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ABSTRACT

Deep neural networks transform input data into latent representations that support a
wide range of downstream tasks. These representations can be characterized along
information-theoretic and geometric dimensions, but their relationship remains
poorly understood. A central open question is whether low mutual information (MI)
between inputs and representations necessarily implies geometrically compressed
latent spaces and vice versa. We investigate this question using neural collapse
as a measure of geometric compression and theoretically sound MI estimation in
conditional entropy bottleneck (CEB) networks and continuous dropout networks.
We evaluate the interplay between MI, geometric compression, and generalization
on classification tasks under controlled noise injection schemes. Our findings show
that low MI does not reliably correspond to geometric compression, and that the
connection between the two is more nuanced than often assumed. We conjecture
that generalization acts as a potential confounder in this connection rather than
being a direct consequence.

1 INTRODUCTION

The quest for understanding generalization in deep neural networks (DNNs) inspires many researchers
to propose different approaches to this important problem (Keskar et al., 2016; Dziugaite & Roy,
2017; Jiang et al., 2019; Liang et al., 2019; Petzka et al., 2021). It is intuitively evident that the ability
to generalize depends on how the DNN transforms input data into latent representations at hidden
layers, i.e., on the properties of latent representations. With the rise of foundation models, research
on representation properties has gained increasing attention, as their effectiveness heavily depends on
the characteristics of the latent space.

There have been efforts to analyze the geometrical properties of latent representations, for example,
by investigating the manifold formed by them. Following Occam’s razor, for classification problems
it is natural to seek representations that lie on separated, low-dimensional manifolds associated
with different classes. Low intrinsic dimension as an estimate of the manifold dimension in latent
space has been suggested to correlate with good generalization performance (Blier & Ollivier, 2018).
Among the proposed ways to capture geometric compression, one of the most actively studied is
neural collapse, which characterizes the class-specific clustering of latent representations and its
connection to generalization (Papyan et al., 2020).

Taking a probabilistic point of view where the input data is drawn from a distribution, one can denote
latent representation as a random variable with distribution implicitly described by the DNN. Again
following Occam’s razor, the information bottleneck (IB) theory favors representations that have a
large mutual information (MI) with the target but small MI with the input. Compressed MI with
inputs indicates that irrelevant input details are discarded and overfitting is avoided. While training
with the standard cross-entropy loss ensures that the MI between the latent representation and the
target is large, it was claimed (and later disputed by Saxe et al. (2018)) that stochastic gradient descent
implicitly reduces the MI between latent representation and input (Shwartz-Ziv & Tishby, 2017).

Prior work has suggested a close connection between clustering of representations and information-
theoretic compression as defined by the IB principle. Goldfeld (2019) investigated estimates of MI
in DNNs with additive Gaussian noise and concluded that a reduction of MI throughout training
is correlated with tightening of the clusters of latent representations. Geiger (2022) further argues
that many MI estimators are inherently geometric. In this work, we contribute to these debates and
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(a) I(X;Z|Y ) (b) log(NC)

Figure 1: Toy model illustrating the interplay between information-theoretic and geometric com-
pression in terms of neural collapse. Data points x ∈ X with class labels y ∈ Y are encoded into
latent representations Z ∼ N (µ(x), σ2

nI), where class centroids µy ∼ N (0, I) are perturbed by
encoder spread σ2

z and noise variance σ2
n. We vary σ2

z and σ2
n and estimate I(X;Z) using NPEET

and geometric compression via NC, averaged over 50 trials. Results show that low MI arises either
from strong noise (σ2

n large) or from tightly clustered encodings (σ2
z small), while NC indicates

compression only in the latter case. This demonstrates why low MI and NC do not have to coincide.
For the details on the toy example see Appendix D.

investigate the interplay between geometric and information-theoretic compression using previously
unexplored empirical setups, also conjecturing a link to generalization. In Section 3 we describe
setups used for empirical results: DNNs trained with conditional entropy bottleneck (CEB) (Fischer,
2020), i.e., models with additive data-dependent noise, and Gaussian dropout DNNs, i.e., models
with multiplicative fixed noise. For both types of models we estimate MI with the input (Section 3.1)
and compute a measure for characterizing neural collapse (Section 3.2). In contrast to information
plane analysis (Saxe et al., 2018; Goldfeld, 2019), which tracks the behavior of MI throughout
training, we are interested in the end-of-training values. This way we analyze the interplay between
MI compression, neural collapse, and model performance.

Our contributions are as follows:

1. We show that DNNs with continuous dropout form a test bed for information-theoretic
analyses by proving that the MI between input and latent representations is always finite
(Theorem 3.1);

2. We perform large-scale analysis estimating MI between inputs and representations in state-
of-the-art neural networks;

3. We perform detailed investigations of the connection between information compression and
geometric compression in terms of label-specific clustering.

