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Abstract001

Argument Mining (AM) involves detecting Ar-002
gument Relations (ARs) between Argumen-003
tative Discourse Units (ADUs) to uncover004
the argument structure. AR detection tech-005
niques often rely on micro-structural features006
derived from the internal structure of ADUs.007
However, argument structure is guided by008
a macro-structure representing the functional009
interdependence among ADUs of the argu-010
ment. This macro-structure comprises seg-011
ments, each segment containing ADUs serv-012
ing specific functions to maintain coherence013
within that segment (local coherence) and014
cross-segment coherence (global coherence).015
This paper proposes an approach capturing016
such macro-structure encoding both local and017
global coherence for detecting AR. Experi-018
mental results on heterogeneous datasets show-019
case a notable performance enhancement, out-020
performing state-of-the-art models for both021
in-dataset and cross-dataset evaluation scenar-022
ios. The cross-dataset evaluation result under-023
scores that the macro-structure boosts AR pre-024
diction skill transferable to new dataset.025

1 Introduction026

Argument Mining (AM), a Natural Language027

Processing (NLP) task, involves identifying and028

analysing argument structures within text (Pers-029

ing and Ng, 2016; Stab and Gurevych, 2017;030

Eger et al., 2017; Potash et al., 2016; Lawrence031

and Reed, 2020). It comprises several tasks in-032

cluding segmenting arguments into Argumenta-033

tive Discourse Units (ADUs) (Peldszus and Stede,034

2015a), distinguishing argumentative units from035

non-argumentative ones, classifying ADUs, la-036

belling argument relation (AR) between ADUs, and037

identifying argument schemes (Eger et al., 2017;038

Lawrence and Reed, 2020). In this study, we focus039

on classifying the AR between ADUs into support-040

ing, attacking, and none-relation.041

In the literature, AR detection is framed as de- 042

pendency parsing task (Peldszus and Stede, 2015b), 043

sequence tagging problem (Eger et al., 2017) and 044

sequence classification task, (Reimers et al., 2019; 045

Ruiz-Dolz et al., 2021). Across these configu- 046

rations, there is a notable emphasis on the fea- 047

tures derived from the internal structure of ADUs. 048

This feature resonates with the concept of “logical 049

form” central to deductive logic also referred to 050

as the micro-structure of an argument (Freeman, 051

2011). Some of these works apply classifiers on 052

the features derived from individual ADUs (Moens 053

et al., 2007), while others exploit the dependencies 054

between pairs of ADUs, using dependency pars- 055

ing (Muller et al., 2012b), similarity techniques 056

(Lawrence et al., 2014), linguistic indicators (Vil- 057

lalba and Saint-Dizier, 2012), and embeddings 058

from Large Language Models (LLMs) (Reimers 059

et al., 2019; Ruiz-Dolz et al., 2021). 060

AR, however, is governed by macro-structure 061

that represents an argument as an arrangement of 062

ADUs where these ADUs interact to fulfil func- 063

tional roles within a discourse (Grosz and Sidner, 064

1986; Grosz et al., 1995; Accuosto and Saggion, 065

2020; Boltužić and Šnajder, 2016; Freeman, 2011). 066

Such functional support between ADUs allows 067

the formation of coherent argument structure in- 068

volving chain of thoughts. At global-level, the 069

macro-structure addresses the overall argument’s 070

communicative intent, known as discourse purpose 071

(DP) that is further divided into segments (local- 072

structures), addressing its discourse segment pur- 073

pose (DSP). The local-structure maintains coher- 074

ence within segments (local coherence) by tracing 075

the flow of ideas relevant to the DSP, while the 076

global-structure ensures cross-segment coherence 077

(global coherence) (Grosz et al., 1995; Lochbaum, 078

1994). Accordingly, AR is tied to its role within 079

the structure and contingent upon maintaining such 080

coherence. 081

The macro-structure of an argument, reflecting 082
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such functional interdependence among ADUs, can083

