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ABSTRACT

LLM watermarks stand out as a promising way to attribute ownership of LLM-
generated text. One threat to watermark credibility comes from spoofing attacks,
where an unauthorized third party forges the watermark, enabling it to falsely
attribute arbitrary texts to a particular LLM. While recent works have demonstrated
that state-of-the-art schemes are in fact vulnerable to spoofing, they lack deeper
qualitative analysis of the texts produced by spoofing methods. In this work, we
for the first time reveal that there are observable differences between genuine and
spoofed watermark texts. Namely, we show that regardless of their underlying ap-
proach, all current learning-based spoofing methods consistently leave observable
artifacts in spoofed texts, indicative of watermark forgery. We build upon these
findings to propose rigorous statistical tests that reliably reveal the presence of such
artifacts, effectively discovering that a watermark was spoofed. Our experimental
evaluation shows high test power across all current learning-based spoofing meth-
ods, providing insights into their fundamental limitations, and suggesting a way to
mitigate this threat.

1 INTRODUCTION

The improving abilities of large language models (LLMs) to generate human-like text at scale
(Bubeck et al., 2023; Dubey et al., 2024) come with a growing risk of potential misuse. Hence,
reliable detection of machine-generated text becomes increasingly important. Researchers have
proposed the concept of watermarking: augmenting generated text with an imperceptible signal that
can later be detected to attribute ownership of a text to a specific LLM (Kirchenbauer et al., 2023;
Kuditipudi et al., 2023; Christ et al., 2024). Major LLM companies have pledged to watermark their
models (Bartz & Hu, 2023), and regulators actively advocate for their use (Biden, 2023; CEU, 2024).
However, recent works have demonstrated targeted attacks on watermarks that allow for removing
the watermark or impersonating it (spoofing) (Sadasivan et al., 2023; Jovanović et al., 2024; Gu
et al., 2024; Zhang et al., 2024). This implies that watermarks are not as robust as initially thought
(Kirchenbauer et al., 2024; Piet et al., 2023).

Red-green watermarks A well-studied class of LLM watermarking schemes are Red-green wa-
termarks. At each step of the generation process, using both a private key ξ and a few previous
tokens (context), the watermark algorithm boosts a subset of green tokens, leaving other (red) tokens
unchanged. Given a text, the detection first computes, using the private key ξ, the color of each token.
A high proportion of green tokens in this color sequence indicates that the text is watermarked.

Spoofing attacks In spoofing attacks, a malicious actor (spoofer) generates text that is detected as
watermarked without knowledge of the private key ξ. Being able to generate spoofed text at scale
poses a serious threat to the credibility of watermarks. Spoofed text can be falsely attributed to the
model provider, causing reputational damage, or used as an argument to evade accountability (Zhou
et al., 2024). Moreover, in the case of multi-bit watermarks that embed client IDs in generated text
(Wang et al., 2024), spoofing attacks can be used to impersonate and incriminate a specific user.
While increasing the context size may seem to be a simple way to counter spoofing, this is generally
not recommended, as it greatly increases the ability of adversaries to remove the watermark from
generated texts (Kirchenbauer et al., 2023; Zhao et al., 2024).

Current state-of-the-art learning-based spoofing techniques adhere to a common pipeline. First, the
malicious actor queries the targeted model to build a dataset D of genuinely watermarked text. Then,
either applying statistical methods (Jovanović et al., 2024), integer programming (Zhang et al., 2024),
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Figure 1: Overview of why spoofed texts contain measurable artifacts. First, in (1), the spoofer
generates a dataset of ξ-watermarked texts from which he learns the watermark. Secondly, in (2),
when generating text, the spoofer is better at sampling a green token if (and only if) the context and
the sampled token are in his training data. This uncertainty introduces artifacts in the spoofed text.
The genuine watermarking algorithm is consistent no matter the context and hence contains no such
artifacts. Lastly, in (3), we build statistical tests for these artifacts to distinguish between spoofed and
ξ-watermarked texts, even if their Z-scores Zξ computed using the watermark detector are the same.

or fine-tuning on watermarked data (Gu et al., 2024), the spoofer learns how to forge the watermark
and can generate watermarked text without additional queries to the original model (Step 1 in Fig. 1).
In prior work, the success of spoofing was systematically measured using the rate of generated texts
that were watermarked, with no qualitative analysis of spoofed texts’ color sequences.

Discovering artifacts in spoofed text In this work we, for the first time, initiate an in-depth study
of spoofed text properties. We show that state-of-the-art learning-based spoofing attacks leave clues
in the generated text that can be used to distinguish between spoofed text and text generated with the
knowledge of the private key (Step 2 in Fig. 1). The high-level intuition behind these clues is that,
at each step of generation, a spoofer has a chance to emit a green token only if the context and that
token are present in their training data D, previously obtained by querying the watermarked model.
If the context is not in D, the spoofer is forced to select the next token independently of its color.
Leveraging such clues, we construct robust statistical tests that can effectively distinguish between
spoofed text and genuine watermarked text generated with the private key (Step 3 in Fig. 1).

Key contributions Our main contributions are:

• We provide the first in-depth analysis of artifacts in spoofed text, stressing common limita-
tions of state-of-the-art LLM watermark spoofing methods on Red-green schemes (§3).

• We design rigorous statistical tests to practically distinguish between spoofed texts (produced
by a learning-based method) and genuine watermarked texts (§4).

• We provide extensive validation of our test hypotheses and empirically show that our tests
achieve arbitrarily high power given a long enough text (§5).

2 BACKGROUND

Given a sequence of tokens (text) from a vocabulary Σ, an autoregressive language model (LM)M
outputs a logit vector l of unnormalized next-token probabilities, used to sample the following token.
LM watermarking is a process of embedding a signal within the generated text ω using a private
key ξ (often by modifying l or the sampling procedure, see below and §6), such that this signal is
later detectable by any party with access to ξ. In particular, a watermark detector Dξ : Σ∗ → {0, 1}
implements a statistical test with the null hypothesis “the given text was produced with no knowledge
of ξ”. Dξ(ω) = 1 implies that the null hypothesis was rejected, i.e., the text ω is watermarked.

Red-green watermarks We focus on the well-studied class of Red-green watermarks, introduced
by Kirchenbauer et al. (2023); we review relevant follow-up work in detail in §6. Let ωt ∈ Σ be
the token generated by the LM at step t, h ∈ N the watermark’s context size (we refer to h previous
tokens ωt−h:t−1 as the context), ξ ∈ N the watermark’s private key, H : Σh → N a hash function,
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PRF : N×N→ P(Σ) a pseudorandom function, and γ, δ ∈ R watermark parameters. At each step
t, PRF uses the hash of the context H(ωt−h:t−1) and the private key ξ to partition the vocabulary Σ
into two colors, γ|Σ| green tokens (greenlist) and the remaining red tokens (redlist), where γ is the
watermark parameter. To insert the watermark, we modify the logit vector lt by increasing the logit of
each green token by δ > 0. While many hash functions H have been proposed (Kirchenbauer et al.,
2024), we focus on two variants proposed in Kirchenbauer et al. (2023): SumHash and SelfHash.

The shift by δ increases the ratio of green tokens in generated text, which is detectable by the
detector. Namely, given a text ω ∈ ΣT , the watermark detector Dξ determines the number of green
tokens ngreen and computes the Z-statistic Zξ(ω) = (ngreen − γT )/

√
Tγ(1− γ), which under the

null hypothesis follows a standard normal distribution. Finally, Dξ(ω) = 1 (i.e. ω is considered
watermarked) if Zξ(ω) > ρ. As in Kirchenbauer et al. (2023), we set ρ = 4.

Watermark spoofing Recent work studies spoofing attacks (Sadasivan et al., 2023), whose goal
is to reverse-engineer the watermark enough to be able to induce false positives in the watermark
detector, i.e., generate watermarked texts without access to the private key ξ. So far, there are two
approaches that generalize across Red-green schemes, have the ability to generate arbitrary amounts of
diverse spoofed text in a cost-effective way, and are applicable in realistic setups: Stealing (Jovanović
et al., 2024) and sampling-based Distillation (Gu et al., 2024) (see §6 for a discussion of other related
work, and App. I for a broader discussion regarding the field of watermark spoofing).

Both methods query the watermarked modelM to generate a datasetD of watermarked text. Stealing
approximately infers the vocabulary splits by comparing frequencies of tokens in D (conditioned
on the same context) with human-generated text, and uses this information to generate spoofed text
using an auxiliary LM. In contrast, Distillation directly fine-tunes an auxiliary LM on D, effectively
distilling the watermark into the model weights. After the respective stealing/distillation procedure,
both methods can generate an arbitrary number of spoofed texts with high success rate, i.e., fraction of
spoofing attempts that result in high-quality (e.g., low perplexity) text that is detected as watermarked
by Dξ. Importantly, with such learning-based methods, it is possible to generate spoofed text with
no additional queries to the watermarked model, making these methods practical.

