of
uncertainty that arise for multi-modal inputs and textual outputs and tasks. Semantic-level
uncertainty can provide valuable insights to better capture phenomena such as ambiguity,
hallucination, and epistemic limits that token-level cannot.

Our Contributions. This paper makes three contributions:

1. We propose a taxonomy for uncertainty quantification in LLMs and LVLMs and explicitly
link it to hallucination.

2. We introduce a formalism to analyze how uncertainty evolves with the context provided to
the model.

3. We discuss the limitations of semantic uncertainty and outline directions for future work.

2 TOKEN-LEVEL VS. SEMANTIC-LEVEL UNCERTAINTY

(a) Token Level Uncertainty (b) Prompt Corruption (c) Knowledge Gap Uncertainty

Figure 1: Examples of uncertainty sources/types in LLMs and LVLMs. (a) Token-level un-
certainty: the model is unsure about the next token. (b) Prompt corruption: errors in the prompt
make the answer unreliable. (c) Knowledge gap: the model is uncertain when the prompt asks for
information it does not know.
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2.1 UNCERTAINTY FROM CLASSIC LEARNING MODELS TO LVLMS AND LLMS

Let us begin with a simple example from classic machine learning. Assume we want to learn a
model fω that predicts tomorrow’s temperature from past weather data X (humidity, wind, previous
temperature). The target is Y , the actual temperature. The goal of model f is to approximate the
relationship between X and Y .

For example, given past features x, the model may predict y = 35◦C in Tokyo. But how certain
is this prediction? Could it just as well be 33 or 37? What is the uncertainty associated with the
prediction (Philip Dawid & Vovk, 1999)? Point estimates alone do not answer this.

A probabilistic model instead predicts a distribution p(Y |ω,x), assigning high probability to 35 but
also some mass to nearby values. This distribution provides uncertainty estimates, which are crucial
for decision-making in weather-sensitive tasks.

With large vision-language models (LVLMs), the problem is even more complex. An LVLM fω
takes both an image ximg (e.g., a satellite photo) and a text prompt xtxt, and outputs text ytxt:

ytxt = fω(x
img,xtxt).

For example, prompting

xtxt = “What is the temperature of Tokyo from this satellite image?”

might yield
ytxt = “35”.

Here, uncertainty arises from many sources: Did the model interpret “temp” correctly? Does it know
which part of the image is Tokyo? Such factors make uncertainty estimation especially important in
LVLM predictions.

2.2 SOURCES OF UNCERTAINTY IN LLMS AND LVLMS

Like classic deep neural networks, both LLMs and LVLMs inherit well-known sources of uncer-
tainty from data and from the model. However, their multimodal nature, open-world deployment,
and text-based inputs introduce extra sources of uncertainty unique to these models (Xia et al., 2025;
Liu et al., 2025; Karim et al., 2025). We list and illustrate the most important sources below.

1. Prompt Corruption (Zhu et al., 2023). LLMs and LVLMs are sensitive to small, semantically
meaningless variations in the prompt (e.g., reordering words, synonyms, or rephrasing). Despite
conveying the same intent, such perturbations can drastically alter the model’s behavior. This form
of perturbation has been studied under prompt robustness and adversarial prompting (Zhao et al.,
2021; Abbasi Yadkori et al., 2024), indicating brittleness at the boundary between syntactic and
semantic comprehension.

2. Knowledge gaps and training coverage (Ahdritz et al., 2024). LLMs have a fixed knowledge
cutoff date, and both LLMs and LVLMs may encounter entities, events, or concepts not represented
in their training data. For instance, asking an LLM trained before 2023 about the winner of the 2025
World Cup forces it to extrapolate. Similarly, an LVLM trained on natural images may perform
poorly on medical X-rays or satellite images, leading to epistemic uncertainty.

