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ABSTRACT

Since the introduction of retrieval-augmented generation (RAG), a standard com-
ponent of large language model (LLM) reasoning pipelines has been the naviga-
tion of a knowledge base (KB) to generate answers grounded in retrieved sources.
However, recent studies show that LLMs struggle with complex queries requiring
deep reasoning and interdependent knowledge, often leading to hallucinations.
While several methods have been proposed to mitigate this issue, most rely on
multiple additional calls to the LLM to decompose and validate reasoning steps,
thereby increasing inference cost and latency. In this paper, we introduce GRAPE
(Graph Reasoning with Anonymous Path Encoders), a framework that leverages
path encodings over uncertain nodes and relations in knowledge graphs (KGs)
to heuristically guide KB navigation. Rather than depending on a fully LLM-
native retrieval pipeline, GRAPE replaces repeated model calls with encoder-only
models that act as a semantic fuzzy query-matching engine. Experiments across
multiple multi-hop QA benchmarks show that GRAPE achieves up to 85% faster
inference than LLM-based pipelines, while consistently matching or exceeding
state-of-the-art accuracy. These results demonstrate that encoder-only hybrid rea-
soning pipelines provide a practical and scalable alternative to expensive LLM-
native retrieval, combining efficiency, robustness, and strong generalization.

1 INTRODUCTION

Writing a question is easy for humans, but despite strong performance across many tasks, large lan-
guage models (LLMs) still struggle to answer queries that demand complex reasoning or deep, long-
tail knowledge Petroni et al. (2021); Talmor et al. (2019); Malek et al. (2025); Tan et al. (2025b).
Modern systems address this by supplying LLMs with retrieval mechanisms that surface evidence
at inference time, mitigating the limits of pretraining Wei et al. (2022); Yao et al. (2023a); Besta
et al. (2024); Jeong et al. (2024). Recently, structural signals from knowledge graphs (KGs) have
been integrated for knowledge-graph question answering (KGQA), where answers are grounded in
graph topology Sun et al. (2023); Li et al. (2023b); Agrawal et al. (2024). Since the emergence of
retrieval-augmented generation (RAG) Lewis et al. (2020), many pipelines let the LLM act as an
“agent,” issuing pre-formatted prompts to query, filter, and reason over the KG Sun et al. (2023);
Tan et al. (2025a); Luo et al. (2024); Walter & Bast (2025).

This design has two drawbacks. (i) Computational/latency: multi-hop reasoning requires travers-
ing and exploring the graph; adding LLM latency to every step makes end-to-end inference im-
practical at scale Oche et al. (2025). (ii) Cost: LLMs are flexible but expensive; driving the entire
retrieval loop with recurrent model calls quickly becomes prohibitive Chen et al. (2023).

To address these issues, we propose GRAPE—a graph reasoning system with an anonymous paths
encoder. GRAPE outsources LLM usage from the exploration loop to encoders that perform fuzzy
path matching between a query-derived anonymous KG pattern and the target KG, where nodes
may be variables to be resolved. In doing so, we reformulate KG retrieval as encoder-guided graph
matching, preserving reasoning structure while reducing LLM calls, latency, and cost, and enabling
scalable KGQA.
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2 RELATED WORK

In general, LLM-based question answering is highly susceptible to hallucination, where plausible
but unfounded intermediate steps lead to errors in complex reasoning tasks Sadat et al. (2023);
Huang et al. (2025); Jiang et al. (2024). Early efforts to mitigate this problem emerged with Chain-
of-Thought (CoT) Wei et al. (2022) and its many variants—such as Auto-CoT Zhang et al. (2022b),
Complex-CoT Fu et al. (2023), Zero-Shot CoT Kojima et al. (2022), Tree-of-Thought (ToT) Yao
et al. (2023a), and Graph-of-Thought (GoT)Besta et al. (2024)—which introduce intermediate
reasoning steps into the prompt to guide the model’s reasoning and reduce hallucination. While
these approaches produce more grounded responses, their effectiveness on knowledge-intensive or
multi-hop reasoning tasks remains constrained by the model’s internal training data, motivating the
integration of external knowledge sources during reasoning Luo et al. (2024); Li et al. (2023b); Yao
et al. (2023b).

One natural extension has been to use knowledge graphs (KGs) as an external interface that
models can query during reasoning, thereby alleviating both the training-data limitation and
hallucination Pan et al. (2024); Agrawal et al. (2024). Early knowledge-graph question answering
(KGQA) approaches attempted to embed KG structure directly into transformer architectures at
training and fine-tuning time Zhang et al. (2022a); Peters et al. (2019); Li et al. (2023b). However,
this strategy sacrifices scalability, as the model becomes tightly coupled to the training-time KG,
and reduces representational reasoning flexibility Wen et al. (2024); Hu et al. (2024). More recent
KGQA systems instead introduce additional extraction and processing steps within the native
LLM-based QA pipeline, which circumvents the scalability issue Ma et al. (2024); Jin et al. (2024).

Among this new family of models, the most relevant to our work are: Think on Graph (ToG) Sun
et al. (2023), which performs beam search over KG paths to identify the most likely reasoning
chains; Think on Graph 2.0 (ToG-2) Ma et al. (2024), which extends ToG by tightly coupling KG
traversal with entity-linked document retrieval, allowing structured and unstructured sources to
reinforce each other in multi-hop reasoning; and Paths on Graphs (PoG) Tan et al. (2025a), which
adds a pruning step using an off-the-shelf model such as SBERT Reimers & Gurevych (2019)
to filter candidate paths after the expansion and search phases, thereby reducing the number of
reasoning calls.