In Section 4 we show with 8 architectures (including fully connected DNNs, convolutional DNNs,
and transformers) and overall ≈ 500 models trained on 5 different datasets (including vision and
natural language processing tasks) that the connection between geometric and information-theoretic
compression is not as simple as initially suggested (cf. Figure 1). In fact, we find a negative non-
linear correlation between the two. Moreover, varying hyperparameters of training, we can force the
correlation to become positive, which suggests that there is an unknown confounder for the relation
between geometric and information compression. We conjecture that this confounder is related to
generalization abilities.
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2 RELATED WORK

The connection between representations compression and generalization is explored in multiple
research works. Shwartz-Ziv & Tishby (2017) claim that compression of MI between input and latent
representation is the implicit regularization of stochastic gradient descent and see it as an explanation
of generalization abilities of DNNs. In its turn, in DNNs with additive noise (Goldfeld, 2019), the
tightening of class clusters coincides with a reduction in MI between inputs and representations over
the course of training. Similarly, Patel & Shwartz-Ziv (2024) show that the local rank of the represen-
tations reduces throughout training and connect this to the Gaussian information bottleneck (Chechik
et al., 2003). These works thus suggest a tight link between geometric and information-theoretic
compression, which in its turn leads to good generalization. Although one might expect that tighter
clusters of representations always correspond to reduced MI, this intuition is misleading. Cluster
tightness and MI quantify different properties, and our numerical toy example (Figure 1) demonstrates
that clusters can become more compact without any decrease in MI. More generally, compressibility
in a geometric sense is used by algorithms that extract low-dimensional manifolds while preserving
relevant information, such as Globerson & Tishby (2003) or Marx & Fischer (2022), which indicates
that reducing geometrical dimension does not necessarily lead to information reduction. Geiger
(2022) thus attribute the link between MI and geometric compression to the inherently geometric
properties of some MI estimators, while noting that the connection to generalization remains unclear.
In particular, it is established that estimating MI using popular binning estimators directly reduces
the estimate to a measure of geometric compression, cf. (Geiger, 2022, Fig. 2).

In contrast to the aforementioned studies that follow MI and clustering throughout training, end-of-
training studies that focus on representations after convergence of the model and allow to investigate
the connection to generalization in a clearer way. For instance, Skean et al. (2024) analyze kernel-
based estimates of entropy of language model representations and find that intermediate layers
exhibit lower entropy and higher downstream task performance, linking entropy compression to
generalization. Cheng et al. (2023) observe a positive correlation between perplexity and the
intrinsic dimension of last-token representations in transformers and connect both measures to the
performance of finetuning. None of the previous works embark on estimating MI between inputs and
representations, but use some approximations of the amount of information in the representation.

Geometric Characterization of the Representation Space A central challenge in studying geo-
metric compression is the lack of a clear definition. As a result, most works operationalize geometric
compression through proxies, such as representations’ clustering structure in classification tasks.
Empirically, it has been observed that the penultimate layer representations of well-trained, state-of-
the-art classification DNNs collapse such that each class maps to a single point, with these points
arranged at the vertices of a simplex equiangular tight frame. This tight class-wise clustering was
termed neural collapse (Papyan et al., 2020) and is a sufficient condition for generalization since it
implies linear separability. However, it is not a necessary condition (Han et al., 2025). As an example
such DNNs as RevNets which are reversible (Gomez et al., 2017) or Parseval models with orthogonal-
ity enforced on weights (Cisse et al., 2017), have very limited capabilities for neural collapse, but still
achieve state-of-the-art generalization performance. To date, efforts to relate information-theoretic
compression to neural collapse have not yielded conclusive results.

Mutual Information in DNNs Estimating MI between input data and representations in determin-
istic models with continuous distributions is provably vacuous, since this MI is infinite (Amjad &
Geiger, 2019). One of the ways to address this issue is to modify the representations to be stochastic in
some way, e.g., by injecting noise. There are two ways of injecting noise: additive and multiplicative.
These schemes can be implemented either with noise of fixed variance or variance that depends on the
input data point. So, Goldfeld (2019) estimated the MI by adding Gaussian noise with fixed variance
to each neuron output. The deep variational IB method (Alemi et al., 2017) and its variants (Fischer,
2020) add random noise to the neuron outputs, with the mean and variance learned from the input
data. This setup has not previously been analyzed from the perspective of information compression,
a gap our paper addresses. Adilova et al. (2023) analyzed multiplicative noise with both fixed and
adaptive variance. While adaptive variance follows the information dropout framework of Achille
& Soatto (2018) and ensures finite MI estimates, fixed-variance dropout was introduced there as a
novel setup. As a theoretical foundation, they proved that continuous dropout guarantees finite MI
between inputs and representations in DNNs with ReLU activations. In this work, we extend this
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result to arbitrary activation functions, thereby enabling information-theoretic analysis across modern
architectures and supporting large-scale empirical evaluations.

3 METHODOLOGY

We consider a supervised classification setting, that is, DNNs trained on a dataset S sampled from
an unknown (typically continuous) distribution D on X × Y . Here, X ⊆ Rn is the space of inputs
and Y = {1, . . . , c} is the set of c classes. We denote by X the multivariate random variable that
describes the input to the DNN, and by Z some representation of X that it produces. The unknown
distribution D and the DNN jointly induce a distribution of Z in the representation space Z ⊆ Rd.

We consider two types of models in this work: DNNs trained with the Conditional Entropy Bottleneck
(CEB) (Fischer, 2020), which implements data-dependent additive noise, and models regularized with
Gaussian dropout, which implements fixed multiplicative noise. We chose these models because they
complement the existing literature: Models with fixed additive noise were considered by Goldfeld
(2019), while data-dependent multiplicative noise was examined by Adilova et al. (2023).

