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Abstract

Various mutations have been shown to correlate with prognosis of High-Grade Glioma
(Glioblastoma). Overall prognostic assessment requires analysis of multiple modalities:
imaging, molecular and clinical. To optimize this assessment pipeline, this paper develops
the first deep learning-based system that uses MRI data to predict 19/20 co-gain, a muta-
tion that indicates median survival. It addresses two key challenges when dealing with deep
learning algorithms and medical data: lack of data and high data imbalance. To tackle
these challenges, we propose a unified approach that consists of a Feature Disentangle-
ment based Generative Adversarial Network (FeaD-GAN) for generating synthetic images.
FeaD-GAN projects disentangled features into a high dimensional space and re-samples
them from a pseudo-large data distribution to generate synthetic images from very limited
data. A thorough analysis is performed to (a) characterize aspects of visual manifesta-
tion of 19/20 co-gain to demonstrate the effectiveness of FeaD-GAN and (b) demonstrate
that not only do the imaging biomarkers of 19/20 co-gain exist, but also that they are
reproducible.

Keywords: Generative Adversarial Networks, Brain Tumor, Magnetic Resonance Imag-
ing, Limited Dataset

1. Introduction

Glioblastoma multiforme (GBM) is the most common and aggressive form of malignant
tumor, comprising of 54% of all primary brain tumors (Tamimi, 2017), reporting a 5-year
survival rate of 5% (Tamimi, 2017). Assessment of overall clinical outcomes typically re-
quires a combination of clinical, molecular and multi-modal imaging data. This process is
time consuming, complex and overloads the clinical work-force. These pitfalls are exacer-
bated by the increasing incidence of GBM, introduction of high-resolution imaging, scarcity
of resources for molecular testing, lack of clinical follow-up and inconsistent data recording
across modalities, just to name a few. For prognosis and recurrence estimation, molecular
testing is the most precise approach. The concurrent gain of 19/20 chromosomes (19/20 co-
gain) has been shown to be correlated to prognosis (Geisenberger et al., 2015). Assessment
of the mutation using imaging would make the process non-invasive, save resources (human
effort, money, time) in treatment planning and also aid with post-treatment understanding
(Kanas et al., 2017). Consequently, a hypothesis that is gaining traction is that molecu-
lar biomarkers emerge as visual manifestations at a macroscopic level in various imaging
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Figure 1: Intra-class variability and inter-class similarity in 19/20 co-gain mutation. Images
are all shown in FLAIR modality. Top: No mutation, Bottom: Mutation present

modalities of GBM testing. To this end, the proposed approach attempts to answer the
following questions in this paper: (1) Does 19/20 co-gain have a visual manifestation in
any of the MR Imaging Modalities? (2) If yes, are these imaging features consistent and
reproducible? (3) Which macroscopic features does the mutation present itself in?

During the above assessment, some common yet significant problems were encountered.
There is a high inter-class similarity and intra-class variation between control and mutated
tumors, as can be seen in Figure 1. Additionally, due to the relatively scarce nature of
the mutation, we are faced with a lack of data and a high data imbalance between the two
classes with and without mutation. For data imbalance, Generative Adversarial Networks
(GANs) have recently been used to learn data distribution to generate diverse samples.
Building on that, we could potentially use them in learning the visual indicators of 19/20
co-gain and demonstrate them to be consistent and reproducible. Nevertheless, GANs are
deep networks that require a fair amount of data to train and the lack of data in our
application renders traditional GANs less than optimal. Thus, we propose a new approach
to GANs: FeaD-GAN, a GAN framework based on feature disentanglement to generate
synthetic data from very small datasets. FeaD-GAN extricates attributes of the input
image into shape and texture and performs latent space recasting using disentanglement
and performs re-sampling, thereby increasing the apparent size of the dataset. Due to
the nature of the dataset, mode collapse is a significant problem. Data driven embedding
has been proposed in literature (Xiao et al., 2018) to avoid mode collapse. However, in
addition to tackling mode collapse, our goal here is to generate diverse synthetic images
from very limited and imbalanced dataset. The independent feature channels provide a
larger search space and added control over generated data by influencing how each feature is
sampled before embedding, thereby allowing us to tackle all the issues. Achieving stability
in GANs is always a challenge, and in this particular case, parallels can be drawn with
multi-objective optimization problem stability and expansive search space. We want to
optimize the solution without loss in performance, while training the network end-to-end.
The applications of such an approach potentially go beyond brain tumors, for example,
anomaly detection problems, data with high class imbalance as well as small datasets i.e.,
many real-world datasets.