3. Prompt Underspecification (Yang et al., 2025). Unlike classic models, LLMs and LVLMs
rely on natural language prompts, which are often incomplete or vague. An underspecified prompt
does not provide enough information to uniquely determine what the model should produce. For
instance, the query “Who is the president?” lacks essential context: the president of which coun-
try or organization, and at what year? Such incompleteness forces the model to guess the user’s
intent, thereby introducing uncertainty. Prompt underspecification thus represents a large source of
unreliability in generative models.
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4. Reasoning complexity and compositionality(Chen et al., 2023). Multi-step reasoning tasks
amplify uncertainty. For example, answering “If John is older than Mary, and Mary is older than
Paul, who is the youngest?” requires chaining logical steps. Errors in intermediate steps accumulate
and lead to uncertain or incorrect outputs. For LVLMs, questions such as “Is the same person in
both images?” require both visual recognition and logical comparison.

5. Multimodal grounding errors (LVLM-specific)(Lu et al., 2023). LVLMs need to correctly
match words with the right parts of an image. Uncertainty arises when this link, called grounding,
fails. This can happen if the model relies too much on text patterns and ignores the image (Schrodi
et al., 2024; Kaduri et al., 2025), or if it struggles to locate objects correctly (e.g., saying “the cat
on the left” when it is actually on the right). Grounding errors may also occur when the model
misunderstands relationships in the text, such as “the cat sitting on the grass.” These cases show
uncertainty in the model’s ability to connect vision and language.

6. Decoding randomness(Abbasi Yadkori et al., 2024). LLMs and LVLMs often rely on stochas-
tic decoding strategies such as sampling or nucleus sampling. Different runs may produce different
outputs, leading to variability in model behavior. Although some of this variability is unimportant
(e.g., different phrasings of the same meaning), in other cases it reflects true model uncertainty.

In summary, LLMs and LVLMs inherit classic sources of uncertainty such as data uncertainty
and model uncertainty, but also exhibit new ones related to prompt-driven interaction, multimodal
grounding, and large-scale open-world usage. Quantifying and disentangling these sources is essen-
tial for building trustworthy AI systems.

2.3 DEFINITION OF THE TYPES OF UNCERTAINTY

To better capture these subtleties, we distinguish between token uncertainty and semantic uncer-
tainty similarly to Kuhn et al. (2023):

Definition 2.1 (Token-level Uncertainty). Token-level uncertainty refers to the uncertainty associ-
ated with individual output units—such as words in language models or image patches in vision
models. This type of uncertainty closely aligns with classic notions of uncertainty in deep learning,
where predictions are made at a fine-grained level and modeled through probabilistic outputs.

Definition 2.2 (Semantic-level Uncertainty). Semantic-level uncertainty refers to the uncertainty
over the meaningful interpretation of a generated or expected output, considering the alignment
with underlying user intent, world knowledge, and visual understanding.

Token uncertainty is inherently local and syntactic—it quantifies variability at the level of surface
form. While useful in evaluating next-token prediction models, it fails to capture the broader picture
when dealing with generative systems where many different but equally valid responses are possible.
For instance, the prompt “Describe the emotion of the person in the image” may elicit several
plausible completions depending on context and interpretation, all of which may be semantically
correct but involve distinct token sequences. Relying solely on token entropy can thus overestimate
uncertainty where true semantic ambiguity is low.

Token-level uncertainty—while useful for detecting sampling noise or entropy spikes—does not dis-
tinguish between multiple correct semantic outcomes and genuine confusion. A model may exhibit
high token entropy even when it has full semantic clarity (e.g., choosing between “happy,” “joyful,”
and “cheerful”). Conversely, it may output a low-entropy response that is semantically wrong due
to overconfidence.

Hence, we argue that semantic-level uncertainty—centered on the meaningfulness and correctness
of the output in context—is better suited for evaluating the reliability of LVLMs and LLMs.

2.4 HALLUCINATION AND UNCERTAINTY

Hallucinations in LLMs and LVLMs have been extensively studied (Huang et al., 2025; Filippova,
2020; Ji et al., 2023; Liu et al., 2024; Zhang et al., 2024), since they represent one of the most fun-
damental and persistent problems of these models. The term hallucination is evocative: it suggests
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that the model “perceives” or produces content that is not grounded in reality, much like a human
hallucination reflects experiences disconnected from the external world.