CEB trained models are slight modification of the variational information bottleneck (VIB) mod-
els, with only difference in the distribution at the bottleneck layer 1. Variational IB models have
demonstrated effectiveness across applications including multi-view learning (Federici et al., 2020),
multi-task learning (Qian et al., 2020), and invariant representation learning (Razeghi et al., 2023;
Moyer et al., 2018), illustrating the practical relevance of this modeling framework. Models trained
with the CEB objective consist of a deterministic decoder and a stochastic encoder that draws Z from
a Gaussian distribution with a mean vector and a covariance matrix that depends on the respective
input x ∈ X . Equivalently, the encoder can be assumed to map the input x deterministically via a
learned function f and then add zero-mean Gaussian noise D(x) with a data-dependent covariance,
i.e., Z = f(x) +D(x), D(x) ∼ N (0, σ2(x)I). Assuming that (x, y) are realizations of a pair of
random variables (X,Y ), the CEB training objective is given as:

LCEB = I(X;Z|Y ) + βLce(f(X) +D(X), Y ) , (1)

where Lce is the cross-entropy loss and β trades between classification performance and compression
of MI. CEB-trained models thus explicitly compress MI between input and latent representation
I(X;Z|Y ). As long as β is finite, the learned noise variance σ2(x) will be positive for every x due
to regularization; as a consequence the I(X;Z|Y ) is always finite.

Multiplicative noise via dropout represents a widely used form of stochasticity, present in nearly all
state-of-the-art architectures. Although continuous Gaussian dropout has not been as widely adopted
as its Bernoulli counterpart, its effect on training is similar and in some aspects more advantageous,
as noted in prior work (Srivastava et al., 2014). Importantly, we establish that continuous multi-
plicative noise renders MI between inputs and representations finite and quantifiable, providing a
theoretically sound basis for information-theoretic analysis of dropout-regularized networks within a
frequentist framework. The latent representations Z equal f(X) ◦D, where ◦ denotes element-wise
multiplication, and D ∼ N (1, σ2I). For these models it was shown that I(X;Z) is finite at least if
f is a DNN with ReLU activation functions, cf. Theorem 3.3 and Proposition 3.5 of (Adilova et al.,
2023). The following theorem extends this result to real analytic activation functions, which include
common activation functions such as sigmoid or tanh. With this result, we effectively show that any
DNN with continuous dropout has a provably finite MI between inputs and representations. This
creates the possibility to employ the information-theoretic analysis framework for any state-of-the-art
frequentest DNN without resorting to purely stochastic or quantized models.

Theorem 3.1 (Mutual Information is Finite in Continuous Dropout Networks). Consider a non-zero
deterministic DNN function f : Rn → Rd constructed with finitely many layers, a finite number
of neurons per layer, and non-constant real analytic activation functions. Let X be a continuously
distributed RV with bounded probability density function p(x) and bounded support.
Let Z = f(X)◦D(X), where D(X) = (D1(X), . . . , DN (X)) is (potentially data-dependent) noise
with components conditionally independent given X such that all Di(X) have essentially bounded

1The main difference between CEB and variational IB (Alemi et al., 2017) is that the variational marginal for
Z is parameterized by the class label. In other words, while variational IB models Z as a Gaussian, CEB models
Z as a Gaussian mixture with number of components corresponding to number of classes.
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differential entropy and second moments, i.e., E
[
Di(X)2

]
≤ M < ∞ X-almost surely for some M .

Then, I(X;Z) < ∞.

Proof sketch In order to prove this theorem for analytical activation functions one needs to provide
a proof that EX log |f(X)| =

∫
K
log |f(x)| p(x) dx is finite (see (Adilova et al., 2023)). Since p(x)

is bounded and K is compact, the integral can only diverge to −∞ near zeros of f . Because f is real
analytic, its zero set Z has a structured form: by the Lojasiewicz Structure Theorem, Z is a finite
union of lower-dimensional varieties (of dimension at most n−1). Hence Z has measure zero and
the integral is well-defined. Near the zeros, the Lojasiewicz inequality for analytic functions ensures
that |f(x)| is bounded below by a polynomial in the distance to Z: |f(x)| ≥ C · dist(x, Z)q . Thus,
log |f(x)| is controlled by log(dist(x, Z)) near Z. Finally, by stratifying Z into smooth manifolds
Mj of various dimensions and integrating in polar coordinates around each Mj , the local integrals
reduce to terms of the form

∫ ϵ

0
log(r) rm dr, which are finite for any m ≥ 0. Summing over all

components gives the result. The full proof is provided in Appendix B.

It should be noted that any latent representation that follows the dropout layer also has a finite MI
with input due to the data processing inequality.

3.1 ESTIMATING MI

With finite MI between X and Z guaranteed, the challenge is to estimate it from the dataset S ∼ D.

CEB For CEB-trained models, the variational bound on I(X;Z|Y ) is directly embedded in the
training objective, so the MI estimate is available “for free” during training. By definition, the
variational formulation of equation 1 is

min
qZ|Y

E
[
KL(eZ|X(·|X)∥qZ|Y (·|Y ))

]
+ βLce(f(X) +D(X), Y ) , (2)

where the encoder eZ|X = N (f(x), σ(x)) is defined by the DNN and where the expectation is
taken w.r.t. the data distribution D. In this equation E

[
KL(eZ|X(·|X)∥qZ|Y (·|Y ))

]
= I(X;Z|Y ) +

E
[
KL(pZ|Y (·|Y )∥qZ|Y (·|Y ))

]
(cf. (Geiger & Fischer, 2020, eq. (12a))). However, this bound

estimate of MI is only useful if the gap E[KL(pZ|Y ∥ qZ|Y )] remains small. In the CEB setting, both
the encoder eZ|X and the variational distribution qZ|Y are optimized jointly, which actively reduces
this gap. This co-training ensures that the variational expression provides not just a formal bound, but
also a practically tight surrogate for I(X;Z|Y ). As a result, the CEB loss can be interpreted as a
reliable estimate of conditional MI rather than a loose upper bound.