2



Imaging Biomarker Characterization in Genetic Mutations

1.1. Contributions

The contributions of our proposed research are as follows:

• A GAN framework effective for learning unapparent discriminatory features while
training on very limited data,

• Feature disentanglement and feature recasting for ”informative noise” input to GAN
for learning subtle discriminatory features,

• Quantitative evidence of presence and reproducibility of visual manifestation of 19/20
co-gain in MR Images across datasets,

• Analysis of three potential macroscopic indicators of mutation: shape, location and
texture of the tumor.

2. Related Work

Deep learning researchers have analyzed imaging features of some mutations (Kanas et al.,
2017; Li et al., 2017; Chang et al., 2018; Lu et al., 2018; Fathi Kazerooni et al., 2019) and
have reported positive trends. For learning underlying data distribution and synthesis of
diverse samples, GANs have been shown to perform very well (Bowles et al., 2018; Frid-Adar
et al., 2018). Since unapparent visual manifestations are being analyzed, it is critical that
the tumor features be generated with sufficient detail. For High and Low Grade Gliomas,
there has been some research in generating images for data augmentation (Han et al., 2019,
2018). Other than GANs, there are many other data augmentation techniques such as
rotation, cropping, etc. The drawback is that these augmentation techniques re-sample
from the same overall distribution, without using domain knowledge to recreate significant
features that can improve the quality of learning. Some researchers have attempted to
use manifold learning (Khayatkhoei et al., 2018), attention-based learning (Zhang et al.,
2018), VAEs (Higgins et al., 2017), etc. to improve the quality of learning. In videos,
there is evidence that disentanglement helps in better feature learning (Tulyakov et al.,
2018). While these are impressive strides in improving quality of learning, most real world
data resides in a very high dimensional space and consists of many attributes operating
together, which need to be studied and dealt with accordingly. The proposed framework
demonstrates the impact of disentanglement for recreating detailed tumor properties that
represent mutation information and generate high quality images.

3. Proposed Approach

The protocol for demonstrating presence, characterization and reproducibility of features
is discussed in this section. Details of the FeaD-GAN framework and how it learns desired
data model using limited data are given in section 3.2.

3.1. Description of Framework

In the process of detecting imaging biomarkers of 19/20 co-gain and assessing their charac-
teristics, we demonstrate that visual indicators of the mutation exist, that they are consis-
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Figure 2: Overall Assessment Pipeline for Biomarker Discovery of 19/20 co-gain. C: Control
class and M: Mutated class of images.
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Figure 3: The four data representations (R’s) used in biomarker detection. Red/solid
boxes: R1-R4 representations; yellow/dashed: features represented in R1-R4;
green/dotted: features quantized

tent and reproducible. Each of these processes is described in this section. An overview of
our framework is shown in Figure 2.

Detecting presence of mutation. The presence of mutation biomarkers is, yet,
unapparent to the human eye. We turn to deep learning classifiers for solving this detection
problem. Once we can consistently detect the presence of imaging biomarkers using the
classifiers, we characterize the biomarkers by quantifying the impact of some macroscopic
features.

Characterization of biomarkers. The features we will assess in the scope of this
paper are: location of tumor, shape of tumor, texture of tumor. To isolate these features,
we perform semi-automatic hierarchical feature stripping. The original Whole Slide Images
(WSIs) (R1) contain all information about the tumor and its surroundings. The second level
of tumor representation (R2 in Figure 3) is delineated tumor with no skull stripping. The
tumor boundary is manually delineated. We preferred manual delineation over automated
because automated segmentation of brain tumors is a (rapidly) growing field which is yet to
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be perfected, and any annotation errors will trickle down to the rest of the model, and thus,
affect the analysis of both: classifier and FeaD-GAN. Additionally, there are some benefits
of pre-identified ROI (Chaddad et al., 2019). The difference between representations R1
and R2 is that R1 contains global features such as the brain matter, as shown in Figure 3
as opposed to the Shape + Texture + Location in R2. The location is with respect to the
skull boundary. R3 is a depiction of the tumor alone. We use a skull stripping algorithm
using connected components to convert R2 to R3. Thus, the R3 representation is now
stripped of location information. The fourth and final representation R4 is a binary mask
of R3, i.e., shape of the tumor. R4 no longer contains texture information. Evaluating
the performance of each representation in detecting co-gain, we obtain an estimate of the
discriminatory properties held by the corresponding macroscopic feature set. We then
compare the performance of these representations with each other to quantify the impact of
individual features on co-gain manifestation and subsequently the discriminatory properties
they represent. The features analyzed using R1-R4 are shown in Figure 3. At this stage of
the analysis, the presence, consistency and characterization of visual mutation indicators
are established. The next step assesses whether these indicators are reproducible.