In the context of open-world models such as LLMs and LVLMs, hallucinations are not rare anoma-
lies but rather a core difficulty. Because these models are often deployed in open-world settings
where the range of possible outputs is extremely broad, hallucinations can arise naturally from the
mismatch between model knowledge, reasoning capacity, and user expectations.

A number of taxonomies have been proposed in the literature to differentiate types of hallucinations
in generative models. In this work, we adopt the classification of Huang et al. (2025), who categorize
hallucinations into two primary types: factuality hallucinations and faithfulness hallucinations.

Factuality hallucinations. Factuality hallucinations occur when the generated content diverges
from verifiable external knowledge about the world. In other words, the model produces a statement
that is fluent and plausible but factually incorrect. For example, when asked “Who is the Chancellor
of Germany in 2025?”, an LLM might confidently reply “Olaf Scholz”, even though the mandate
of Olaf Scholz has ended. Such hallucinations are dangerous because they present incorrect infor-
mation as if it were true, and users may not have the means to easily detect the discrepancy.

Faithfulness hallucinations. Faithfulness hallucinations, in contrast, emphasize a divergence be-
tween the model’s output and the specific input prompt or context. Here, the generated response may
be internally coherent but fails to remain faithful to the provided input, instructions, or reasoning tra-
jectory. For example, if an LVLM is shown a chest X-ray and asked “Is there fluid accumulation?”,
but instead replies “There is a tumor in the left lung”, the output is not only medically incorrect but
also unfaithful to the user’s original query. These errors are less about real-world factual correctness
and more about the model’s ability to align its generation with the conditioning input and its own
internal reasoning trajectory.

Linking hallucination and uncertainty. The sources of hallucination are deeply linked with the
sources of uncertainty discussed in Subsection 2.2. We can group them into three broad categories:

1. Training data. Datasets inevitably encode biases, coverage limitations, and temporal in-
consistencies. For example, societal biases present in large text corpora can lead to stereo-
typical hallucinations (e.g., associating certain professions only with one gender). Long-tail
or niche knowledge may be underrepresented, leading the model to “fill in the gaps” with
fabricated details. Similarly, outdated data causes the model to hallucinate facts that were
true at training time but are no longer accurate.

2. Training procedure. Hallucinations may also stem from how the model is trained. Pre-
training on large-scale corpora with noisy or unreliable text introduces factuality errors.
Fine-tuning or reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022)
can exacerbate this by optimizing overly for fluency or helpfulness at the expense of faith-
fulness. For instance, a model might learn that “confident-sounding answers” are more
highly rewarded, even if they are incorrect.

3. Inference process. At inference time, several additional factors contribute to hallucina-
tions. Ambiguity in prompt formulation can push the model toward unintended interpreta-
tions. The randomness of decoding (e.g., sampling strategies with temperature and top-p)
can generate rare but spurious completions. The so-called softmax bottleneck (Yang et al.,
2018) can lead the model to overestimate the likelihood of high-probability but incorrect
sequences. Finally, reasoning failures in multi-step generation (such as errors in chain-of-
thought) can compound uncertainties into hallucinations.

Taken together, these observations highlight that hallucinations and uncertainty are not independent
phenomena but two sides of the same coin. Both arise from imperfect data, limited model capacity,
and inference variability. While uncertainty reflects the model’s recognition of its own limitations,
hallucination represents the outward manifestation of those limitations as erroneous outputs. Under-
standing semantic uncertainty, therefore, is key to diagnosing and mitigating hallucinations in LLMs
and LVLMs.
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3 SEMANTIC-LEVEL UNCERTAINTY

As we have discussed in earlier sections, the uncertainty of LLMs and LVLMs cannot be fully
understood at the token level. Token probabilities and token entropies capture local variability in
word prediction, but they miss the broader picture of whether the overall meaning of the output is
stable, accurate, or aligned with the input and the task. This raises an important research question:
how can we measure uncertainty in terms of semantic meaning?