be captured by encoding argument flow into the084

representation of argument.085

Argument flow (Travis, 1984; Wang et al., 2019;086

Kazemnejad et al., 2024) can be captured by lever-087

aging ADU order, analogous to how positional088

encoding in Transformers (Vaswani et al., 2017)089

captures the sequence of tokens. In this context,090

we use the sequential order of ADUs rather than091

tokens. This feature aligns with the argumentation092

framework proposed by Grosz and Sidner (1986),093

suggesting that ADUs naturally form argument seg-094

ments, similar to how words form phrases within095

a sentence. ADUs within a segment serve spe-096

cific roles, just as words in a phrase do, while dis-097

course segments fulfil functions within the overall098

discourse, like phrases in a sentence.099

Additionally, argument flow can be captured by100

tracking the transitions between participants of the101

argument. This argument dynamic can be mod-102

elled using theoretical frameworks like Inference103

Anchoring Theory (IAT) (Budzynska and Reed,104

2011), which explores the interplay between dia-105

logue and argument structures, as also explored in106

philosophy and linguistics through approaches like107

Dialogue Macrogame Theory (Mackenzie, 1990;108

Mann, 2002). This interaction between participants,109

also known as proponent-opponent interaction110

(Freeman, 2011), unfolds as a sequence of dialogue111

moves such as “Asserting”, “Arguing”, “Question-112

ing”, where each dialogue move is mapped to a113

structural element within the argument structure114

(Budzynska and Reed, 2011) (see Figure 3b for an115

illustrative example).116

Moreover, arguments can be deconstructed into117

local-structures, which are crucial for tracing the118

sequence of ADUs that contribute to the reasoning119

both leading up to and following an AR. These120

local-structures facilitate the identification of local121

coherence and DSPs relevant to the AR, thereby122

providing a specific relevant context. The example123

in Figure 3a illustrates the interplay between local-124

structures, where one local-structure addresses a125

DSP pertaining to the Scottish National Party’s126

internal divisions and disagreements, while another127

focuses on conducting disagreements respectfully128

(see Figure 2 for more examples).129

In this study, we model AR prediction as a func-130

tion of both micro-structure and macro-structure.131

An argument is modelled by unified representa-132

tion that integrates both micro-structure and macro-133

structure. The micro-structure is captured through134

the representation of ADUs, while the macro- 135

structure is addressed by modelling argument flow, 136

by leveraging ADU order and proponent-opponent 137

transitions. An attention mechanism is employed 138

to attend to these unified representation for cap- 139

turing the relationships among ADUs within the 140

argument, similar to the attention mechanism in 141

transformers attending to positional and token en- 142

coding for representing text (Vaswani et al., 2017). 143

The resulting attention output is used for identify- 144

ing local-structures relevant to AR while simultane- 145

ously detecting ARs through a multi-task learning 146

approach. The local-structures prediction functions 147

as an auxiliary task to supply contextual cues for 148

the AR prediction. 149

Our contributions are threefold: First, we in- 150

troduce an approach that explicitly incorporates 151

macro-structures to capture both local and global 152

coherence for AR detection. Second, we demon- 153

strate that leveraging macro-structures enhances 154

AR detection performance. Third, our evaluation 155

shows that integrating macro-structures provides 156

robust AR detection features that are transferable 157

to new datasets. It achieves a new state-of-the-art 158

performance in both cross-dataset and in-dataset 159

evaluation setups. 160

2 Related Works 161

Argument Mining. has been explored through 162

various approaches in the literature. One approach 163

frames AM as a dependency parsing task (Peldszus 164

and Stede, 2015b), employing discourse parsing 165

techniques (Muller et al., 2012a). Similarly, Peld- 166

szus and Stede (2016) aim to map Rhetorical Struc- 167

ture Theory (RST) trees to argumentation struc- 168

tures (Taboada and Mann, 2006) using sub-graph 169

matching and evidence graph models. Additionally, 170

AM has been framed as a token-based sequence 171

tagging problem (Eger et al., 2017), where tokens 172

are classified into argument components (premise, 173

conclusion) and their respective argument relations 174

(support, attack) using the BIO tagging approach. 175

Gemechu and Reed (2019) decompose propositions 176

into fine-grained components and use classifiers to 177

predict AR based on the relations between these 178

components. Several recent works fine-tuned pre- 179

trained LLM on AM data-set based on sequence 180

pair classification configurations (Reimers et al., 181

2019; Ruiz-Dolz et al., 2021). These configura- 182

tions primarily focus on the internal structure of 183

ADUs, akin to the “logical form” central to de- 184
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ductive logic. Freeman (Freeman, 2011) refers to185

