
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPE: GRAPH REASONING WITH ANONYMOUS
PATH ENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Since the introduction of retrieval-augmented generation (RAG), a standard com-
ponent of large language model (LLM) reasoning pipelines has been the naviga-
tion of a knowledge base (KB) to generate answers grounded in retrieved sources.
However, recent studies show that LLMs struggle with complex queries requiring
deep reasoning and interdependent knowledge, often leading to hallucinations.
While several methods have been proposed to mitigate this issue, most rely on
multiple additional calls to the LLM to decompose and validate reasoning steps,
thereby increasing inference cost and latency. In this paper, we introduce GRAPE
(Graph Reasoning with Anonymous Path Encoders), a framework that leverages
path encodings over uncertain nodes and relations in knowledge graphs (KGs)
to heuristically guide KB navigation. Rather than depending on a fully LLM-
native retrieval pipeline, GRAPE replaces repeated model calls with encoder-only
models that act as a semantic fuzzy query-matching engine. Experiments across
multiple multi-hop QA benchmarks show that GRAPE achieves up to 85% faster
inference than LLM-based pipelines, while consistently matching or exceeding
state-of-the-art accuracy. These results demonstrate that encoder-only hybrid rea-
soning pipelines provide a practical and scalable alternative to expensive LLM-
native retrieval, combining efficiency, robustness, and strong generalization.

1 INTRODUCTION

Writing a question is easy for humans, but despite strong performance across many tasks, large lan-
guage models (LLMs) still struggle to answer queries that demand complex reasoning or deep, long-
tail knowledge Petroni et al. (2021); Talmor et al. (2019); Malek et al. (2025); Tan et al. (2025b).
Modern systems address this by supplying LLMs with retrieval mechanisms that surface evidence
at inference time, mitigating the limits of pretraining Wei et al. (2022); Yao et al. (2023a); Besta
et al. (2024); Jeong et al. (2024). Recently, structural signals from knowledge graphs (KGs) have
been integrated for knowledge-graph question answering (KGQA), where answers are grounded in
graph topology Sun et al. (2023); Li et al. (2023b); Agrawal et al. (2024). Since the emergence of
retrieval-augmented generation (RAG) Lewis et al. (2020), many pipelines let the LLM act as an
“agent,” issuing pre-formatted prompts to query, filter, and reason over the KG Sun et al. (2023);
Tan et al. (2025a); Luo et al. (2024); Walter & Bast (2025).

This design has two drawbacks. (i) Computational/latency: multi-hop reasoning requires travers-
ing and exploring the graph; adding LLM latency to every step makes end-to-end inference im-
practical at scale Oche et al. (2025). (ii) Cost: LLMs are flexible but expensive; driving the entire
retrieval loop with recurrent model calls quickly becomes prohibitive Chen et al. (2023).

To address these issues, we propose GRAPE—a graph reasoning system with an anonymous paths
encoder. GRAPE outsources LLM usage from the exploration loop to encoders that perform fuzzy
path matching between a query-derived anonymous KG pattern and the target KG, where nodes
may be variables to be resolved. In doing so, we reformulate KG retrieval as encoder-guided graph
matching, preserving reasoning structure while reducing LLM calls, latency, and cost, and enabling
scalable KGQA.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 RELATED WORK

In general, LLM-based question answering is highly susceptible to hallucination, where plausible
but unfounded intermediate steps lead to errors in complex reasoning tasks Sadat et al. (2023);
Huang et al. (2025); Jiang et al. (2024). Early efforts to mitigate this problem emerged with Chain-
of-Thought (CoT) Wei et al. (2022) and its many variants—such as Auto-CoT Zhang et al. (2022b),
Complex-CoT Fu et al. (2023), Zero-Shot CoT Kojima et al. (2022), Tree-of-Thought (ToT) Yao
et al. (2023a), and Graph-of-Thought (GoT)Besta et al. (2024)—which introduce intermediate
reasoning steps into the prompt to guide the model’s reasoning and reduce hallucination. While
these approaches produce more grounded responses, their effectiveness on knowledge-intensive or
multi-hop reasoning tasks remains constrained by the model’s internal training data, motivating the
integration of external knowledge sources during reasoning Luo et al. (2024); Li et al. (2023b); Yao
et al. (2023b).

One natural extension has been to use knowledge graphs (KGs) as an external interface that
models can query during reasoning, thereby alleviating both the training-data limitation and
hallucination Pan et al. (2024); Agrawal et al. (2024). Early knowledge-graph question answering
(KGQA) approaches attempted to embed KG structure directly into transformer architectures at
training and fine-tuning time Zhang et al. (2022a); Peters et al. (2019); Li et al. (2023b). However,
this strategy sacrifices scalability, as the model becomes tightly coupled to the training-time KG,
and reduces representational reasoning flexibility Wen et al. (2024); Hu et al. (2024). More recent
KGQA systems instead introduce additional extraction and processing steps within the native
LLM-based QA pipeline, which circumvents the scalability issue Ma et al. (2024); Jin et al. (2024).

Among this new family of models, the most relevant to our work are: Think on Graph (ToG) Sun
et al. (2023), which performs beam search over KG paths to identify the most likely reasoning
chains; Think on Graph 2.0 (ToG-2) Ma et al. (2024), which extends ToG by tightly coupling KG
traversal with entity-linked document retrieval, allowing structured and unstructured sources to
reinforce each other in multi-hop reasoning; and Paths on Graphs (PoG) Tan et al. (2025a), which
adds a pruning step using an off-the-shelf model such as SBERT Reimers & Gurevych (2019)
to filter candidate paths after the expansion and search phases, thereby reducing the number of
reasoning calls.

Although these approaches achieve significantly better performance on complex reasoning
tasks than CoT-based methods, they incur substantial overhead in both cost and latency, as their
retrieval pipelines require repeated LLM calls Chen et al. (2023); Oche et al. (2025); Wang et al.
(2024); ?. The bottleneck typically lies in the graph exploration phase, where most methods rely
on iterative expansion, pruning, and evaluation, invoking the LLM at every step of the planned
reasoning process during the initial query resolution Su et al. (2025). Some recent work has
explored dynamic graph pruning for KGQA—for example, KAPING Baek et al. (2023), which
prunes at the triplet level (entity–relation–entity) using semantic similarity between questions and
triplets; KG-GPT Kim et al. (2023), which decomposes the main question into sub-questions to
retrieve relevant relations; and PipeNet Su et al. (2024), which prunes nodes based on their distance
to query-matched sub-spans. While these methods improve efficiency, their pruning operates locally
at the triplet level, often overlooking the global graph structure and sacrificing performance on
long-range dependencies Tan et al. (2025a).

To the best of our knowledge, no existing KGQA method dynamically prunes graph explo-
ration paths while considering the global graph structure and avoiding additional LLM calls.
To this end, we introduce GRAPE, a simple framework based on path encoding with uncertain
(anonymous) entities that reformulates KGQA as a fuzzy graph matching problem between the
query graph and the KG.

3 METHODOLOGY

The GRAPE framework aims to reduce reliance on repeated external calls to the LLM within the
retrieval pipeline by replacing LLM-based search with fuzzy path matching between the knowledge
graph (KG) and an Anonymous Knowledge Graph (AKG) constructed from the query. Matching

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Yoko Ono

Yoko Ono

🍇

Where was

John Lennon’s wife born?

place_of_birth

John Lennon X
 Y

married_to

John Lennon

married_to

X

John Lennon
John Lennon

Member

The Beatles

John Lennon

Born in

Liverpool

John Lennon

Spouse

Yoko Ono

Retrieval-Rerank
Path-Encoder

John Lennon

Spouse

Yoko Ono

Top-K

Completeness
Path encoder

Do we
know X?Irrelevant path

Discard candidate

Yes! Not yet

Path Priority
Queue

Expand X
Candidate

John Lennon

Tokyo

Top_Path

Entity

Is X an
answer?