3.1 TWO TYPES OF SEMANTIC UNCERTAINTY

The notion of semantic entropy has also been explored in the context of text-to-image genera-
tion (Franchi et al., 2025). Semantic uncertainty is not monolithic. It can be decomposed into at
least two main categories:

Uncertainty due to prompt formulation. LLMs and LVLMs are highly sensitive to the exact
phrasing of a query. For instance, the question “What is the capital of France?” may reliably return
the answer “Paris.” But a rephrased prompt such as “Could you tell me the French capital city?” or
“What city is the government of France located in?” may occasionally trigger different responses,
formatting issues, or even incorrect answers in low-resource languages (Sclar et al., 2023). This type
of uncertainty arises not from the underlying task but from the model’s brittleness with respect to
prompt wording. This type of uncertainty is tied to stochasticity in the model’s response generation
and sensitivity to prompt wording. This uncertainty due to unambiguous formatting of the input is
linked with semanatic aleatoric uncertainty.

Uncertainty due to task and model limitations. The second type of semantic uncertainty is not
due to noisy input phrasing but to fundamental limitations of the learned representations. Hence, it
comes from the limits of the model’s knowledge and reasoning capacity. For example, if a medical
image is blurry, the correct diagnosis may be genuinely uncertain, no matter how the question is
phrased. Similarly, when the task requires information that lies outside the model’s training data
(e.g., a newly discovered scientific fact), or when multi-step reasoning introduces compounding
errors, the model may exhibit high semantic uncertainty. This uncertainty arises from limitations in
the model’s knowledge or reasoning, hence, it is linked with semantic epistemic uncertainty, even
when the underlying task is unambiguous.

Together, these two types of semantic uncertainty reflect complementary dimensions: How we ask
(prompt sensitivity) and what the model can know or reason about (knowledge and task-related
uncertainty). Capturing both dimensions is essential for a full understanding of model reliability.

3.2 MODELING SEMANTIC UNCERTAINTY

For a given query xtxt (and image ximg in LVLMs), an LLM produces an output sequence of to-
kens y = [y1, . . . , yT ], with probabilities p(yt | y<t,x,ω). Classic token-level entropy captures
uncertainty at the word level, but it ignores whether different sequences share the same meaning.

To reason about uncertainty at the level of meaning, we consider distributions over semantic con-
cepts C. This requires grouping multiple generations into clusters of equivalent meaning and then
estimating probabilities over these clusters.

In practice, semantic clustering is challenging and crucial: it transforms open-ended text generation
into a prediction over a finite set of possible meanings. We provide details of clustering methods
and estimation procedures in Appendix A.1. After clustering, we obtain a set of clusters {Ck}Kk=1,
each representing a distinct semantic interpretation of the input. From these clusters, we can derive
a distribution over meanings, p(Ck | x,ω).

6
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3.3 SEMANTIC ENTROPY

Once the distribution p(Ck | x,ω) is estimated, semantic uncertainty can be quantified through
semantic entropy:

HSE(C | x,ω) = −
K∑

k=1

p(Ck | x) log p(Ck | x). (1)

This measure quantifies how dispersed the model’s predictions are across distinct meanings. If most
probability mass is concentrated in one cluster, semantic entropy is low. If the mass is spread across
many clusters, semantic entropy is high.

This measure generalizes classic predictive entropy. In closed-world classification, clusters align
with predefined classes {Ok}, so semantic entropy reduces to H(Y | x). Extensions include energy-
based scoring (Ma et al., 2025). Appendix B further explores the link with mutual information and
semantic Uncertainty.

3.4 SEMANTIC UNCERTAINTY AND CHAIN OF THOUGHT

Semantic uncertainty is not only a matter of isolated predictions, but also closely linked to the
stability of reasoning in CoT. When reasoning unfolds step by step, each additional context element
can modify how uncertainty is distributed across the model’s outputs. In this subsection we formalize
how adding context affects entropy-based and mutual-information-based uncertainty criteria, and
then explain how this connects with chain-of-thought reasoning.