In the following, we refer to watermarked text generated by such methods as spoofed, and use
ξ-watermarked to refer to genuine watermarked text, produced usingM and the private key ξ.

3 CAN SPOOFING ATTEMPTS BE DISCOVERED?

In this section, we discuss discoverability of spoofing, introduce the problem statement of distinguish-
ing ξ-watermarked and spoofed texts, and formalize it within a hypothesis testing framework (§3.1).
We then describe the intuition behind our approach (§3.2), that we later present in detail in §4.

3.1 PROBLEM STATEMENT

As previously discussed, current spoofing methods (spoofers) are evaluated in terms of their success
rate at generating high-quality watermarked text. We aim to initiate a deeper qualitative study of
spoofers, trying to get better insight into how well they mimic watermarked texts, beyond simply
fooling watermark detectors. Our hypothesis is that due to the bottleneck of learning from a dataset of
watermarked text of limited size, these spoofers, despite adopting fundamentally different approaches,
may all leave similar artifacts in spoofed texts. In particular, we ask:

Do learning-based spoofing techniques leave discoverable artifacts in generated texts?

Showing existence of such artifacts would provide valuable insight into the shared limitations of
current state-of-the-art watermark spoofers. Moreover, reliably identifying them would enable us to
distinguish between ξ-watermarked and spoofed texts, lowering the effective accuracy of spoofers,
without compromising other desirable properties, as is often the case when trying to specifically
design watermarking schemes more resistant to spoofing (see §6).

Concretely, we assume the perspective of the model provider with a private key ξ and a modelM.
We receive a text ω ∈ ΣT that is flagged as watermarked by our detector Dξ, and aim to decide
whether it was generated using our private key ξ, or by a spoofing method. Our threat model also
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includes the case where we receive a set of texts from the same source, whose concatenation we
denote as ω ∈ ΣT for simplicity (see the bottom of §4.2 for details). We assume that our private key
ξ was not simply leaked; else, spoofed texts are hardly distinguishable from ξ-watermarked texts.

Formalization Determining whether a text ω was spoofed can be formulated within the hypothesis
testing framework as follows:

H0 : The text ω is ξ-watermarked. H1 : The text ω is spoofed. (1)

We introduce the random variable Ω ∈ ΣT and the received text ω ∈ ΣT is a realization of Ω. We note
that the distribution of Ω under the null hypothesis and its distribution under the alternative hypothesis
are different. Similarly, let X ∈ {0, 1}T be the associated sequence of (non-i.i.d.) Bernoulli random
variables, where Xt = 1 represents the event where the token t is green, and let x ∈ {0, 1}T be the
observed color of ω under Dξ (realization of X). In this hypothesis testing framework, the challenge
is to build a statistic S(Ω) that satisfies two key properties. First, the distribution of S(Ω) under
the null hypothesis should be known in order to rigorously control the Type 1 error. Second, the
distributions of S(Ω) under the null and S(Ω) under the alternative should be different, enabling us
to distinguish spoofed and ξ-watermarked texts.

3.2 ARTIFACT: DEPENDENCE BETWEEN THE COLOR SEQUENCE AND THE CONTEXT

In this section, we explain why spoofed texts contain observable artifacts, as illustrated in Fig. 1.

A simple example To expand on this intuition, we start by considering an example of a perfect
spoofer that produced the text ω ∈ ΣT , and knows the color of a token ωt, if and only if ωt−h:t ∈ D,
where D is the training data of the spoofer. Otherwise, if ωt−h:t 6∈ D, we assume that the spoofer
has chosen ωt independently of its color. Let ID : Σh+1 → {0, 1} be the indicator function of the
presence of a (h+ 1)-gram in D. ID can be interpreted as the knowledge the spoofer has over the
vocabulary splits. From above, we can assume that for all t ∈ {h+ 1, . . . , T}:

P (Xt = 1|ID(Ωt−h:t) = 1) ≥ P (Xt = 1|ID(Ωt−h:t) = 0) if the text is spoofed; (2a)
P (Xt = 1|ID(Ωt−h:t) = 1) = P (Xt = 1|ID(Ωt−h:t) = 0) if the text is ξ-watermarked. (2b)

Eqs. (2a) and (2b) reflect that the knowledge of the vocabulary split at token t helps the spoofer to
color ωt green, which is its original goal. For a ξ-watermarked text, the knowledge of a potential
spoofer has no influence on its coloring. Hence, we may be able to use ID to distinguish whether a
sentence is spoofed or not. We now generalize this intuition to more realistic spoofing scenarios.

Color sequence depends on the context distribution In practice, learning how to spoof may
require observing an (h+ 1)-gram multiple times. Moreover, spoofing techniques may, albeit not
necessarily explicitly, have different levels of certainty regarding the color of a token given a context.
Therefore, we generalize ID : Σh+1 → [0, 1] to be the function of the frequencies of (h+ 1)-grams
in D. We make a natural assumption that the higher the frequency of ωt−h:t in D, the more certain a
spoofer is regarding the color of the token ωt. For now, we will also assume that for each token in
ξ-watermarked text, ID is independent of its observed color. For ∀t ∈ {h+ 1, . . . , T}, we assume:

Xt is not independent from ID(Ωt−h:t), if the text is spoofed; (3a)
Xt is independent from ID(Ωt−h:t), if the text is ξ-watermarked. (3b)

This dependence between the color and ID(Ωt−h:t) results in spoofing artifacts under the alternative.

Influence of the LM Counterintuitively, the independence assumed in Eq. (3b) may be violated.
To generate ωt, the model provider first computes the logit vector lt knowing ω<t. Then, it computes
the greenlist defined by PRF (H(ωt−h:t−1), ξ), and increases the logits of green tokens by δ. Finally,
it samples from the newly defined probability distribution to generate the token ωt. The greenlist
itself is thus indeed independent of ID(Ωt−h:t). Yet, lt was originally computed using ω<t due to the
autoregressive property of the modelM, and hence may not be independent of ID(Ωt−h:t).

To illustrate this point, consider a case where the token wt is the only viable continuation of ωt−h:t−1,
i.e., lt is low-entropy. Then, Bayes’ theorem implies that ID(ωt−h:t) is likely to be high. On the other
hand, the logit increase of δ has less influence on the sampling, as it is less likely to cause a token
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other than wt to be sampled—thus, the color of wt is effectively random, i.e., P (Xt = 1) ≈ γ, even
for ξ-watermarked text. Hence, the events P (Xt = 1) ≈ γ and ID(Ωt−h:t) is high, are correlated, as
they occur simultaneously in case of low entropy. We investigate this dependence pattern due toM
and confirm it experimentally in more detail in App. C.

With this in mind, to properly control for Type 1 error, we need to design a test statistic S where
this dependence pattern is known or can be learned for ξ-watermarked texts. Moreover, to maintain
power, we aim to distinguish this dependence from the dependence present in the case of spoofed
text, as described above, building on intuition of Eqs. (3a) and (3b).

4 DESIGNING A TEST STATISTIC

We proceed to introduce our test statistic S, deriving fundamental results regarding its distribution
under the independence assumption from Eq. (3b), and in the more general case where it may be
violated (§4.1). Then, we present two concrete instantiations of S and discuss their trade-offs (§4.2).

4.1 CONTROLLING THE DISTRIBUTION

We introduce the main results regarding the distribution of S(Ω) under the null hypothesis.

Color-score correlation Let ω ∈ ΣT , sampled from Ω, denote the text of length T received by the
model provider, x ∈ {0, 1}T , sampled from X , denote its color sequence under Dξ, and y ∈ [0, 1]T

denote a sequence of scores for each token sampled from a sequence of T random variables Y . We
defer the construction of Y to §4.2, where we will build on the intuition from §3.2. As the test
statistic, we use the sample Pearson correlation coefficient between x and y, defined as

S(ω) =

∑T
t=1(xt − x̄)(yt − ȳ)√∑T

t=1(xt − x̄)2
∑T
t=1(yt − ȳ)2

. (4)

Independence case We first study the distribution of S(Ω) under the assumption that Xi and Yi
are independent for all i, as in Eq. (3b) (we refer to this as cross-independence between X and Y ).
From this assumption, we derive the following result:
Lemma 4.1. Under the cross-independence between X and Y , and additional technical assumptions
(detailed in App. H), we have the convergence in distribution

ZS(Ω) :=
√
TS(Ω)

d−→ N (0, 1) .

We defer the proof to App. H for brevity. Therefore, given a text ω, we can compute a p-value using a
two-sided Z-test on the statistic ZS(ω), which is sampled from a standard normal distribution. We
will refer to this test as the Standard method.