Resolve
X = Yoko Ono

No

Yes!

Current Path

Tokyo

born_in

Neighbour paths

Expanded Paths

Initialization

Reasoning Exploration

Yoko Ono

Figure 1: GRAPE pipeline. (1) Initialization: convert the query to an Anonymous Knowledge
Graph (AKG) and link known entities. (2) Exploration: encoder-guided fuzzy path matching with
relation clustering, a fixed-size beam, and completeness labels {S,C,D} (Stop/Continue/Drop). (3)
Reasoning: a single LLM call aggregates top candidates and their supporting KG paths into final
answers.

proceeds by iteratively disambiguating the unknown nodes in the AKG, evaluating path complete-
ness through a dedicated encoder, and pruning candidates via top-N semantic similarity. Once the
anonymous entities have been resolved, a single final call to the LLM is used to generate the an-
swer. In line with prior work, the framework is organized into three components: initialization,
exploration, and reasoning.

3.1 FORMAL SETTING OF KGQA

Let G := (E ,R, T) denote a knowledge graph, where E is the set of entities (nodes), R the
set of relations (edges), and T ⊆ E × R × E the set of triplets defining the graph in the form
(head, relation, tail). A path in G is defined as

P := [(e0, r0, e1), (e1, r1, e2), . . . , (ek−1, rk, ek)] ∈ P(G),
where P(G) denotes the set of all valid paths in the graph.

Formally, a system for knowledge graph question answering is a mapping from a query in natural
language to a subset of supported evidence (i.e., an answer set):

f : L × G −→ P(E)

(q,G) 7−→ Aq :=
{
e ∈ E

∣∣ ∃P = [(e0, r1, e1), . . . , (ek−1, rk, ek)] ∈ P(G),
P |= q ∧ e = ek

}
,

where L := ⟨V⟩ is the language set generated from a vocabulary V and the relation A |= B indicates
that the structure A satisfies the conditions expressed by B.

Modern LLM-based systems often decompose the initial query q into a sequence of subqueries (a
resolution plan) (q0, . . . , qN). The resolution process then follows the recursion

fk =

{
f(q0,G;∅) = A0,

f(qk,G; fk−1) = Ak, k ≥ 1,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where f(·, ·;H) denotes a call to the system with additional context H (in this case, the previous
answer set), and the recursion terminates with fk = Aq .

3.2 INITIALIZATION

Using an LLM to extract a resolution plan is an easy and flexible way to determine an action plan
from the initially given query. However, this makes a retrieval model entirely dependent on the
LLM during the exploration process, as decomposing the query necessarily produces sub-queries
that lose the global structure of the original intent. This, in turn, requires repeated calls to the LLM
to maintain coherence, which increases inference cost and introduces additional opportunities for
hallucination.

By contrast, our approach reformulates the query as an Anonymous Knowledge Graph (AKG), pre-
serving its overall structure while allowing unknown entities to remain as variables to be resolved
(see Figure 1). For example, the query “Director of a movie in which Tom Hanks acted” is translated
into the AKG

Tom Hanks acted in−−−−→ X1
directed by−−−−−−→ X2,

where X1 denotes an anonymous variable corresponding to an unknown movie and X2 an anony-
mous variable representing the director to be returned as the answer.

Formally, for a given query q we define its associated Anonymous Knowledge Graph (AKG) as

Ĝq =
(
Eq, Rq, Tq

)
,

where
Eq = E ∪ Ê, Tq = T ∪ T̂1 ∪ T̂2.

Here E denotes the set of entities explicitly mentioned in the query, Ê the set of anonymous variables
introduced during query parsing, and Rq the set of relations extracted from q. The set T contains
triplets composed only of known entities, T̂1 the triplets involving one anonymous variable, and T̂2

the triplets involving two anonymous variables.

Instead of LLM planned query decomposition,the resolution process can be expressed as

Ĝ(k)q =

Ĝq, k = 0,

resolve
(
Ĝ(k−1)
q , Xi 7→ e∗

)
, k ≥ 1,

e∗ = argmax
e∈E

s
(
Xi | Ĝ(k−1)

q , e,G
)
, (1)

where at each step a single anonymous variable Xi ∈ Ê is substituted with a candidate entity
e∗ ∈ E from the knowledge graph G. The scoring function s(·) evaluates the compatibility of e with
the current state of the AKG Ĝ(k−1)

q and the evidence in G. The operator resolve(Ĝ(k−1)
q , Xi 7→ e∗)

then updates the graph by replacing Xi with e∗ in all affected triplets, yielding the new state Ĝ(k)q .
The process continues until all anonymous variables are resolved, resulting in the fully instantiated
query graph Ĝ(∗)q .

In practice, we generate the initial AKG graph Gq by using a few shots example query to an LLM
(in our case GPT-4o OpenAI et al. (2024)) that can be found in Section A.1. We also follow ToG
Sun et al. (2023) technique to map all non-anonymous entities to node candidates in the KG.

3.3 EXPLORATION

Exploration is framed as a graph matching problem between the AKG Ĝq and the KG G. At each
iteration, we attempt to resolve one anonymous variable X ∈ Ê by aligning the set of AKG triplets
that involve it,

TX := { (h, r, t) ∈ T (k) | h = X ∨ t = X } ⊆ T (k),

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

with candidate continuations drawn from G. Unlike exact matching, the process is fuzzy: a relation
r ∈ Rq in the AKG does not need to correspond to an identical edge in G, but can be approximated
by semantically similar relations or by a short path.

Formally, let the query graph at iteration k be

Ĝ(k)q =
(
E ∪ Ê, Rq, T

(k)
)
,

where E are bound entities, Ê are still-unresolved variables, and T (k) is the current set of triplets
(some involving anonymous nodes). We maintain a beam Fk of partial paths with fixed beam size
b and a maximum expansion depth Dmax (in our experiments b = 10, Dmax = 3) as possible
candidates to align TX . The exploration process can then be decomposed into the following phases:

Candidate generation. Given the frontier entity em of a path P ∈ Fk in the beam, we enumerate
its one-hop neighborhood N (em) = {(em, r, v)} ∈ T . Each neighbor induces a candidate continu-
ation P ′ = P ⊕ (em, r, v). We will expand the relations for every path in the beam sequentially and
according to its similarity score.

Scoring. Each candidate extension P ′ is scored with two components:

1. A retrieve–rerank score srank(TXk
, q, (em, r, v) | P), computed in two stages: first, a

bi-encoder retriever (paraphrase-MiniLM-L3-v2 Reimers & Gurevych (2019)) evaluates
the semantic similarity between the query and a plain-text representation of the path
P ′ = P

⊕
(em, r, v); second, a cross-encoder reranker (fine-tuned from bge-reranker-v2-

m3 Chen et al. (2024)) compares the local neighborhood of the anonymous entity Xk (i.e.,
its incident triplets TXk

) with the candidate continuation P ′ and outputs a score in [0,1]
depending on semantic similarity of both sets.

2. A completeness score hθ(TXk
, P ′) ∈ {S,C,D}, predicted by a multiclass classifier fine-

tuned from DeBERTa-v3-Large He et al. (2021), where S denotes Stop (path already sat-
isfies TXk

), C denotes Continue (expand further), and D denotes Drop (irrelevant). Only
paths predicted as S or C are retained.

Therefore, the scoring function in eq. (1) can be instantiated as:

s
(
X | Ĝ(k)q , em,G

)
= 1[hθ(TXk

, P ′) = S] + 1[hθ(TXk
, P ′) = C] srank(TXk

, q, (em, r, v) | P
)

Where 1(·) denotes the indicator function. A detailed explanation of the training of these models
can be found in Section A.2.