Reproducibility. Recreating the visual presence of mutations is of significant value
due to its importance in validation of unapparent feature manifestation. Knowing there is
a discriminatory feature set to learn from, we can fortify many medical datasets that lack
samples. Furthermore, it helps with data augmentation. To reproduce these features, we
generate synthetic tumors using FeaD-GAN. To ensure that these synthetic tumors indeed
replicate the required feature set, we use the synthetic images only to predict mutation in
real inputs. In the next sub-section, we detail the framework of FeaD-GAN.

3.2. FeaD-GAN

The overall framework of FeaD-GAN is shown in Figure 4. The motivation behind FeaD-
GAN comes from the challenges in this dataset: limited data, high inter-class similarity
and intra-class diversity between presence and absence of mutation ( Figure 1) and lack
of knowledge of participating feature set. Therefore, to be able to faithfully replicate the
subtle differences in features, we propose generating tumors using disentanglement of the
imaging features (via FeaD-GAN). Leveraging the observations from Section 3.1, FeaD-
GAN performs feature disentanglement to split the tumors into their shape and textures.
The shape and texture are both, then, projected onto a latent space. Noise is added to this
latent space and from the subsequent probability distribution, we sample data points to
recreate the tumor. Thus, FeaD-GAN’s input is essentially an educated noise as opposed
to random noise in traditional GANs.

Details of Algorithm. First step in FeaD-GAN is to accurately obtain shape and
texture representations. A binary threshold on the input tumor crop (X) outputs a shape
image (Xα). This vector is projected onto the latent space using a linear layer followed by
ReLU activation. We project this vector to a length of 128 in the latent space. To obtain
the texture vector (Xβ), a Gabor CNN (GCNN) is used followed by a similar linear layer
and activation. We decided to use GCNN instead of standard CNNs to ensure texture rep-
resentation of data. Traditional CNNs, will need to be trained specifically to learn texture
features, a process that is not required if GCNNs are used. This is because GCNNs enforce
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Figure 4: Proposed FeaD-GAN framework

Gabor-like properties to the layers of a CNN, thereby ensuring a texture representation.
Additionally, GCNNs induce steerable properties into the CNN filters, making them invari-
ant to scale and orientations (Luan et al., 2018). To design the GCNN, we implement Gabor
Orientation Filters (GOFs) and perform convolution with filters of a standard CNN. Since
the GOF equations are invariant, the only trainable parameters are the ones in the CNN
which makes backpropagation possible in the GCNN. The standard set of Gabor filters is
defined as:

g(u, v|f, θ, ψ, σ) = exp
(
− (u2/σ2u + v2/σ2v)

2

)
× cos(2πfu+ ψ) (1)

where, u = xcosθ + ysinθ and v = −xsinθ + ycosθ, x and y are spatial positions, σu
and σv are the spread of the filters, f is the frequency of the sinusoid, θ is the orientation
of the filters and ψ is the phase-shift.

These features are then cast into latent space and re-sampled from a new distribution.
Since we now have two distributions to sample from (instead of one in spatial domain), this
protocol effectively increases the apparent size of the dataset by a power of two. Before
feeding this sampled feature vector to Generator (G), we add random noise to this vector.
This prevents the input to become entirely deterministic (like in Variational Autoencoders
(VAE)) - thereby avoiding chances of mode collapse. Additionally, the noise also adds to
the variety of input fed to G. Thus, we feed a semi-deterministic input vector (z) to the
Generator, essentially picking on the benefits of both GANs and VAEs.