Although these approaches achieve significantly better performance on complex reasoning
tasks than CoT-based methods, they incur substantial overhead in both cost and latency, as their
retrieval pipelines require repeated LLM calls Chen et al. (2023); Oche et al. (2025); Wang et al.
(2024); ?. The bottleneck typically lies in the graph exploration phase, where most methods rely
on iterative expansion, pruning, and evaluation, invoking the LLM at every step of the planned
reasoning process during the initial query resolution Su et al. (2025). Some recent work has
explored dynamic graph pruning for KGQA—for example, KAPING Baek et al. (2023), which
prunes at the triplet level (entity–relation–entity) using semantic similarity between questions and
triplets; KG-GPT Kim et al. (2023), which decomposes the main question into sub-questions to
retrieve relevant relations; and PipeNet Su et al. (2024), which prunes nodes based on their distance
to query-matched sub-spans. While these methods improve efficiency, their pruning operates locally
at the triplet level, often overlooking the global graph structure and sacrificing performance on
long-range dependencies Tan et al. (2025a).

To the best of our knowledge, no existing KGQA method dynamically prunes graph explo-
ration paths while considering the global graph structure and avoiding additional LLM calls.
To this end, we introduce GRAPE, a simple framework based on path encoding with uncertain
(anonymous) entities that reformulates KGQA as a fuzzy graph matching problem between the
query graph and the KG.

3 METHODOLOGY

The GRAPE framework aims to reduce reliance on repeated external calls to the LLM within the
retrieval pipeline by replacing LLM-based search with fuzzy path matching between the knowledge
graph (KG) and an Anonymous Knowledge Graph (AKG) constructed from the query. Matching

2
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Figure 1: GRAPE pipeline. (1) Initialization: convert the query to an Anonymous Knowledge
Graph (AKG) and link known entities. (2) Exploration: encoder-guided fuzzy path matching with
relation clustering, a fixed-size beam, and completeness labels {S,C,D} (Stop/Continue/Drop). (3)
Reasoning: a single LLM call aggregates top candidates and their supporting KG paths into final
answers.

proceeds by iteratively disambiguating the unknown nodes in the AKG, evaluating path complete-
ness through a dedicated encoder, and pruning candidates via top-N semantic similarity. Once the
anonymous entities have been resolved, a single final call to the LLM is used to generate the an-
swer. In line with prior work, the framework is organized into three components: initialization,
exploration, and reasoning.

3.1 FORMAL SETTING OF KGQA

Let G := (E ,R, T ) denote a knowledge graph, where E is the set of entities (nodes), R the
set of relations (edges), and T ⊆ E × R × E the set of triplets defining the graph in the form
(head, relation, tail). A path in G is defined as

P := [(e0, r0, e1), (e1, r1, e2), . . . , (ek−1, rk, ek)] ∈ P(G),
where P(G) denotes the set of all valid paths in the graph.

Formally, a system for knowledge graph question answering is a mapping from a query in natural
language to a subset of supported evidence (i.e., an answer set):

f : L × G −→ P(E)

(q,G) 7−→ Aq :=
{
e ∈ E

∣∣ ∃P = [(e0, r1, e1), . . . , (ek−1, rk, ek)] ∈ P(G),
P |= q ∧ e = ek

}
,

where L := ⟨V⟩ is the language set generated from a vocabulary V and the relation A |= B indicates
that the structure A satisfies the conditions expressed by B.

Modern LLM-based systems often decompose the initial query q into a sequence of subqueries (a
resolution plan) (q0, . . . , qN ). The resolution process then follows the recursion

fk =

{
f(q0,G;∅) = A0,

f(qk,G; fk−1) = Ak, k ≥ 1,

3
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where f(·, ·;H) denotes a call to the system with additional context H (in this case, the previous
answer set), and the recursion terminates with fk = Aq .

3.2 INITIALIZATION

Using an LLM to extract a resolution plan is an easy and flexible way to determine an action plan
from the initially given query. However, this makes a retrieval model entirely dependent on the
LLM during the exploration process, as decomposing the query necessarily produces sub-queries
that lose the global structure of the original intent. This, in turn, requires repeated calls to the LLM
to maintain coherence, which increases inference cost and introduces additional opportunities for
hallucination.

By contrast, our approach reformulates the query as an Anonymous Knowledge Graph (AKG), pre-
serving its overall structure while allowing unknown entities to remain as variables to be resolved
(see Figure 1). For example, the query “Director of a movie in which Tom Hanks acted” is translated
into the AKG

Tom Hanks acted in−−−−→ X1
directed by−−−−−−→ X2,

where X1 denotes an anonymous variable corresponding to an unknown movie and X2 an anony-
mous variable representing the director to be returned as the answer.

Formally, for a given query q we define its associated Anonymous Knowledge Graph (AKG) as

Ĝq =
(
Eq, Rq, Tq

)
,

where
Eq = E ∪ Ê, Tq = T ∪ T̂1 ∪ T̂2.

Here E denotes the set of entities explicitly mentioned in the query, Ê the set of anonymous variables
introduced during query parsing, and Rq the set of relations extracted from q. The set T contains
triplets composed only of known entities, T̂1 the triplets involving one anonymous variable, and T̂2

the triplets involving two anonymous variables.

Instead of LLM planned query decomposition,the resolution process can be expressed as

Ĝ(k)q =

Ĝq, k = 0,

resolve
(
Ĝ(k−1)
q , Xi 7→ e∗

)
, k ≥ 1,

e∗ = argmax
e∈E

s
(
Xi | Ĝ(k−1)

q , e,G
)
, (1)

where at each step a single anonymous variable Xi ∈ Ê is substituted with a candidate entity
e∗ ∈ E from the knowledge graph G. The scoring function s(·) evaluates the compatibility of e with
the current state of the AKG Ĝ(k−1)

q and the evidence in G. The operator resolve(Ĝ(k−1)
q , Xi 7→ e∗)

then updates the graph by replacing Xi with e∗ in all affected triplets, yielding the new state Ĝ(k)q .
The process continues until all anonymous variables are resolved, resulting in the fully instantiated
query graph Ĝ(∗)q .