Clustering and representatives. To control high fan-out, expanded neighbors N (em) are clus-
tered by relation, N (em) =

⋃
r Cr, with Cr = {(em, r, v) : v ∈ N (em)}. From each cluster, we

select a representative

v∗r = arg max
(r,v)∈Cr

srank(q, (em, r, v) | P),

forming the representative set R(em) = {(em, r, v∗r)}r. Clusters are only decompressed when
selected, which reduces redundant scoring.

Beam update and backtracking. During disambiguation of TXk
, after generating and scoring

new candidates, we keep the beam size fixed at b by retaining the top-b paths and discarding the rest.
The next path to expand is the highest-scoring one in the beam. If further expansion of that path
becomes unpromising (its score degrades), we continue with the next best path in the current beam,
allowing the search to switch branches without additional machinery.

Termination. A path stops when hθ(q, P) = S or depth(P) = Dmax. The surviving paths FK

define the candidate answer set by their terminal entities.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Method WebQSP Adv
HotpotQA

QALD-
10-en FEVER CREAK Zero-

Shot RE CWQ Simple
Questions

Web
Questions T-REx

ToG-2 (GPT-3.5) 81.1 42.9 54.1 63.1† 93.5 91.0 – – – –
ToG (GPT-4) 76.2 26.3 50.2 52.7 93.8 88.0 57.1 53.6 54.5 76.8

PoG-E (GPT-4) 95.4 – – – – – 78.5 81.2 82.0 –
PoG (GPT-4) 96.7 – – – – – 81.4 84.0 84.6 –

IO prompt (ChatGPT) 63.3 – 42.0 – 89.7 27.7 37.6 20.0 48.7 33.6
CoT (ChatGPT) 62.2 – 42.9 – 90.1 28.8 38.8 20.3 48.5 32.0

CoK (6-shot) – 35.4 – 58.5 – – – – – –
RoG 85.7 – – – – – 62.6 – – –
RRKG 91.5 – – – – – 68.7 – – –

GRAPE (ours) 94.74 ± 3.87 60.31 ± 1.39 65.67 ± 3.84 79.12 ± 4.04 92.77 ± 3.74 94.20 ± 2.79 80.15 ± 2.17 82.87 ± 2.07 88.15 ± 4.87 94.86 ± 3.57

Table 1: Best per column in bold. Metrics: Hits@1 for WebQSP, AdvHotpotQA, QALD-10-en,
Zero-Shot RE, CWQ, SimpleQuestions, WebQuestions, T-REx; Accuracy for FEVER and CREAK.
GRAPE results are mean ± std over 5 runs. † FEVER for ToG-2 reported with 3-shots.

3.4 REASONING

We perform a single aggregation step with an LLM GPT-4o; prompt in the Section A.1). The top
candidate entities and their supporting KG paths are provided to the model together with the original
query and the AKG. The LLM selects the best answer(s) when multiple candidates remain (i.e., no
path has been labeled S by the completeness classifier).

Because we retain the KG relations used to reach each disambiguated entity (the logical path
schema), we subsequently issue a SQL query over the KG store to retrieve any additional enti-
ties that instantiate the same path pattern, thereby covering multi-answer queries. The final answer
set is the union of the LLM selection and the matched entities, deduplicated.

4 EXPERIMENTS

4.1 EXPERIMENTAL DESIGN

Following prior work Sun et al. (2023); Tan et al. (2025a); Ma et al. (2024); Li et al. (2023b), we
evaluate GRAPE on ten datasets spanning KGQA, open-domain QA, slot filling, and fact checking.
For KGQA we use four multi-hop sets—CWQ Talmor & Berant (2018), WebQSP Yih et al. (2016),
QALD-10 Perevalov et al. (2022), and AdvHotpotQA Pan et al. (2024)—and one single-hop set,
SimpleQA Bordes et al. (2015). All KGQA experiments are executed over the Wikidata Vrandečić
& Krötzsch (2014) knowledge graph. For open-domain QA we use WebQuestions Berant et al.
(2013) for slot filling, T-REx Elsahar et al. (2018) and ZeroShotRE Petroni et al. (2021); and for
fact checking, FEVER Thorne et al. (2018) and CREAK Onoe et al. (2021). Our primary metric is
Hits@1 Li et al. (2023a); Baek et al. (2023); Sun et al. (2023). We also report average LLM calls
and wall-clock time per query. Because LLMs can be non-deterministic even at temperature 0.0
Lops et al. (2024); Atil et al. (2025), we run each method five times over the full benchmark (over
one month) and report mean ± standard deviation. Ablations examine (i) incremental addition of
retrieval components starting from a vanilla LLM-only retriever, (ii) the effect of beam width and
depth, and (iii) different LLM backbones and the completeness cross-encoder. Base configuration
details are provided in the Section A.4.

4.2 MAIN RESULTS

4.3 COMPARSION WITH PREVIOUS WORK

In this experiment we compare Hits@1 for question–answer datasets and accuracy for
claim–verification datasets. In Table 1 we can observe that GRAPE pushes performance on slot-
filling benchmarks: on T-REx we obtain 94.86, clearly above all baselines in the table, and on
Zero-Shot RE 94.20, slightly surpassing ToG-2 (91.0). Because relations in these datasets are
generally shallow by construction, they rarely require deep reasoning; in practice, GRAPE’s com-
pleteness mechanism tends to stop early (often at one hop), keeping the reasoning burden on the
LLM small (see Appendix). By contrast, AdvHotpotQA and QALD-10-en are more knowledge-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

System LLM calls (avg.) Exec. time / query (avg., s)

ToG 16.3 69.3
ToG-2 5.4 27.3
PoG 7.8 34.6
CoK 11.0 30.1
GRAPE (ours) 2.4 10.4

Table 2: Average LLM calls and average execution time per query. Lower is better.

intensive and frequently need multi-hop evidence. Here, GRAPE significantly outperforms alter-
native approaches—60.31 vs 42.9 on AdvHotpotQA and 65.67 vs 54.1 on QALD-10-en (both vs
ToG-2)—which we attribute to the combination of plan-aligned exploration, relation-wise clustering
with deferred decompression, and a learned completeness judge that halts expansion once sufficient
evidence is assembled. For fact verification, GRAPE is essentially on par with ToG on CREAK
(92.77 vs 93.8) but substantially better on FEVER (79.12 vs 52.7 for ToG and 58.5 for CoK). We
note that CREAK is a binary (true/false) setting that can often be resolved with shallow Wikidata ev-
idence—both systems readily reach the first-level connections and, using a similar reasoning LLM,
end up close. FEVER, in contrast, is a three-way decision where many ToG errors fall into the Not
Enough Information class; GRAPE naturally mitigates this by passing multiple candidate paths to
the final reasoning step when completeness has not yet marked a query as solved. On the remain-
ing datasets GRAPE is broadly on par in accuracy; crucially, as shown next, it achieves this while
considerably reducing execution time and the number of LLM calls.

4.4 INFERENCE COST

A key practical aspect is inference cost. By design, GRAPE keeps LLM usage small: in the worst
case it makes Dmax + 2 calls—at most one per depth level for seed disambiguation, plus one for
planning and one for final reasoning—independent of the beam width b. This is well below agent-
style methods whose calls grow with both b and Dmax, e.g., 2bDmax + Dmax + 1 for ToG and
approximately 3Dmax for ToG-2. Empirically (Table 2), GRAPE reduces average LLM calls by
85.3% versus ToG (2.4 vs. 16.3), 55.6% versus ToG-2 (2.4 vs. 5.4), 69.2% versus PoG (2.4 vs. 7.8),
and 78.2% versus CoK (2.4 vs. 11.0). The same trend holds for latency: average execution time per
query drops by 85.0% versus ToG (10.4s vs. 69.3s), 61.9% versus ToG-2 (10.4s vs. 27.3s), 69.9%
versus PoG (10.4s vs. 34.6s), and 65.4% versus CoK (10.4s vs. 30.1s). These savings stem from the
encoder-driven exploration and the completeness judge controlling overexpansion.