To ensure that the network learns both shape and textures, we design a loss function
that is a combination of a shape consistency loss Lα and a texture consistency loss Lβ. We
train a separate discriminator between Xα and Yα (Dα) to obtain loss Lα. To calculate
the Lβ loss, we input the generated image to the GCNN (Yβ) and train a discriminator
between real and fake textures (Dβ). This aligns the probability distributions between real
and fake textures. Furthermore, unlike traditional GANs, FeaD-GAN has both an added
GCNN as well as a latent sampling protocol for noise input. Thus, we observe potentially
decreased stability of FeaD-GAN as opposed to traditional GAN. To improve the stability,
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we train both discriminators on Wasserstein distance. Wasserstein GANs (WGANs) have
been shown to add stability to the GAN training (Arjovsky et al., 2017). They enforce a
Lipschitz constraint which can sometimes result in overshoot, thus, we also apply gradient
clipping and penalty function to the network (Gulrajani et al., 2017) to improve training
stability. The shape consistency loss Lα and texture consistency loss Lβ is given in Eq 2
and 3 respectively.

Lα = Eyα∼pYα
[
Dα(yα)

]
− Exα∼pXα

[
Dα(xα)

]
+ Ex̂α∼pX̂α

[
||∇x̂αDα(x̂α)||2

]
(2)

Lβ = Eyβ∼pYβ
[
Dβ(yβ)

]
− Exβ∼pXβ

[
Dβ(xβ)

]
+ Ex̂α∼pX̂β

[
||∇x̂βDβ(x̂β)||2

]
(3)

where, Y is G(Z), Yα is BT (Y ) and Yβ is GCNN(Y ). Z is the feature vector sampled

from Xα and Xβ cast onto the latent space, X̂ terms are the weighted average between real
and synthetic images (α for shape and β for texture), BT (.) is the Binary Thresholding
operation, GCNN(.) is the Gabor Convolutional Network output and G is the Generator.

Finally, the overall loss L objective function to be minimized with Lα, Lβ and gradient
penalty is shown given in Eq 4.

L = λα × Lα + λβ × Lβ (4)

where, λα and λβ are weights for the shape and texture consistency loss, respectively.
The generated tumors represent a synthetic version of R3. To recreate R1 and R2,

we implement an integration block which fuses the generated tumors with pseudo-healthy
brain slices (PHBs). These PHBs are the image slices that do not contain tumors. We used
PHBs instead of publicly available healthy brain MRIs to have control over factors such
as machine settings, normalization protocol etc. Control over these variables benefits us
in creating better-quality synthetic R1 and R2s. For synthesizing the location and size of
tumors, we generated a distribution of these features from the training data. From this we
get a range of values in which the feature should lie. We randomly sampled values in this
range such as the relative location, relative size, etc. of the generated tumor. This decides
where to place the tumor and then applies post-processing filters to make the integration
of the tumor into the brain smoother by using local edge-tapering 2D Gaussian filters.

4. Experimental Results

4.1. Description of dataset

For our analysis, we use two datasets, a private dataset collected at Emory University
(Dataset A) and the publicly available The Cancer Imaging Archive (TCIA) (Clark et al.,
2013) Glioblastoma Dataset (Dataset B).

Dataset A. For the private data, Dataset A, we assemble FLAIR MR images of a cohort
of 25 patients with known 19/20 co-gain status. The cohort is divided into 14 control and
11 mutated patients. The control cohort has no 19/20 co-gain and the mutated has co-
gain. This dataset contains about 9 images per patient that contain the tumor. Thus,
both classes have close to 100-130 images each. Following the train-test split, this number
becomes smaller, making it a very limited dataset.
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Dataset B. For the public Dataset B, FLAIR MR images of a cohort of 165 patients
are used. The cohort is divided into 134 control images and 31 mutated patients. The
corresponding patient molecular data was extracted from The Cancer Genome Archive
(TCGA) website (Tomczak et al., 2015). The genomic data was analyzed to extract 19/20
co-gain status. It was done by taking gistic data from TCGA and thresholding for each
arm of the chromosome, if more than 25% of the genes are duplicated on both the long and
short arms of chromosomes 19 and 20.