this as the “micro-structure of an argument”. How-186

ever, these setups overlook the overall functioning187

of whole ADUs in an argument and focus on the188

micro-structure obtained from pairs of ADUs.189

End-to-end AM aims to leverage the interdepen-190

dence between tasks to enhance performance (Pers-191

ing and Ng, 2016; Stab and Gurevych, 2017; Eger192

et al., 2017; Potash et al., 2016; Morio et al., 2022).193

Persing and Ng (2016) and Stab and Gurevych194

(2017) employ a pipeline architecture, training in-195

dependent models for each sub-task and subse-196

quently defining an Integer Linear Programming197

(ILP) model to encode global constraints. Eger198

et al. (2017) propose a neural end-to-end paradigm,199

addressing the problem in a joint multi-task setup200

and exploiting the inter-dependency between tasks.201

Additionally, Morio et al. (2022) introduce an end-202

to-end cross-corpus training approach, while Bao203

et al. (2022) presents a generative framework for204

end-to-end AM using a constrained pointer mech-205

anism (CPM) and reconstructed positional encod-206

ing (RPE). None of these works explicitly encode207

macro-structure other than exploiting the inter-208

dependency between the AM tasks.209

While advances in transfer learning, leveraging210

LLMs, showcase encouraging performance on in-211

dataset evaluation, they encounter challenges when212

applied to different datasets from distinct domains.213

Studies in the NLI domain reveal their struggle to214

learn robust features applicable across datasets (Mc-215

Coy et al., 2019). These shortcomings stem from216

shortcut learning (Wu et al., 2023; McCoy et al.,217

2023), leading models to adopt shallow heuristics218

hindering the capacity to generalise (Naik et al.,219

2018; Poliak et al., 2018; Nie et al., 2019; Mc-220

Coy et al., 2019). Notably, McCoy et al. (2019)221

shows that NLI models learn invalid heuristics that222

are regularly expressed in the dataset, while Po-223

liak et al. (2018) show that they tend to predict224

entailment solely based on hypotheses, exploiting225

dataset-specific artifacts by neglecting discourse-226

level context—a crucial concept in AR prediction.227

Structural Encoding in LLMs. Recent ad-228

vancements extend Transformers in encoding long229

text and capturing document structures (He et al.,230

2024; Cao and Wang, 2022; Liu et al., 2022; Bai231

et al., 2021; Zaheer et al., 2020; Beltagy et al.,232

2020). He et al. (2024) and Cao and Wang (2022)233

use section structure to represent document hierar-234

chy, while Liu et al. (2022) employs hierarchical235

sparse attention and special tokens for encoding236

local and global information. Bai et al. (2021) pro- 237

pose the encoding of the positional information of 238

various linguistic segments. Beltagy et al. (2020) 239

present Longformer, an LLM that employs a com- 240

bination of local windowed attention and global at- 241

tention, for processing long documents. Similarly, 242

Zaheer et al. (2020) introduce BigBird, a model 243

that leverages a sparse attention mechanism com- 244

bining global, local, and random attention patterns, 245

to handle longer sequences. 246

While these approaches attempt to incorporate 247

structural information similarly to our work, they 248

often rely on document-specific elements such 249

as section titles, which are not present in argu- 250

ment structures, while generic approaches typi- 251

cally use token-level attention mechanisms. Our 252

method differs by focusing on argument-specific 253

features (argument flow) and attention mechanisms 254

to model interactions between high-level linguis- 255

tic units (ADUs) and their functional relationships, 256

while simultaneously capturing logical segments 257

of argument (local-structures). 258

3 Macro-Structure 259

An argument is a coherent arrangement of utter- 260

ances organised in a specific order (Grosz and Sid- 261

ner, 1986; Toulmin, 1958; Freeman, 2011). Free- 262

man (2011) propose a framework describing how 263

these utterances collectively contribute to natu- 264

ral language argumentation, particularly focusing 265

on their supportive roles and structural patterns, 266

termed as “macro-structure”. This framework en- 267

compasses techniques such as divergent, conver- 268

gent, linked, and serial reasoning, which illustrate 269

how reasons combine to support conclusions. It 270

underscores the significance of understanding the 271

entire sequence of ideas within an argument, in- 272

cluding claims, challenges, responses, and counter- 273

responses, to establish coherent structure. 274

Coherence within discourse can be viewed at 275

two levels: local coherence and global coherence. 276

Local coherence refers to coherence among the ut- 277

terances in a segment of an argument, while global 278

coherence refers to the coherence spanning seg- 279

ments (Grosz and Sidner, 1986; Grosz et al., 1995). 280

Grosz and Sidner argue that the coherence depends 281

on the intentional structure of discourse addressed 282

via the overall DP and DSP (Grosz and Sidner, 283

1986; Grosz et al., 1995). These intentions are 284

reflective of the speaker’s goals, akin to Gricean 285

conversational implicatures (Grice, 1975). In a 286
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multi-party discourse, the DSP for a given segment287

aligns with the intention of the conversational par-288

ticipant initiating that segment (Lochbaum, 1994).289

Freeman (2011) models these interactions as the290

interplay between the proponents and opponents,291

showing how proponents assert and address oppo-292

nents’ challenges, forming a chain of reasoning293

and highlighting the importance of tracing these294

transitions for understanding the argument.295

IAT (Budzynska and Reed, 2011) offers a frame-296

work representing how argument structure is linked297

to the intentional structure and the dynamics within298

dialogue structure. In essence, IAT offers a macro-299

structural analysis by representing the intentional300

structure and illocutionary dynamics within argu-301

mentative discourse, by linking dialogical moves302

to their communicative intentions and illocution-303

ary forces. For example, Figure (1b) illustrates304

participant interactions alongside argument struc-305

tures, showcasing diverse dialogue moves such as306

“Asserting”, “Arguing”, “Questioning”, “Illocut-307

ing”, and “Restating” (Budzynska and Reed, 2011).308

Annotated corpora, such as the corpus of US presi-309

dential debate 2016 (Visser et al., 2019) annotated310

following such framework, exemplify how dialogi-311

cal interactions unfold as a series of moves, each312

mapped to a structural element within the argument313

graph. Although these dynamics are common in314

dialogue, similar conceptualisations apply to mono-315

logue, where a speaker delivers multiple utterances316

to an audience (Grosz et al., 1995).317

4 Method318

4.1 Data319

Heterogeneous datasets encompassing various do-320

mains and genres are utilised, including student per-321

suasive essay corpora (AAEC) (Stab and Gurevych,322

2017), argumentative micro text (MTC) (Peldszus323

and Stede, 2013), the US 2016 presidential debate324

corpus (US2016) (Visser et al., 2019), and a cor-325

pus of argument and conflict in broadcast debate326

(QT30) (Hautli-Janisz et al., 2022). The AAEC327

and MTC, are monolingual, while the US2026 and328

QT30 are dialogical. AAEC consists of student329

essays and MTC is created through a controlled330

text generation experiment, whereas US2026 and331

QT30 are derived from real-world discussions.332

4.2 Local-Structure Annotation333

The four datasets are automatically annotated to334

identify local-structure for each AR. We traverse335

argument structure as a graph to identify segments 336

(local-structures) containing each AR, with ADUs 337

and ARs represented as nodes connected by edges. 338

It involves both upward and downward traversals 339

from the AR node. Given an AR, the upward traver- 340

sal identifies the chains of ADUs leading to the AR, 341

capturing the local coherence that builds up to the 342

current AR. The downward traversal identifies the 343

chain of ADUs following the AR, ensuring the con- 344

tinuity of the argument. 345

The beginning of a local-structure is marked by 346

a node that lacks inward connections (start ADU), 347

signifying the starting point of the segment and the 348

end is marked by a node without successors (end 349

ADU), indicating the conclusion of the segment. If 350

the start ADU involves multiple downward chains 351

(divergent structure), all such chains are included. 352

Moreover, every sub-graph including serial, diver- 353

gent, convergent and linked structures between the 354

start and end ADUs are included to ensure a com- 355

plete and coherent segment (additional information 356

can be found in the Appendix C). 357

4.3 Data Study 358

Table 1 shows the summary of the datasets statis- 359

tics. Accordingly, 73% of the argument structures 360

involve more than one local-structure, where 67% 361

of those involves 2 to 7 local-structures, with the 362

exception of MTC. The lack of local-structures in 363

MTC is expected since the arguments are short 364

and addressing defined argument intentions (an ar- 365

gument has about 5 ADUs and one of the ADUs 366

serves as the central claim). Across the dataset, 367

64% of AR are between ADUs located 1 to 5 dis- 368

tance away from each other. Distance refers to the 369

difference between the positions of the two ADUs 370

in the argument. Notably, 17% of the AR are be- 371

tween ADUs within a distance of 1. 372

4.4 Model 373

An argument is represented with a unified model 374

that encodes both micro and macro-structures (Sec- 375

tion 4.4.1). This unified representation is utilised 376

for AR prediction within a joint multi-task learn- 377

ing framework, where local-structure identification 378

serves as an auxiliary task to provide additional 379

macro-structural context (Section 4.4.2). 380

4.4.1 Argument Representation 381

The unified argument representation is achieved 382

by combining two types of embeddings: ADU em- 383

beddings, which capture the micro-structure of the 384
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Dataset No_arg No_ADU No_RA No_CA Loc_struct Dist_ARs
AAEC 402 6089 4841 497 3.3 2.6
MTC 112 576 272 171 1.2 1.3
US2016 499 8610 2830 942 5.1 3.2
QT30 724 11266 2756 558 7 4.8

Table 1: Summary of dataset showing the number of arguments (No_arg), the average number of ADUs within each
argument (No_ADU), the number of support (No_RA), attack (No_CA), the average number of local-structures
(Loc_struct), and distance between ADUs involving AR (Dist_ARs).