General case In practice, however, the cross-independence assumption between X and Y does
not always hold (see §3.2). We make a modeling assumption motivated by the results from the
independent case. Let µΩ := E[S(Ω)]. Under the null hypothesis (and the practical considerations
outlined below), we assume that √

TS(Ω) ∼ N (µΩ, 1). (5)
Compared to Lemma 4.1, the difference is that the normal distribution is offset by µΩ. This introduces
a key challenge: finding a way to estimate µΩ. To this end, we propose to use ω≤c, a prefix of ω of
length c, to prompt our modelM to generate a new sequence ω′ of length T ′ := T − c (which is a
realization of Ω′). In practice, we set c = 25. Given the shared prefix, we expect that Ω>c ∼ Ω′ and
hence that E[S(Ω>c)] = E[S(Ω′)] = µΩ. Then we introduce the statistic ZR(Ω,Ω′), defined by

ZR(ω, ω′) =
S(ω>c)− S(ω′)√
1/(T − c) + 1/T ′

. (6)

Under the null hypothesis, we have that ZR(Ω,Ω′) ∼ N (0, 1), as S(ω>c) and S(ω′) are two
independent samples from a normal distribution. Therefore, in the general case, at the cost of higher

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

computational complexity (since we need to use the model to generate the new text), we can, as in the
independent case, compute a p-value using a Z-test on the statistic ZR(ω, ω′), which is sampled from
a standard normal distribution. We later refer to this test as the Reprompting method. For consistency,
in Reprompting experiments in §5, we use T to implicitly refer to T − c.

4.2 CONCRETE INSTANTIATIONS

In this section we instantiate the score sequence Y and propose practical modifications to S.

Construction of the token score We propose two instantiations of the score function Y : one that
closely follows the intuition from §3.2, and another that aims to achieve the independence assumption
from Lemma 4.1. Achieving cross-independence allows the construction of a test that does not
require reprompting the model, hence reducing computational complexity.

N-gram score For the first instantiation, the idea is to directly approximate ID, the function of
(h+ 1)-grams frequencies in D. As D is not known to the model provider, we approximate it with a
text corpus D̃. Assuming that the spoofer training distribution D is distributed similarly to natural
language, we use as D̃ a corpus of random human generated text. We define

yt := ID̃(ωt−h:t). (7)

In practice, we use C4 (Raffel et al., 2020) as D̃. We study the influence of the choice of D̃ in App. D.
Finally, to reduce the required size of D̃ needed to obtain a good estimate of ID, we compute the
frequency of unordered (h+ 1)-grams. Because the independence assumption from Lemma 4.1 is
not met in this case (see §5.1), we use the Reprompting method with this score. We later refer to this
specific score as (h+ 1)-gram score.

Unigram score For the second instantiation, the intuition is to trade-off between cross-
independence and reflecting ID. Let f : Σ→ [0, 1] be the unigram frequency in human generated
text. We define

yt := f(ωt−h). (8)
We look at the unigram frequency the furthest away from t in order to make the dependence between
X and Y negligible. Yet, we remain within the context window so that yt partially reflects the
information from ID(ωt−h:t) and hence still allows distinguishing spoofed and ξ-watermarked texts.
We see in §5.1 that the cross-independence assumption is satisfied for SumHash with h = 3. Hence,
in settings where the cross-independence is verified, we use this score with the Standard method. We
later refer to this specific score as unigram score.

Practical considerations In practice, we add modifications to the statistic S. First, as suggested in
Kirchenbauer et al. (2023), we ignore repeated h-grams in the sequence ω. This is required to enforce
the independence assumption withinX and the independence within Y . Second, to limit the influence
of outliers on the score, we use the Spearman rank correlation instead of the Pearson correlation and
further apply a Fisher transformation. This means that in Eq. (19), x and y are respectively replaced
by R(x) and R(y), where R is the rank function. Hence, the statistic used in practice is defined as

S(ω) = arctanh

 ∑T
t=1(R(x)t −R(x))(R(y)t −R(y))√∑T

t=1(R(x)t −R(x))2
∑T
t=1(R(y)t −R(y))2

 . (9)

Therefore, we also use the variance
√

1.06
T−3 instead of

√
1
T to reflect the influence of the rank function,

as suggested in Fieller et al. (1957) for the i.i.d. case.

Combining texts Given a set of texts from a single source, we concatenate all its elements to
create a single text of size T . In particular, let n ∈ N and ω1, · · · , ωn ∈ ΣT1 × · · · × ΣTn such that
T1 + · · · + Tn = T for a given T . For the Standard method, we set ω := ω1 ◦ · · · ◦ ωn. For the
Reprompting method, we compute ω′1, · · · , ω′n independently enforcing T ′i = Ti − c and then set
ω′ := ω′1 ◦ · · · ◦ ω′n and define ω>c := ω1

>c ◦ · · · ◦ ωn>c. We verify experimentally in App. B that the
concatenation operation has no influence on the distribution of the statistic. Our experiments with
large T in §5 are thus generally conducted on concatenated texts.
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Figure 2: Histograms of ZS(Ω) (top) and ZR(Ω,Ω′) (bottom), with y-axes scaled to represent
normalized density. The top row is computed using the unigram score and the Standard method, and
the second row is computed using the (h+ 1)-gram score and the Reprompting method. A green line
indicates that the N (0, 1) hypothesis is not rejected (top p-value), an orange line that a normality test
is not rejected (bottom p-value), and a red line that both are rejected at a 5% significance level.

5 EXPERIMENTAL EVALUATION

We present the results of our experimental evaluation. In §5.1, we validate the normality assumptions
from §4.1. In §5.2, we validate the control of Type 1 error and evaluate the power of the tests from §4
on both spoofing techniques introduced in §2: Stealing (Jovanović et al., 2024) and Distillation (Gu
et al., 2024). In §5.3, we compare the test results across a wider range of spoofer LMs. In App. A, we
show additional results with a different watermarked modelM, parameter combinations, and another
prompt dataset. In App. F, we show additional results on two additional watermarking schemes,
namely AAR (Aaronson, 2023) and KTH (Kuditipudi et al., 2023), which only Distillation can spoof.

Experimental setup We primarily focus on the KGW SumHash scheme, using a context size
h ∈ {1, 2, 3} and γ = 0.25. For h ∈ {1, 2}, we set δ = 2. For h = 3, we use δ = 4 for Stealing
to ensure high spoofing rates and note that Distillation is unable to reliably spoof in this setting,
and therefore is excluded from our h = 3 experiments. In each experiment, we generate either
spoofed or ξ-watermarked continuations of prompts sampled from the news-like C4 dataset (Raffel
et al., 2020), following the methodology from prior work of Kirchenbauer et al. (2023). For each
parameter combination, we generate 10,000 continuations, each being between 50 and 400 tokens
long. Then, we concatenate continuations (see §4.2) to reach the targeted token length T . Finally,
each concatenated continuation is filtered by the watermark detector, and only watermarked sequences
are kept. We use those concatenated continuations to compute the test statistic S. In practice, we
therefore have on average a total of 106/T samples per parameter combination.

We match the experimental setup from Jovanović et al. (2024) and Gu et al. (2024). In particular, we
use LLAMA2-7B as the watermarked model. More specifically, in line with their original setups, we
use the instruction fine-tuned version for Stealing and the completion version for Distillation. For the
spoofer LM, we use MISTRAL-7B as the attacker for Stealing and PYTHIA-1.4B as the attacker for
Distillation. Finally, for the spoofer training data D, we use ξ-watermarked completions of C4 texts.
For Stealing, D is composed of 30,000 samples, each 800 tokens long, whereas for Distillation, D is
composed of 640,000 samples, each 256 tokens long. We further study the impact of |D| in App. E.

5.1 VALIDATING THE NORMALITY ASSUMPTION

In §4 we discuss two cases, each relying on one fundamental assumption. The Independence case:
we assume independence between the color sequence X and scores Y , from which we derive the
normality of S(Ω) with a known mean (Lemma 4.1). For this case, we use the Standard method
with the unigram score (Eq. (8)). The General case: we alternatively assume that S(Ω) is normally
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Figure 3: Experimental rejection rate of ξ-watermarked text on LLAMA2 7B.

distributed with an unknown mean (Eq. (5)). Here, we use the Reprompting method with the (h+ 1)-
gram score (Eq. (7)). In Fig. 2, we test the Independence case assumption by validating if ZS(Ω)
with the Standard method and unigram score follows a standard normal distribution (Top), and the
General case assumption by validating the same for ZR(Ω,Ω′) with the Reprompting method and
(h+ 1)-gram score (Bottom). We additionally perform both a Kolmogorov-Smirnov test for standard
normality and a Pearson’s normality test (not necessarily with a centered mean and unit variance).