In practice, we generate the initial AKG graph Gq by using a few shots example query to an LLM
(in our case GPT-4o OpenAI et al. (2024)) that can be found in Section A.1. We also follow ToG
Sun et al. (2023) technique to map all non-anonymous entities to node candidates in the KG.

3.3 EXPLORATION

Exploration is framed as a graph matching problem between the AKG Ĝq and the KG G. At each
iteration, we attempt to resolve one anonymous variable X ∈ Ê by aligning the set of AKG triplets
that involve it,

TX := { (h, r, t) ∈ T (k) | h = X ∨ t = X } ⊆ T (k),

4
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with candidate continuations drawn from G. Unlike exact matching, the process is fuzzy: a relation
r ∈ Rq in the AKG does not need to correspond to an identical edge in G, but can be approximated
by semantically similar relations or by a short path.

Formally, let the query graph at iteration k be

Ĝ(k)q =
(
E ∪ Ê, Rq, T

(k)
)
,

where E are bound entities, Ê are still-unresolved variables, and T (k) is the current set of triplets
(some involving anonymous nodes). We maintain a beam Fk of partial paths with fixed beam size
b and a maximum expansion depth Dmax (in our experiments b = 10, Dmax = 3) as possible
candidates to align TX . The exploration process can then be decomposed into the following phases:

Candidate generation. Given the frontier entity em of a path P ∈ Fk in the beam, we enumerate
its one-hop neighborhood N (em) = {(em, r, v)} ∈ T . Each neighbor induces a candidate continu-
ation P ′ = P ⊕ (em, r, v). We will expand the relations for every path in the beam sequentially and
according to its similarity score.

Scoring. Each candidate extension P ′ is scored with two components:

1. A retrieve–rerank score srank(TXk
, q, (em, r, v) | P ), computed in two stages: first, a

bi-encoder retriever (paraphrase-MiniLM-L3-v2 Reimers & Gurevych (2019)) evaluates
the semantic similarity between the query and a plain-text representation of the path
P ′ = P

⊕
(em, r, v); second, a cross-encoder reranker (fine-tuned from bge-reranker-v2-

m3 Chen et al. (2024)) compares the local neighborhood of the anonymous entity Xk (i.e.,
its incident triplets TXk

) with the candidate continuation P ′ and outputs a score in [0,1]
depending on semantic similarity of both sets.

2. A completeness score hθ(TXk
, P ′) ∈ {S,C,D}, predicted by a multiclass classifier fine-

tuned from DeBERTa-v3-Large He et al. (2021), where S denotes Stop (path already sat-
isfies TXk

), C denotes Continue (expand further), and D denotes Drop (irrelevant). Only
paths predicted as S or C are retained.

Therefore, the scoring function in eq. (1) can be instantiated as:

s
(
X | Ĝ(k)q , em,G

)
= 1[hθ(TXk

, P ′) = S] + 1[hθ(TXk
, P ′) = C] srank(TXk

, q, (em, r, v) | P
)

Where 1(·) denotes the indicator function. A detailed explanation of the training of these models
can be found in Section A.2.

Clustering and representatives. To control high fan-out, expanded neighbors N (em) are clus-
tered by relation, N (em) =

⋃
r Cr, with Cr = {(em, r, v) : v ∈ N (em)}. From each cluster, we

select a representative

v∗r = arg max
(r,v)∈Cr

srank(q, (em, r, v) | P ),

forming the representative set R(em) = {(em, r, v∗r )}r. Clusters are only decompressed when
selected, which reduces redundant scoring.

Beam update and backtracking. During disambiguation of TXk
, after generating and scoring

new candidates, we keep the beam size fixed at b by retaining the top-b paths and discarding the rest.
The next path to expand is the highest-scoring one in the beam. If further expansion of that path
becomes unpromising (its score degrades), we continue with the next best path in the current beam,
allowing the search to switch branches without additional machinery.

Termination. A path stops when hθ(q, P ) = S or depth(P ) = Dmax. The surviving paths FK

define the candidate answer set by their terminal entities.

5
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Method WebQSP Adv
HotpotQA

QALD-
10-en FEVER CREAK Zero-

Shot RE CWQ Simple
Questions

Web
Questions T-REx

ToG-2 (GPT-3.5) 81.1 42.9 54.1 63.1† 93.5 91.0 – – – –
ToG (GPT-4) 76.2 26.3 50.2 52.7 93.8 88.0 57.1 53.6 54.5 76.8

PoG-E (GPT-4) 95.4 – – – – – 78.5 81.2 82.0 –
PoG (GPT-4) 96.7 – – – – – 81.4 84.0 84.6 –

IO prompt (ChatGPT) 63.3 – 42.0 – 89.7 27.7 37.6 20.0 48.7 33.6
CoT (ChatGPT) 62.2 – 42.9 – 90.1 28.8 38.8 20.3 48.5 32.0

CoK (6-shot) – 35.4 – 58.5 – – – – – –
RoG 85.7 – – – – – 62.6 – – –
RRKG 91.5 – – – – – 68.7 – – –

GRAPE (ours) 94.74 ± 3.87 60.31 ± 1.39 65.67 ± 3.84 79.12 ± 4.04 92.77 ± 3.74 94.20 ± 2.79 80.15 ± 2.17 82.87 ± 2.07 88.15 ± 4.87 94.86 ± 3.57

Table 1: Best per column in bold. Metrics: Hits@1 for WebQSP, AdvHotpotQA, QALD-10-en,
Zero-Shot RE, CWQ, SimpleQuestions, WebQuestions, T-REx; Accuracy for FEVER and CREAK.
GRAPE results are mean ± std over 5 runs. † FEVER for ToG-2 reported with 3-shots.