argument, and argument flow embeddings, which385

capture the macro-structure.386

ADU Embedding. Each ADU is represented387

by a fixed-size embedding of dimension d. A pre-388

trained LLM generates contextualised embeddings389

for the argument, where ADUs are separated by390

the special token [SEP]. Mean pooling is applied391

to token embeddings from the final output layer to392

obtain each ADU’s representation, with the [SEP]393

token marking ADU boundaries (see Section B.1394

for additional details).395

Argument Flow Embedding. ADU order and396

proponent-opponent transitions are leveraged to en-397

code argument flow. Both absolute (Vaswani et al.,398

2017) and relative Shaw et al. (2018) positional em-399

beddings are explored for this purpose. Absolute400

positional embedding follows the sine-cosine tech-401

nique proposed in Transformers (Vaswani et al.,402

2017), generating an n× d matrix, where n is the403

number of ADUs and d is the embedding size. Rel-404

ative positional embeddings follow the approach405

introduced by Shaw et al. (2018), capturing the406

relative distances between ADU positions using407

learnable embeddings e.408

For the ADU order based embedding, positional409

index of each ADU, reflecting their sequential or-410

der within the argument is used. Unlike the stan-411

dard positional embedding which utilise token po-412

sitions, our approach uses ADU positions. It is413

also worth noting that the embedding used to rep-414

resent ADUs (at the ADU embedding step) is de-415

rived from a pre-trained LLM, which already in-416

corporates token-based positional embeddings. For417

proponent-opponent transition embeddings, each418

ADU is assigned a unique numerical index rep-419

resenting the participant making the ADU, cap-420

turing participants transitions. Each participant is421

assigned a unique index ranging from 0 to n − 1,422

where n is the total number of participants. In423

multi-participant dialogues, ADUs are tagged with424

these indices to track shifts between participants425

while in single-participant monologues, all ADUs 426

are assigned the same index. 427

Unified Argument Representation. Let A rep- 428

resent an argument consisting of n ADUs, denoted 429

as A = {a1, a2, . . . , an}, where ai denotes the i-th 430

ADU. The unified embedding of each ADUi inte- 431

grating argument-flow information is computed as: 432

433

ADU′ = ADUi ⊕Oi ⊕Pi (1) 434

where ADUi is the ADU embedding, Oi is the 435

order embedding, Pi is the proponent-opponent 436

transition embedding and ⊕ is the fusion operation 437

integrating the argument flow. This results in an 438

n× d matrix, where n is the number of ADUs and 439

d is the embedding size. 440

In the absolute positional embedding, the fusion 441

operation is the summation of the embeddings to 442

obtain ADU′abs, and a multi-head attention mecha- 443

nism is applied to capture contextual dependencies 444

between ADUs. In contrast, the relative positional 445

embedding integrates argument flow embeddings 446

dynamically during the attention score (R) compu- 447

tation as follows: 448

R = softmax
(
QK>√

dk
+O+P

)
(2) 449

where Q, K, and V are the query, key, and value 450

embeddings of the ADUs, and O and P are the or- 451

der and proponent-opponent transition embeddings, 452

respectively. In both approaches, the multi-head 453

attention computes cross-attention scores between 454

ADUs, since each position in the attention matrix 455

represents an ADU. Further details on both strate- 456

gies are provided in Section B.2. 457

4.4.2 Predicting Argument Relations 458

AR prediction is framed within a joint multi- 459

task learning, where one task identifies the local- 460

structure, and the other predicts the AR. Given A′ 461

representing the unified argument representation, 462

and ADUi, ADUj denoting the pair of ADUs 463
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under consideration, the input to the model can be464