4.5 ABLATION STUDY ON EXPLORATION COMPONENTS

We analyze the exploration stack by toggling four modules while keeping the rest of the pipeline
fixed (planner/final–answer LLM, Wikidata KG, b=10, Dmax=3). Expansion is always present and
is not ablated.

Components.

1. Bi-encoder retriever. Shortlists candidate continuations P ′ = P ⊕ (em, r, v) by semantic
similarity (query/path text) before fine scoring.

2. Cross-encoder reranker. Computes srank(TXk
, q, (em, r, v) | P) by comparing the incident

triplets TXk
to the candidate P ′.

3. Completeness classifier. Predicts hθ(TXk
, P ′) ∈ {STOP, CONTINUE, DROP} to control

halt/expand/drop decisions.

4. Relation-wise clustering (deferred decompression). Groups N (em) by relation; selects a
representative per relation and only decompresses a cluster if selected.

Ablation protocol (substitutions when a module is off). If the bi-encoder is off, we prefilter with
BM25. If the cross-encoder is off, the LLM returns a scalar score for (TXk

, P ′) used for ranking. If
the completeness classifier is off, the LLM outputs one of {STOP,CONTINUE,DROP}. If clustering

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Variant Bi-enc. retr. Cross-enc. rerank hθ Rel. clustering Hits@1/Acc (%) LLM calls
(avg)

Time / query
(s)

Baseline (LLM rank + LLM comp.) N N N N 70.2 55.0 120.9
V1 Y N N N 73.0 50.5 90.2
V2 Y Y N N 78.5 14.8 38.6
V3 Y Y Y N 80.6 3.2 16.5
V4 (full) Y Y Y Y 81.8 2.4 10.4

Table 3: Ablation over exploration components. Baseline: plain expansion with LLM-based rank-
ing and completeness (no encoders, no clustering). V1: + bi-encoder shortlist. V2: + cross-encoder
srank (LLM no longer ranks). V3: + hθ (exploration decisions no longer call the LLM; only plan/an-
swer/seed tie-breakers remain). V4: + relation-wise clustering (full system).

4 8 10 12 16 20
Beam width (b)

1

2

3

4

5

De
pt

h
(D

)

64.0 66.0 67.0 67.0 67.0 67.0

74.0 76.0 78.0 78.0 78.0 78.0

80.0 81.0 81.8 82.0 82.0 82.0

79.0 80.5 81.0 81.0 81.0 81.0

78.0 79.5 80.0 80.0 80.0 80.0

Expected Hits@1 (%)

4 8 10 12 16 20
Beam width (b)

1

2

3

4

5

De
pt

h
(D

)
1.4 2.8 3.5 4.2 5.5 6.9

2.8 5.5 6.9 8.3 11.1 13.9

4.2 8.3 10.4 12.5 16.6 20.8

5.5 11.1 13.9 16.6 22.2 27.7

6.9 13.9 17.3 20.8 27.7 34.7

Time per query (s) stopping ON

4 8 10 12 16 20
Beam width (b)

1

2

3

4

5

De
pt

h
(D

)

1.4 2.9 3.6 4.5 5.9 7.6

4.5 9.0 11.5 14.1 19.2 24.5

10.5 21.2 27.0 33.1 44.8 57.2

19.2 39.6 50.6 61.6 83.9 106.6

31.7 65.2 82.8 101.4 137.6 175.6

Time per query (s) stopping OFF

64

66

68

70

72

74

76

78

80

82
Hi

ts
@

1
(%

)

0

20

40

60

80

100

120

140

160

Se
co

nd
s

0

20

40

60

80

100

120

140

160

Se
co

nd
s

Figure 2: Beam–depth sweep. Left: Expected Hits@1 (%). Middle: Time/query (s) with hθ ON.
Right: Time/query (s) with hθ OFF (shared color scale with the middle panel). Accuracy saturates
around b≈10 and D≈3; without hθ, runtime grows sharply with depth due to the absence of early
stopping and pruning.

is off, we expand all neighbors (optionally asking the LLM to choose a small set of relation types
first).

As we can appreciate in Table 3, the LLM-native baseline is costly because the LLM both ranks
many neighbors and decides completeness at each hop. Adding the bi-encoder (V1) reduces fan-out
and latency but accuracy remains limited because ranking is still LLM-based. The cross-encoder
(V2) is the inflection point: ranking moves off the LLM, average calls drop sharply and accu-
racy rises as promising candidates are promoted. Introducing hθ (V3) removes LLM calls from
exploration decisions, cutting calls to roughly three per query and further reducing time. Finally,
relation-wise clustering (V4) eliminates redundant scoring on high–fan-out relations, yielding the
lowest latency (10.4 s) with 2.4 average LLM calls.

4.6 WIDTH AND DEPTH VARIATIONS IN BEAM SEARCH

We study how beam width and maximum depth affect performance and inference time during ex-
ploration. We sweep beam widths b ∈ {4, 8, 10, 12, 16, 20} and depths D ∈ {1, 2, 3, 4, 5}, keeping
the rest of the pipeline fixed (Wikidata KG; planner/final–answer LLM; encoder stack). For each
(b,D) we report the average Hits@1 and the average execution time per query. We also report the
time when the completeness module hθ is deactivated (no early stopping / path dropping).

As shown in Figure 2, widening the beam helps up to b ≈ 10 and then plateaus; increasing depth
beyond D ≈ 3 yields little gain and can slightly degrade accuracy (due to longer, noisier paths).
With hθ active, time grows roughly with b · D (encoder work), consistent with linear scaling in
width and depth. When hθ is disabled, time increases dramatically with depth (and mildly with
width), reflecting the lack of early stopping and aggressive pruning. This highlights hθ’s role in
containing search and keeping latency low.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Backbone Avg. Hits@1 (QA) Avg. Acc. (Fact) LLM calls (avg.) Time/query (s)

GPT-4o (baseline) 82.6 85.9 2.4 10.4
GPT-3.5 79.5 83.0 2.4 9.0
Llama-3 70B Instruct 81.0 85.0 2.4 11.6
Mistral Large Instruct 80.0 84.0 2.4 11.0
Claude 3.5 Sonnet 81.8 85.5 2.4 11.2

Table 4: Backbone comparison with GRAPE (b=10, D=3). QA average aggregates WebQSP, Ad-
vHotpotQA, QALD-10-en, Zero-Shot RE, CWQ, SimpleQuestions, WebQuestions, and T-REx; Fact
average aggregates FEVER and CREAK. Comparison with GPT-3.5 OpenAI (2023), Llama-3 70B
Instruct AI (2024a), Mistral Large Instruct AI (2024b), and Claude 3.5 Sonnet Anthropic (2024).

4.7 BACKBONE SENSITIVITY

Our main GRAPE results (Hits@1) use GPT-4o as the reasoning backbone. To assess backbone
sensitivity, we swap only the planner/final–answer LLM for comparably capable models, while
keeping the encoder stack (bi-/cross-encoder), hθ, relation clustering, and Wikidata fixed (b=10,
D=3). We report averages over QA tasks (Hits@1) and fact checking (Acc.), together with average
LLM calls and time per query. Because exploration is encoder-driven, LLM calls remain essentially
unchanged across backbones; latency varies modestly with each model’s generation speed.

GRAPE’s performance is largely robust to the backbone because retrieval, path scoring, and stop-
ping are encoder-driven. GPT-4o yields the strongest QA average (82.6) and fact accuracy (85.9);
smaller or instruction-tuned alternatives trail by 1–3 pp on QA and 1–3 pp on fact checking. Av-
erage LLM calls remain ≈ 2.4 across backbones, while latency shifts modestly with model speed
(e.g., slightly faster with 4o-mini, slightly slower for larger open models). Overall, backbone
choice nudges final precision, but GRAPE’s efficiency and most of its accuracy gains come from the
exploration stack rather than the reasoning LLM.