Regarding the Independence case, we see that in the top row, ZS(Ω) follows a standard normal
distribution only for h = 3. This confirms our intuition behind the unigram score: as h increases,
the dependency between Xt and f(Ωt−h) becomes negligible. Hence, for h = 3, we may use the
Standard method with the unigram score, which does not require prompting our model.

For the General case, we see in the bottom row that the histogram approximately matches the standard
normal distribution for h = 2, 3 and that the normality assumption holds for h = 1. Overall, these
results suggest that the assumptions behind the Reprompting method are sound, allowing it (with the
(h+ 1)-gram score) to be used for all tested parameter combinations. Therefore, all results in §5.2 are
computed with the Reprompting method and (h+ 1)-gram score, except for h = 3 where both the
Reprompting method with (h+ 1)-gram score and the Standard method with unigram score are used.

5.2 EVALUATING THE SPOOFING DETECTION TESTS

To ensure the statistical test is sound, we check whether the Type 1 error rate is properly controlled.
This means that, under the null, letting p be the resulting p-value, for all rejection rates α ∈ [0, 1],

P (p ≤ α) ≤ α. (10)

We further evaluate the test power on Stealing and Distillation, i.e. how effective it is at distinguishing
spoofed text from ξ-watermarked text. Additionally, we show in App. G that the Type 1 error rate
remains properly controlled in the case of ξ-watermarked text that has been edited by humans.

Type 1 error To evaluate Type 1 error, we compare the experimental rejection rate under the null
hypothesis against the set rejection rate α. According to Eq. (10), if the test properly controls Type 1
error, we expect the resulting curve to be below the identity function.

In Fig. 3, we show the experimental rejection rate of ξ-watermarked text on LLAMA2-7B (both
instruction fine-tuned and completion models) for different values of h and T . We observe that the
experimental rejection rates align closely with the identity function. Specifically, for h = 3, both the
Reprompting method with (h+ 1)-gram score and the Standard method with unigram score align
with the identity. These results show that, in practice, setting a rejection rate of α guarantees that the
experimental False Positive Rate of the test is indeed α.

Test power To evaluate the power of the test, we compute the empirical true rejection rate (i.e.,
TPR) under the alternative hypothesis for a given threshold α.

In Table 1, we provide the experimental False Positive Rate (FPR, rejection under the null) and True
Positive Rate (TPR, rejection under the alternative) for a fixed value of α. For T = 3000, under all
tested scenarios, we achieve more than 90% TPR at a rejection rate of 1%. This suggests that, given
a long enough text (or concatenation of text), spoofed text from both state-of-the-art methods can be
distinguished from ξ-watermarked text with high accuracy and reliable control over the false positive
rate. Moreover, we see that the Reprompting method yields higher power than the Standard method
for all values of T . Yet, the Standard method, in the cases where it is applicable, is computationally
more efficient as it does not require prompting the modelM, and thus may still be preferable.
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Figure 4: Experimental True Positive Rate of spoofed text. The dotted lines are the identity and serve
as a reference for the expected rejection rate under the null. Since, in practice, a low false positive
rate (α) is desirable, the logarithmic scale on α highlights the true positive rate at low α values.
Table 1: Experimental FPR and TPR for both spoofers at α ∈ {1%, 5%}, for different h and T . h = 3
(R) denotes the Reprompting method with (h+ 1)-gram score while h = 3 (S) denotes the Standard
method with unigram score. All other entries are for the Reprompting method with (h+ 1)-gram
score. There are no results for Distillation with h = 3 as it is unable to reliably spoof in this case.

T = 500 T = 1000 T = 2000 T = 3000

Spoofer
FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

STEALING

h = 1 0.00 0.62 0.04 0.81 0.00 0.93 0.04 0.99 0.01 1.00 0.05 1.00 0.01 1.00 0.07 1.00
h = 2 0.01 0.16 0.04 0.35 0.00 0.37 0.04 0.59 0.01 0.73 0.05 0.88 0.01 0.91 0.04 0.97
h = 3 (R) 0.01 0.47 0.05 0.73 0.01 0.85 0.05 0.95 0.01 0.99 0.05 1.00 0.01 1.00 0.06 1.00
h = 3 (S) 0.01 0.27 0.05 0.53 0.01 0.55 0.04 0.80 0.01 0.88 0.03 0.97 0.00 0.97 0.03 1.00

DISTILLATION
h = 1 0.01 0.48 0.04 0.71 0.01 0.86 0.05 0.96 0.01 1.00 0.06 1.00 0.01 1.00 0.03 1.00
h = 2 0.01 0.57 0.06 0.78 0.01 0.91 0.06 0.97 0.01 1.00 0.05 1.00 0.00 1.00 0.07 1.00

Additionally, in Fig. 4, we show the evolution of the TPR with respect to α. We observe that for any
fixed α ∈ [0, 1], the power at α converges to 1 as T grows. This indicates that the test can achieve
arbitrary TPR at α, given sufficiently long text. Also, we see that despite the fundamental differences
between the two spoofing techniques, the texts produced by both Stealing and Distillation can be
reliably distinguished with the same test. This highlights that the intuition behind our approach (§3.2)
is general and that it points to a fundamental limitation of current spoofing techniques.

5.3 INFLUENCE OF THE SPOOFER MODEL

0 1000 2000 3000 4000 5000
T

2

4

6

8

[Z
R
(

,
′ )]

Mistral-7B
Llama2-7B
Gemma-2B
Llama2-7B
Pythia-1.4B

Figure 5: Evolution of E[ZR(Ω,Ω′)]
for different spoofer LMs with T .

In this section, we run our tests on SumHash with h = 2,
using for Stealing LLAMA2-7B, MISTRAL-7B and GEMMA
2B, and for Distillation LLAMA2-7B and PYTHIA-1.4B. Un-
like §5.1 and §5.2, the results are computed with on average
105/T samples per parameter combination.

In Fig. 5, we show the evolution of the expected value of
ZR(Ω,Ω′) for spoofed texts with respect to T , across differ-
ent spoofer LMs. We see that the evolution of the average
Z-score is similar across all models, as well as for both spoof-
ing techniques. This suggests that the choice of the spoofer
LM has almost no influence on the test power.

Additionally, in Table 2, we show the FPR and TPR for the 5 spoofer LMs tested. For T = 2000, we
obtain similar results across all models, with a TPR at 1% of at least 60% for Stealing and 100% for
Distillation, similar to the results from §5.2. Moreover, counterintuitively, a spoofer using the same
model as the model owner does not significantly lower the test power. This suggests that the artifacts
we are detecting in spoofed text indeed reflect the lack of knowledge of the spoofer (§3.2), and not
the difference between the LM used by the spoofer and the LM used by the model provider.

6 RELATED WORK

Watermarks for LLM In the class of distribution-modifying watermarks (Kirchenbauer et al.,
2023), many schemes have built on the core idea of red-green vocabulary splits (Kirchenbauer et al.,
2024; Zhao et al., 2024; Lee et al., 2023; Wu et al., 2023; Yoo et al., 2024; Fernandez et al., 2023;
Liu et al., 2023; Fairoze et al., 2023; Ren et al., 2024; Lu et al., 2024; Guan et al., 2024; Zhou et al.,

9
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Table 2: Experimental FPR at α = 1% and α = 5% with SumHash h = 2, across spoofer LMs. Bold
corresponds to the case where both the spoofer and watermarked models are the same.

T = 200 T = 500 T = 1000 T = 2000

Experiment Spoofer LM
TPR
@1%

TPR
@5%

TPR
@1%

TPR
@5%

TPR
@1%

TPR
@5%

TPR
@1%

TPR
@5%

STEALING

LLAMA2-7B 0.07 0.16 0.14 0.34 0.36 0.62 0.68 0.88
GEMMA-2B 0.02 0.17 0.09 0.32 0.29 0.52 0.61 0.82

MISTRAL-7B 0.05 0.16 0.16 0.35 0.37 0.59 0.73 0.88

DISTILLATION
LLAMA2-7B 0.20 0.46 0.60 0.80 0.94 0.99 1.00 1.00
PYTHIA-1.4B 0.27 0.55 0.57 0.78 0.91 0.97 1.00 1.00

2024). Another prominent approach to LLM watermarking are distortion-free watermarks (Christ
et al., 2024; Kuditipudi et al., 2023; Hu et al., 2024) that aim to preserve the distribution of the LM.

