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Figure 1: Saliency maps extracted from a ResNet50 on CUB200 and CIFAR10 images. The colors indicate pixel impor-
tance predicted by different methods (blue=low; red=high). We show two sample data transformations: FlipLR (geometric
transformation) and Equalize (photometric transformation). GradCAM [22] is consistently focuses on the chest of the bird,
despite the left-right flip. Even with image equalization, GradCAM emphasizes the nose of the dog. While other methods
appear to do well on FlipLR, they struggle with Equalize. The proposed COnsistency-SEnsitivity (COSE) metric quantifies
the equivariant and invariant properties of visual model explanations using simple data augmentations.

Abstract

We present a set of metrics that utilize vision priors
to effectively assess the performance of saliency meth-
ods on image classification tasks. To understand behav-
ior in deep learning models, many methods provide vi-
sual saliency maps emphasizing image regions that most
contribute to a model prediction. However, there is lim-
ited work on analyzing the reliability of saliency meth-
ods in explaining model decisions. We propose the metric
COnsistency-SEnsitivity (COSE) that quantifies the equiv-

*Equal contribution

ariant and invariant properties of visual model explana-
tions using simple data augmentations. Through our met-
rics, we show that although saliency methods are thought to
be architecture-independent, most methods could better ex-
plain transformer-based models over convolutional-based
models. In addition, GradCAM was found to outperform
other methods in terms of COSE but was shown to have lim-
itations such as lack of variability for fine-grained datasets.
The duality between consistency and sensitivity allow the
analysis of saliency methods from different angles. Ulti-
mately, we find that it is important to balance these two met-
rics for a saliency map to faithfully show model behavior.



1. Introduction
Given a function f operating on images x ∈ Rm×n×c, a

saliency map M ∈ Rm×n indicates the relative importance
of each pixel in the image x in making the prediction f(x).
Saliency maps have been widely used to understand (possi-
bly black-box) function behavior, especially with deep net-
works. They are important for humans to establish trust in
predictions through transparency, and have been applied in
high-stakes decisions such as medical diagnoses [24] and
bias identification [22]. Given saliency techniques are in-
extricably linked to human understanding, saliency maps
should fulfill certain properties based on our understanding
of the visual system in the world around us.

We propose consistency and sensitivity metrics that mea-
sure two complementary properties of saliency maps. Con-
sistency refers to the property that saliency maps should re-
main unchanged when an input is transformed in a way that
the model predictions don’t change. For example, when an
input is reflected or translated by a small amount, the corre-
sponding saliency maps should also undergo the same ge-
ometric transformation, as we do not expect the class pre-
dictions to change. Similarly, when the input undergoes a
photometric transformation (e.g., change in pixel intensi-
ties or blurring), we expect saliency maps to remain iden-
tical. In short, consistency captures the degree to which
saliency maps are equivariant and invariant to transforma-
tions that don’t affect model predictions. Sensitivity refers
to the property that saliency maps should change when the
model produces a different output. This difference in model
output could be a result of changes in the model parame-
ters (e.g., during the process of training the model) or suf-
ficiently large changes in input. Thus, the model’s explana-
tions must change for it to produce a different output. Prior
knowledge was used to identify transformations that should
result in equivariance and invariance for various computer
vision tasks.

While prior work has focused on evaluating consistency
of saliency maps [12,26,31,35], we show that sensitivity is
also a key consideration and often in conflict with consis-
tency. We propose a combined metric called COSE defined
as the harmonic mean of the consistency and sensitivity.
Our work also considers natural changes to the input, and
model perturbations that occur in realistic training settings.

We develop a benchmark where we evaluate several
saliency methods [4, 13, 21–24, 29], deep network archi-
tectures [7, 9, 16, 17], pre-training procedures [3, 5, 25, 34],
and evaluate these metrics on five different datasets [11, 14,
15, 20, 28]. We find that saliency maps generally produce
more coherent explanations on transformer-based models
than convolutional-based models. GradCAM also demon-
strates better performance across the different metrics and
across the different evaluation settings when compared to
other methods. Finally, we observe common limitations

among saliency methods on balancing consistency and sen-
sitivity, and we recommend future directions for the im-
provement of saliency methods. In summary, our contri-
butions include the following:
• We propose the metrics consistency, sensitivity, and

COSE to evaluate the robustness of saliency methods to
input and model changes based on vision priors.