While Dataset B is not as scarce as Dataset A, it is heavily imbalanced. Thus, generated
images using Dataset A signify the effectiveness of FeaD-GAN in learning discriminative
features of very limited data, whereas, for Dataset B, the evaluation is primarily to combat
data imbalance. The corresponding results are in Section 5.

4.2. List of Experiments

We perform an extensive set of experiments to evaluate every aspect of our proposed ap-
proach. The analysis is broadly divided into 4 parts:

(a) To evaluate presence of mutation biomarkers in MR images: We start by performing
a baseline binary classification on whole slide images of Dataset A and B between control
and mutated classes. We performed 10-fold cross validation on each of the datasets using
multiple state-of-the-art classifiers, out of which ResNet18 was chosen because of its superior
performance. The performance of other classifiers is shown in Appendix C2 and D1.

(b) To characterize macroscopic features: As described in Section 3.1 (refer Figure 2),
after validating the presence of imaging features, we also perform experiments to quantify
the impact of various macroscopic imaging features. The four representations of the data
(R1-R4) in Figure 3 are used for classification. The results are reported in Table 1. Each of
these results is the mean and standard deviation over 10-fold cross validation. Since Dataset
B has heavy imbalance, we compare results using both Standard Data Augmentation (SDA:
oversampling) and Custom Data Augmentation (CDA: FeaD-GAN).

(c) To evaluate reproducibility of biomarkers: To evaluate reproducibility, we train the
classifier solely on synthetic images generated using FeaD-GAN and test this model on real
images. The rationale behind this is that if the synthetic images accurately capture the
discriminative features of imaging biomarkers, they should be able to distinguish between
presence and absence of mutation. This doubles as a quantitative evaluation of how well
FeaD-GAN is able to capture desired data distribution. The results for this evaluation are
shown in Table 2. For qualitative evaluation, images generated by FeaD-GAN are shown
in Figure 5. While this evaluation is primarily done on Dataset A because of its lack of
samples, we also report a smaller set of evaluation on Dataset B in Table 2.

4.3. Results

In this evaluation, we used 80-20 data split for train-test and the data is divided patient-
wise. For results in Table 1, we also use the same settings. The results are shown on two
levels: patient-level (PL) and image-level (IL) classification. IL classifications are the results
by considering each slice independently. PL classifications are obtained by computing the
weighted mean of all images of a patient. Classifications are done using ResNet18. The
representations R1-R4 are as described in Figure 3. Figure 5 shows the tumors generated
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Table 1: Performance of ResNet18 (trained from scratch) over representations R1-R4 for
both datasets. The values are Mean (Std) over 10-folds. SDA is Standard Data
Augmentation (Oversampling) and CDA is Custom Data Augmentation (using
FeaD-GAN). Here, RX: Representation from Figure 3, PL: Patient Level results,
IL: Image Level results, ACC: Accuracy, SEN: Sensitivity, SPEC: Specificity, DIC:
Dice Score

Dataset RX ACC (PL) ACC (IL) SEN (IL) SPEC (IL) DIC (IL)

R1 0.92 (0.08) 0.89 (0.06) 0.85 (0.07) 0.95 (0.05) 0.87 (0.08)
R2 0.95 (0.03) 0.92 (0.05) 0.88 (0.06) 0.98 (0.02) 0.88 (0.08)

Dataset A R3 0.85 (0.08) 0.80 (0.08) 0.67 (0.09) 0.84 (0.06) 0.69 (0.09)
R4 0.70 (0.06) 0.68 (0.07) 0.65 (0.09) 0.75 (0.05) 0.66 (0.08)

R1 0.81 (0.09) 0.78 (0.12) 0.73 (0.08) 0.86 (0.08) 0.70 (0.10)
Dataset B R2 0.84 (0.08) 0.78 (0.10) 0.72 (0.06) 0.88 (0.07) 0.71 (0.10)

(SDA) R3 0.74 (0.09) 0.73 (0.12) 0.66 (0.10) 0.77 (0.06) 0.64 (0.13)
R4 0.64 (0.10) 0.62 (0.08) 0.58 (0.06) 0.70 (0.05) 0.60 (0.08)

R1 0.85 (0.05) 0.84 (0.06) 0.81 (0.06) 0.90 (0.03) 0.82 (0.08)
Dataset B R2 0.89 (0.05) 0.86 (0.07) 0.83 (0.06) 0.96 (0.02) 0.81 (0.08)