3.4.1 ENTROPY-BASED UNCERTAINTY CRITERIA WITH MORE CONTEXT

Entropy is a classic measure of uncertainty.
Lemma 3.1 (Majorization and entropy decrease). Let

q = (q1, . . . , qK), qk = p(Ck | xtxt,ω)

and
r = (r1, . . . , rK), rk = p(Ck | xtxt,xcontext

2 ,ω)

be two probability vectors on the same finite support, with components arranged in non-increasing
order: q1 ≥ q2 ≥ · · · ≥ qK and r1 ≥ r2 ≥ · · · ≥ rK . If the distribution r majorizes the distribution
q (denoted r ≻ q), i.e.,

m∑
i=1

ri ≥
m∑
i=1

qi for m = 1, . . . ,K − 1, and
K∑
i=1

ri =

K∑
i=1

qi,

then the semantic entropy does not increase:

H
(
C | xtxt,xcontext

2 ,ω
)

= H(r) ≤ H(q) = H
(
C | xtxt,ω

)
.

Proof. We rely on a standard fact from majorization theory: if f is convex on an interval containing
the probability simplex, then the function p 7→

∑
i f(pi) is Schur-convex; equivalently, its negative

is Schur-concave. Hence the map

p 7−→ −
K∑
i=1

ϕ(pi)

is Schur-concave. Since the Shannon entropy can be written as

H(p) = −
K∑
i=1

pi log pi = −
K∑
i=1

ϕ(pi).

Therefore H(·) is Schur-concave. By the defining property of Schur-concavity,

r ≻ q =⇒ H(r) ≤ H(q).

This is exactly the desired inequality.

7
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Remark. Intuitively, r ≻ q means the distribution r is more concentrated (less spread) than the
distribution q. Hence, that means that the context must be a context that reduces spread of q.

In other words: adding relevant context to the prompt can only reduce the model’s semantic uncer-
tainty. For example, if the prompt is “What is happening in this picture?” and the additional context
specifies “Focus on the left side of the image”, then the entropy of possible outputs decreases, since
the model has less ambiguity about which region to describe.

3.4.2 CHAIN-OF-THOUGHT AS AN UNCERTAINTY REDUCER

Now consider chain-of-thought reasoning, where the model generates intermediate steps
Z1, Z2, . . . , ZT . Each step can be viewed as an additional piece of context, analogous to xcontext

t .
Property 1 (Chain-of-Thought Reduces Entropy). If we iteratively enrich a prompt with contexts
(Z1, Z2, . . . , ZT ), where the contexts follow the same majorization property as in Lemma 3.1, then
repeated application of Lemma 3.1 implies that the entropy of the model’s semantic output satisfies

H(C | ximg,xtxt
1 ,ω) ≥ H(C | ximg,xtxt

1 , Z1, Z2, . . . , ZT ,ω).

In other words, chain-of-thought reasoning can be understood as a structured way of progressively
reducing uncertainty by conditioning on intermediate reasoning steps. This provides a formal jus-
tification for why CoT prompting often improves reliability in LLMs and LVLMs: by exposing
intermediate reasoning, we effectively add context that reduces entropy and sharpens the model’s
semantic predictions.

4 EMPIRICAL VALIDATION AND LIMITATIONS

We conduct a small experiment using Llama-3.1-8B-Instruct on the TriviaQA dataset (Joshi et al.,
2017). TriviaQA is a large-scale reading comprehension dataset containing over 650k question-
answer pairs, collected from trivia enthusiasts and paired with evidence documents from Wikipedia
and the web. It is widely used to evaluate open-domain question answering and reasoning.