• We introduce an evaluation pipeline that incorporates nat-
ural image and model variations encountered by human
end users which we open source for future research.1

• We show the effectiveness of our proposed metrics to
evaluate different model architectures (with supervised
and unsupervised features) to analyze the behavior of
saliency methods across different settings.

2. Related Work
2.1. Saliency Maps

Saliency explanations generally attribute importance to
input features [1]. For images, explanations typically are
represented as saliency heatmaps, in which “important” pix-
els are highlighted. Most explainability methods either in-
volve gradient and activation summation [4, 22], input per-
turbations [21], or some combination of both [13,23,24,29].
CAM methods One popular form of saliency maps is
class activation mapping (CAM) [32], which sums activa-
tions within a layer of the network to produce heatmaps,
weighted by a value related to the output classification. We
consider two variants of CAM known as GradCAM and
GradCAM++. GradCAM weights using the average gra-
dient with respect to the desired output classification [22],
and GradCAM++ builds on this idea but uses second-order
gradients to produce explanations with improved object lo-
calization [4].
IG methods On the other hand, Integrated Gradients (IG)
linearly interpolates between a baseline input (in our case,
a black image) and the target input while summing the gra-
dient of the output along the path [24]. In a variant called
BlurIG, the path is not linear but generated by constantly
blurring the original image using the Laplacian of Gaussian
kernels [29]. Meanwhile, Guided IG follows an adaptive
path along pixels with the smallest derivative with respect
to the output [13].
Other methods We also looked at two methods unrelated
to IG and CAM. SmoothGrad averages the gradient of the
classification output with respect to noisy version of the in-
put image [23]. This method can also be combined with
other methods such as IG, but we used the method with
vanilla gradients highlighted in the paper. Meanwhile,
LIME approximates the model behavior in the neighbor-
hood of a given input using a simple linear model to gen-
erate sparse explanations [21].

1The code is available at https://github.com/cvl-umass/COSE

https://github.com/cvl-umass/COSE


2.2. Saliency Metrics

Although defining which explanations are helpful or un-
helpful can be a challenging task [1], several qualitative
characteristics for good explanations have been proposed,
including fidelity to model prediction and generalizability
across explanations [8, 24, 31]. Various quantitative met-
rics have been developed to examine these properties, but
we found these methods either required unnatural, out-of-
distribution perturbations or have focused on examples that
were not meaningful for explaining typical neural network
use cases.
Model perturbation. Some methods randomize parts or
all of the weights in a neural network and expect explana-
tions to change [1, 2], but we question whether the effects
of manual changing sections of a network on corresponding
explanations can be reliably predicted. Instead, we do this
in a less artificial way by saving checkpoints of the model
as it is being trained, ensuring we are able to produce mod-
els in the same way as a typical user might in the process of
training of fine-tuning models.
Input perturbation. Similarly, many metrics perturb in-
puts and observe how explanations change in order to mea-
sure the quality of an explanation [12, 26, 31, 35]. In all
examples we investigated, these perturbed inputs are not in
the training distribution, and we believe it is difficult to jus-
tify that explanations should change or stay the same. In
contrast, we use augmentations which are in the training
distribution to guarantee that the network should behave in
the same way as in training and thus should explain predic-
tions in the same way.
Generating ground truth explanations. Zhou et al. ran-
domizes dataset labels to coincide solely with a single
image augmentation, implying this augmentation is the
ground-truth explanation for this dataset [35]. Similarly, the
BAM dataset generates an artificial dataset by pasting im-
ages from one dataset to another and training models in such
a way that the feature importance is known [30]. Fel et al.
bootstraps networks with different test sets and anticipates
the explanations to be the same between networks which
trained on a given input and those which only encounter the
input in the test set [8]. While these methods are informa-
tive, they fail to capture the full story of a typical usage of
neural networks on a natural dataset.
Human studies. Zimmermann et al. tries to evaluate the
usefulness of visual explanations by having users predict
network activations with and without visual aids [36]. Us-
ing human studies is sensible given the explanations are
meant to improve human understanding, but can be diffi-
cult to formulate and expensive to implement. Quantitative
methods can help analyze other factors and narrow down
methods to examine more closely [33].
Similarity between explanations. Methodology for deter-
mining similarity or distance scores between two explana-