(CDA) R3 0.80 (0.08) 0.78 (0.06) 0.75 (0.12) 0.86 (0.07) 0.72 (0.09)
R4 0.70 (0.04) 0.66 (0.08) 0.63 (0.10) 0.74 (0.06) 0.58 (0.13)

Control Mutated

Real Data Synthetic Data

Dataset A

Dataset B

Figure 5: Tumor crops and Whole Slide Images generated using FeaD-GAN for both classes
of Datasets A and B

using FeaD-GAN vs. real data. Figure 5 shows the WSIs generated using FeaD-GAN vs.
real data. In Table 2, we report results on training a classifier using synthetic images and
testing on real images for the four representations. Dataset A is fairly balanced whereas
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Table 2: Mutation detection using only synthetic data generated using FeaD-GAN. Data
is generated using the training set of Table 1 and tested on the corresponding
real test set for all 10-folds. Here, RX: Representation from Figure 3, PL: Patient
Level results, IL: Image Level results, ACC: Accuracy, SEN: Sensitivity, SPEC:
Specificity, DIC: Dice Score

Dataset RX ACC (PL) ACC (IL) SEN (IL) SPEC (IL) DIC (IL)

R1 0.92 (0.09) 0.88 (0.07) 0.85 (0.08) 0.94 (0.04) 0.86 (0.08)
Synthetic R2 0.95 (0.03) 0.90 (0.08) 0.87 (0.07) 0.98 (0.02) 0.88 (0.09)

(Dataset A) R3 0.85 (0.08) 0.82 (0.10) 0.70 (0.08) 0.86 (0.06) 0.68 (0.08)
R4 0.68 (0.06) 0.66 (0.07) 0.62 (0.07) 0.74 (0.5) 0.62 (0.08)

Synthetic R1 0.84 (0.05) 0.82 (0.07) 0.78 (0.08) 0.89 (0.04) 0.78 (0.10)
(Dataset B) R3 0.82 (0.06) 0.79 (0.08) 0.75 (0.09) 0.90 (0.04) 0.74 (0.06)

for Dataset B, we used standard data augmentation (SDA) techniques to train. Using
results from FeaD-GAN as a custom data augmentation (CDA) tool to balance the highly
imbalanced Dataset B, we notice the performance improvement in both training on tumor
crops and WSIs. The results are in Table 1 (Dataset B - SDA/CDA).

From Table 1, we note that representation R2 consistently gives best performance. We
see that adding texture information to shapes (R3 from R4) gives a performance improve-
ment of at least 10%, whereas providing location information further improves detection by
approx. 10%. When adding global information, we find that there is no signifcant variation
in performance, thereby it is currently not conclusive whether global features help or hin-
der detection. In Table 2 we see that the overall performance of R1-R4 is very similar to
that in Table 1 for corresponding datasets - thereby suggesting that FeaD-GAN is able to
accurately learn the features. It is possible that while learning texture, the GCNN learns
some inherently correlated shape features as well. We still chose to add separate feature
channels for added control in increasing the possible combinations of shape and texture to
generate variety of images. To quantify that separate channels help learn more features
than just texture channel, we ran experiments using only texture or only shape channel and
used the generated images for classification. The texture channel results were compared
to representation R3 and shape channel results were compared to R4 in Table 2. Dataset
A was used for both comparisons. Accuracy by using only texture channel for synthetic
images was 0.74 as opposed to 0.82 of Synthetic R3, whereas shape channel classification
accuracy vs synthetic R4 is 0.59 vs 0.66.

5. Conclusions

From classification results of R1 from Table 1, we can conclude that imaging biomarkers
of 19/20 co-gain are present. Furthermore, we notice that the configuration R2 gives best
performance. However, it should also be noted the with such a small dataset, a difference
in performance of 5% is not very significant. The impact can be caused either by global
features, randomness in training or limitations of the classifier. Thus, we cannot conclude
with confidence without further analysis whether or not global features impact detection of
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co-gain. Noticing improvement from R4 to R3 and R3 to R2, we can conclude that texture
and location are crucial. We note that data augmentation using FeaD-GAN gives better
performance than oversampling. From Figure 5, we see that FeaD-GAN does a good job of
generating quality tumor images. As to whether it captures the discriminating features, the
evidence can be seen in Table 2, where synthetic images perform just as well as real images
in mutation detection task. Based on our evaluations, we conclude that 19/20 co-gain
imaging features exist, they are fairly consistent and can be reproduced. We also conclude
that FeaD-GAN is an effective method to accurately generate subtle discriminatory features
using very limited datasets, whilst serving as an effective data augmentation tool.
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Appendix A. Architectures of individual models:
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Figure 6: Architectures of Generator, Discriminator and Gabor CNN