Dropout In contrast to CEB, models trained with Gaussian dropout require an MI estimator. We
evaluated multiple state-of-the-art MI estimators and selected the Difference of Entropies (DoE)
estimator (McAllester & Stratos, 2020) as the most stable under the conditions of measuring MI for
high-dimensional continuously distributed vectors. To estimate MI between input X and represen-
tation Z, the DoE estimator computes I(X;Y ) = H(Z) −H(Z|X) by separately estimating the
unconditional entropy H(Z) and the conditional entropy H(Z|X). In practice, H(Z) is approxi-
mated using a parametric marginal distribution qZ , typically a simple Gaussian or logistic distribution
with learnable parameters. The conditional entropy H(Z|X) is approximated using a neural network
qZ|X that predicts a distribution over Z conditioned on X . Both terms are estimated via the mean
negative log-likelihood (cross-entropy) of observed samples:

H(Z) ≈ − 1

N

N∑
i=1

log qZ(yi) ,

H(Z|X) ≈ − 1

N

N∑
i=1

log qZ|X(zi|xi) .

During training, we minimize the negative log-likelihoods of both approximations. Iteratively, this
process makes the learned distributions qZ and qZ|X as close as possible to the true marginal pZ and
conditional pZ|X , respectively. The MI is then obtained as the difference between the two estimates.
A key advantage of DoE is that it provides a stable, finite-sample estimate of MI, particularly when
the true MI is large, which often leads to saturated estimates with traditional variational lower bounds.
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3.2 MEASURING NEURAL COLLAPSE

We characterize geometric compression via the unified neural collapse characteristic measure sug-
gested by Galanti et al. (2021). Specifically, we compute:

NC =
1

c(c− 1)

c∑
i=1

c∑
j=i+1

Vari +Varj
∥µi − µj∥2

(3)

where µi =
∑

ℓ zℓ/Ki and Vari =
∑

ℓ ∥µi − zℓ∥2/Ki are the mean and variance of Ki latent
representations sampled from inputs X belonging to class i, and where ∥ · ∥2 is the squared Euclidean
norm. The measure quantifies geometric compression by comparing the empirical within-class
variances to the squared distance between the class means. NC becomes large when class clusters are
either widely spread (high variance) or their means are very close together. Conversely, when clusters
are tight and well-separated, NC is small, indicating strong geometric compression. We use the NC
metric to quantify geometric compression in intermediate layers as well, given that neural collapse is
not limited to the penultimate layer (Rangamani et al., 2023).

3.3 REGULARIZATION

To investigate the relationship between mutual information and class-wise clustering strength, we
train models under varying regularization settings. These settings are chosen to induce different
training behaviors while still maintaining reasonable performance.

For CEB-trained models, we vary the β coefficient in Equation 1 to control the strength of conditional
MI compression between inputs and latent representations. Strong compression (small β) increases the
cross-entropy loss, impairing the model’s ability to learn and generalize, whereas weaker compression
allows more information to flow and focuses optimization on cross-entropy. The resulting set of
models exhibits varying generalization and provides a controlled testbed for examining whether
geometric and information-theoretic compressions are correlated under additive adaptive noise.

A natural way to obtain a set of differently generalizing models with continuous dropout would be to
vary the dropout variance; however, in practice this is not viable, as only a narrow range of dropout
values allows for stable and efficient training. To address this, we introduce a regularizer on clustering
tightness, based on NC in Equation 3, which is subtracted from the cross-entropy loss to prevent
clusters from becoming too tight. The regularizer takes the form λ(tanh(αNC)), where λ controls
the strength of regularization, α scales NC into the effective range of tanh(·), and tanh(·) ensures
boundedness and saturation of the regularization term contribution. This approach produces a range
of models with varying degrees of NC and correspondingly different generalization abilities.

4 EXPERIMENTS

In this section, we present the experimental setup and evaluate geometric and information compression
in two settings: additive adaptive noise in CEB-trained models and multiplicative constant noise
in Gaussian dropout models. For dedicated latent variables Z, we quantify clustering using NC
introduced in Equation 3 and estimate the MI between inputs and Z using either the variational
bound implicit in the CEB loss or the DoE estimator discussed in Section 3.1. We then analyze the
correlation between these measures and generalization and performance of the models.

Since nonlinear relationships are expected to exist between these quantities, we use the rank cor-
relation instead of the linear (Pearson) correlation. Moreover, different datasets and architectures
lead to different ranges of the considered quantities, and normalization is required. Specifically, we
first convert the quantities in each experimental setup into ranks, normalize these ranks, and then
evaluate the linear correlation of the collection of ranks over all experiments. For details on the
ranking computation see Appendix C.1.

4.1 CEB-TRAINED NETWORKS

We devised four setups of the experiments with CEB. In each setup, we swept β over
1000, 500, 100, 50, 10, 5, 2 and trained five models per value with different random seeds. We ob-
served that very small β leads to underfitted models, while getting β too large can lead to overfitting.
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Measures Rank correlation
Train Test

β dep.

acc ||β 0.9 0.88
gen ||β 0.21 -
MI ||β 0.76 0.84
NC ||β -0.99 -0.98

MI || NC -0.75 -0.83

Perf.

acc || MI 0.59 0.74
acc || NC -0.89 -0.88
gen || MI 0.33 -
gen || NC -0.21 -

Table 1: Correlations for CEB experiments.
Each of the 4 setups with a different network-
dataset combination is trained with 7 values
of β, 5 random seeds each. The correlation is
computed between ranked values. acc stands
for accuracy, gen for generalization gap in
terms of accuracy.