3.4 REASONING

We perform a single aggregation step with an LLM GPT-4o; prompt in the Section A.1). The top
candidate entities and their supporting KG paths are provided to the model together with the original
query and the AKG. The LLM selects the best answer(s) when multiple candidates remain (i.e., no
path has been labeled S by the completeness classifier).

Because we retain the KG relations used to reach each disambiguated entity (the logical path
schema), we subsequently issue a SQL query over the KG store to retrieve any additional enti-
ties that instantiate the same path pattern, thereby covering multi-answer queries. The final answer
set is the union of the LLM selection and the matched entities, deduplicated.

4 EXPERIMENTS

4.1 EXPERIMENTAL DESIGN

Following prior work Sun et al. (2023); Tan et al. (2025a); Ma et al. (2024); Li et al. (2023b), we
evaluate GRAPE on ten datasets spanning KGQA, open-domain QA, slot filling, and fact checking.
For KGQA we use four multi-hop sets—CWQ Talmor & Berant (2018), WebQSP Yih et al. (2016),
QALD-10 Perevalov et al. (2022), and AdvHotpotQA Pan et al. (2024)—and one single-hop set,
SimpleQA Bordes et al. (2015). All KGQA experiments are executed over the Wikidata Vrandečić
& Krötzsch (2014) knowledge graph. For open-domain QA we use WebQuestions Berant et al.
(2013) for slot filling, T-REx Elsahar et al. (2018) and ZeroShotRE Petroni et al. (2021); and for
fact checking, FEVER Thorne et al. (2018) and CREAK Onoe et al. (2021). Our primary metric is
Hits@1 Li et al. (2023a); Baek et al. (2023); Sun et al. (2023). We also report average LLM calls
and wall-clock time per query. Because LLMs can be non-deterministic even at temperature 0.0
Lops et al. (2024); Atil et al. (2025), we run each method five times over the full benchmark (over
one month) and report mean ± standard deviation. Ablations examine (i) incremental addition of
retrieval components starting from a vanilla LLM-only retriever, (ii) the effect of beam width and
depth, and (iii) different LLM backbones and the completeness cross-encoder. Base configuration
details are provided in the Section A.4.

4.2 MAIN RESULTS

4.3 COMPARSION WITH PREVIOUS WORK

In this experiment we compare Hits@1 for question–answer datasets and accuracy for
claim–verification datasets. In Table 1 we can observe that GRAPE pushes performance on slot-
filling benchmarks: on T-REx we obtain 94.86, clearly above all baselines in the table, and on
Zero-Shot RE 94.20, slightly surpassing ToG-2 (91.0). Because relations in these datasets are
generally shallow by construction, they rarely require deep reasoning; in practice, GRAPE’s com-
pleteness mechanism tends to stop early (often at one hop), keeping the reasoning burden on the
LLM small (see Appendix). By contrast, AdvHotpotQA and QALD-10-en are more knowledge-
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System LLM calls (avg.) Exec. time / query (avg., s)

ToG 16.3 69.3
ToG-2 5.4 27.3
PoG 7.8 34.6
CoK 11.0 30.1
GRAPE (ours) 2.4 10.4

Table 2: Average LLM calls and average execution time per query. Lower is better.

intensive and frequently need multi-hop evidence. Here, GRAPE significantly outperforms alter-
native approaches—60.31 vs 42.9 on AdvHotpotQA and 65.67 vs 54.1 on QALD-10-en (both vs
ToG-2)—which we attribute to the combination of plan-aligned exploration, relation-wise clustering
with deferred decompression, and a learned completeness judge that halts expansion once sufficient
evidence is assembled. For fact verification, GRAPE is essentially on par with ToG on CREAK
(92.77 vs 93.8) but substantially better on FEVER (79.12 vs 52.7 for ToG and 58.5 for CoK). We
note that CREAK is a binary (true/false) setting that can often be resolved with shallow Wikidata ev-
idence—both systems readily reach the first-level connections and, using a similar reasoning LLM,
end up close. FEVER, in contrast, is a three-way decision where many ToG errors fall into the Not
Enough Information class; GRAPE naturally mitigates this by passing multiple candidate paths to
the final reasoning step when completeness has not yet marked a query as solved. On the remain-
ing datasets GRAPE is broadly on par in accuracy; crucially, as shown next, it achieves this while
considerably reducing execution time and the number of LLM calls.

4.4 INFERENCE COST

A key practical aspect is inference cost. By design, GRAPE keeps LLM usage small: in the worst
case it makes Dmax + 2 calls—at most one per depth level for seed disambiguation, plus one for
planning and one for final reasoning—independent of the beam width b. This is well below agent-
style methods whose calls grow with both b and Dmax, e.g., 2bDmax + Dmax + 1 for ToG and
approximately 3Dmax for ToG-2. Empirically (Table 2), GRAPE reduces average LLM calls by
85.3% versus ToG (2.4 vs. 16.3), 55.6% versus ToG-2 (2.4 vs. 5.4), 69.2% versus PoG (2.4 vs. 7.8),
and 78.2% versus CoK (2.4 vs. 11.0). The same trend holds for latency: average execution time per
query drops by 85.0% versus ToG (10.4s vs. 69.3s), 61.9% versus ToG-2 (10.4s vs. 27.3s), 69.9%
versus PoG (10.4s vs. 34.6s), and 65.4% versus CoK (10.4s vs. 30.1s). These savings stem from the
encoder-driven exploration and the completeness judge controlling overexpansion.