5 LIMITATIONS AND FUTURE WORK

GRAPE is a KGQA–centric system: unlike hybrid RAG approaches (e.g., ToG-2), integrating non-
graph evidence (free text, tables, web) is non-trivial and would require additional alignment mod-
ules. The system is also sensitive to entity linking errors and KG coverage/staleness, which can
yield premature stops or spurious paths, and to distribution shift in the trained components (bi-
/cross-encoders and hθ), which may necessitate re-tuning. Finally, answer verbalization remains
LLM-based and can introduce occasional aggregation or normalization mistakes. At present, the or-
der of anonymous-entity disambiguation is seeded by the LLM’s initial plan; a promising direction
is to combine this with graph-derived statistics (e.g., node uncertainty or expected information gain)
to prioritize easier decisions and prune earlier, thereby reducing end-to-end latency.

6 CONCLUSION

In this paper we introduced GRAPE, a KGQA framework that shifts retrieval from LLM-directed
search to encoder-guided fuzzy graph matching with explicit stopping. In evaluation, GRAPE re-
duces both LLM calls and end-to-end latency by 60–80%, improves accuracy on 6 of 10 datasets,
and remains competitive on the remainder. Our key insight is that effective multi-hop reasoning over
KGs requires LLMs for plan induction and answer synthesis—not for steering the search. Conse-
quently, this encoder-driven design offers a practical path to faster, more scalable KGQA without
sacrificing accuracy.

REFERENCES

Garima Agrawal, Tharindu Kumarage, Zeyad Alghamdi, and Huan Liu. Can knowledge graphs
reduce hallucinations in LLMs? : A survey. In Kevin Duh, Helena Gomez, and Steven
Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of the As-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

sociation for Computational Linguistics: Human Language Technologies (Volume 1: Long Pa-
pers), pp. 3947–3960, Mexico City, Mexico, June 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.naacl-long.219. URL https://aclanthology.org/2024.
naacl-long.219/.

Meta AI. The LLaMA 3 model card and technical re-
port. https://ai.meta.com/research/publications/
the-llama-3-model-card-and-technical-report/, 2024a. Accessed: 2025-06-
23.

Mistral AI. Mistral large. https://mistral.ai/news/mistral-large/, 2024b. Ac-
cessed: 2025-06-23.

Anthropic. Introducing claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, 2024. Accessed: 2025-06-23.

Berk Atil, Sarp Aykent, Alexa Chittams, Lisheng Fu, Rebecca J. Passonneau, Evan Radcliffe,
Guru Rajan Rajagopal, Adam Sloan, Tomasz Tudrej, Ferhan Ture, Zhe Wu, Lixinyu Xu,
and Breck Baldwin. Non-determinism of ”deterministic” llm settings, 2025. URL https:
//arxiv.org/abs/2408.04667.

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. Knowledge-augmented language model prompt-
ing for zero-shot knowledge graph question answering. In Estevam Hruschka, Tom Mitchell, Saj-
jadur Rahman, Dunja Mladenić, and Marko Grobelnik (eds.), Proceedings of the First Workshop
on Matching From Unstructured and Structured Data (MATCHING 2023), pp. 70–98, Toronto,
ON, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
matching-1.7. URL https://aclanthology.org/2023.matching-1.7/.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase from
question-answer pairs. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu,
and Steven Bethard (eds.), Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1533–1544, Seattle, Washington, USA, October 2013. Association for
Computational Linguistics. URL https://aclanthology.org/D13-1160/.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michał Podstawski, Lukas Giani-
nazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoe-
fler. Graph of thoughts: solving elaborate problems with large language models. In Proceedings
of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on
Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Ad-
vances in Artificial Intelligence, AAAI’24/IAAI’24/EAAI’24. AAAI Press, 2024. ISBN 978-1-
57735-887-9. doi: 10.1609/aaai.v38i16.29720. URL https://doi.org/10.1609/aaai.
v38i16.29720.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple question
answering with memory networks, 2015. URL https://arxiv.org/abs/1506.02075.

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. M3-embedding:
Multi-linguality, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Asso-
ciation for Computational Linguistics: ACL 2024, pp. 2318–2335, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.137. URL
https://aclanthology.org/2024.findings-acl.137/.

Lingjiao Chen, Matei A. Zaharia, and James Y. Zou. Frugalgpt: How to use large language models
while reducing cost and improving performance. ArXiv, abs/2305.05176, 2023. URL https:
//api.semanticscholar.org/CorpusID:258564349.

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci, Christophe Gravier, Jonathon Hare, Fred-
erique Laforest, and Elena Simperl. T-REx: A large scale alignment of natural language with
knowledge base triples. In Nicoletta Calzolari, Khalid Choukri, Christopher Cieri, Thierry De-
clerck, Sara Goggi, Koiti Hasida, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène

10

https://aclanthology.org/2024.naacl-long.219/
https://aclanthology.org/2024.naacl-long.219/
https://ai.meta.com/research/publications/the-llama-3-model-card-and-technical-report/
https://ai.meta.com/research/publications/the-llama-3-model-card-and-technical-report/
https://mistral.ai/news/mistral-large/
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2408.04667
https://arxiv.org/abs/2408.04667
https://aclanthology.org/2023.matching-1.7/
https://aclanthology.org/D13-1160/
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/1506.02075
https://aclanthology.org/2024.findings-acl.137/
https://api.semanticscholar.org/CorpusID:258564349
https://api.semanticscholar.org/CorpusID:258564349

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis, and Takenobu Tokunaga (eds.), Proceed-
ings of the Eleventh International Conference on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan, May 2018. European Language Resources Association (ELRA). URL
https://aclanthology.org/L18-1544/.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning, 2023. URL https://arxiv.org/abs/2210.00720.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. ArXiv, abs/2111.09543, 2021. URL
https://api.semanticscholar.org/CorpusID:244346093.

Linmei Hu, Zeyi Liu, Ziwang Zhao, Lei Hou, Liqiang Nie, and Juanzi Li. A survey of knowledge
enhanced pre-trained language models. IEEE Trans. on Knowl. and Data Eng., 36(4):1413–1430,
April 2024. ISSN 1041-4347. doi: 10.1109/TKDE.2023.3310002. URL https://doi.org/
10.1109/TKDE.2023.3310002.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions. ACM Trans. Inf. Syst.,
43(2), January 2025. ISSN 1046-8188. doi: 10.1145/3703155. URL https://doi.org/
10.1145/3703155.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong Park. Adaptive-RAG:
Learning to adapt retrieval-augmented large language models through question complexity. In
Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pp. 7036–7050, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.389. URL
https://aclanthology.org/2024.naacl-long.389/.

Che Jiang, Biqing Qi, Xiangyu Hong, Dayuan Fu, Yang Cheng, Fandong Meng, Mo Yu, Bowen
Zhou, and Jie Zhou. On large language models’ hallucination with regard to known facts.
In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 1041–1053, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.60. URL
https://aclanthology.org/2024.naacl-long.60/.

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng
Tang, Suhang Wang, Yu Meng, and Jiawei Han. Graph chain-of-thought: Augmenting large
language models by reasoning on graphs, 2024. URL https://arxiv.org/abs/2404.
07103.

Jiho Kim, Yeonsu Kwon, Yohan Jo, and Edward Choi. KG-GPT: A general framework for rea-
soning on knowledge graphs using large language models. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 9410–9421, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.631. URL https://aclanthology.org/2023.
findings-emnlp.631/.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates
Inc. ISBN 9781713871088.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 9459–9474. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/6b493230205f780e1bc26945df7481e5-Paper.pdf.