represented as {A′, (ADUi,ADUj)} (see A.2).465

The output from the cross-attention mechanisms466

on A′ is combined with the unified embeddings467

of ADUi, ADUj and processed through a feed-468

forward network to predict AR and local-structures469

(see Appendix B.2 for more details). The outputs470

for both tasks are given by:471

Output = LS-cls(H)⊕ AR-cls(H) (3)472

where H represents shared model parameters.473

The AR-cls is a classification layer predict-474

ing AR and LS-cls is a token classification layer475

identifying the relevant local-structure. For the476

LS-cls, the BIO (Beginning, Inside, Outside) label-477

ing scheme (Ramshaw and Marcus, 1999) is used.478

Each token in the argument is assigned one of the479

three BIO labels to predict the ADUs constituted by480

the respective local-structure described in Section481

4.2. Both tasks share the same input and model482

parameters, and the overall loss function is the sum483

of the losses from both tasks.484

Baselines. Two baseline configurations are485

evaluated: vanilla sequence-pair classification (V-486

SeqCls), which fine-tunes various LLMs on con-487

catenated ADU pairs, and vanilla argument context488

(V-ArgC), which uses the entire argument along489

with ADU pairs.490

5 Experiment491

5.1 Training setup492

The models train for 6 epochs, with a batch size493

of 16 samples. Adam optimisation (Kingma and494

Ba, 2014) is used with a learning rate of 2× 10−5495

and categorical cross-entropy loss to minimise the496

cost function. Results represent the average of497

three runs using different random seeds. More498

experimental setup provided in the Appendix A.499

The code used in this work can be publicly accessed500

at https://github.com/ANONYMOUS (redacted).501

5.2 Evaluation Setup502

Two evaluation setups are employed to assess the503

model’s robustness in the AR prediction task.504

In-Dataset Evaluation: Each dataset is divided505

into 70% training, 20% test, and 10% validation506

sets.507

Cross-dataset Evaluation: A model is trained508

on the combination of n−1 data sources and evalu-509

ated on the remaining data source, repeated n times510

for each data source. This setup aims to evaluate511

the model’s performance on unseen data source, 512

providing insights into its adaptability and robust- 513

ness across different datasets. 514

In both settings, macro precision (P), recall (R), 515

and F-measure (F) are reported for the test dataset. 516

Please note that the local-structure prediction task 517

is not evaluated, as it serves as an auxiliary task. 518

5.3 Model configurations 519

Pre-trained LLMs are fine-tuned based on the ar- 520

gument representation presented in Section 4.4.1 521

using the multi-task setting described in Section 522

4.4.2. Diverse LLMs are explored to evaluate their 523

efficacy in leveraging the macro-structural features: 524

BERT (Devlin et al., 2018), RoBERTa (Liu et al., 525

2019), Big Bird (Zaheer et al., 2020), and Di- 526

aloGPT (Zhang et al., 2020). BERT, RoBERTa, and 527

Big Bird are pre-trained on generic datasets, while 528

DialoGPT is pre-trained on dialogical datasets for 529

capturing dialogue dynamics. Big Bird (Zaheer 530

et al., 2020) extends Transformers with sparse at- 531

tention by integrating global, local, and random 532

patterns, enabling it to handle longer sequences and 533

tasks requiring long context. Evaluating these mod- 534

els with and without the MSR-RAM configuration 535

establishes robust baselines, with DialoGPT and 536

Big Bird standing out as particularly strong base- 537

lines, given the relevancy of pre-training strategies 538

and datasets (see Appendix A.3 for more details). 539

5.4 Results 540

The findings underscore the role of incorporat- 541

ing macro-structural features in enhancing the per- 542

formance of AR identification. Table 2 shows 543

the performance of each configuration, the base- 544

lines and comparison systems across the datasets. 545

As can be seen from the Table, MSR-RAM con- 546

figurations consistently surpasses the baselines 547

both in in-dataset and cross-dataset evaluation set- 548

tings. Specifically, MSR-RAM configuration out- 549

performs both V-SeqClas and V-ArgC configura- 550

tions, with an average performance improvement 551

of 9.2%, 8.5% on in-dataset and 10%, 9.3% on 552

cross-dataset evaluations, respectively. 553

The cross-dataset evaluation result demonstrate 554

the ability of MSR-RAM configurations in learning 555

transferable skills across datasets. As can be seen 556

in Table 2, in contrast to MSR-RAM, the vanilla 557

configurations struggle to exceed random chance 558

performance in cross-dataset evaluation settings. 559

Note that the cross-dataset evaluation in Table 2 560

involves training on n − 1 data sources and test- 561
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LLM Model In-dataset Cross-dataset
AAEC MTC US16 QT30 AVG AAEC MTC US16 QT30 AVG

Comparison Bao et al. (2022) 50 n/a n/a n/a 50 n/a n/a n/a n/a n/a
Peldszus and Stede (2016) n/a 53 n/a n/a 53 n/a n/a n/a n/a n/a
Eger et al. (2017) 51 n/a n/a n/a 51 n/a n/a n/a n/a n/a
Gemechu and Reed (2019) 77 75 62 n/a 71 n/a n/a n/a n/a n/a
Morio et al. (2022) 55 58 n/a n/a 57 n/a n/a n/a n/a n/a
GPT-4 63±2 48±2 55±2 60±2 57±2 n/a n/a n/a n/a n/a

BERT V-SeqCls 67 ±0.0 61±0.2 66±0.0 67±0.2 65±0.1 43±0.3 30±0.3 33±0.2 36±0.1 36±0.2
V-ArgC 68±0.1 61±0.1 69±0.0 67±0.1 66±0.0 45±0.3 31±0.2 32±0.1 38±0.3 37±0.1
MSR-RAMabs 79±0.1 78±0.2 76±0.1 77±0.1 78±0.1 50±0.3 42±0.2 48±0.2 50±0.2 48±0.0
MSR-RAMrel 79±0.2 79±0.1 78±0.1 78±0.2 79±0.1 51±0.3 43±0.3 40±0.3 53±0.3 50±0.1

Roberta V-SeqCls 75±0.0 63±0.1 74±0.0 75±0.1 72±0.1 45±0.2 37±0.1 46±0.2 46±0.1 44±0.1
V-ArgC 75±0.1 65±0.2 74±0.1 76±0.1 73±0.1 46±0.2 39±0.1 47±0.3 45±0.1 44±0.2
MSR-RAMabs 79±0.1 80±0.2 78±0.1 79±0.0 79±0.0 53±0.2 45±0.3 54±0.2 52±0.3 51±0.1
MSR-RAMrel 80±0.2 81±0.1 79±0.2 80±0.1 80±0.0 55±0.3 46±0.2 55±0.3 52±0.3 52±0.0

DGPT V-SeqCls 76±0.1 63±0.0 73±0.0 74±0.1 72±0 46±0.0 39±0.1 47±0.0 45±0.0 44±0.0
V-ArgC 75±0.0 67±0.1 75±0.0 74±0.1 73±0.0 47±0.1 40±0.0 48±0.1 46±0.1 45±0.0
MSR-RAMabs 80±0.0 81±0.1 79±0.0 80±0.0 80±0.0 56±0.1 49±0.2 55±0.1 53±0.2 54±0.1
MSR-RAMrel 81±0.1 82±0.2 80±0.1 81±0.0 81±0.1 57±0.2 51±0.2 55±0.1 53±0.2 54±0.2

Big Bird V-SeqCls 78±0.1 65±0.0 76±0.0 78±0.1 74±0 48±0.0 41±0.1 49±0.0 46±0.0 46±0.0
V-ArgC 77±0.0 66±0.1 77±0.0 77±0.1 74±0.0 47±0.1 41±0.0 48±0.1 47±0.1 46±0.0
MSR-RAMabs 81±0.0 82±0.1 81±0.0 81±0.0 82±0.0 60±0.1 53±0.2 55±0.1 54±0.2 56±0.1
MSR-RAMrel 83±0.1 82±0.2 81±0.1 82±0.0 82±0.1 59±0.2 51±0.2 56±0.1 55±0.2 55±0.2

Table 2: In-dataset and cross-dataset evaluation performance of MSR-RAM, baselines and the comparison systems.