4.5 ABLATION STUDY ON EXPLORATION COMPONENTS

We analyze the exploration stack by toggling four modules while keeping the rest of the pipeline
fixed (planner/final–answer LLM, Wikidata KG, b=10, Dmax=3). Expansion is always present and
is not ablated.

Components.

1. Bi-encoder retriever. Shortlists candidate continuations P ′ = P ⊕ (em, r, v) by semantic
similarity (query/path text) before fine scoring.

2. Cross-encoder reranker. Computes srank(TXk
, q, (em, r, v) | P ) by comparing the incident

triplets TXk
to the candidate P ′.

3. Completeness classifier. Predicts hθ(TXk
, P ′) ∈ {STOP, CONTINUE, DROP} to control

halt/expand/drop decisions.

4. Relation-wise clustering (deferred decompression). Groups N (em) by relation; selects a
representative per relation and only decompresses a cluster if selected.

Ablation protocol (substitutions when a module is off). If the bi-encoder is off, we prefilter with
BM25. If the cross-encoder is off, the LLM returns a scalar score for (TXk

, P ′) used for ranking. If
the completeness classifier is off, the LLM outputs one of {STOP,CONTINUE,DROP}. If clustering

7
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Variant Bi-enc. retr. Cross-enc. rerank hθ Rel. clustering Hits@1/Acc (%) LLM calls
(avg)

Time / query
(s)

Baseline (LLM rank + LLM comp.) N N N N 70.2 55.0 120.9
V1 Y N N N 73.0 50.5 90.2
V2 Y Y N N 78.5 14.8 38.6
V3 Y Y Y N 80.6 3.2 16.5
V4 (full) Y Y Y Y 81.8 2.4 10.4

Table 3: Ablation over exploration components. Baseline: plain expansion with LLM-based rank-
ing and completeness (no encoders, no clustering). V1: + bi-encoder shortlist. V2: + cross-encoder
srank (LLM no longer ranks). V3: + hθ (exploration decisions no longer call the LLM; only plan/an-
swer/seed tie-breakers remain). V4: + relation-wise clustering (full system).
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Figure 2: Beam–depth sweep. Left: Expected Hits@1 (%). Middle: Time/query (s) with hθ ON.
Right: Time/query (s) with hθ OFF (shared color scale with the middle panel). Accuracy saturates
around b≈10 and D≈3; without hθ, runtime grows sharply with depth due to the absence of early
stopping and pruning.

is off, we expand all neighbors (optionally asking the LLM to choose a small set of relation types
first).

As we can appreciate in Table 3, the LLM-native baseline is costly because the LLM both ranks
many neighbors and decides completeness at each hop. Adding the bi-encoder (V1) reduces fan-out
and latency but accuracy remains limited because ranking is still LLM-based. The cross-encoder
(V2) is the inflection point: ranking moves off the LLM, average calls drop sharply and accu-
racy rises as promising candidates are promoted. Introducing hθ (V3) removes LLM calls from
exploration decisions, cutting calls to roughly three per query and further reducing time. Finally,
relation-wise clustering (V4) eliminates redundant scoring on high–fan-out relations, yielding the
lowest latency (10.4 s) with 2.4 average LLM calls.

4.6 WIDTH AND DEPTH VARIATIONS IN BEAM SEARCH

We study how beam width and maximum depth affect performance and inference time during ex-
ploration. We sweep beam widths b ∈ {4, 8, 10, 12, 16, 20} and depths D ∈ {1, 2, 3, 4, 5}, keeping
the rest of the pipeline fixed (Wikidata KG; planner/final–answer LLM; encoder stack). For each
(b,D) we report the average Hits@1 and the average execution time per query. We also report the
time when the completeness module hθ is deactivated (no early stopping / path dropping).

As shown in Figure 2, widening the beam helps up to b ≈ 10 and then plateaus; increasing depth
beyond D ≈ 3 yields little gain and can slightly degrade accuracy (due to longer, noisier paths).
With hθ active, time grows roughly with b · D (encoder work), consistent with linear scaling in
width and depth. When hθ is disabled, time increases dramatically with depth (and mildly with
width), reflecting the lack of early stopping and aggressive pruning. This highlights hθ’s role in
containing search and keeping latency low.
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Backbone Avg. Hits@1 (QA) Avg. Acc. (Fact) LLM calls (avg.) Time/query (s)

GPT-4o (baseline) 82.6 85.9 2.4 10.4
GPT-3.5 79.5 83.0 2.4 9.0
Llama-3 70B Instruct 81.0 85.0 2.4 11.6
Mistral Large Instruct 80.0 84.0 2.4 11.0
Claude 3.5 Sonnet 81.8 85.5 2.4 11.2

Table 4: Backbone comparison with GRAPE (b=10, D=3). QA average aggregates WebQSP, Ad-
vHotpotQA, QALD-10-en, Zero-Shot RE, CWQ, SimpleQuestions, WebQuestions, and T-REx; Fact
average aggregates FEVER and CREAK. Comparison with GPT-3.5 OpenAI (2023), Llama-3 70B
Instruct AI (2024a), Mistral Large Instruct AI (2024b), and Claude 3.5 Sonnet Anthropic (2024).