tions quantitatively is not evident a priori, and prior works
are somewhat divided between various methods including
Spearman rank correlation [8, 26], structural similarity in-
dex (SSIM) [1,2], and Pearson correlation on the histogram
of gradients for each explanation [1]. We chose in this work
to use structural similarity index because of its applicability
to images based on human perception. We explored using
Pearson correlation instead of SSIM and found similar re-
sults presented in the supplementary material.

3. Method
3.1. Problem Formulation

We focus on evaluating the performance of saliency
methods on supervised classification models trained on a
set of data points D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
where x ∈ X is an input image and y ∈ Y is the class la-
bel of the image. A model learns a function f : X → Y
that estimates ŷ from the given x, where ŷ is as close as
possible to y. A saliency method Φ tries to estimate a map
Mi ∈ [0, 1]m×n from a given input image xi ∈ Rm×n×c,
its corresponding output ŷi ∈ Rd, and the model f . More
formally, saliency maps can be represented as:

Φ(f, xi) = Mi (1)

To evaluate saliency methods, we measure changes in
Mi by varying either xi or f . The next subsections discuss
these modifications to the input and the model, and propose
measurements on saliency maps that capture their perfor-
mance and reliability.

3.1.1 Data Augmentations

The data augmentation module applies natural image trans-
formations to represent image variation observed in the
wild. To ensure these augmentations are simple, replica-
ble, and reversible, we use a subset of transformations in
TrivialWideAugment [19], which randomly applies a single
augmentation with random magnitude. Each transformation
is either a fixed magnitude (e.g. flipping the image) or uni-
formly sampled from a discrete, linearly spaced set of 61
magnitudes. We removed transformations we deemed to be
not naturally occurring, such as shearing. We define pho-
tometric transformations as those which vary the perceived
colors of the images (e.g. varying the contrast), whereas ge-
ometric transformations vary the orientation of the images
(e.g. rotation, translation). We classify geometric transfor-
mations as the set G and photometric transformations as the
set H and let T = G ∪H .

A model f is invariant to the data transformation t ∈ T
if f(xi) ≡ f(t(xi)). We define a saliency map Φ(f, xi)
as being equivalent to Φ(f, t(xi)) if it is equivariant to ge-
ometric data transformations and invariant to photometric
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Figure 2: GradCAM consistency and sensitivity to data
transformations on ResNet50/Caltech101: the top row
shows the input images, and the bottom row shows the cor-
responding saliency maps. In the reference image (a), the
model correctly classifies the original image as a flamingo.
(b) displays GradCAM’s consistency as the model correctly
classifies the transformed image (f(x) ≡ f(t(xi))) with a
similar saliency map as (a). (c) displays GradCAM’s sen-
sitivity where the model incorrectly classified the trans-
formed image as ibis (f(x) ̸≡ f(t(x))) and the saliency
map emphasizes differently from (a).

data transformations. In other words, for h ∈ H , we expect
Φ(f, xi) = Φ(f, h(xi)), while for g ∈ G, we reverse the
operation on the saliency maps before evaluation, meaning
we expect Φ(f, xi) = g−1(Φ(f, g(xi))).

On the other hand, data transformations that result to a
different model output f(xi) ̸≡ f(t(xi)) should also cor-
respond to different saliency maps Φ(f, xi) ̸≡ Φ(f, t(xi)).
Figure 2 shows this on a sample image using GradCAM
where consistent model behavior should result to equivalent
saliency maps, and changing model behavior should result
to different saliency maps.

3.1.2 Model Augmentations

Prior to training, models have random weights and are un-
able to classify properly. As a model learns, the underlying
weights change and adapt to the data presented. Given the
main goal of saliency maps is to clarify the behavior of the
underlying model, saliency maps should display the model
changes as it undergoes training. When the model updates
from f ′ → f , the corresponding saliency map should also
evolve Φ(f ′, xi) → Φ(f, xi).