ing on the remaining one. Detailed cross-dataset562

performance, where models are trained on individ-563

ual datasets and evaluated on others, is provided564

in Table 5 in the Appendix. As shown in Table 5,565

the MSR-RAM configurations demonstrate com-566

petitive performance in cross-dataset evaluation,567

comparable to state-of-the-art results reported in in-568

dataset evaluation. Notably, Big Bird based MSR-569

RAM, trained on QT30 but evaluated on AAEC,570

MTC achieve comparable result to the SOTA mod-571

els trained and evaluated on AAEC and MTC.572

The MSR-RAM configuration is compared573

against related works including (Eger et al., 2017),574

(Peldszus and Stede, 2016), (Gemechu and Reed,575

2019), (Morio et al., 2022), (Bao et al., 2022)576

and OpenAI’s GPT-4 (OpenAI, 2023). Eger et al.577

(2017) investigate a multi-task setup to exploit the578

dependency between component identification and579

AR prediction, achieving an F1-score of 51 for580

AR identification on AAEC dataset. Peldszus and581

Stede (2016) aim to map RST trees to argumen-582

tation structures (Taboada and Mann, 2006) using583

sub-graph matching and an evidence graph model584

and achieve an overall F-measure of 53 in identi-585

fying ARs on MTC dataset. Morio et al. (2022)586

introduces a multi-task architecture built on Long-587

former, integrating task-specific classifiers based588

on biaffine model to identify and classify argument589

spans and determine AR between them. Bao et al.590

(2022) presents a framework for end-to-end AM591

that uses CPM to define ADU boundaries and cat-592

egories, and RPE to correct order biases in auto- 593

regressive models. To evaluate GPT-4 on the AR 594

prediction task, a few-shot prompting approach is 595

used. Details of the experimental setup and the 596

prompt template are provided in Section B.4. 597

As can be seen in Table 2, our approach out- 598

performs all the comparison systems. Please note 599

that direct comparisons between our approach and 600

the comparison systems must be interpreted in con- 601

text due to differences in task setup; for example, 602

Eger et al. (2017), (Morio et al., 2022), and (Bao 603

et al., 2022) combine argument segmentation with 604

AR identification, while the work of Gemechu and 605

Reed (2019) and MSR-RAM focus solely on AR 606

identification based on correctly segmented ADUs. 607

LLMs show consistent performance improve- 608

ments across architectures when using MSR-RAM 609

configurations. DialoGPT based MSR-RAM sur- 610

pass the standard LLMs, with the exception of Big 611

Bird. This improvement is expected due to its pre- 612

training on dialogical data, demonstrating the ad- 613

vantages of more relevant task-specific pre-training 614

compared to generic datasets. Configurations util- 615

ising Big Bird outperform all other LLMs, sug- 616

gesting its ability to capture both local and global 617

context as claimed by the authors. It is worth noting 618

that Big Bird with the MSR-RAM configuration 619

shows a significant performance boost, averaging 620

7.4% and 9.5% in in-dataset and cross-dataset eval- 621

uations, respectively, compared to Big Bird without 622

this configuration. 623
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5.5 Error Analysis624

We analyse the error types observed in MSR-RAM625

versus the baseline. Analysis of 50 argument626

maps showed that 53% of the baseline’s miss-627

classification occur within the same local-structure,628

compared to only 12% for MSR-RAM. This in-629

dicates a 77.4% reduction in miss-classifications630

within the local-structure, reflecting a better adher-631

ence to argument flow. Unlike NLI, AM requires632

coherence constraints that prevent evaluating ARs633

in isolation. Thus, while ADU pairs might involve634

ARs, the coherence can invalidate ARs that dis-635

rupt the overall argumentative flow. A common636

error, termed jump to conclusion Error, occurs637

when an AR is formed by skipping necessary in-638

termediate ARs. This happens when an ADU A639

is incorrectly linked directly to ADU C, despite640

A and C being connected through an intermediary641

ADU B. For instance, as can be seen from the out-642

put of the baseline result in Appendix 4, while AR643

(19) might be considered as valid AR, the coher-644

ence enforced by AR (2) role in the argument could645

invalidate it. Errors of this type account for 14% in646

MSR-RAM compared to 56% in the baseline.647

5.6 Ablation study648

Config Monologue Dialogue Average
Full (Abs) 80 79 80
Full (Rel) 81 80 81
P− (Abs) 70 75 73
P+ (Abs) 74 77 76
P− (Rel) 70 76 73
P+ (Rel) 74 78 76
O− (Abs) 75 76 76
O+ (Abs) 79 79 79
O− (Rel) 77 78 78
O+ (Rel) 81 79 80

Table 3: In-dataset F-1 scores for configurations with
absolute (Abs) and relative (Rel) positional embed-
dings on monological and dialogical datasets.

Config Monologue Dialogue Average
LID 74 (69) 76 (73) 75 (71)
LCD 47 (41) 48 (44) 48 (43)

Table 4: F1-scores for configurations without local-
structure and (baseline) on monological and dialogical
datasets, in in-dataset (ID) and cross-dataset (CD) eval-
uations. Baseline results are shown in parentheses.