Appendix B. Skull stripping algorithm:

Input: Tumor + Skull

Find two largest connected 
components

Remove the component 
with largest circumference

Figure 7: Pipeline for skull stripping
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Appendix C. Training Specifications

C.1. For FeaD-GAN

For training FeaD-GAN, we initialize all the layers using a Kaiming initialization on account
of its stable and superior convergence properties. The random noise added in the latent
space is sampled from a standard normal distribution. All input data is normalized before
training. Adam optimizer is used with a learning rate of 0.001 with a step decay protocol.

C.2. For Classifiers

For InceptionV3 and AlexNet, we used pre-trained models and finetuned the last layer.
However, in case of ResNet 18, we noticed an improvement in performance when trained
from scratch. Optimizer used is Adam with a step LR scheduling protocol. The networks
are trained using Binary Cross Entropy Loss.

Table 3: Results on multiple classifiers assessing visual presence of mutation. The data split
is 80-20% and the table reports ”mean (standard deviation)” over 10-folds

Classifier Dataset A Dataset B
InceptionV3 0.82 (0.06) 0.72 (0.07)

AlexNet 0.74 (0.08) 0.70 (0.09)
ResNet18 0.89 (0.04) 0.78 (0.06)

Appendix D. Additional experiments:

D.1. Choosing the single best imaging modality:

We conducted numerous experiments with FLAIR, T1-POST and DWI over many classifiers
to check for consistently good performance. Our objective was to detect and recreate
features from a single modality of data and found FLAIR to be the best single modality.
The numbers are accuracy over 10 folds: mean accuracy (standard deviation). The results
are shown on Dataset A, which is split into 80% training/validation and 20% testing.

Table 4: Results on multiple classifiers trained on various imaging modalities assessing vi-
sual presence of mutation. The data split is 80-20% and the table reports ”mean
(standard deviation)” over 10-folds

Classifier T1 Post DWI FLAIR
InceptionV3 0.58 (0.09) 0.65 (0.07) 0.82 (0.06)

AlexNet 0.53 (0.10) 0.58 (0.12) 0.74 (0.08)
VGG19 0.55 (0.09) 0.61 (0.11) 0.77 (0.10)

ResNet18 0.61 (0.07) 0.68 (0.06) 0.89 (0.04)
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D.2. Comparison between CNN and Standard Machine Learning classifiers:

We ran experiments using Gray Level Co-occurence Matrix (GLCM) features with Support
Vector Machine (SVM) with Radial Basis Function (RBF) Kernel and Random Forest (RF)
classifier on whole images and only tumor images (R1 and R3 representations in Table 1)
for Dataset A. These results were compared with classification using Convolutional Neural
Networks (CNN). The results obtained are in the Table below:

Table 5: Classification performance of ResNet18 (CNN) as opposed to standard machine
learning classifiers. The data split is 80-20% and the table reports ”mean (standard
deviation)” over 10-folds of Dataset A

Input Images Classifier Accuracy Sensitivity Specificity Dice Score

SVM (RBF) 0.72 (0.10) 0.67 (0.08) 0.75 (0.07) 0.68 (0.08)
Whole Images RF 0.74 (0.11) 0.68 (0.10) 0.77 (0.06) 0.70 (0.10)

CNN 0.89 (0.06) 0.85 (0.07) 0.95 (0.05) 0.87 (0.08)

SVM (RBF) 0.67 (0.11) 0.57 (0.09) 0.68 (0.08) 0.59 (0.10)
Tumor Crops RF 0.70 (0.12) 0.58 (0.10) 0.70 (0.06) 0.59 (0.09)

CNN 0.80 (0.08) 0.67 (0.09) 0.84 (0.06) 0.69 (0.09)
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