Measures Rank correlation
Train Test

λ dep.

acc ||λ -0.02 -0.3
gen ||λ 0.09 -
MI ||λ -0.48 -0.25
NC ||λ 0.96 0.94

MI || NC -0.46 -0.24

Perf.

acc || MI -0.17 0.07
acc || NC -0.05 -0.34
gen || MI 0.09 -
gen || NC 0.07 -

Table 2: Correlations for Gaussian dropout
experiments. 4 setups with different network-
dataset combination is ran with 5 random
seeds for each of the λ in a grid of different
values. The correlation is computed between
ranked values. acc stands for accuracy on the
train or test data correspondingly, gen for gen-
eralization gap in terms of accuracy.

Figure 2: NC against MI on the
train data for CEB (DenseNet121
on CIFAR-100). Strong clustering
can correspond to large and small
amount of information, same like
strong compression of MI can cor-
respond both to weak and strong
clustering.

The four considered setups are as following:

1. An MLP (5 hidden layers with 1024 neurons each,
ReLU activation functions) as an encoder for Fash-
ionMNIST. Dimensionality of Z is selected to be 256.
The decoder is an MLP with one hidden layer of size
1024 and ReLU.

2. LeNet5 (LeCun et al., 1998) encoder for FashionM-
NIST. Dimensionality of Z is selected to be 64. The
decoder is an MLP with one hidden layer of size 1024
and ReLU.

3. WideResNet-28-4 (Zagoruyko & Komodakis, 2016)
encoder for CIFAR-10. Dimensionality of Z is se-
lected to be 256. Decoder is an MLP with one hidden
layer of size 1024 and ReLU.

4. Densenet121 (Huang et al., 2017) encoder for CIFAR-
100. Dimensionality of Z is selected to be 256. De-
coder is an MLP without hidden layers.

The backward encoder, i.e., the variational distribution qZ|Y ,
only has to emulate the parameters of a Gaussian mixture model,
therefore in all the setups it is a shallow MLP without any
hidden layers. In CEB-trained models, the latent representation
is stochastic by design, which requires sampling in order to
evaluate both the training loss and downstream measures: In
each setup we drew 8 samples per data point from the representation distribution during training. The
same sampling procedure was applied at evaluation time, and MI was extracted from the CEB loss.
For details on the training setup see the Appendix C.2.

In Table 1 we present the correlations for the whole experiment. We analyze correlations between
the generalization gap and the metrics of MI and NC using their values on the training set. This
is because only measures derived from the training data can meaningfully indicate how well the
model will perform on unseen test data. In all four of the setups we see a clear monotonic and
non-linear correlation between the NC measure and conditional MI I(X;Z|Y ), both for test and
train data. As an exemplary setup we also demonstrate this non-linear correlation in the experiments

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

with DenseNet121 in Figure 2. It is obvious that large MI can be consistent with strong clustering
of the representations, and vice-versa. We refer to an analysis of this phenomenon in Figure 1,
where we demonstrate that information-theoretic compression can be achieved by both clustering
equivalent to small NC and by uninformative, noisy representations with large NC. At the same time,
strong clustering can still lead to large MI values if the encoder noise is sufficiently small. Thus,
the interplay between information-theoretic and geometric compression in a sense of clustering is
quite intricate. In the first group of rank correlations in Table 1, we demonstrate that larger β leads to
higher classification accuracy and larger MI, which is expected due to the CEB training objective. β
is negatively correlated with the NC measure, which means larger β leads to representations that are
clustered. Indeed, geometric compression is an indicator of good performance in terms of accuracy:
The more clustered the representations with respect to labels, the higher the accuracy. The correlation
between accuracy and MI is positive, but not as pronounced. This is expected from the CEB training
objective, as β shifts optimization efforts between compression of MI and performance (see eq. 1).

4.2 GAUSSIAN DROPOUT NEURAL NETWORKS

We devised four setups for the experiments with multiplicative noise. For the experiments we fix the
dropout variance found through hyperparameter search that allows to achieve close to the state-of-the-
art training results. We apply the NC regularization described in Section 3.3 and in one setup we vary
the regularization strength λ to a subset of values in the grid from −50 to 50. We also include the
setup without any regularization (λ = 0). Each of λ runs was repeated with 5 different random seeds.
We employ standard neural architectures, but in each integrate at least one Gaussian dropout layer
and add a fully connected layer of dimensionality 128 or 512 as the penultimate layer corresponding
to the hidden variable Z.2 In order to estimate MI between inputs and representation we employ the
logistic DoE estimator from McAllester & Stratos (2020) as discussed in Section 3.1. We sample
representations from the trained model without switching off the dropout for estimating MI. We obtain
4 different representations for each of the inputs and use this data to train the estimator. In the CEB
experiments only conditional MI is available, but in this setup estimating conditional MI is impossible
reliably due to the limited amount of samples in every class. Nevertheless, one can estimate I(Z;Y )
through approximation of H(Y ) − Lce(Y ; f(X)), with H(Y ) being logarithm of the number of
classes. Then the values of I(X;Z) are very close to I(X;Z|Y ) = I(X;Z)− I(Z;Y ), given good
convergence and large values of I(X;Z), which is the case in our setups. For the information on the
estimator architecture and its training we refer the reader to the Appendix C.3.

The different setups of the experiment are as follows:

1. ResNet-18 (He et al., 2016) trained on CIFAR-10. For this model we added the dropout
layer with variance 0.4 before the fully-connected layer at the end of the architecture and
representation layer of dimensionality 128.

2. VGG11 (Simonyan, 2014) with batch normalization trained on SVHN. For VGG11 we
added a dropout layer with variance of 0.5 in the classifier module after the first layer and
representation layer of dimensionality 512.