4.7 BACKBONE SENSITIVITY

Our main GRAPE results (Hits@1) use GPT-4o as the reasoning backbone. To assess backbone
sensitivity, we swap only the planner/final–answer LLM for comparably capable models, while
keeping the encoder stack (bi-/cross-encoder), hθ, relation clustering, and Wikidata fixed (b=10,
D=3). We report averages over QA tasks (Hits@1) and fact checking (Acc.), together with average
LLM calls and time per query. Because exploration is encoder-driven, LLM calls remain essentially
unchanged across backbones; latency varies modestly with each model’s generation speed.

GRAPE’s performance is largely robust to the backbone because retrieval, path scoring, and stop-
ping are encoder-driven. GPT-4o yields the strongest QA average (82.6) and fact accuracy (85.9);
smaller or instruction-tuned alternatives trail by 1–3 pp on QA and 1–3 pp on fact checking. Av-
erage LLM calls remain ≈ 2.4 across backbones, while latency shifts modestly with model speed
(e.g., slightly faster with 4o-mini, slightly slower for larger open models). Overall, backbone
choice nudges final precision, but GRAPE’s efficiency and most of its accuracy gains come from the
exploration stack rather than the reasoning LLM.

5 LIMITATIONS AND FUTURE WORK

GRAPE is a KGQA–centric system: unlike hybrid RAG approaches (e.g., ToG-2), integrating non-
graph evidence (free text, tables, web) is non-trivial and would require additional alignment mod-
ules. The system is also sensitive to entity linking errors and KG coverage/staleness, which can
yield premature stops or spurious paths, and to distribution shift in the trained components (bi-
/cross-encoders and hθ), which may necessitate re-tuning. Finally, answer verbalization remains
LLM-based and can introduce occasional aggregation or normalization mistakes. At present, the or-
der of anonymous-entity disambiguation is seeded by the LLM’s initial plan; a promising direction
is to combine this with graph-derived statistics (e.g., node uncertainty or expected information gain)
to prioritize easier decisions and prune earlier, thereby reducing end-to-end latency.

6 CONCLUSION

In this paper we introduced GRAPE, a KGQA framework that shifts retrieval from LLM-directed
search to encoder-guided fuzzy graph matching with explicit stopping. In evaluation, GRAPE re-
duces both LLM calls and end-to-end latency by 60–80%, improves accuracy on 6 of 10 datasets,
and remains competitive on the remainder. Our key insight is that effective multi-hop reasoning over
KGs requires LLMs for plan induction and answer synthesis—not for steering the search. Conse-
quently, this encoder-driven design offers a practical path to faster, more scalable KGQA without
sacrificing accuracy.
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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 PROMPTS

Prompt for generating the anonymous graph:

We need to make triplets to make a query from a given text, where the
unknown entities or verbs to match are represented by an X_i.

The idea is to subtitute an entity that is unkwown by X_i, this entities
might be parsed later using a triplet extracted from a knowledge
graph.

Try to use relations as verbs and entities as nouns, although is not
mandatory if the relations are complex.

Take as anchor entity the one that is more restrictive, i.e. the one that
is more specific.

There should always be at least X_1 but there might be more than one
entity to match, so be as fine-grained creating entities as possible,
the more the better and careful with modifiers like dates or numbers

Note that we should consider every sentence as positive as our goal is
just to generate a query for checking information. Therefore ignore
negations and quantifiers like never, not, only, exclusivy, always
...

Here are a few examples:
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- "John Wick is a movie starting the american actor Keenau Reeves and
directed by Stephen Spielberg" -> [(John Wick, starring, X_1), (X_1,
country_of_origin, United States), (John Wick, directed_by, X_2)].

- "Barack Obama is married with a lady who has a kid that has blue eyes"
-> [(Barack Obama, married, X1), (X1, has_children, X2), (X2,
has_eye_color, blue)].

- "Berlin is the capital city of Germany" -> [(Berlin, is_capital_of,
Germany)].

- "Paul MacCartney has never been in a band" -> [(X_1, is, band), (X_1,
is_member, Paul MacCartney)].

- "John Doe had dinner with Barack Obama" -> [(John Doe, X_i, Barack
Obama)].

- "Duke Leto Attreides is a character in the Dune poem" -> [(Duke Leto
Attreides, is_character_in, X_1), (X_1, is, poem)].

- "The movie Titanic was directed by a Canadian man." -> [(X_1,
director_of, Titanic), (X_1, is, man)].

- "The movie Titanic starred an actress." -> [(X_1, starring, Titanic), (
X_1, is, actress)].

- "Don McLean starred with a British actress and a German actor in a 2016
movie." -> [(Don McLean, starring, X_1), (X_1, release_date, 2016),

(X_2, starring, X1), (X_2, nationality, British), (X_2, profession,
actress), (X_3 starring, X_1), (X_3, profession, actor). (X_3,
nationality, German)].

- "The movie Breakfast at Tiffany’s featured a song that was not composed
by Henry Mancini." -> [(Breakfast at Tiffany’s, featured, X_1), (X_1

, is, song), (X_1, composed_by, X_2), (X_2, is_not, Henry Mancini)].
- "Which TV show Barack Obama appeared in?" -> [(Barack Obama,

appeared_in, X_1), (X_1, is, TV show)].
- "The actor who played Jack Ryan in the movie The Hunt for Red October

(1969) is from the same country as Barack Obama" -> [(X_1,
interpreted, Jack_Ryan), (Jack_Ryan, character_of,
The_Hunt_of_the_Red_October), (The_Hunt_Of_The_Red_October,
release_date, 1969), (X_1, nationality, X_2), (Barack_Obama,
nationality, X_2)].

- "The director of the movie Move (2010) is from the same country as the
director of the movie The Dark Knight" -> [(X_1, director_of, Move),
(Move, release_date, 2010), (X_1, nationality, X_2), (X_3,
director_of, The_Dark_Knight), (X_3, nationality, X_2)].