Watermark spoofing Spoofing attacks are considered a threat to watermarks as they can lead to
falsely attributing text ownership to a model provider. Sadasivan et al. (2023) presented a proof-
of-concept where a dataset is generated by querying the watermarked model, and then used to
approximately reverse-engineer the watermark scheme, but did not provide a practically validated
method. Follow-up works Jovanović et al. (2024) and Zhang et al. (2024) expanded on this idea, to
develop practical methods for spoofing Red-green watermarks. While Jovanović et al. (2024) works
across multiple watermarking schemes, Zhang et al. (2024) is restricted to the unigram scheme (Zhao
et al., 2024). Additionally, Gu et al. (2024) introduced an alternative spoofing method which distills
the watermark into the model weights by fine-tuning a model on a dataset of ξ-watermarked text.

Additionally, works such as Wu & Chandrasekaran (2024) do not focus explicitly on spoofing but
could be adapted to the spoofing scenario. However, in contrast with the above spoofers which can
produce arbitrarily many spoofed texts once the watermark is forged, such approaches have practical
limitations as they require additional queries to the watermarked model at each step of spoofing,
inflating the computational cost. Moreover, another range of spoofing attacks are “piggyback spoofing
attacks” (Pang et al., 2024), where an attacker substitutes a few tokens in a genuinely watermarked
sentence to produce a spoofed sentence, simply using the robustness of the watermarking scheme.
Piggyback spoofing attacks lack flexibility to produce arbitrary text as they rely on the targeted model
for generation. Finally, there are attempts to design schemes that are more resistant to spoofing (Zhou
et al., 2024), which often comes at the cost of other desirable scheme properties such as text quality.

Broader work on LLM watermarking Other directions in the realm of LLM watermarking
includes scrubbing attacks (Jovanović et al., 2024; Wu & Chandrasekaran, 2024; Chang et al., 2024),
detection of the presence of a watermark (Tang et al., 2023; Gloaguen et al., 2024), and attempts to
imprint the watermark into the model weights (Li et al., 2024; Creo & Pudasaini, 2024).

7 CONCLUSION

In this work, building upon the intuition that spoofed text contains artifacts reflecting the partial
knowledge of the spoofer, we successfully constructed rigorous statistical tests to distinguish between
spoofed and genuine watermarked texts. The tests behave similarly across the two fundamentally
different spoofers studied, and across a wide range of watermark settings. Our results show that
spoofed text can be reliably distinguished from genuine watermarked text, with arbitrary accuracy
given a long enough text, and highlight shared limitations of current learning-based spoofers.

Limitations While we can provide an experimental evaluation of power on current state-of-the-art
spoofers, the proposed tests come with no theoretical guarantee of power. We build our tests on
reasonable assumptions regarding the limitations of learning-based spoofing techniques. Yet, we
hypothesize that spoofing techniques that adaptively learn the vocabulary split may avoid leaving
similar artifacts in generated text. Designing such attacks can be an interesting path for future work.
Additionally, to have high power, our tests require that the total length of the input texts is not too
small. Future work could try to improve the efficiency of our method from this perspective.
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REPRODUCIBILITY STATEMENT

All technical details needed to reproduce the experiments are given in §3.2. Furthermore, each
experiment both in §5 and App. A–C is introduced in detail with all parameters explicitly provided to
ensure reproducibility. The theoretical result from §4.1, Lemma 4.1, is proven in App. H, where we
also recall the main statistical results (Theorem H.1 and Theorem H.2) that are used in the proof.
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Table 3: Experimental FPR and TPR for Stealing and Distillation using Dolly instead of C4 as the
basis for the generation of ω. The row h = 3 (R) corresponds to the Reprompting method with
(h+ 1)-gram score whereas h = 3 (S) corresponds to the Standard method with unigram score. Else
only the Reprompting method with (h+ 1)-gram score is used.

T = 200 T = 500 T = 1000

Spoofer
FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

STEALING

h = 1 0.00 0.12 0.00 0.28 0.00 0.41 0.02 0.67 0.00 0.80 0.01 0.92
h = 2 0.00 0.03 0.04 0.15 0.00 0.12 0.04 0.28 0.01 0.34 0.08 0.50
h = 3 (R) 0.01 0.25 0.03 0.42 0.02 0.51 0.05 0.81 0.01 0.87 0.05 0.97
h = 3 (S) 0.00 0.16 0.02 0.43 0.00 0.27 0.02 0.51 0.01 0.48 0.04 0.75

DISTILLATION
h = 1 0.01 0.14 0.05 0.33 0.00 0.42 0.02 0.64 0.00 0.69 0.02 0.83
h = 2 0.02 0.12 0.07 0.27 0.01 0.36 0.07 0.59 0.02 0.67 0.07 0.84

Table 4: Experimental Rejection Rate (RR) for Stealing with SelfHash and h = 3 for both ξ-
watermarked text and spoofed text.

T = 200 T = 500 T = 1000 T = 2000

Experiment Method Spoofer LM
RR

@1%
RR

@5%
RR

@1%
RR

@5%
RR

@1%
RR

@5%
RR

@1%
RR

@5%

ξ-watermarked
Reprompting / 0.01 0.04 0.00 0.03 0.00 0.01 0.00 0.03

Standard / 0.00 0.03 0.00 0.02 0.01 0.02 0.00 0.01

STEALING

Reprompting
LLAMA2-7B 0.12 0.30 0.31 0.59 0.70 0.90 0.99 1.00
GEMMA-2B 0.14 0.30 0.45 0.73 0.83 0.93 1.00 1.00

MISTRAL-7B 0.10 0.29 0.38 0.63 0.79 0.93 1.00 1.00

Standard
LLAMA2-7B 0.03 0.13 0.06 0.20 0.11 0.35 0.32 0.63
GEMMA-2B 0.03 0.14 0.07 0.26 0.15 0.40 0.36 0.62

MISTRAL-7B 0.05 0.22 0.15 0.39 0.35 0.63 0.74 0.88

A ADDITIONAL EXPERIMENTAL RESULTS

In this section, we conduct several thorough ablation studies. We evaluate the test using a different
dataset as base prompts (App. A.1), with a different variation of the watermark scheme (App. A.2),
and using another watermarked model (App. A.3). In all tested additional settings, the results are
similar to those presented in §5, which emphasizes the validity of the test and shows that the spoofing
artifacts studied are a fundamental property of learning-based spoofers.

Unlike in §5, we generate 1,000 continuations per parameter combination for the ablation study. It
means that on average we have 105/T samples per parameter combination.

A.1 MITIGATING POTENTIAL METHODOLOGICAL BIASES

Here, we use the same settings as §5 (Stealing and Distillation with SumHash, different values of h,
and for h = 3, both the Reprompting and Standard methods), but use text continuations of prompts
sampled from Dolly (Conover et al., 2023) instead of the C4 dataset. We show that the methodology
used to generate the spoofed and ξ-watermarked texts has no influence on the results.

In Table 3, we show the experimental FPR and TPR at α of 1% and 5%. The results are similar to
those on C4 from Table 1: the Type 1 error is controlled, and the power is similar. This suggests that
the methodology we use to generate the prompts does not influence the results. Hence, we can expect
that for most texts ω, the empirical results presented hold, and that if ω is spoofed, the spoofer’s
artifacts remain present and discoverable.
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Table 5: Experimental Rejection Rate (RR) for Stealing with MISTRAL7B asM at α of 1% and 5%
on both ξ-watermarked text and spoofed text.

T = 200 T = 500 T = 1000 T = 2000

Experiment Method Spoofer LM
RR

@1%
RR

@5%
RR

@1%
RR

@5%
RR

@1%
RR

@5%
RR

@1%
RR

@5%

ξ-watermarked
Reprompting / 0.02 0.05 0.03 0.08 0.00 0.04 0.00 0.02

Standard / 0.01 0.04 0.01 0.02 0.00 0.02 0.00 0.02

STEALING

Reprompting
LLAMA2-7B 0.45 0.73 0.89 1.00 0.99 1.00 1.00 1.00
GEMMA-2B 0.48 0.90 0.97 1.00 1.00 1.00 1.00 1.00

MISTRAL-7B 0.59 0.81 0.97 1.00 1.00 1.00 1.00 1.00

Standard
LLAMA2-7B 0.19 0.41 0.25 0.60 0.45 0.79 0.83 0.95
GEMMA-2B 0.21 0.48 0.40 0.66 0.64 0.81 0.85 0.96

MISTRAL-7B 0.27 0.55 0.70 0.88 0.94 0.99 0.99 1.00

A.2 RESULTS FOR THE SELFHASH SCHEME

Next, we focus on SelfHash with h = 3 and δ = 4 for Stealing. We use both the Reprompting and
the Standard method with their respective score functions (§4.2).

In Table 4, we show the experimental FPR at α = 1% and α = 5% for ξ-watermarked and
spoofed text. Similarly to the SumHash variant, the Type 1 error is properly controlled for both the
Standard and the Reprompting methods. Moreover, the empirical power scaling with T is similar
to the SumHash scheme from Table 1. This means that the spoofing artifacts are not tied to a
specific scheme, but rather represent a fundamental limitation of learning-based watermark spoofing
techniques such as Stealing and Distillation. Additionally, we also see that the power of the Standard
method at a fixed T is lower than that of the Reprompting method. This confirms the expected
trade-off of the unigram score: enforcing cross-independence is traded for power (§4.2).