In our setup, the model is queried 20 times per question, and we compare two semantic clustering
strategies: one based on GPT-4o and one based on DeBERTa. We then evaluate the quality of
uncertainty estimates using the Expected Calibration Error (ECE) and the AUROC. For both
metrics, we first check whether the model’s output is correct. We then normalise the uncertainty
score so that it lies between 0 and 1 before calculating the metrics. For token-level uncertainty,
we use the perplexity (Brown et al., 1992), which measures how well a language model predicts
the next word in a sequence. In simple terms, a low perplexity means the model is confident and
accurate in its predictions, while a high perplexity means the model is uncertain or surprised by the
actual next word.

Figure 2 shows that perplexity-based uncertainty is poorly calibrated, a result confirmed in Ta-
ble 1. We observe that perplexity yields poor calibration (ECE of 31.5%) and weak discrimi-
nation (AUROC of 54.1%). In contrast, semantic entropy provides a substantial improvement,
with DeBERTa-based clustering reducing ECE to 22.7% and increasing AUROC to 79.2%. The
best results are obtained with GPT-4o-based clustering, which achieves both the lowest ECE
(13.5%) and the highest AUROC (80.9%). Hence, GPT-4o clustering achieves better calibration
than DeBERTa, but this comes at a cost: the method introduces randomness, with about 2% stan-
dard deviation on both ECE and AUROC. This variability arises from the stochastic nature of the
clustering strategy. Although this difference may seem small in terms of accuracy, it can have a
strong impact in uncertainty-sensitive applications.

Finally, we note that semantic uncertainty estimation is computationally expensive, since it requires
running a large model such as GPT-4o to compute the clustering.

Limitations of Semantic Uncertainty. The limitations of semantic uncertainty can be grouped
into three main points. First, estimating uncertainty requires generating multiple answers, but it
is unclear how many are needed for a reliable estimate without incurring high computational cost.
Second, clustering introduces its own uncertainty: it can be stochastic, depends on another LLM,
and lacks a universal ground truth. Human-annotated clusters may be useful to better assess quality.
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Table 1: Comparison of uncertainty estimation methods on TriviaQA. Lower ECE indicates bet-
ter calibration, while higher AUROC indicates better discrimination between correct and incorrect
answers.

ECE (%) AUROC (%)

Perplexity 31.50 54.07
Semantic Entropy (DeBERTa) 22.66 79.16
Semantic Entropy (GPT-4o) 13.53 80.94

Third, current methods mainly apply to short answers, and it is unknown how well they generalize
to other tasks. Finally, recent work on verbalized uncertainty (Ji et al., 2025) stresses the need to
communicate model uncertainty effectively to humans, who are often in the decision loop.

5 CONCLUSION.

Foundation models such as LLMs and LVLMs have transformed the field of AI, yet their remarkable
capabilities come with fundamental challenges in reasoning under uncertainty. Token-level confi-
dence measures, while effective in closed-world settings, are inadequate in open-world or multi-
modal scenarios: they fail to capture semantic-level uncertainty, which is essential for detecting and
interpreting hallucinations. In settings where outputs are unbounded and often disconnected from
ground truth, assessing the reliability of meaning rather than surface tokens becomes indispensable.

In this paper we we introduce a taxonomy for uncertainty quantification in LLMs and LVLMs and
propose formalism for analyzing how uncertainty. Although semantic uncertainty comes with weak-
nesses—such as entropy instability under sampling, dependence on representation models, and vari-
ability due to prompt formulation—it provides a direct way to assess the reliability of LLM and
LVLM outputs, and it is a key tool for detecting hallucinations that cannot be identified through
token-level metrics alone.

We view this work as a step toward a broader research agenda: building principled methods for
semantic uncertainty quantification, grounding them in empirical evaluation, and designing ways
to communicate uncertainty effectively to human users. Addressing these challenges is essential if
foundation models are to be deployed safely and reliably in open-world applications. Reasoning
about uncertainty in foundation models is difficult, particularly in open-world settings where the
space of possible outputs is unbounded. Yet the stakes are high: safe deployment of LLMs and
LVLMs in critical applications requires not only stronger methods for uncertainty quantification,
but also ways of communicating this uncertainty effectively to human users.