The impact of each macro-structural feature on 649

the performance of the models is analysed. 650

Argument flow: As can be seen from Table 3, 651

both order embedding (O) and proponent-opponent 652

transition embedding (P ) prove to be effective, 653

with O surpassing P , while their fusion achieve 654

a new SOTA performance. On average, this fu- 655

sion attains 6.1%, 11.6% performance increase in 656

dialogical and monological datasets on in-dataset 657

evaluation settings. The performance gain is cal- 658

culated as the difference between the average F1- 659

scores of the positional embeddings (representing 660

SOTA) and the average F1-scores of V-SeqCls 661

and V-ArgC (representing the baseline), across the 662

configurations. To isolate their individual effects, 663

we assess O and P independently, with (+) and 664

without (-) the inclusion of local-structures, for 665

both absolute (Abs) and relative (Rel) positional 666

embeddings. O contributes to an average 8.4% 667

and 5.2% enhancement with and without local- 668

structures, respectively, while P contributes to a 669

4.7% and 2% improvement with and without local- 670

structures. Notably, P , prevalent in dialog settings, 671

provide only marginal improved performance in 672

monologue datasets. 673

Local-structure prediction: The findings un- 674

derscore the significance of incorporating local- 675

structure prediction in the multi-task setting. Table 676

4 shows that omitting the local-structure predic- 677

tion sub-task results in a 4.5% decrease in overall 678

performance. We observe that only 16% of errors 679

originating from cross local-structures, when local- 680

structure prediction is incorporated. This highlights 681

the effectiveness of local-structure in preserving co- 682

herence both at local and global levels. 683

6 Conclusion 684

This study introduces MSR-RAM, a method to in- 685

corporate macro-structural features for robustness 686

AM. By explicitly capturing both local and global- 687

structural information, MSR-RAM outperforms ex- 688

isting methods across diverse datasets, achieving 689

new SOTA result. MSR-RAM’s result in cross- 690

dataset evaluations highlights its effectiveness in 691

learning generic, transferable features, marking 692

an advancement in overcoming the challenge of 693

domain adaptation in AM. Future research could 694

delve into modelling more nuanced dialogical fea- 695

tures to encode argument flow, including the incor- 696

poration of specific dialog moves such as “assert- 697

ing”, “arguing”, and “questioning”. 698
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Limitations699

Despite its merits, the MSR-RAM approach has700

the following limitations:701

Limited Applicability to Other NLP Tasks:702

The proponent-opponent features and local-703

structure encoding are specifically designed for ar-704

gumentation tasks. As such, their applicability to705

other NLP tasks that do not involve argumentative706

structures is limited.707

Pre-Training Objectives Not Addressed: Al-708

though the evaluation focuses on fine-tuning for709

leveraging macro-structural features, it does not710

address the training objectives that could be em-711

ployed during the pre-training phase of LLMs to712

better integrate these features.713

Interpretability and Explainability: The ex-714

planations for the model’s performance are based715

on empirical results, ablation studies, and error716

analysis. While these analyses are valuable, ad-717

ditional techniques such as attention mechanism718

analysis could provide a more comprehensive un-719

derstanding of model behavior.720
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A Experiment Setup960

A.1 Training Procedure961

Hyper-parameters: We employ Adam optimisa-962

tion (Kingma and Ba, 2014) to minimise the cost963

function, using a learning rate of 2 × 10−5 and 964

categorical cross-entropy loss and a batch size of 965

16. 966

Gradient Clipping: To prevent exploding gra- 967

dients during training, we applied gradient clip- 968

ping. We used a maximum gradient norm 969

(max_grad_norm) parameter to determine the 970

threshold for gradient clipping. 971

Warm-up and Learning Rate Schedule: We 972

employ a linear warm-up strategy for the learning 973

rate. The number of warm-up steps is set to 10% 974

of the total training steps. Following the warm-up 975

phase, the learning rate schedule is determined by 976

a lambda function. This function linearly increases 977

the learning rate during the warm-up phase and 978

decreases it linearly thereafter. 979

A.2 Input Setup 980

Except the V-SeqClas configurations, the entire 981

argument along with the pair of ADUs is provided 982

to the model. 983

The Input Format:“{Argument} [EG] 984

{premise} [SEP] {conclusion}”, where Argument 985

= {ADU1 [SEP] ADU2 [SEP] ... ADUn}, with n 986

representing the number of ADUs in the argument. 987

Extracting Relevant Argument: For configu- 988

rations requiring the entire argument as input, if 989

the input length exceeds the maximum sequence 990

length of the underlying LLM, we extract a relevant 991

span of the argument pertaining to the premise and 992

conclusion. The process is detailed as follows: 993

1. Tokenisation: Tokenise the argument, 994

premise and conclusion using a tokeniser. 995

2. Total Length Calculation: 996

• Compute the total token length, includ- 997

ing special tokens. 998

• Sum the lengths of premise tokens, con- 999

clusion tokens, argument tokens, and spe- 1000

cial tokens ([CLS] and [SEP]). 1001

3. Span Selection: 1002

• If the total length is within the maximum 1003

sequence length of the LLM , concate- 1004

nate the entire argument with the premise 1005

and conclusion. 1006

• If exceeding the maximum length: 1007

– Locate the positions of the premise 1008

and conclusion within the argument. 1009
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– Select a span that includes both the1010