11

https://aclanthology.org/L18-1544/
https://arxiv.org/abs/2210.00720
https://api.semanticscholar.org/CorpusID:244346093
https://doi.org/10.1109/TKDE.2023.3310002
https://doi.org/10.1109/TKDE.2023.3310002
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://aclanthology.org/2024.naacl-long.389/
https://aclanthology.org/2024.naacl-long.60/
https://arxiv.org/abs/2404.07103
https://arxiv.org/abs/2404.07103
https://aclanthology.org/2023.findings-emnlp.631/
https://aclanthology.org/2023.findings-emnlp.631/
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, and Wenhu Chen. Few-shot in-context
learning on knowledge base question answering. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 6966–6980, Toronto, Canada, July 2023a.
Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.385. URL https:
//aclanthology.org/2023.acl-long.385/.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng Ding, Shafiq R. Joty, Soujanya Poria, and
Lidong Bing. Chain-of-knowledge: Grounding large language models via dynamic knowledge
adapting over heterogeneous sources. In International Conference on Learning Representations,
2023b. URL https://api.semanticscholar.org/CorpusID:263610099.

Pasquale Lops, Antonio Silletti, Marco Polignano, Cataldo Musto, and Giovanni Semeraro. Re-
producibility of llm-based recommender systems: the case study of p5 paradigm. In Proceed-
ings of the 18th ACM Conference on Recommender Systems, RecSys ’24, pp. 116–125, New
York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400705052. doi:
10.1145/3640457.3688072. URL https://doi.org/10.1145/3640457.3688072.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and
interpretable large language model reasoning. In International Conference on Learning Repre-
sentations, 2024.

Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian
Guo. Think-on-graph 2.0: Deep and faithful large language model reasoning with knowledge-
guided retrieval augmented generation. In International Conference on Learning Representations,
2024. URL https://api.semanticscholar.org/CorpusID:273185432.

Alan Malek, Jiawei Ge, Nevena Lazic, Chi Jin, András György, and Csaba Szepesvári. Frontier llms
still struggle with simple reasoning tasks, 2025. URL https://arxiv.org/abs/2507.
07313.

Agada Joseph Oche, Ademola Glory Folashade, Tirthankar Ghosal, and Arpan Biswas. A systematic
review of key retrieval-augmented generation (rag) systems: Progress, gaps, and future directions,
2025. URL https://arxiv.org/abs/2507.18910.

Yasumasa Onoe, Michael J. Q. Zhang, Eunsol Choi, and Greg Durrett. Creak: A dataset for com-
monsense reasoning over entity knowledge, 2021. URL https://arxiv.org/abs/2109.
01653.

OpenAI. Gpt-3.5 models. https://platform.openai.com/docs/models/gpt-3-5,
2023. Accessed: 2025-06-23.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel

12

https://aclanthology.org/2023.acl-long.385/
https://aclanthology.org/2023.acl-long.385/
https://api.semanticscholar.org/CorpusID:263610099
https://doi.org/10.1145/3640457.3688072
https://api.semanticscholar.org/CorpusID:273185432
https://arxiv.org/abs/2507.07313
https://arxiv.org/abs/2507.07313
https://arxiv.org/abs/2507.18910
https://arxiv.org/abs/2109.01653
https://arxiv.org/abs/2109.01653
https://platform.openai.com/docs/models/gpt-3-5

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
language models and knowledge graphs: A roadmap. IEEE Trans. on Knowl. and Data Eng., 36
(7):3580–3599, July 2024. ISSN 1041-4347. doi: 10.1109/TKDE.2024.3352100. URL https:
//doi.org/10.1109/TKDE.2024.3352100.

Aleksandr Perevalov, Dennis Diefenbach, Ricardo Usbeck, and Andreas Both. Qald-9-plus: A mul-
tilingual dataset for question answering over dbpedia and wikidata translated by native speakers.
In 2022 IEEE 16th International Conference on Semantic Computing (ICSC), pp. 229–234, 2022.
doi: 10.1109/ICSC52841.2022.00045.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi, Sameer Singh,
and Noah A. Smith. Knowledge enhanced contextual word representations. In Kentaro Inui,
Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 43–54, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1005. URL
https://aclanthology.org/D19-1005/.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao,
James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, Vassilis Plachouras, Tim
Rocktäschel, and Sebastian Riedel. KILT: a benchmark for knowledge intensive language
tasks. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Belt-
agy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceed-
ings of the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pp. 2523–2544, Online, June 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.200. URL https:
//aclanthology.org/2021.naacl-main.200/.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of

13

https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/TKDE.2024.3352100
https://doi.org/10.1109/TKDE.2024.3352100
https://aclanthology.org/D19-1005/
https://aclanthology.org/2021.naacl-main.200/
https://aclanthology.org/2021.naacl-main.200/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–
3992, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1410. URL https://aclanthology.org/D19-1410/.

Mobashir Sadat, Zhengyu Zhou, Lukas Lange, Jun Araki, Arsalan Gundroo, Bingqing Wang,
Rakesh Menon, Md Parvez, and Zhe Feng. DelucionQA: Detecting hallucinations in domain-
specific question answering. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of
the Association for Computational Linguistics: EMNLP 2023, pp. 822–835, Singapore, Decem-
ber 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.59.
URL https://aclanthology.org/2023.findings-emnlp.59/.

Jinyan Su, Jennifer Healey, Preslav Nakov, and Claire Cardie. Fast or better? balancing accuracy
and cost in retrieval-augmented generation with flexible user control, 2025. URL https://
arxiv.org/abs/2502.12145.

Ying Su, Jipeng Zhang, Yangqiu Song, and Tong Zhang. PipeNet: Question answering with seman-
tic pruning over knowledge graphs. In Danushka Bollegala and Vered Shwartz (eds.), Proceedings
of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024), pp. 360–371,
Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.starsem-1.29. URL https://aclanthology.org/2024.starsem-1.29/.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Sai Wang, Chen Lin, Yeyun Gong, Lionel M. Ni,
Heung yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
language model on knowledge graph. In International Conference on Learning Representations,
2023. URL https://api.semanticscholar.org/CorpusID:263333907.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex ques-
tions. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers), pp. 641–651, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1059. URL
https://aclanthology.org/N18-1059/.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
tion answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/
N19-1421/.

Xingyu Tan, Xiaoyang Wang, Qing Liu, Xiwei Xu, Xin Yuan, and Wenjie Zhang. Paths-over-graph:
Knowledge graph empowered large language model reasoning. In Proceedings of the ACM on
Web Conference 2025, pp. 3505–3522, 2025a.

Xingyu Tan, Xiaoyang Wang, Qing Liu, Xiwei Xu, Xin Yuan, Liming Zhu, and Wenjie Zhang.
Hydrarag: Structured cross-source enhanced large language model reasoning, 2025b. URL
https://arxiv.org/abs/2505.17464.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a large-
scale dataset for fact extraction and VERification. In Marilyn Walker, Heng Ji, and Amanda Stent
(eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
809–819, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1074. URL https://aclanthology.org/N18-1074/.

Denny Vrandečić and Markus Krötzsch. Wikidata: A free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85, 2014. doi: 10.1145/2629489.

Sebastian Walter and Hannah Bast. Grasp: Generic reasoning and sparql generation across knowl-
edge graphs, 2025. URL https://arxiv.org/abs/2507.08107.

14

https://aclanthology.org/D19-1410/
https://aclanthology.org/2023.findings-emnlp.59/
https://arxiv.org/abs/2502.12145
https://arxiv.org/abs/2502.12145
https://aclanthology.org/2024.starsem-1.29/
https://api.semanticscholar.org/CorpusID:263333907
https://aclanthology.org/N18-1059/
https://aclanthology.org/N19-1421/
https://aclanthology.org/N19-1421/
https://arxiv.org/abs/2505.17464
https://aclanthology.org/N18-1074/
https://arxiv.org/abs/2507.08107

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Kai Wang, Yuwei Xu, Zhiyong Wu, and Siqiang Luo. LLM as prompter: Low-resource inductive
reasoning on arbitrary knowledge graphs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Findings of the Association for Computational Linguistics: ACL 2024, pp. 3742–3759,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.findings-acl.224. URL https://aclanthology.org/2024.findings-acl.
224/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Yilin Wen, Zifeng Wang, and Jimeng Sun. MindMap: Knowledge graph prompting sparks graph
of thoughts in large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 10370–10388, Bangkok, Thailand, August 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.558. URL https:
//aclanthology.org/2024.acl-long.558/.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023a.
URL https://arxiv.org/abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv.
org/abs/2210.03629.