(a) Token Level Unc (b) Semantic Entropy (DeBERTa) (c) Semantic Entropy (GPT-4o)

Figure 2: Calibration plots for different uncertainty criteria: (a) Perplexity, (b) Semantic Entropy
with DeBERTa, and (c) Semantic Entropy with GPT-4o.
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A SEMANTIC UNCERTAINTY

A.1 MODELING SEMANTIC UNCERTAINTY

Let xtxt denote a natural language query provided to an LLM. In the LVLM case, the input also
contains an image ximg. For simplicity of notation, we focus on LLMs, but all definitions extend
directly to LVLMs.

Given an input, the model produces an output sequence of tokens:

y = [y1, y2, . . . , yT ], (2)

where T is the output length.

The model assigns probabilities to each token conditioned on the previous tokens and the input
query:

p(yt | y<t,x
txt,ω). (3)

The classic token-level entropy at position t is:

Ht = −
∑
y∈V

p(y | y<t,x
txt,ω) log p(y | y<t,x

txt,ω), (4)

where V is the vocabulary.

This measure, however, does not tell us whether two different token sequences correspond to the
same semantic meaning. To capture uncertainty at the level of meaning, we instead seek a distribu-
tion over concepts, written as:

p(C | x,ω),

where C is a random variable representing the semantic content of the model’s response.

A.2 STEPS TO APPROXIMATE SEMANTIC UNCERTAINTY

Direct access to p(C | x,ω) is typically not available. Therefore, researchers approximate it through
a three-step procedure (Farquhar et al., 2024; Qiu & Miikkulainen, 2024; Nikitin et al., 2024; ?;
Grewal et al., 2024; Kuhn et al., 2023):

Step 1: Generate multiple responses. We produce n different generations for the same input, for
example, by sampling with temperature or nucleus sampling:

{y(1),y(2), . . . ,y(n)}, y(i) = [y
(i)
1 , y

(i)
2 , . . . , y

(i)
Ti
]. (5)

Step 2: Cluster responses by meaning. The generated outputs are grouped into semantic clusters,
such that responses with equivalent meanings belong to the same cluster. Several strategies exist:

• One widely used strategy for clustering generations by meaning relies on Natural Language
Inference (NLI) models, in particular DeBERTa (He et al., 2020; Farquhar et al., 2024;
Kuhn et al., 2023). The idea is to use the model’s ability to judge whether one sentence
entails another. Formally, given two generated outputs y(i) and y(j), they use DeBERTa
to predict whether the statement y(i) entails y(j), and vice versa. If y(i) entails y(j) and
y(j) entails y(i), then the two outputs are judged to have the same semantic meaning.
This condition, called bi-directional entailment, ensures that both sentences are not only
compatible but effectively equivalent in meaning.
Clustering is then built incrementally:

– For each new generated output y(i), they check whether bi-directional entailment
holds with all members of an existing cluster Ck.

– If so, y(i) is added to that cluster.
– If no cluster satisfies this condition, y(i) starts a new cluster, representing a distinct

semantic meaning.
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After all generations are processed, they obtain a set of clusters {Ck}Kk=1, where each
cluster corresponds to one unique semantic interpretation of the input.
The limitation of this approach is that this procedure enforces hard clustering: each output
is either fully inside or outside a cluster.

• Recent work (Chen et al., 2025) extends this idea by using DeBERTa predictions to con-
struct a semantic similarity graph between outputs. In this graph, edges are weighted by
entailment scores, and clustering is performed using soft methods that allow partial mem-
bership. This produces clusters that better reflect nuanced overlaps in meaning, where an
output may be semantically close to multiple groups rather than strictly belonging to one.

• Use kernel methods to avoid explicit clustering (Nikitin et al., 2024) and also avoid estimate
p(C | x,ω).

• Apply lexical similarity combined with improved clustering models (Chen et al., 2024;
Nguyen et al., 2025).

• Utilize Inter- vs. intra-cluster separation to improve the clustering (Joo & Cho, 2025).
• Ask an LLM itself to cluster outputs by meaning (Farquhar et al., 2024; Ji et al., 2025).