To have realistic changes in model weights, we capture
the changing model as it is trained from the first epoch until
it reaches the final trained state. In the final state, the model
should have learned where and how to look at the images
and classify images correctly. We quantify this performance

using the test set classification accuracy. In other words, we
should see that as a model learns, the saliency maps should
reflect the increasing accuracy of this changing model.

3.2. Proposed Metrics

Structural Similarity Index Measure (SSIM) [27] is used
on the saliency maps to quantify the deviation of maps due
to variations from data and model augmentations. Equa-
tion 2 defines the similarity of two maps Mx and My using
SSIM, which lies between 0 and 1. The variable µMx

is
the pixel sample mean of Mx, σ2

Mx
is the variance of Mx,

and C1 = 0.01, C2 = 0.03 are variables to stabilize the di-
vision for small denominator values. Subsequent sections
on the proposed metrics will use this similarity measure for
comparing two output saliency maps.

SSIM(Mx,My) =

(
2µMxµMy + C1

) (
2σMx,My + C2

)(
µ2
Mx

+ µ2
My

+ C1

)(
σ2
Mx

+ σ2
My

+ C2

)
(2)

3.2.1 Consistency

Based on the idea described in § 3.1.1, we propose the con-
sistency metric. The metric measures the robustness of
saliency maps to data augmentations. Given a model ro-
bust to a set of data augmentations, reliable saliency maps
should show equivalent explanations for the input xi and its
transformed counterpart t(xi) (Equation 3).

f(xi) ≡ f(t(xi)) =⇒ Φ(f, xi) ≡ Φ(f, t(xi)) (3)

Let (X,H)∗ be a set such that for x ∈ X and h ∈ H ,
(x, h) ∈ (X,H)∗ if and only if f(x) ≡ f(h(x)) and sim-
ilarly for (X,G)∗. We evaluate the robustness of a given
method Φ based on the similarity of the two maps and pro-
pose the following consistency metric:

consistency =
1

N

∑
(x,h)∈(X,H)∗

SSIM(Φ(f, xi),Φ(f, h(xi)))

+
1

N

∑
(x,g)∈(X,G)∗

SSIM(Φ(f, xi), g
−1(Φ(f, g(xi)))),

(4)

where N = |(X,H)∗ ∪ (X,G)∗|.

3.2.2 Sensitivity

Complementing the idea of consistency, if a model predic-
tion changes due to either a change in input (§ 3.1.1) or
a change in the model itself (§ 3.1.2), an optimal saliency
method should also reflect these changes. We call this char-
acteristic sensitivity. A saliency method should be sensitive
to the underlying changes in the model itself (Equation 5) or



to the response of a model to an input augmentation t ∈ T
(Equation 6).

f(xi) ̸≡ f ′(xi) =⇒ Φ(f, xi) ̸≡ Φ(f ′, xi) (5)

f(xi) ̸≡ f(t(xi)) =⇒ Φ(f, xi) ̸≡ Φ(f, t(xi)) (6)

We reformulate minimizing SSIM to instead maximize
d(M1,M2) = 1−SSIM(M1,M2) to maintain a similar no-
tation as the consistency metric. Let (x, h) ∈ (X,H)′ for
x ∈ X and h ∈ H if and only if f(x) ̸≡ f(h(x)) and sim-
ilarly for (X,G)′. Furthermore, let (x, f ′) ∈ (X,F )′ for
x ∈ X if and only if f(x) ̸≡ f ′(x) for a naturally perturbed
model f ′. We propose the following sensitivity metric:

sensitivity =
1

M

∑
(x,h)∈(X,H)′

d(Φ(f, xi),Φ(f, h(xi)))

+
1

M

∑
(x,g)∈(X,G)′

d(Φ(f, xi), g
−1(Φ(f, g(xi))))

+
1

M

∑
(x,f)∈(X,F )′

d(Φ(f, xi),Φ(f
′, xi)), (7)

where M = |(X,F )′ ∪ (X,G)′ ∪ (X,H)′|.