- "The film The Dark Knight was released in the same year as the film The
Hunt for Red October" -> [(The_Dark_Knight, release_date, X_1), (

The_Hunt_Of_The_Red_October, release_date, X_1)].
- "Who is the paternal grandfather of John Doe?" -> [(X_1, father_of,

John_Doe), (X2, father_of, X_1)]. (Note here the grandfather relation
can be splitted in two)

- "Who is the maternal grandfather of John Doe?" -> [(X_1, mother_of,
John_Doe), (X2, father_of, X_1)].

- "From which universities are the Canadian recipients of the Turing
Award that work in the field of Deep Learning?" -> [(X_1, nationality
, Canadian), (X_1, received, Turing_Award), (X_1, field_of_work,
Deep_Learning), (X_1, studied_at, X_2), (X_2, is, university)].

Parenthesis near known entities usually give some information about the
entity, like the year of a movie, profession of some person, a
clarification of what the entity is, or place of an event, like The
Hunt for Red October (1969) -> [(The_Hunt_Of_The_Red_October,
release_date, 1969)].

Note that for example in the last ones even if we matched X_1 we would
still need to check that X_1 is a TV_show.

However, it’s also extremly important not to create dummy entities like (
X_1, name, Duke Leto Atreides) or (X_1, is, Duke Leto Atreides) as
this is not useful for querying.

Return a list (i.e [triplet, triplet, triplet ....]) of triplets
representing the following text, keep it short and simple but be as
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specific as possible in the entities, and *be careful not to drop
information about the X_i entities*

Prompt for reasoning:

You are given:
1. A query expressed as triplets with anonymous entities (X_i).
2. The target entity to resolve (e.g., X_1).
3. A list of candidate answers for the target entity.
4. A set of logical paths extracted from a knowledge graph.

Your task:
- Identify which candidate answer best resolves the target entity.
- Replace the anonymous entities (X_i) in the query triplets with the

resolved entities from the logical path.
- If no candidate matches, answer "None".

---

Example:

Target entity: X_1

Query triplets:
[(X_1, director_of, Titanic), (X_1, nationality, Canadian), (Titanic,

release_date, 1997)]

Candidates:
- James Cameron
- Steven Spielberg
- Denis Villeneuve

Logical paths:
- James Cameron director_of Titanic James Cameron nationality

Canadian Titanic release_date 1997
- Steven Spielberg director_of Titanic Steven Spielberg nationality

American Titanic release_date 1997
- Denis Villeneuve director_of Arrival Denis Villeneuve nationality

Canadian Arrival release_date 2016

Answer:
James Cameron

A.2 TRAINING THE ANONYMOUS-GRAPH ENCODER

Goal. We train an encoder to score the compatibility between an anonymous query subgraph and
a candidate KG path/subgraph, so that fuzzy matches (synonyms, variable-length alignments, type-
consistent substitutions) receive high scores while incomplete or corrupted matches receive low
scores.

Supervision source. From the train/dev splits of all KGQA benchmarks, we convert each query
q into its AKG Ĝq = (Eq, Rq, Tq) and identify the subset TX ⊆ Tq of triplets incident to a chosen
anonymous variable X (the variable to resolve at this step). When gold supporting paths are avail-
able, we use them; otherwise, we mine minimal satisfying paths in the KG that instantiate X and
make the query true.

Positive examples. Starting from (TX , P ⋆) pairs (where P ⋆ is a supporting path), we create hard
positives via: (i) synonymic rewrites of relations/entities (from a curated synonym list) that preserve
truth conditions; (ii) neutral triplet insertion—add edges touching nodes in TX but not changing
the answer set (e.g., types/attributes); (iii) query refinements—add logically implied constraints
(e.g., instance of (X, Film)). All such augmentations keep the label positive.
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Algorithm 1 Anonymous-Graph Training Pair Generation
Require: Datasets D, KG G, synonym maps SynRel, SynEnt, topology patterns Topo, augmenta-

tion budget K
Ensure: Training set S = {(TX , P, y)}

1: S ← ∅
2: for all (q, answers) ∈ Dtrain ∪ Ddev do
3: Ĝq = (Eq, Rq, Tq)← AnonGraph(q)
4: for all X ∈ AnonymousVars(Ĝq) do
5: TX ← {(h, r, t) ∈ Tq | h = X ∨ t = X} ▷ constraints incident to X
6: P⋆ ← MineSupportingPaths(TX ,G) ▷ use gold if available
7: for all P ⋆ ∈ P⋆ do
8: S ← S ∪ {(TX , P ⋆, 1)} ▷ base positive
9: for k = 1 to K do ▷ augment positives

10: T+
X ← SynonymicRewrite(TX , SynRel,SynEnt)

11: T+
X ← InsertNeutralTriplets(T+

X ,G)
12: T+

X ← AddImpliedConstraints(T+
X )

13: P+ ← TopologyJitter(P ⋆,Topo) ▷ equivalent detours
14: S ← S ∪ {(T+

X , P+, 1)}
15: end for
16: for k = 1 to K do ▷ generate hard negatives
17: T−

X , P− ← CorruptOne
(
TX , P ⋆; drop-edge ∨ bad-syn ∨ target-swap ∨

topology-perturb
)

18: if ¬Satisfies(T−
X , P−) then

19: S ← S ∪ {(T−
X , P−, 0)}

20: end if
21: end for
22: end for
23: end for
24: end for
25: return S

Negative examples. We generate hard negatives by minimally breaking support: (i) edge
dropout—remove a key hop in P ⋆ or a required constraint in TX ; (ii) relation/entity corrup-
tion—replace a relation or entity with a near-synonym that changes truth conditions; (iii) target
corruption—swap the answer with a type-consistent non-answer; (iv) topology perturbations—re-
route or re-order hops to produce misleading chains. These produce pairs (TX , P̃ ) that look similar
but do not satisfy TX .