After this step, we obtain K semantic clusters {Ck}Kk=1, each representing one possible interpre-
tation. Interestingly, clustering effectively transforms an open-ended generation problem into a
closed-world prediction problem over a finite set of meanings.

Step 3: Estimate cluster probabilities. The probability of an individual response is:

p(y(i) | x,ω) =

Ti∏
t=1

p(y
(i)
t | y(i)<t,x,ω). (6)

This can be normalized across samples:

p̄(y(i) | x,ω) =
p(y(i) | x,ω)∑n
j=1 p(y

(j) | x,ω)
. (7)

The probability of a cluster Ck is then:

p(Ck | x,ω) =
∑

y(i)∈Ck

p̄(y(i) | x,ω). (8)

If probabilities are not accessible, frequency-based estimates can be used:

p(Ck | x,ω) =
1

n

n∑
i=1

1[y(i) ∈ Ck]. (9)

Qiu & Miikkulainen (2024) propose using kernel density estimation to have a better estimate of
p(Ck | x,ω).

Why clustering matters. Accurate clustering is essential: too coarse, and distinct meanings col-
lapse; too fine, and equivalent phrasings appear different. This balance is particularly hard in prac-
tice, yet it is key to obtaining meaningful estimates of semantic uncertainty.

B MUTUAL INFORMATION OVER PROMPTS

Another principled approach to quantifying semantic uncertainty is through mutual information
(MI). Recall that the mutual information between two random variables X and Y is defined as

I(X;Y ) = H[X]− EP (y)

[
H[X | Y = y]

]
= H[Y ]− EP (x)

[
H[Y | X = x]

]
,

where H[·] denotes Shannon entropy. Intuitively, I(X;Y ) measures how much knowing one vari-
able reduces uncertainty about the other.
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In the setting of Bayesian neural networks (BNNs), MI has been widely used as an epistemic uncer-
tainty measure. Specifically, the mutual information between the label y of a new input x and the
model parameters ω, given training data D, is

I(ω; y | D, x) = H[p(y | x,D)]− Ep(ω|D)

[
H[p(y | x, ω)]

]
. (10)

This expression captures the idea that if the model is uncertain about x, then observing its true
label y would substantially reduce uncertainty about the parameters ω. Hence, mutual information
quantifies the potential information gain.

From Bayesian Models to LLMs and LVLMs. For large language models (LLMs) and large
vision-language models (LVLMs), however, we cannot directly access the Bayesian posterior p(ω |
D). Instead, a key source of variability comes from the distribution of prompts provided to the
model. Different textual contexts may highlight different aspects of the same input, leading to
semantically different outputs. To capture this phenomenon, we define an analogous measure of
semantic uncertainty by marginalizing over prompts:

I(C;xtxt | ximg, ω) = H
[
p(C | ximg, ω)

]
− Ep(xtxt)

[
H
(
C | ximg,xtxt, ω

)]
. (11)

Here, C denotes the semantic content of the model’s output, and the marginal predictive distribution
is

p(C | ximg, ω) = Ep(xtxt)

[
p(C | ximg,xtxt, ω)

]
.

Decomposition of Predictive Uncertainty. Equation equation 11 yields a natural decomposition
of the total predictive uncertainty:

H(C | ximg, ω) = Ep(xtxt)

[
H(C | ximg,xtxt, ω)

]
︸ ︷︷ ︸

Intrinsic uncertainty given a fixed prompt

+ I(C;xtxt | ximg, ω)︸ ︷︷ ︸
Uncertainty due to prompt variability

. (12)

This decomposition separates two conceptually distinct contributions:

• The first term measures the expected entropy of predictions given a fixed prompt. It re-
flects uncertainty intrinsic to the task (e.g., label ambiguity, inherent noise) once the textual
context is fixed.

• The second term is the mutual information, which quantifies the additional uncertainty
induced by variability across prompts. This captures how sensitive the model’s semantic
predictions are to prompt phrasing, thereby isolating uncertainty arising from contextual
dependence.
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