Wentau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
of semantic parse labeling for knowledge base question answering. In Annual Meeting of the
Association for Computational Linguistics, 2016. URL https://api.semanticscholar.
org/CorpusID:13905064.

Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li, Jiancheng Lv, Nan Duan, and Weizhu
Chen. Poolingformer: Long document modeling with pooling attention, 2022a. URL https:
//arxiv.org/abs/2105.04371.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models, 2022b. URL https://arxiv.org/abs/2210.03493.

A ADDITIONAL IMPLEMENTATION DETAILS

A.1 PROMPTS

Prompt for generating the anonymous graph:

We need to make triplets to make a query from a given text, where the
unknown entities or verbs to match are represented by an X_i.

The idea is to subtitute an entity that is unkwown by X_i, this entities
might be parsed later using a triplet extracted from a knowledge
graph.

Try to use relations as verbs and entities as nouns, although is not
mandatory if the relations are complex.

Take as anchor entity the one that is more restrictive, i.e. the one that
is more specific.

There should always be at least X_1 but there might be more than one
entity to match, so be as fine-grained creating entities as possible,
the more the better and careful with modifiers like dates or numbers

Note that we should consider every sentence as positive as our goal is
just to generate a query for checking information. Therefore ignore
negations and quantifiers like never, not, only, exclusivy, always
...

Here are a few examples:

15

https://aclanthology.org/2024.findings-acl.224/
https://aclanthology.org/2024.findings-acl.224/
https://aclanthology.org/2024.acl-long.558/
https://aclanthology.org/2024.acl-long.558/
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://api.semanticscholar.org/CorpusID:13905064
https://api.semanticscholar.org/CorpusID:13905064
https://arxiv.org/abs/2105.04371
https://arxiv.org/abs/2105.04371
https://arxiv.org/abs/2210.03493

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

- "John Wick is a movie starting the american actor Keenau Reeves and
directed by Stephen Spielberg" -> [(John Wick, starring, X_1), (X_1,
country_of_origin, United States), (John Wick, directed_by, X_2)].

- "Barack Obama is married with a lady who has a kid that has blue eyes"
-> [(Barack Obama, married, X1), (X1, has_children, X2), (X2,
has_eye_color, blue)].

- "Berlin is the capital city of Germany" -> [(Berlin, is_capital_of,
Germany)].

- "Paul MacCartney has never been in a band" -> [(X_1, is, band), (X_1,
is_member, Paul MacCartney)].

- "John Doe had dinner with Barack Obama" -> [(John Doe, X_i, Barack
Obama)].

- "Duke Leto Attreides is a character in the Dune poem" -> [(Duke Leto
Attreides, is_character_in, X_1), (X_1, is, poem)].

- "The movie Titanic was directed by a Canadian man." -> [(X_1,
director_of, Titanic), (X_1, is, man)].

- "The movie Titanic starred an actress." -> [(X_1, starring, Titanic), (
X_1, is, actress)].

- "Don McLean starred with a British actress and a German actor in a 2016
movie." -> [(Don McLean, starring, X_1), (X_1, release_date, 2016),

(X_2, starring, X1), (X_2, nationality, British), (X_2, profession,
actress), (X_3 starring, X_1), (X_3, profession, actor). (X_3,
nationality, German)].

- "The movie Breakfast at Tiffany’s featured a song that was not composed
by Henry Mancini." -> [(Breakfast at Tiffany’s, featured, X_1), (X_1

, is, song), (X_1, composed_by, X_2), (X_2, is_not, Henry Mancini)].
- "Which TV show Barack Obama appeared in?" -> [(Barack Obama,

appeared_in, X_1), (X_1, is, TV show)].
- "The actor who played Jack Ryan in the movie The Hunt for Red October

(1969) is from the same country as Barack Obama" -> [(X_1,
interpreted, Jack_Ryan), (Jack_Ryan, character_of,
The_Hunt_of_the_Red_October), (The_Hunt_Of_The_Red_October,
release_date, 1969), (X_1, nationality, X_2), (Barack_Obama,
nationality, X_2)].

- "The director of the movie Move (2010) is from the same country as the
director of the movie The Dark Knight" -> [(X_1, director_of, Move),
(Move, release_date, 2010), (X_1, nationality, X_2), (X_3,
director_of, The_Dark_Knight), (X_3, nationality, X_2)].

- "The film The Dark Knight was released in the same year as the film The
Hunt for Red October" -> [(The_Dark_Knight, release_date, X_1), (

The_Hunt_Of_The_Red_October, release_date, X_1)].
- "Who is the paternal grandfather of John Doe?" -> [(X_1, father_of,

John_Doe), (X2, father_of, X_1)]. (Note here the grandfather relation
can be splitted in two)

- "Who is the maternal grandfather of John Doe?" -> [(X_1, mother_of,
John_Doe), (X2, father_of, X_1)].

- "From which universities are the Canadian recipients of the Turing
Award that work in the field of Deep Learning?" -> [(X_1, nationality
, Canadian), (X_1, received, Turing_Award), (X_1, field_of_work,
Deep_Learning), (X_1, studied_at, X_2), (X_2, is, university)].

Parenthesis near known entities usually give some information about the
entity, like the year of a movie, profession of some person, a
clarification of what the entity is, or place of an event, like The
Hunt for Red October (1969) -> [(The_Hunt_Of_The_Red_October,
release_date, 1969)].

Note that for example in the last ones even if we matched X_1 we would
still need to check that X_1 is a TV_show.

However, it’s also extremly important not to create dummy entities like (
X_1, name, Duke Leto Atreides) or (X_1, is, Duke Leto Atreides) as
this is not useful for querying.

Return a list (i.e [triplet, triplet, triplet]) of triplets
representing the following text, keep it short and simple but be as

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

specific as possible in the entities, and *be careful not to drop
information about the X_i entities*

Prompt for reasoning:

You are given:
1. A query expressed as triplets with anonymous entities (X_i).
2. The target entity to resolve (e.g., X_1).
3. A list of candidate answers for the target entity.
4. A set of logical paths extracted from a knowledge graph.

Your task:
- Identify which candidate answer best resolves the target entity.
- Replace the anonymous entities (X_i) in the query triplets with the

resolved entities from the logical path.
- If no candidate matches, answer "None".

Example:

Target entity: X_1

Query triplets:
[(X_1, director_of, Titanic), (X_1, nationality, Canadian), (Titanic,

release_date, 1997)]

Candidates:
- James Cameron
- Steven Spielberg
- Denis Villeneuve

Logical paths:
- James Cameron director_of Titanic James Cameron nationality

Canadian Titanic release_date 1997
- Steven Spielberg director_of Titanic Steven Spielberg nationality

American Titanic release_date 1997
- Denis Villeneuve director_of Arrival Denis Villeneuve nationality

Canadian Arrival release_date 2016

Answer:
James Cameron

A.2 TRAINING THE ANONYMOUS-GRAPH ENCODER

Goal. We train an encoder to score the compatibility between an anonymous query subgraph and
a candidate KG path/subgraph, so that fuzzy matches (synonyms, variable-length alignments, type-
consistent substitutions) receive high scores while incomplete or corrupted matches receive low
scores.

Supervision source. From the train/dev splits of all KGQA benchmarks, we convert each query
q into its AKG Ĝq = (Eq, Rq, Tq) and identify the subset TX ⊆ Tq of triplets incident to a chosen
anonymous variable X (the variable to resolve at this step). When gold supporting paths are avail-
able, we use them; otherwise, we mine minimal satisfying paths in the KG that instantiate X and
make the query true.