Order-invariance (sets, not sequences). To learn over sets of triplets, we randomly permute the
triplets in TX at sampling time and re-linearize them (and optionally shuffle non-critical hops in the
candidate) so the encoder does not overfit to serialization order.

Input formatting and objective. We serialize (TX , P ) as two text fields (or graph tokens) and
feed them to a cross-encoder to obtain a score s(TX , P ) ∈ R. We train with binary labels y ∈ {0, 1}
using a logistic loss:

L = − y log σ
(
s(TX , P )

)
− (1− y) log

(
1− σ(s(TX , P ))

)
,

or, optionally, a pairwise margin loss for ranking positives above negatives sampled for the same
TX .

Topology diversity. To avoid overfitting to chains, we synthesize examples spanning chains, forks,
diamonds, and short detours (1–3 hops), ensuring the encoder sees multiple structures that can satisfy
the same TX .
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Algorithm 2 Batch sampling with set invariance
Require: Training set S, permutations per item M

1: for each minibatch do
2: Sample (TX , P, y) items from S
3: for all items in batch do
4: T

(π)
X ← RandomPermutation(TX)

5: P (π) ← OptionalShuffle(P ) ▷ shuffle non-critical hops
6: Encode pair

(
T

(π)
X , P (π)

)
and update via logistic (or margin) loss

7: end for
8: end for

A.3 HARDWARE SPECIFICATIONS

All experiments were performed in a machine with the technical capabilities reported in section A.3.

CPU AMD Ryzen Threadripper 3975WX
RAM 256 GB
Cores 64
GPU 2x Nvidia A100 160GB

Table 5: Specifications of the machine in which the experiments were executed.

A.4 TRAINING HYPERPARAMETERS

The full table of hyperparameters used in the training of the path cross encoder systems and inference
for LLMs can be found in table 6. Different options for the setting tried of the system appear between
curly braces, while the selected ones appear in bold.

Parameter Value
Optimizer AdamW
Learning Rate {10−7, 10−6,10−5, 10−4}
Gradient Accumulation Steps {1,5,10}
Maximum Gradient Norm {1, 5, 10, 50, 100}
Batch Size {4, 16, 32, 64, 128}
Epochs 1, 5, 10, 15, 20
Evaluation Steps 1000
Scheduler {Cosine Annealing, Linear}
Weight Decay 0.01
Maximum Gradient Norm 1, 5, 10
Loss Function Cross-Entropy with logits
Max Tokens 512
Dmax (maximum expansion depth) 3
b (beam size) 10
top p 1
temperature 0.0
max generated tokens 2048

Table 6: Training hyperparameters for the proposed system. Between curly braces are all values
tested during optimization, the one selected are marked in bold.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.5 KG EXPLORATION PSEUDOCODE

Algorithm 3 Anonymous KG Exploration with Relation Clustering

Require: Query q; initial Ĝ 0; beam size b=10; depth limit Dmax

1: Initialize frontier F0 ← {∅}, accepted set A ← ∅, priority queue Q← ∅
2: for k = 0, 1, 2, . . . do
3: for each P ∈ Fk do
4: Select anonymous target x̂ ∈ Ê referenced by the next planned triplet τ⋆ = (x̂, r⋆, o⋆)
5: Let e be the current binding for x̂ reached along P
6: Enumerate N (e) = {(r, v)} and cluster: N (e) =

⊔
r Cr

7: for each cluster Cr do
8: v⋆r ← argmax(r,v)∈Cr

srank
(
q, (e, r, v) | P

)
9: end for

10: R ← {(e, r, v⋆r )}r
11: Candidate continuations C ← {P ⊕ (e, r, v⋆r ) : (e, r, v

⋆
r ) ∈ R}

12: F̃ ← TOPB(C, b by srank)

13: for each P ′ ∈ F̃ do
14: y ← hθ(q, P

′) ∈ {COMPLETE, EXPAND, IRRELEVANT}
15: if y = IRRELEVANT then
16: continue ▷ drop
17: else if y = COMPLETE or depth(P ′) = Dmax then
18: A ← A∪ {P ′} ▷ accept and stop expanding
19: else
20: Push P ′ into Q with key u(P ′) ▷ mark for expansion
21: end if
22: end for
23: end for
24: Fk+1 ← ∅
25: while |Fk+1| < b and Q ̸= ∅ do
26: P ⋆ ← POPMAX(Q)
27: if P ⋆ chose representative (e, r, v⋆r ) for expansion then
28: // cluster decompression on demand
29: Insert P ⋆ ⊕ (e, r, v) for top-k members (r, v) ∈ Cr by srank
30: Fk+1 ← Fk+1 ∪ {P ⋆} ▷ advance beam; enables backtracking if needed
31: end while
32: if Q = ∅ then
33: break
34: end if
35: end for
36: return A

20


	Introduction
	Related Work
	Methodology
	Formal Setting of KGQA
	Initialization
	Exploration
	Reasoning

	Experiments
	Experimental Design
	Main Results
	Comparsion with previous work
	Inference cost
	Ablation study on exploration components
	Width and depth variations in beam search
	Backbone sensitivity

	Limitations and Future Work
	Conclusion
	Additional Implementation details
	Prompts
	Training the Anonymous-Graph Encoder
	Hardware Specifications
	Training Hyperparameters
	KG exploration pseudocode