A.3 ALTERNATIVE WATERMARKED MODEL

In this experiment, we use MISTRAL-7B as the watermarked modelM for SumHash at h = 3 on
Stealing. We do not use a differentM for Distillation, as Distillation was only empirically validated
on LLAMA2-7B (Gu et al., 2024).

In Table 5, we show the experimental FPR at α of 1% and 5% for ξ-watermarked text and spoofed
text on different spoofer LMs. Similar to the results in Table 1, the Type 1 error is controlled in both
the Reprompting and Standard methods. Moreover, the power scaling with T is also similar to the
results from Table 1. This suggests that the modelM used by the model provider has no influence on
the artifacts left by spoofing attempts on such a model. It also confirms the results from §5.3 that
the artifacts we are distinguishing in spoofed text indeed reflect only the lack of knowledge of the
spoofer and do not reflect a particular behavior of a given model.

B VALIDATING THE CONCATENATION PROCEDURE

In this section, we experimentally validate the claim that concatenating texts ω according to the
procedure from §4.2 has no influence on the resulting distribution of the statistic.

Experimental setup Let W = (ω1, . . . , ωn) be a corpus of n texts of the same length, and W ′ the
corresponding corpus of Reprompting texts of the same length T . Let X,X ′ ∈ {0, 1}n×T be the
color matrices of the corpora, and Y, Y ′ ∈ [0, 1]n×T be the associated (h+ 1)-gram score matrices
of the corpora. For permutations σ ∈ Sn×T , we define σ(X)i,j = Xσ((i,j)) and σ(Y )i,j = Yσ((i,j)).
We define σ(W ) as the shuffled corpus with the corresponding σ(X) color and σ(Y ) score. Given
σ ∈ Sn×T , we test the hypothesis that shuffling has no influence on the distribution of ZR(W,W ′),

ZR(σ(W ), σ(W ′)) ∼ ZR(W,W ′), (11)
where ZR(W,W ′) := (ZR(ω1, ω

′
1), . . . , ZR(ωn, ω

′
n)). The shuffling operation can be interpreted as

a concatenation of texts of length 1. Hence, if the shuffling has no influence, this implies that the
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Figure 6: Histogram of Z-scores for both ξ-watermarked and spoofed corpora, as well as their shuffled
counterparts.
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Figure 7: Histogram of ZS(W ) for ξ-watermarked text with (h+1)-gram score and Standard method.

concatenation of texts of longer length has no influence either. To test for the equality of distribution,
we use a Mann-Whitney U rank test.

Results In practice, we generate n = 1000 ξ-watermarked and spoofed texts of length 175 and their
corresponding T = 150-length Reprompting text corpora. We sample σ ∈ Sn×T uniformly in Sn×T .
In Fig. 6, we show the resulting histogram of ZR(W,W ′) and ZR(σ(W ), σ(W ′)). The histograms
between the non-shuffled and shuffled versions perfectly overlap for both the ξ-watermarked texts
and the spoofed texts. Moreover, the resulting p-values from the Mann-Whitney U rank test are 0.86
and 0.44, respectively. Hence, we can conclude that Eq. (11) is verified and that the concatenation
procedure has no influence on the distribution of the statistic.

C DEPENDENCE BETWEEN THE CONTEXT DISTRIBUTION AND THE COLOR

In this section, we study in detail the dependence between the color of token ωt and ID(ωt−h:t) in
ξ-watermarked text from §3.2.

Problem statement We recall that D is the training data of the spoofer, and ID is the function of
frequencies of h+ 1-grams in D. In §3.2, we hypothesize that low entropy is a common factor that
implies ID(Ωt−h:t) is high and P (Xt = 1) ≈ γ. Under such an assumption, we therefore expect the
correlation between the observed color sequence x and the (ID(ωt−h:t))∀t∈{h,...,T} to be negative.
In other words, we expect ZS(ω) with the (h+ 1)-gram score to be negative for ξ-watermarked text.

Results We verify this claim by computing ZS(ω) with the (h + 1)-gram score for a corpus W
of 1000 ξ-watermarked texts, each of length T = 500. In Fig. 7, we see the histograms of ZS(W )

for different values of h. We see that for all h, Ê[ZS(W )] is indeed negative. Furthermore, we
notice that the histograms appear normally distributed, agreeing with the assumption underlying the
Reprompting method (Eq. (5)). Therefore, these results show that the proposed intuitive explanation
of the dependence due toM is coherent, and further highlight the need for the Reprompting method
in order to build a statistic with a known distribution when using the (h+ 1)-gram score.
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Figure 8: Left: Evolution of the p-value distribution with the Total Variation distance between D
and D̃. Note that the x-scale is not linear. Right: Evolution of the p-value distribution for different
choices of D̃. Each p-value is computed with 1000-token long completions. The whiskers are set at
0.5 of the IQR for visibility.

D INFLUENCE OF THE TRAINING DATASET

In this section, we study the influence of D̃ on our ability to detect spoofed texts. As we do not know
the true distribution of D, we hope that using a different dataset does not significantly affect our
results. We study the influence of D̃ on both Stealing and Distillation methods with SumHash h = 1.

Evolution with the TV distance First, we analyze the influence of the choice of D̃ in a controlled
setting. We let D̃0 be the counts of the different (h + 1)-grams in D. We then build a perturbed
dataset D̃ε by adding centered normal noise with standard deviation ε to D̃0. Finally, we compute
the total variation distance between D̃ε and D. In Fig. 8 (left), we observe that the p-values increase
on average with the total variation distance between D̃ε and D. This confirms the intuition that the
better the estimate of D, the more powerful our tests are. Furthermore, it appears that the p-values
increase slowly with the total variation distance, which suggests that the choice of D̃ is not crucial for
obtaining a powerful test.

Comparing different training datasets We run the test for different choices of D̃ (C4 (Raffel
et al., 2020), Dolly (Conover et al., 2023), Wikipedia (WikimediaFoundation), Repliqa (Monteiro
et al., 2024), and Math (Fourrier et al., 2023)) as well as D̃ := D for comparison. In Fig. 8 (right),
we see that even the Math dataset has reasonable p-values for Stealing despite our experimental
evaluations using significantly different prompt completions from news articles. This confirms that
our test is robust to the choice of D̃.

Lastly, given a received watermarked text ω, a model provider could adjust the choice of D̃ based
on the topic of ω. Such a heuristic could ensure that the choice of D̃ is always relevant, and further
mitigate its impact on the test power.

E INFLUENCE OF THE SIZE OF THE SPOOFER TRAINING DATA

In this section, we study how the power of the test is impacted by the size of the training dataset D.

We run the test for Stealing with LeftHash, h = 3, LLAMA2-7B as the watermarked model, and
MISTRAL-7B as the spoofer model. We train the spoofer with different sizes of D. We note that, for
practicality, the smaller instances of D are subsets of the larger ones. We also set D̃ = D each time
to control for the discrepancy between D̃ and D. Otherwise, we run the same experimental procedure
as in §5.2, but using only n = 500 completions. Because spoofing attempts are less successful for
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Figure 9: Experimental True Positive Rate of spoofed text with different sizes of D. The size of D is
measured in queries, and each query is 800 tokens long.
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Figure 10: Rejection rates for the Reprompting method on the AAR watermark with h = 3 and
h = 4. The solid lines correspond to ξ-watermarked text and the dashed lines to Distillation-spoofed
text.

smaller D, we have in the worst case 30 samples per parameter combination (compared to 5× 104/T
samples per parameter combination for larger D).

We see in Fig. 9 that there is no clear trend between the length of D and the power of the test, that
would hold across all the tested settings. In some cases, the power of the test is lower for smaller
D—we hypothesize that one reason for this is the (necessary) filtering of failed spoofing attempts.
For smaller D, the spoofing method fails to generalize beyond its training data, and so the (rare) cases
when it succeeds are the cases where the spoofed sentence is close to the training data. Ultimately, it
is important to conclude that smaller |D| is not strictly better for the spoofing adversary—while there
may be fewer artifacts, the more important goal of the spoofer (to spoof) is often greatly sacrificed.

F EXTENDING THE METHOD TO OTHER SCHEMES

While we design our method to detect spoofing attempts on Red-Green schemes (Kirchenbauer et al.,
2023), as these are the primary target of several spoofing works, we show that the method can be
generalized to other watermarking schemes. Excluding the unigram scheme by Zhao et al. (2024),
which Zhang et al. (2024) shows can be perfectly spoofed, we can study the AAR scheme from
Aaronson (2023), as well as one of the KTH schemes from Kuditipudi et al. (2023), as both schemes
were shown to be spoofable via Distillation (Gu et al., 2024).