3.2.3 COSE

Saliency methods should satisfy both consistency and sen-
sitivity. Consistency enforces saliency methods to be ro-
bust to input changes that don’t affect the model. Sensi-
tivity imposes saliency methods to reflect changes that do
affect the model. An optimal saliency map should balance
between these two metrics. Thus, we combine these into a
single metric COnsistency-SEnsitivity (COSE) using their
harmonic mean. This allows evaluation by only looking
at a single metric, enabling faster and easier estimation of
saliency method performances. To achieve a high COSE, a
method should have both high consistency and sensitivity.

COSE =
2 · sensitivity · consistency
sensitivity+ consistency

× 100% (8)

3.3. Evaluation Setup

Models. We trained eight types of models with five
datasets. The models are variations of four base models:
ResNet50 [9], ConvNext [17], ViT-B/16 [7], and Swin-T
[16] to cover convolutional-based models and transformer-
based models. Each model was trained to achieve at least
75% average accuracy on the test set across all datasets.
The settings and performances of all models trained on each
dataset are provided in the appendix. Supervised and unsu-
pervised training for each model was also considered. Mod-
els were pre-trained on ImageNet [6] using self-supervised
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Figure 3: The distributions of COSE for ConvNets and
Transformers compared for all saliency methods, shown
as a violin plot. Within each violin, the thin line shows the
1.5x interquartile range, the thick line shows the interquar-
tile range, and the white dot shows the median. The shape
of the violin shows how data points are distributed. Trans-
formers outperform ConvNets on average for all methods.

learning methods DINO [3], MoCov3 [5], iBOT [34], and
SparK [25], respectively. The models were then fine-tuned
on the downstream task of image classification.
Datasets. The datasets CIFAR-10 [14], Caltech 101 [15],
Caltech-UCSD Birds (CUB200) [28], EuroSAT [11], and
Oxford 102 flowers (Oxford102) [20] were used in the eval-
uation of saliency methods on classification tasks. These
were chosen to look at the performance of saliency meth-
ods across a variety of data, ranging from fine-grained to
coarse-grained datasets.
Saliency Methods. The methods GradCAM [22], Grad-
CAM++ [4], IG [24], BlurIG [29], Guided IG [13], Smooth-
Grad [23], and LIME [21] were analyzed in this paper. Each
of these saliency methods were evaluated for all types of
models and for all datasets. The recommended parameters
from the corresponding papers of the saliency methods were
used and are provided in the appendix.
Data Transformations. We apply two sets of data transfor-
mations for images: photometric and geometric. Photomet-
ric transformations involve changes in blur, contrast, bright-
ness, equalization, smoothness, sharpness, and color. Ge-
ometric transformations consider translation, rotation, and
flipping. These were applied during training to make sure
the model is invariant to both types of transformations.

4. Results and Analysis
We present findings from running evaluations on differ-

ent saliency methods, and their performances based on our
proposed metrics consistency, sensitivity, and COSE.

4.1. Transformers have better explanations

Transformer explanations had higher COSE and sensi-
tivity for all methods. Figure 3 shows transformer model
explanations consistently outperforming those of ConvNets.
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Figure 4: Results of saliency methods on ViT-B/16 (a transformer model), ResNet50 (a convolutional model), and
Oxford102/Caltech101. We qualitatively observe the explanations for ViT-B/16 to be similar (Guided IG, SmoothGrad) or
better (BlurIG, IG, LIME, GradCAM, GradCAM++). In general, we find transformer model explanations are more coherent
than convolutional model explanations.

Table 1 supports this even further, with transformers ob-
taining a higher average COSE score than ConvNets for
every dataset and saliency method. Transformers also dis-
played higher sensitivity than ConvNets for almost every
dataset and saliency method. In terms of consistency, al-
though we observed ConvNets outperformed transformers
for CAM-based methods and CUB, the difference is neg-
ligible when looking at the overall performance. Figure 4
illustrates how explanations appear more coherent for ViT-
B/16 than ResNet50.
Transformer vs ConvNet receptive fields could explain
the difference in saliency maps. The self-attention mech-
anism of transformers doing patch-wise operations allow
for better interpretability due to the availability of a global
view of the image. ConvNets, on the other hand, use local
operators that have limited receptive fields, restricting the
amount of information that can be utilized by saliency meth-
ods [10, 18]. In addition, given unsupervised vision trans-
formers have been found to outperform similarly-trained
ConvNets in terms of various segmentation tasks [3], we
speculate this better spatial understanding may extend to ex-
planations of vision transformers as well. We explore this
further by looking at supervised and unsupervised network
comparisons in the appendix.