3. Densenet121 (Huang et al., 2017) trained on CIFAR-100. In this architecture we replaced
the original binary dropout with continuous Gaussian dropout with variance of 0.3 and
representation layer of dimensionality 128.

4. MiniBERT (Bhargava et al., 2021; Turc et al., 2019) trained on the AG’s News Corpus
dataset (Zhang et al., 2015). In this architecture we applied Gaussian dropout to the initial
embedding layer with variance of 0.6 and representation layer of dimensionality 512.

See Appendix C.2 for additional details on the training hyper parameters.

We display the correlations in the setup in Table 2. We again observe negative correlation between
the MI and the neural collapse measure, showing that tighter clustering and compressed information
do not coincide. The character of correlation is the same as in the CEB experiments. Differently from
CEB experiments, λ does not give a direct control over classification accuracy and its correlation

2We introduce a layer of a dimensionality less than the usual final fully-connected layers in such architectures
in order to speed up MI estimation and NC computation, but overall the experimental setup is possible without
it as well.
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with MI compression is also much weaker. Only the obvious correlation to NC is very strong, and
opposite to correlation with MI. The correlation of the measures, both NC and MI, with accuracy and
generalization gap is also very weak.

4.3 OBSERVATIONS

The overall rank correlations across all experiments consistently indicate a negative relationship
between class-wise clustering and MI compression. In the Gaussian dropout setup, however, this trend
is weaker, as some training configurations showed little correlation or even a positive one. In Figure 3

(a) VGG11 on SVHN, α = 0.5
(see Sec. 3.3): correlation −0.54

(b) DenseNet121 on CIFAR-100:
correlation 0.27

(c) VGG11 on SVHN, α = 0.01
(see Sec. 3.3): correlation 0.37

Figure 3: Different hyperparameter setups can result in different correlation between MI and NC
(second row), which is possibly confounded by generalization performance (first row).

we demonstrate the run on CIFAR-100 (second column) which has similar range of MI for very
different values of NC and two different training regimes of VGG11, where one resulted in non-linear
negative correlation and another in positive correlation. These results suggest that DNN training with
the standard cross-entropy loss involves a complex interplay between geometry and information. In
particular, our experiments reveal that strong clustering (low NC) can be associated with various
levels of MI, disputing their simple relationship proposed in previous works. Our observations further
indicate that generalization ability may act as a confounder in this relationship (Figure 3, first row),
thereby calling into question the reliability of both measures as predictors of generalization.

5 DISCUSSION AND CONCLUSION

With this paper we contribute to the debate about the connection between geometric compression
in terms of clustering of representations and information-theoretic compression in terms of the
mutual information between latent representations and inputs. Previous research has claimed a
positive (potentially non-linear) correlation between both types of compression: MI is small if latent
representations are clustered, cf. (Goldfeld, 2019), and MI estimation is inherently geometric in
many cases, cf. (Geiger, 2022). We performed experiments on networks with adaptive additive noise
(variational IB) and (fixed) continuous multiplicative noise (Gaussian dropout); for the latter we
provide a proof that the true MI is finite. Our empirical evaluation of Gaussian dropout networks
demonstrates how an information-theoretic perspective can be applied to state-of-the-art DNNs,
providing a foundation for future research. The experiments also reveal that the correlation between
information compression and geometric compression is negative and nonlinear. We conjecture that
it is confounded by the generalization abilities of the model, but we leave understanding the exact
mechanism for future work.
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2012.
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A VISUALIZATION OF LATENT REPRESENTATIONS

Plots in Figure 4 and Figure 5 demonstrate visually that the effect of clustering structure of the
representation space on generalization is hard to describe. Visually tight and convex clusters in
Figure 4 (a) result in worse performance than in (b). At the same moment enforcing weak clustering
of representations in Figure 5 (b), which visually looks as more tight clusters, is outperformed by the
model with clustering in (a).

(a) β = 10 (b) β = 1000

Figure 4: Difference in the structure of clusters of representations extracted from a CEB model
trained on FashionMNIST. The dimensionality of the representation is chosen to be 2 for visualization.
Points correspond to the representations of the test data and the background color corresponds to the
decision boundaries of the model. β regulates the compression of the mutual information via loss
regularization: The smaller it is, the stronger I(X;Z|Y ) is compressed.

(a) λ = 0 (b) λ = 0.1

Figure 5: Difference in the clusters structure of the representations extracted from a fully connected
network with Gaussian dropout with p = 0.4 trained on FashionMNIST. We let the dimensionality of
the representation to be 2 for visualization. The points correspond to the representations of the test
data and the background color corresponds to the decision boundaries of the model. λ regulates the
strength of clustering in representations: The larger it is, the weaker is the clustering.

B PROOF OF THEOREM 3.1

To prove the theorem, we use the following proposition, which extends Proposition 3.5 of (Adilova
et al., 2023) to non-constant real analytic activation functions. The proof then directly follows from
Theorem 3.3 in (Adilova et al., 2023).
Proposition B.1. Consider a non-constant deterministic NN function f : X → R constructed with
finitely many layers, a finite number of neurons per layer, and real analytic activation functions. Let
X be a continuously distributed RV with PDF px that is bounded (0 ≤ px(x) < Cp for all x ∈ X )
and has support in a compact and connected set K. Then the conditional expectation E[log(|f(X)|)]
is finite.
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Proof. By the law of unconscious statistician, we have

EX [log(|f(X)|)] =
∫
K

log(|f(x)|)p(x)dx (4)

As p(x) is bounded and K is bounded, it is clear that EX [log(|f(X)|)] < ∞. It remains to investigate
the behavior around f(X) = 0 to show EX [log(|f(X)|)] > −∞. Since f is a composition of real
analytic functions, f is itself real analytic. We will make use of the well-behaved structure of real
analytic functions to bound the expectation.