AAR watermark In the AAR watermark, h previous tokens are hashed using a private key ξ to
obtain a score ri uniformly distributed in [0, 1] for each token index i in the vocabulary Σ. Given pi,
the original model probability for token index i, the next token is then deterministically chosen as the
token i∗ that maximizes r1/pi

i .

Given a text ω ∈ ΣT , we naturally generalize Eq. (4) by defining x ∈ RT as xt = − log rωt
, whereas

previously xt was the color of the t-th token. The rest of the method remains identical.
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Figure 11: Rejection rates for the Reprompting method on the KTH watermark with s ∈ {1, 4, 256}.
The solid lines correspond to ξ-watermarked text and the dashed lines to Distillation-spoofed text.

We evaluate both the FPR and TPR of our test using h ∈ {3, 4}, LLAMA2-7B as both the watermarked
model and the attacker model, the Reprompting method, and the same experimental procedure as
in §5, except that we generate only n = 500 completions. We discarded h = 2 as the watermarked
model output was too low-quality and repetitive (Gu et al., 2024). In Fig. 10, we see that the
generalized method can successfully detect spoofed text with a 90% TPR at a rejection rate of 1% for
500 tokens. In fact, it is even more powerful than the detection in the Red-Green scheme, where we
achieved a similar TPR at 1% with 3000 tokens (§5.2). However, the test hypothesis appears slightly
violated, as the empirical FPR at 1% is around 2% for both h = 3 and h = 4. As the variant we run
is the simplest adaption of the test primarily designed for Red-Green watermarks, we believe that a
more tailored test could improve this.

KTH watermark In the KTH watermark (EXP variant), a single watermark key sequence of length
nkey, ξ = ξ1, . . . , ξnkey , is uniformly distributed, where each ξi ∈ [0, 1]|Σ|. To generate the j-th

token (modulo nkey), the watermark samples the token i∗ that maximizes
(
ξji

)1/pi
. Additionally, to

allow more diversity in the generated text, the key is randomly shifted by a constant at each query.
As in Gu et al. (2024), we denote by s the number of allowed shifts.

Given a text ω ∈ ΣT , we naturally generalize Eq. (4) by defining x ∈ RT as xt = log(1 − ξtωt
),

whereas previously xt was the color of token t. To account for the permutation of the key, we further
replace log(1− ξtωt

) with the Levenshtein cost introduced in Kuditipudi et al. (2023). Moreover, the
scheme, being based on a fixed key, lacks any context h that can be used to compute the N-gram score
yt (Eq. (7)). Following the intuition from Gu et al. (2024) that, in the limit, their spoofing ability
comes from learning contiguous watermarked sequences of length nkey, we suspect that setting
h ≈ nkey would enable greater test power. In practice, due to practical constraints, we set h = 5.
The rest of the method remains unchanged.

We evaluate both the FPR and TPR of our test, using s = 4, and s = 256, along with a key of
length nkey = 256, on LLAMA2-7B as both the watermarked model and the attacker model, the
Reprompting method, and the same experimental procedure as in §5, except that we generate only
n = 500 completions. In Fig. 11, we see that this generalized method can successfully detect spoofed
text for both s = 4 and s = 256, albeit with a TPR of 65% at a confidence of 99% for s = 4 and TPR
of 30% for s = 256. In all three cases however, the Type 1 error is controlled, i.e., empirical FPR
corresponds to the theoretical FPR. As the variant we run is the simplest adaption of the test primarily
designed for Red-Green watermarks, we believe that a more tailored test could improve its power.

G INFLUENCE OF HUMAN MODIFICATIONS ON FPR

Here, we study the behavior of ξ-watermarked text that has subsequently been edited by humans. We
consider two different use cases. The first is the case of cropping. Given a ξ-watermarked text, we
assume a human inserts non-watermarked text in the middle. This corresponds to a plausible use case
of LLMs, where humans merge generated text with their own. Second, we consider paraphrasing.
Given a ξ-watermarked text, we paraphrase it using DIPPER (Krishna et al., 2023).
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Figure 12: Experimental rejection rate of mixed ξ-watermarked text and human text on LLAMA2-7B
for both the Reprompting method (left) and the Standard method (right) at different percentages of
human text. Each mixed text is in total 500 tokens long.
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Figure 13: Experimental rejection rate of paraphrased ξ-watermarked text on LLAMA2-7B for both
the Reprompting method (left) and the Standard method (right).

We evaluate the FPR of human-modified text using h = 3 on both the Standard and Reprompting
methods and follow a similar experimental procedure as in §5, except that we generate only n = 500
samples. Given a percentage ρ, for each generated C4 prompt completion of length T , we randomly
insert another random human text sampled from C4 such that ρ percent of the resulting text is
human-generated. We used this procedure for ρ ∈ {0.01, 0.05, 0.1, 0.2}. As in §5, we apply the test
only on text that appears watermarked according to the original watermark detector. In Fig. 12, we
see that even for the highest percentage of human text (20%), the test properly controls Type 1 error.

We evaluate the FPR of the paraphrased text using h = 3 on both the Standard and Reprompting
methods and follow a similar experimental procedure as in §5, except that we generate only n = 1000
samples. We note that we apply the test only on text that is considered watermarked by the original
watermark detector. In Fig. 13, we see that the test still properly controls Type I error for both
methods and for different text lengths.

Both results show that a rejection rate of α still guarantees an experimental FPR of α, even if the
ξ-watermarked texts have been altered by humans.

H PROOF OF LEMMA 4.1

In this section, we detail the proof of Lemma 4.1.

First, let’s recall some statistical results that we need.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Theorem H.1 (Lindeberg CLT). Let Xn,1, ..., Xn,n be independent random variables in Rd with
mean zero. If for all ε > 0

n∑
k=1

E[||Xn,k||21{||Xn,k|| > ε}]→ 0, (Lindeberg Condition) (12)

and
n∑
k=1

cov(Xn,k)→ V, (13)

then
n∑
k=1

Xn,k
d−→ N (0, V ). (14)

Theorem H.2 (Delta method). Let X1, ..., Xn be a sequence of random variables in Rd, if
√
n(Xn − µ)

d−→ N (0, V ), (15)

and u : Rd → R is differentiable at µ, with ∇u(µ) 6= 0, then
√
n(u(Xn)− u(µ))

d−→ N (0,∇u(µ)TV∇u(µ)). (16)

Now we proceed to prove Lemma 4.1. We first state the result formally.
Lemma 4.1. Let X := X1, . . . , XT be a sequence of independent (non i.i.d) Bernoulli random
variables, and gi = P (Xi = 1). Let Y := Y1, . . . , YT be a sequence of i.i.d. random variables.
Let Ω = (X,Y ). Assuming that, for all i ∈ {0, . . . , T}, Xi and Yi are independent, that there exist
g(1), g(2) ∈ [0, 1] such that

lim
T→∞

1

T

T∑
i=1

(gi − g(1)) = O

(
1

T

)
and lim

T→∞

1

T

T∑
i=1

g2
i = g(2), (17)

and assuming that Y admits at least 4 moments µY , µY 2 , µY 3 , µY 4 . Then, we have that

ZS(Ω) :=
√
TS(Ω)

d−→ N (0, 1) .

Proof. Let wi := (Xi, Yi, X
2
i , Y

2
i , XiYi). Let Xn,k = (wi−E[wi])√

n
. We recall the definition of S,

S(Ω) =

∑T
t=1(Xt − X̄T )(Yt − ȲT )√∑T

t=1(Xt − X̄T )2
∑T
t=1(Yt − ȲT )2

. (18)

=

1
T

∑T
t=1XtYt −

(
1
T

∑T
t=1Xt

)(
1
T

∑T
t=1 Yt

)
√

1
T

∑T
t=1X

2
t −

(
1
T

∑T
t=1Xt

)2
√

1
T

∑T
t=1 Y

2
t −

(
1
T

∑T
t=1 Yt

)2
, (19)

where X̄T denotes the mean of X1:T .

The proof goes as follows:

• First, we show that the sum of the covariance matrix of Xn,k converges (Eq. (13)).

• Then, we show that Xn,k satisfies the Lindeberg condition (Eq. (12)). We can then apply
the Lindeberg theorem to show that wi converges to a normal distribution.

• Finally, we apply the Delta method (Theorem H.2) to show that S(Ω) is normally distributed.