4.2. GradCAM is more reliable than other methods

GradCAM has the highest COSE for most of the experi-
ments. Table 1 shows the performance of different saliency
methods across all datasets and models. In 65% of the
evaluation settings, GradCAM outperformed other saliency
methods, with BlurIG having the highest COSE for 22.5%

of the experiments, IG for 5%, GradCAM++ for 5%, and
GuidedIG for 2.5% of the experiments. Although COSE is
a descriptive single metric for overall performance, we also
look at the performance of saliency methods on consistency
and sensitivity individually to give further insight into what
contributes to the performance of the saliency methods.
GradCAM can reflect changing model behavior. Fig-
ure 5 shows the relationship between the model accu-
racy at a collection of intermediate model training epochs
e and the difference in saliency maps Mfinal and Me

(SSIM(Me,Mfinal)). Mfinal is the saliency map for a
fully trained model, and Me is the saliency map of an
untrained or a partially trained model. Both LIME and
GradCAM show a significant positive correlation between
SSIM and accuracy, indicating that saliency maps from
these methods can illustrate changes in model performance.
GradCAM is more robust to data transformations.
Looking at the consistency metrics in Figure 6, GradCAM
has the highest average consistency. The general distribu-
tion also shows GradCAM having more samples with high
consistency values when compared to other methods. This
indicates that GradCAM, followed by GradCAM++ and
BlurIG, are robust to data transformations that do not affect
model behavior.
Limitations of GradCAM. Although GradCAM is shown
to do better than other methods for most of the models
and datasets, it evidently struggles with CUB200. Table
1 shows the COSE for various saliency methods across
datasets and metrics. It also shows GradCAM has low
scores on CUB200. Figure 7 shows that across different
saliency methods, CUB200 has the lowest average COSE.



Dataset Model BlurIG GradCAM GradCAM++ GuidedIG IG LIME SmoothGrad
[29] [22] [4] [13] [24] [21] [23]

Caltech101 ConvNext 63.01% 63.50% 65.28% 54.25% 62.53% 61.51% 60.90%
ResNet50 65.77% 61.86% 45.41% 52.41% 58.80% 56.69% 59.60%
Swin-T 67.81% 67.15% 57.50% 52.54% 64.68% 63.17% 61.95%
ViT-B/16 69.60% 68.66% 60.30% 57.48% 66.67% 61.12% 66.41%

CIFAR10 ConvNext 61.46% 66.74% 66.72% 53.02% 60.91% 62.06% 58.85%
ResNet50 60.47% 62.29% 42.75% 48.27% 51.20% 59.86% 52.02%
Swin-T 66.35% 69.66% 58.29% 50.11% 63.05% 65.76% 56.95%
ViT-B/16 66.46% 71.54% 59.11% 55.72% 66.68% 63.85% 61.00%

CUB200 ConvNext 54.15% 60.61% 59.81% 59.59% 61.20% 56.90% 47.89%
ResNet50 58.63% 44.01% 40.74% 56.50% 60.05% 55.50% 52.38%
Swin-T 62.37% 62.51% 49.78% 60.14% 64.02% 59.06% 56.05%
ViT-B/16 59.07% 64.80% 56.65% 61.26% 60.42% 58.31% 53.70%

EuroSAT ConvNext 59.17% 65.47% 63.58% 52.83% 61.45% 60.23% 57.17%
ResNet50 57.28% 62.27% 45.17% 40.87% 46.14% 59.47% 47.96%
Swin-T 64.74% 66.49% 53.82% 47.51% 61.99% 59.60% 60.43%
ViT-B/16 67.85% 70.31% 57.95% 57.90% 68.12% 60.63% 62.48%

Oxford102 ConvNext 58.60% 62.78% 61.74% 58.73% 60.71% 57.23% 57.77%
ResNet50 61.13% 61.90% 40.30% 54.93% 55.07% 58.32% 56.60%
Swin-T 66.57% 67.38% 56.87% 52.86% 63.42% 62.06% 59.41%
ViT-B/16 66.90% 68.31% 59.14% 59.67% 65.92% 61.44% 62.95%