Positive examples. Starting from (TX , P ⋆) pairs (where P ⋆ is a supporting path), we create hard
positives via: (i) synonymic rewrites of relations/entities (from a curated synonym list) that preserve
truth conditions; (ii) neutral triplet insertion—add edges touching nodes in TX but not changing
the answer set (e.g., types/attributes); (iii) query refinements—add logically implied constraints
(e.g., instance of (X, Film)). All such augmentations keep the label positive.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 Anonymous-Graph Training Pair Generation
Require: Datasets D, KG G, synonym maps SynRel, SynEnt, topology patterns Topo, augmenta-

tion budget K
Ensure: Training set S = {(TX , P, y)}

1: S ← ∅
2: for all (q, answers) ∈ Dtrain ∪ Ddev do
3: Ĝq = (Eq, Rq, Tq)← AnonGraph(q)
4: for all X ∈ AnonymousVars(Ĝq) do
5: TX ← {(h, r, t) ∈ Tq | h = X ∨ t = X} ▷ constraints incident to X
6: P⋆ ← MineSupportingPaths(TX ,G) ▷ use gold if available
7: for all P ⋆ ∈ P⋆ do
8: S ← S ∪ {(TX , P ⋆, 1)} ▷ base positive
9: for k = 1 to K do ▷ augment positives

10: T+
X ← SynonymicRewrite(TX , SynRel,SynEnt)

11: T+
X ← InsertNeutralTriplets(T+

X ,G)
12: T+

X ← AddImpliedConstraints(T+
X)

13: P+ ← TopologyJitter(P ⋆,Topo) ▷ equivalent detours
14: S ← S ∪ {(T+

X , P+, 1)}
15: end for
16: for k = 1 to K do ▷ generate hard negatives
17: T−

X , P− ← CorruptOne
(
TX , P ⋆; drop-edge ∨ bad-syn ∨ target-swap ∨

topology-perturb
)

18: if ¬Satisfies(T−
X , P−) then

19: S ← S ∪ {(T−
X , P−, 0)}

20: end if
21: end for
22: end for
23: end for
24: end for
25: return S

Negative examples. We generate hard negatives by minimally breaking support: (i) edge
dropout—remove a key hop in P ⋆ or a required constraint in TX ; (ii) relation/entity corrup-
tion—replace a relation or entity with a near-synonym that changes truth conditions; (iii) target
corruption—swap the answer with a type-consistent non-answer; (iv) topology perturbations—re-
route or re-order hops to produce misleading chains. These produce pairs (TX , P̃) that look similar
but do not satisfy TX .

Order-invariance (sets, not sequences). To learn over sets of triplets, we randomly permute the
triplets in TX at sampling time and re-linearize them (and optionally shuffle non-critical hops in the
candidate) so the encoder does not overfit to serialization order.

Input formatting and objective. We serialize (TX , P) as two text fields (or graph tokens) and
feed them to a cross-encoder to obtain a score s(TX , P) ∈ R. We train with binary labels y ∈ {0, 1}
using a logistic loss:

L = − y log σ
(
s(TX , P)

)
− (1− y) log

(
1− σ(s(TX , P))

)
,

or, optionally, a pairwise margin loss for ranking positives above negatives sampled for the same
TX .

Topology diversity. To avoid overfitting to chains, we synthesize examples spanning chains, forks,
diamonds, and short detours (1–3 hops), ensuring the encoder sees multiple structures that can satisfy
the same TX .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2 Batch sampling with set invariance
Require: Training set S, permutations per item M

1: for each minibatch do
2: Sample (TX , P, y) items from S
3: for all items in batch do
4: T

(π)
X ← RandomPermutation(TX)

5: P (π) ← OptionalShuffle(P) ▷ shuffle non-critical hops
6: Encode pair

(
T

(π)
X , P (π)

)
and update via logistic (or margin) loss

7: end for
8: end for

A.3 HARDWARE SPECIFICATIONS

All experiments were performed in a machine with the technical capabilities reported in section A.3.

CPU AMD Ryzen Threadripper 3975WX
RAM 256 GB
Cores 64
GPU 2x Nvidia A100 160GB

Table 5: Specifications of the machine in which the experiments were executed.

A.4 TRAINING HYPERPARAMETERS

The full table of hyperparameters used in the training of the path cross encoder systems and inference
for LLMs can be found in table 6. Different options for the setting tried of the system appear between
curly braces, while the selected ones appear in bold.

Parameter Value
Optimizer AdamW
Learning Rate {10−7, 10−6,10−5, 10−4}
Gradient Accumulation Steps {1,5,10}
Maximum Gradient Norm {1, 5, 10, 50, 100}
Batch Size {4, 16, 32, 64, 128}
Epochs 1, 5, 10, 15, 20
Evaluation Steps 1000
Scheduler {Cosine Annealing, Linear}
Weight Decay 0.01
Maximum Gradient Norm 1, 5, 10
Loss Function Cross-Entropy with logits
Max Tokens 512
Dmax (maximum expansion depth) 3
b (beam size) 10
top p 1
temperature 0.0
max generated tokens 2048

Table 6: Training hyperparameters for the proposed system. Between curly braces are all values
tested during optimization, the one selected are marked in bold.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.5 KG EXPLORATION PSEUDOCODE

Algorithm 3 Anonymous KG Exploration with Relation Clustering

Require: Query q; initial Ĝ 0; beam size b=10; depth limit Dmax

1: Initialize frontier F0 ← {∅}, accepted set A ← ∅, priority queue Q← ∅
2: for k = 0, 1, 2, . . . do
3: for each P ∈ Fk do
4: Select anonymous target x̂ ∈ Ê referenced by the next planned triplet τ⋆ = (x̂, r⋆, o⋆)
5: Let e be the current binding for x̂ reached along P
6: Enumerate N (e) = {(r, v)} and cluster: N (e) =

⊔
r Cr

7: for each cluster Cr do
8: v⋆r ← argmax(r,v)∈Cr

srank
(
q, (e, r, v) | P

)
9: end for

10: R ← {(e, r, v⋆r)}r
11: Candidate continuations C ← {P ⊕ (e, r, v⋆r) : (e, r, v

⋆
r) ∈ R}

12: F̃ ← TOPB(C, b by srank)

13: for each P ′ ∈ F̃ do
14: y ← hθ(q, P

′) ∈ {COMPLETE, EXPAND, IRRELEVANT}
15: if y = IRRELEVANT then
16: continue ▷ drop
17: else if y = COMPLETE or depth(P ′) = Dmax then
18: A ← A∪ {P ′} ▷ accept and stop expanding
19: else
20: Push P ′ into Q with key u(P ′) ▷ mark for expansion
21: end if
22: end for
23: end for
24: Fk+1 ← ∅
25: while |Fk+1| < b and Q ̸= ∅ do
26: P ⋆ ← POPMAX(Q)
27: if P ⋆ chose representative (e, r, v⋆r) for expansion then
28: // cluster decompression on demand
29: Insert P ⋆ ⊕ (e, r, v) for top-k members (r, v) ∈ Cr by srank
30: Fk+1 ← Fk+1 ∪ {P ⋆} ▷ advance beam; enables backtracking if needed
31: end while
32: if Q = ∅ then
33: break
34: end if
35: end for
36: return A

20

	Introduction
	Related Work
	Methodology
	Formal Setting of KGQA
	Initialization
	Exploration
	Reasoning

	Experiments
	Experimental Design
	Main Results
	Comparsion with previous work
	Inference cost
	Ablation study on exploration components
	Width and depth variations in beam search
	Backbone sensitivity

	Limitations and Future Work
	Conclusion
	Additional Implementation details
	Prompts
	Training the Anonymous-Graph Encoder
	Hardware Specifications
	Training Hyperparameters
	KG exploration pseudocode