The idea of the proof is as follows: The set of zeros of a real analytic function is a set of measure
zero. However, this does not suffice to guarantee finiteness of EX [log(|f(X)|)] as the behavior
around these zeros matters. In one dimension, we can directly use the fact that an analytic function
f : R → R locally behaves polynomially around zeros. In higher dimensions, an analytic function
can remain 0 along submanifolds of lower dimension. The natural analog to the behavior in one
dimension is that the function behaves polynomially as a function of the distance to the set of
zeros. Once we know that f behaves polynomially, we can use that

∫ ϵ

0
log(r)q(r)dr is finite for any

polynomial q(r).

Technically, we apply the Lojasiewicz’s Structure Theorem (see Theorem 6.3.3 in Krantz & Parks
(2012)), which states that the set of zeros of a non-constant real analytic function is a finite collection
of algebraic varieties of dimension at most n − 1. In particular, the set of zeros is a null set and
Equation 4 is well-defined. Let Zi, i = 1, . . . , k denote the connected components of Z.

Moreover, the Lojasiewicz inequality (see Theorem 6.3.4 in Krantz & Parks (2012)), gives that around
zeros of f , the function f behaves polynomially in the distance to the zero: That is, let Z be the set
of zeros of f and dist(x, Z) the distance function from x to Z. Let U be an open neighborhood with
non-zero intersection with Z. Then, for each compact subset E of U , there is a constant CL > 0 and
a natural number q such that

|f(x)| ≥ CL · dist(x, Z)q (5)

for all z in E.

Consider now ϵ-neighborhoods N ϵ
i , i = 1, . . . k around the connected components Zi, where ϵ is

chosen such that |f(x)| < 1 for all x ∈ N ϵ
i ∩K and all i. Then,

EX [log(|f(X)|)] >
finite∑

i

∫
Nϵ

i

log(|f(x)|) · p(x) dx+

∫
K\

⋃
i N

ϵ
i

log(|f(x)|) · p(x) dx (6)

The last integral is bounded below by boundedness of K, continuity of f , and the fact that x has at
least distance ϵ > 0 to any zero of f . It remains to show that each

∫
Nϵ

i
log(|f(x)|) · p(x) dx > −∞.

We fix i in the following and remove it from the notation for readability.

We use the Lojasiewicz inequality equation 5 to find CL > 0 and q ∈ N such that |f(x)| ≥
CL · dist(x, Z)q on N ϵ.

By using Whitney stratification (Whitney, 1965), a real analytic algebraic variety can be decomposed
into a finite number of connected smooth submanifolds, Z =

⋃finite
j Mj . Let dj denote the

dimension of Mj . We know that 0 ≤ dj < n.

Using the decomposition, we will need that f locally behaves polynomially in distance to each Mj .
Since Equation 5 only measures the distance to the variety Z, we will need to partition the space into
regions where the distance to Z is defined by the distance to Mj . For this, we let

N ϵ
j = {x ∈ N ϵ | dist(x,Mj) = dist(x, Z)} .

Then ⋃
j

N ϵ
j = N ϵ

since every distance needs to be realized by at least one of the connected smooth manifold.

For each j, we introduce local coordinate systems xj = (xj
1, . . . , x

j
dj
) of the manifold Mj and

xj,⊥ = (xj,⊥
1 , . . . , xj,⊥

n−dj
) of its normal space. Now we calculate the integral:
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∫
Nϵ

log(|f(x)|)p(x)dx ≥
finite∑

j

∫
Nϵ

j

log(|f(x)|) · p(x)dx

≥
finite∑

j

∫
Nϵ

j

log(|f(x)|) · Cp dx

≥
finite∑

j

∫
Nϵ

j

log(CL · dist(x, Z)q) · Cp dx

=

finite∑
j

∫
Nϵ

j

log(CL · dist(x,Mj)
q) · Cp dx

≥
finite∑

j

∫
Mj

∫
Bn−d

ϵ (0)

log(CL · dist(x,Mj)
q) · Cp dx

⊥ dxj

=

finite∑
j

∫
Mj

voln−dj−1(S
n−dj−1)

∫ ϵ

r=0

log(CL · rq) · Cp r
n−dj−1 dr dxj

=

finite∑
j

Cp · voldj (Mj) · voln−dj−1(S
n−dj−1)

·
(

ϵn−dj

n− dj
log(CL) + q ·

∫ ϵ

r=0

log(r) · rn−dj−1dr

)
> −∞.

The final inequality holds since Mj lies in a bounded set and the last integral is finite for n−dj−1 ≥ 0,
i.e., dj < n.

C EXPERIMENT DETAILS

C.1 CORRELATION ESTIMATION

Mathematically, if {aji} and {bji}, i = 1, . . . , Nj , are quantities recorded in the j-th experiment by
varying a certain parameter, let rja,i and rja,i denote the ranks of aji and bji such that rja,i = 1 if aji > ajℓ
for all ℓ ̸= i, etc. The ranks of the j-th experiment are then min-max normalized to the range of [0, 1],
and the normalized ranks are collected in a vector r̃a = [r̃1a,1, r̃

1
a,2, . . . , r̃

1
a,N1

, r̃2a,1, . . . , r̃
M
a,NM

]. We
then report the Pearson correlation coefficients between r̃a and r̃b.