We have that for all i 6= j, wi is independent of wj . For each i, we have

Cov(wi) =


gi(1−gi) 0 gi(1−gi) 0 µY gi(1−gi)

0 −µ2
Y +µY 2 0 −µY µY 2+µY 3 gi(−µ2

Y +µY 2)
gi(1−gi) 0 gi(1−gi) 0 µY gi(1−gi)

0 −µY µY 2+µY 3 0 −(µY 2)
2
+µY 4 gi(−µY µY 2+µY 3)

µY gi(1−gi) gi(−µ2
Y +µY 2) µY gi(1−gi) gi(−µY µY 2+µY 3) gi(−µ2

Y gi+µY 2)

 ,
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where we denote µY k as the k-th moment of Y .

Then, using Eq. (17), we have that 1/T
∑T
i=1 Cov(wi) =

∑T
i=1 Cov(Xn,i) converges towards

V ∈ R5×5, defined as

V =


g(1)−g(2) 0 g(1)−g(2) 0 µY (g(1)−g(2))

0 −µ2
Y +µY 2 0 −µY µY 2+µY 3 g(1)(−µ2

Y +µY 2)
g(1)−g(2) 0 g(1)−g(2) 0 µY (g(1)−g(2))

0 −µY µY 2+µY 3 0 −(µY 2)
2
+µY 4 g(1)(−µY µY 2+µY 3)

µY (g(1)−g(2)) g(1)(−µ2
Y +µY 2) µY (g(1)−g(2)) g(1)(−µY µY 2+µY 3) −µ2

Y g
(2)+µY 2g

(1)

 .
We have completed the first step of the proof.

Now we want to show that Xn,i satisfies the Lindeberg condition (Eq. (12)). Let ε > 0. Because

Xi, Yi ∈ [0, 1], we have that for all i ≤ n, ‖Xn,i‖ ≤
√

10
n . There exists n0 > 0 such that

∀n ≥ n0,
√

10
n < ε. Therefore, ∀n ≥ n0,∀k ≤ n,1{‖Xn,k‖ > ε} = 0. So, for all n ≥ n0,

n∑
k=1

E[||Xn,k||21{||Xn,k|| > ε}] = 0. (20)

Hence, we have shown that for all ε > 0,
n∑
k=1

E[||Xn,k||21{||Xn,k|| > ε}]→ 0. (21)

Therefore, using the Lindeberg CLT (Theorem H.1), we have that

1√
T

T∑
i=1

(wi − E(wi))
d−→ N (0, V ). (22)

We have completed the second step of the proof. Now, we want to apply the Delta method (Theo-
rem H.2) to show that S(ω) is normally distributed.

Let µw := limT→∞ 1/T
∑T
i=1 E[wi] = (g, µY , g, µY 2 , gµY ). We introduce

Ei =
1√
T

T∑
i=1

E[wi]− µw (23)

=
√
T

(
1

T

T∑
i=1

E[wi]− µw

)
(24)

= O

(
1√
T

)
(Using Eq. (17)). (25)

Therefore, we have

1√
T

T∑
i=1

(wi − µw) =
1√
T

T∑
i=1

(wi − E[wi]) + Ei
d−→ N (0, V ). (26)

Let u : R5 → R be defined as

u(x) =
x5 − x1x2√

(x3 − x2
1)(x4 − x2

2)
. (27)

We have that S(Ω) = u
(

1/T
∑T
i=1 wi

)
(using Eq. (19)) and u(µw) = 0, and therefore using the

Delta method (Theorem H.2) we have that
√
TS(Ω)

d−→ N
(
0,∇u(µw)TV∇u(µw)

)
. (28)

Because ∇u(µw)TV∇u(µw) = 1, we have shown that
√
TS(Ω)

d−→ N (0, 1). (29)
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I EXTENDED DISCUSSION OF THE STATE OF WATERMARK SPOOFING

In this section, we provide an overview of the state of the field of watermark spoofing to further
motivate our work and highlight its practical implications. In App. I.1, we identify three categories of
spoofing techniques and highlight learning-based spoofing techniques as the most practically relevant.
We put our findings in this context, discussing the potential for adaptive spoofing that does not leave
artifacts in the spoofed text. In App. I.2 we discuss how latest schemes attempt to tackle the issue of
spoofing.

I.1 APPROACHES TO SPOOFING

Learning-based spoofing As explained in §1, learning-based spoofing operates in two phases.
In the first phase, the spoofer queries the model to generate a dataset D of ξ-watermarked text.
From this dataset D, the spoofer learns the watermark, which allows them to generate spoofed text.
In the second phase, using their knowledge and a private LM, the spoofer can generate arbitrary
watermarked text at scale, without having to query the original model again. In particular, spoofed
texts can be created as answer to any prompt, even the one that would be refused by the original
LLM, which gives learning-based spoofers great flexibility, and illustrates the potential threat they
pose. Additionally, as long as the cost of the first phase is reasonable, learning-based spoofing is
cost-effective, as the subsequent per-spoofed-text cost is zero. Learning-based spoofing includes the
works of Jovanović et al. (2024); Gu et al. (2024); Zhang et al. (2024).

Piggyback spoofing A second family of spoofing techniques is piggyback spoofing, introduced
by (Pang et al., 2024), which directly exploits the desirable robustness property of the watermarks.
Given a ξ-watermarked sentence, the attacker modifies a few tokens to alter the meaning of the
original sentence while maintaining the watermark, interpreting the result as an instance of spoofing.
While illustrating the potential drawbacks of high robustness, this comes with several caveats. First,
abusing the robustness of the watermark naturally raises the question of the boundary between
spoofed text and edited ξ-watermarked text. Indeed, mixing human and LM text is a realistic use
of LMs, and it is agreed that watermarks should account for this use (Kirchenbauer et al., 2023;
Kuditipudi et al., 2023). Second, piggyback spoofing is limited in the scope of text it can generate, as
it relies on the original model to generate the majority of the text. This greatly reduces the flexibility
of the attack, i.e., does not allow the attacker to generate texts on harmful topics that would be refused
by the watermarked model. Finally, the same property makes the cost of spoofing scale with the
number of spoofed texts, as the attacker needs to query the original model each time.

Step-by-step spoofing A separate line of works considers spoofing techniques that require queries
at each step of the generation process of every spoofed text (Pang et al., 2024; Zhou et al., 2024; Wu
& Chandrasekaran, 2024), using the feedback obtained this way to choose the next token. While they
have higher flexibility compared to piggyback spoofing, a key limitation of these techniques is the
high cost, even compared to piggyback spoofing. Further, some of these methods assume access to
the watermark detector itself (sometimes also its confidence score) to obtain the desired feedback,
which is not always realistic. For instance, in the case of the first public large-scale deployment of a
watermark, SynthID-Text, Google does not provide public access to the watermark detector.

Summary and our impact In summary, learning-based spoofing is the most practically relevant
category of spoofing techniques, as it is cost-effective, flexible, and does not require querying the
original model for each spoofed text. Another advantage from the perspective of our research question
is the fact that current learning-based methods are based on fundamentally different principles, making
the question of their common limitations relevant and interesting. In this work, we study that question,
showing that all learning-based spoofers leave visible artifacts in spoofed text, which can be leveraged
to distinguish between spoofed and ξ-watermarked text.

Up to now, the established paradigm in watermark spoofing literature has been to measure the success
rate as the percentage of generated texts that succeed in fooling the watermark detector, potentially
with certain quality constraints. Our insights imply that producing high-quality spoofed text is a
bigger challenge, and motivate future research on avoiding observable artifacts. One promising
direction can be work on adaptive spoofers, that build the dataset D in a way that minimizes the
amount of artifacts in spoofed text. We leave this direction open for future work.
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I.2 SPOOFING-AWARE WATERMARKING SCHEMES

The field of watermarking is evolving rapidly, as explained in §6, with different schemes proposed in
the literature. We distinguish two approaches to watermarks in LMs. The first one is the statistical
approach, notably including schemes from Kirchenbauer et al. (2023); Kuditipudi et al. (2023);
Aaronson (2023), which place great emphasis on watermark robustness and practicality. The second
is the cryptographic approach, with schemes stemming from Christ et al. (2024), which focus
primarily on watermark security and rigorous guarantees.

In particular, schemes with cryptographic features have not been shown to be vulnerable to spoofing
attacks. Yet, they enhance security by trading off other key watermark properties, such as robustness
to watermark removal. Moreover, recent work (Zhou et al., 2024) suggests merging both fields
to create a watermarking scheme that is not only more robust to watermark removal but also to
watermark spoofing. However, they show that their approach trades off with generation quality.
This highlights that, from the perspective of a model provider, there is no single scheme that is the
most desirable. Hence, choosing a particular scheme is a complex task that involves navigating the
tradeoffs between different properties. From this perspective, our work provides new evidence that
schemes derived from (Kirchenbauer et al., 2023) are harder to spoof than previously thought (as
these attempts can be detected by observing the artifacts), and can help model providers adjust their
expectations.
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