Overall 63.23% 64.66% 54.59% 54.73% 61.33% 60.11% 57.94%

Table 1: COSE score of different saliency methods on various models and datasets. For each dataset and model combi-
nation, the best saliency method is bolded and the second-best is underlined. For most models and datasets, GradCAM has
the highest COSE, followed by BlurIG and IG. It can also be seen that most methods (GradCAM, GradCAM++, BlurIG)
apart from IG and GuidedIG struggle with CUB200.
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Figure 5: SSIM of the saliency map of the final trained model Mfinal with respect to the saliency map of a partially
trained model Me. GradCAM and LIME generally has increasing SSIM with increasing model accuracy. The correlation
(r) and the corresponding p-values (p) are also annotated in each plot. We use alpha=0.05 (correlation for GuidedIG is
insignificant).
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Figure 6: GradCAM has the highest average consistency.
We can also observe the distribution of consistency across
different samples, with GradCAM having more samples
with high consistency.
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Figure 7: Most saliency methods struggle with CUB200.
Looking at each saliency method group, CUB200 has
the lowest average performance for all methods except
GuidedIG and IG.

This could be contributed to the tendency of CAM methods
to emphasize larger areas of importance. Unlike GradCAM
and GradCAM++, IG and GuidedIG focus on specific de-
tails (also see Figure 1 for sample results), and are observed
to perform better on CUB200 based on COSE. The abil-
ity to distinguish between small differences on fine-grained
datasets like CUB200 can significantly affect the perfor-
mance of a saliency method.

4.3. How do we improve existing saliency methods?

Balancing consistency and sensitivity. GradCAM is
shown to outperform other saliency methods on several an-
gles. However, with a COSE of 64.66%, GradCAM still
has areas for improvement. Figure 1 shows that GradCAM
tends to predict general areas, which limits its sensitivity to
model changes. Due to the large salient area presented, it’s
more difficult to isolate differences due to model changes.
SmoothGrad and BlurIG show more specific areas, but they
tend to be unstable to input perturbations. Future work on
saliency methods should aim to balance performance on
both - being robust while maintaining good sensitivity.
Methods should consider both geometric and photomet-
ric consistency. Figure 8 shows saliency methods generally
have lower consistency and higher sensitivity as transforma-
tion magnitudes increase, but ultimately average to a stable
COSE over all transformation magnitudes. Splitting into
geometric and photometric transformations, we observe in
the same figure that this trend is mostly for photomet-
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Figure 8: Average performance for all methods on all
transformations and separately for geometric and pho-
tometric transformations. While photometric transforma-
tions have decreasing sensitivity and increasing fidelity as
transformation magnitudes increase, geometric transforma-
tions seem to have approximately the same performance re-
gardless of transformation magnitude.

ric transformations, as saliency methods perform about the
same even when geometric transformations increase. This
suggests that saliency methods struggle in different ways for
photometric and geometric transformations. While COSE
gives an overview of overall performance across all trans-
form magnitudes, we recommend saliency method devel-
opers consider photometric changes and geometric changes
as separate problems while trying to achieve consistency in
both.

5. Conclusion

We presented an evaluation pipeline measuring two
crucial characteristics for saliency methods - consistency,
which requires images with the same classification to have
the same explanation, and sensitivity, which describes that
images with different classifications to have different expla-
nations. We combine these two measures into a single met-
ric COSE which is only maximized by balancing the two
properties. By applying natural augmentations to images in
arbitrary datasets, we show our metrics can emphasize the
advantages and the limitations of saliency methods when
ground truth model explanations are not available.

Through our metrics, we analyzed the performance of
seven commonly used saliency methods across five datasets
and eight models. Fundamentally, our metric COSE is best-
suited for saliency metrics whose explanations closely re-
flect the prediction of the network - giving similar expla-
nations for the consistent model behavior and contrasting
explanations for different model behavior. We see our work
as a starting point for researchers to further explore and im-
prove saliency methods for better model understanding.
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