C.2 TRAINING HYPER PARAMETERS

For all the setups in CEB experiments we employ Adam optmizer with learning rate 1e − 3. We
trained models for 150 epochs with exponential learning rate scheduler with γ = 0.97. Batch size is
selected as following:

1. FC + FMNIST: 64
2. LeNet5 + FMNIST: 64
3. WRN28-4 + CIFAR-10: 256
4. DenseNet-121 + CIFAR-100: 256

For the setups in Gaussian dropout experiments the following hyper parameters were used:

1. ResNet18 + CIFAR-10: batch size 128, learning rate 0.1, training for 100 epochs with SGD
with weight decay of 5e− 4, momentum 0.9 and cosine annealing learning rate scheduler.
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2. VGG11 + SVHN: batch size 256, learning rate 0.01, training for 150 epochs with SGD with
weight decay of 5e− 4, momentum 0.9 and cosine annealing learning rate scheduler.

3. DenseNet-121 + CIFAR-100: batch size 256, learning rate 0.1, training for 200 epochs
with SGD with weight decay of 5e− 4, momentum 0.9 and cosine annealing learning rate
scheduler.

4. mini-BERT + AG News: batch size 256, learning rate 1e− 5, training for 20 epochs with
AdamW with weight decay of 1e− 2 and cosine annealing learning rate scheduler.

C.3 DOE HYPER PARAMETERS

DoE estimator of conditional entropy was selected dependeing on the data: For images we employ a
simple convolutional architecture and for text a two-layer attention network. We train both estimators
with AdamW optimizer with learning rate 1e− 4, batch size 256 ∗ 4 (with 4 samples from dropout)
and gradient clipping to 1. Since convergence of MI estimators is an important characteristic of the
quality of the obtained values, we demonstrate here an example of one of the setups measurements.
The training data allows for a converged estimation, while test data is close to the convergence, but
not very precise. Unfortunately, estimation on one class, needed for conditional MI, cannot converge
properly since amount of samples is too small.

(a) Train data (b) Test data (c) One class train data

Figure 6: Convergence of the estimator of H(Z|X) for DoE on ResNet18 representations with
CIFAR-10 data.

D THEORETICAL ARGUMENT FOR NEGATIVE CORRELATION

We now provide some theoretical arguments that should intuitively explain the observed negative
correlation between geometric and information-theoretic compression. To this end, we consider a
simplified setting.

We consider a set of points from X with corresponding classes from Y . We define a stochastic
encoder, which maps inputs X ∈ X to a two-dimensional latent space Z , encoding a datapoint x
with class y to a random variable Z ∼ N (µ(x), σ2(x)), where:

1. µ(x): The encoder is assumed to distribute all samples of a given class around a learned
class centroid. While we assume that this mapping is bijective, we emulate the spread of
the encoder output due to differences in the input via drawing from a Gaussian distribution.
More specifically, we define the function µ via drawing, for each datapoint (x, y), a sample
from N (µy, σ

2
zI). Here, µy corresponds to the class centroids, while σ2

z corresponds to the
spread of the encoder function µ (which we assume identical for every class, for the sake of
simplicity).

2. σ2(x) = σ2
n: The encoder adds noise with a fixed variance to the latent representation.

Note that since the mapping from X to µ(X) is bijective, its mutual information is infinite, also
I(X;Z) = I(µ(X);Z). Hence, large values of σ2

n lead to small values of I(µ(X);Z). For the
clustering perspective, small values of σ2

z and σ2
n lead to latent representations that are strongly

clustered in a geometric sense.
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We simulate this system by drawing the class means µy from N (0, I) and varying the parameters σ2
z

and σ2
n to study their influence on NC and I(X;Z). To compensate for random effects, we repeat

this procedure 50 times. Mutual information was estimated using the NPEET package3.

The resulting measurements are shown in Fig. 1. They demonstrate that information-theoretic
compression, i.e., lowering of I(µ(X), Z), can result from two different causes:

1. A large encoder noise variance σ2
n (lower left corner of Fig. 1(a)), which indicates that noise

causes class-specific distributions to overlap;
2. A small variance σ2

z of the encoder mean (upper right corner of Fig. 1(a)), which indicates
that samples from the same class are mapped closely in latent space, at least via the
deterministic part of µ(x) of the encoder.

In contrast, the neural collapse measure NC is small only if both σ2
n and σ2

z are small (upper right
corner of Fig. 1(b)).

While geometric compression thus aligns well with the concept of tight clusters, information-theoretic
compression can have (at least) two causes: geometric compression (in the sense of tight clusters) and
uninformative encoders (in the sense of strong encoder noise and/or underfitting). This resonates with
the insights of Kolchinsky et al. (2019), and it also explains both the negative correlation between
geometric and information-theoretic compression observed in Section 4, and the positive correlation
observed in the literature. The correlation is negative if for a fixed spread σ2

z of the deterministic
encoder function the added noise increases. For example, in the Conditional Entropy Bottleneck
(CEB) framework, the encoder maps inputs X to latent representations Z via a stochastic mapping
with additive Gaussian noise, i.e., Z = µ(X) + ϵ, where ϵ ∼ N (0, σ2(X)I). Stronger regularization
in CEB (via a larger trade-off parameter) encourages the model to reduce the mutual information
I(X;Z) by increasing the conditional entropy H(Z|X), which is practically achieved by increasing
the variance σ2(X) of the injected noise. This leads to latent representations that are more dispersed
or noisier and compress MI.

In contrast, the correlation is positive if, for a fixed noise variance that allows for sufficient MI, the
deterministic encoder is varied (as in Goldfeld (2019)).

Since for a trainable stochastic encoder neither σ2
n nor σ2

z can change in isolation, the actual picture
will be even more nuanced than described here.

3https://github.com/gregversteeg/NPEET
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