premise and conclusion with addi-1011

tional surrounding context, ensuring1012

the total length remains within the1013

limit.1014

– If including the span involving both1015

the premise and conclusion exceed1016

the maximum limit, start with the1017

premise, expand the span towards the1018

conclusion until the size constraint is1019

met, and append the conclusion to1020

the argument span.1021

4. Concatenation: Construct the final input text1022

by concatenating the selected argument span1023

with the premise and conclusion.1024

Maximum Number of ADUs in an Argument:1025

We set the maximum number of ADUs to 128 for1026

computational efficiency. This limit is sufficient, as1027

no argument in the dataset exceeds this number of1028

ADUs.1029

A.3 Selecting Pre-Trained LLMs1030

We experimented with various LLM types with1031

varying architecture, and nature of data used dur-1032

ing pre-training to investigate their effectiveness in1033

leveraging macro features. Accordingly, we cate-1034

gorise the models based on the following factors.1035

(A) Context size: local context, and global con-1036

text, (B) pre-training data-set genre: generic data-1037

set, dialogical data-set. We then select BERT (De-1038

vlin et al., 2018), RoBERTa (Liu et al., 2019), Big1039

Bird (Zaheer et al., 2020), and DialoGPT (Zhang1040

et al., 2020). BERT, RoBERTa and Big Bird are1041

pre-trained on generic datasets while DialoGPT is1042

pre-trained on dialogical datasets. Big Bird (Za-1043

heer et al., 2020) is designed to handle long input1044

sequences by incorporating both local and global1045

attention mechanisms. Unlike standard LLMs that1046

process shorter texts, it is optimised for documents1047

with higher linguistic structures. DialoGPT and1048

Big Bird establish strong baselines for this task.1049

DialoGPT is pre-trained on a dialogical dataset,1050

which is particularly relevant for argumentation1051

tasks, as opposed to generic datasets. Big Bird’s1052

effective local and global attention mechanisms are1053

also highly pertinent, given that ARs are influenced1054

by both local and macro structural features.1055

Both for the baselines and the MSR-RAM con-1056

figurations, we utilise the HuggingFace implemen-1057

tation of BERT1, RoBERTa2, DialoGPT 3 and Big 1058

Bird 4. In the baseline setup (both with and without 1059

argument context), we fine-tune the models based 1060

on the output of the [CLS] token from the final 1061

layer. 1062

B MSR-RAM Architecture 1063

Our proposed model represents an argument based 1064

on the embeddings of the ADUs and argument flow 1065

(via order embedding and opponent-proponent tran- 1066

sition embedding), building upon the principles of 1067

the Transformer architecture (Vaswani et al., 2017). 1068

It extends the standard Transformers block with ad- 1069

ditional layers designed to learn the dependencies 1070

among ADUs via ADU level attention mechanisms. 1071

The architecture consists of three main components: 1072

ADU embedding, argument flow embedding, and 1073

multi-head attention mechanism. Each component 1074

is described in detail below. 1075

B.1 ADU Embedding 1076

We utilise pre-trained LLMs (Devlin et al., 2018; 1077

Liu et al., 2019; Radford et al., 2019; Zhang et al., 1078

2020) to obtain contextualised token embeddings 1079

H ∈ Rn×d for the entire input where n is the input 1080

length and d is the hidden size of the model. ADUs 1081

are identified within the sequence using the special 1082

separator token ([SEP]). To obtain embeddings for 1083

each ADU, we apply mean pooling over the token 1084

embeddings within each ADU. Let Hi ∈ Rli×d 1085

represent the token embeddings for the i-th ADU, 1086

where li is the length of the i-th ADU. The ADU 1087

embedding ADUi ∈ Rd is computed as: 1088

ADUi =
1

li

li∑
j=1

Hi,j 1089

The resulting set of ADU embeddings forms a 1090

matrix A ∈ Rm×d, where m is the number of 1091

ADUs. 1092

B.2 Argument Flow Embedding and 1093

Multi-Head Attention 1094

To capture the structural relationships between 1095

ADUs, we introduce a custom attention mechanism 1096

1https://huggingface.co/docs/transformers/en/
model_doc/bert

2https://huggingface.co/docs/transformers/en/
model_doc/roberta

3https://huggingface.co/docs/transformers/en/
model_doc/dialogpt

4https://huggingface.co/docs/transformers/en/
model_doc/big_bird
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that incorporates argument flow embedding. We1097

experiment with both fixed and relative positional1098

embeddings. For absolute positional embeddings,1099

we employ the sinusoidal position signal, following1100

the approach introduced by the Transformer model1101

(Vaswani et al., 2017). For relative positional em-1102

beddings, we adopt the method proposed by Shaw1103

et al. (2018), which encodes the relative distances1104

between ADU in the argument, aij = ej−i, where1105

e represents the learnable embeddings and j − i1106

indicates the relative distance between ADU j and1107

ADU i. We leverage dual positional embeddings1108

to incorporate the two types of positional infor-1109

mation: the index representing the order of each1110

ADUs within the argument (ADU order embed-1111

ding) and the proponent-opponent transition em-1112

bedding. Both approaches are further explained1113

below.1114

Absolute Positional Encoding. As illustrated1115

in Figure 1, the embedding of an ADU, denoted1116

as ADUi, is enhanced with absolute positional in-1117

formation by incorporating both order embeddings1118

and transition embeddings. This process involves1119

the following steps:1120

1. Sinusoidal Function for Embeddings: Con-1121

sistent with the approach used in standard1122

Transformers, sinusoidal functions are em-1123

ployed to generate embeddings for argument1124

flow (Ti) based on both ADU order (Oi) and1125

proponent-opponent transitions (Pi):1126

T(index,2i) = sin

(
index

100002i/dmodel

)
1127

1128

T(index,2i+1) = cos

(
index

100002i/dmodel

)
1129

where index denotes the position of the ADU1130

and dmodel is the dimensionality of the model.1131

This method applies to both ADU order and1132

proponent-opponent transition embeddings,1133

providing a unified approach for incorporating1134

positional information.1135

2. Unified Representation of ADUs: Each1136

ADU is represented by fusing its ADU em-1137

bedding (ADUi), order embedding (Oi),1138

and proponent-opponent transition embedding1139

(Pi) to form a unified representation of ADU1140

(ADU′abs) . A matrix Aabs of size n × d is1141

formed, where n is the number of ADUs in the1142

argument and d is the embedding dimension:1143

Aabs = ADUi +Oi +Pi1144

3. Multi-Head Attention Computation: 1145

Multi-head attention is applied to the unified 1146

embedding matrix Aabs to capture dependen- 1147

cies and relationships among ADUs within 1148

the argument: 1149

Q = WQAabs, K = WKAabs, V = WV Aabs 1150

where WQ, WK , and WV are learnable 1151

weight matrices. 1152

The attention scores A′abs, which incorporate 1153

both the ADU embeddings and the argument 1154

flow information, are calculated as: 1155

Aabs′ =
Q ·K>√

dk
1156

Softmax is applied to the attention scores A′abs 1157

to obtain attention probabilities Pabs: 1158

Pabs = softmax(A′abs) 1159

The final output Outabs of the attention mech- 1160

anism is computed by weighting the values V 1161

with the attention probabilities Pabs: 1162

Outabs = PabsV 1163

Relative Positional Encoding. The attention 1164

mechanism adjusts the attention scores A′i,j to in- 1165

tegrate relative distances on the fly: 1166

A′i,j = softmax

(
QiK

>
j√

dk
+RO

i,j +RP
i,j

)
1167

where Q, K, and V are the query, key, and value 1168

matrices, respectively, derived from the ADUs em- 1169

beddings. 1170

RO
i,j represents the embeddings of the relative 1171

order information and is given by, 1172

RO
i,j = WO(posi − posj)

where WO is the learnable weight matrix for 1173

ADU positions, and Oi and Oj are the index re- 1174

flecting the order of the ADUs i and j within the 1175

argument. 1176

RP
i,j represents the relative embeddings for 1177

proponent-opponent transitions and is given by, 1178

RP
i,j = WP(Pi − Pj)

where WP is the learnable weight matrix for 1179

turn number, and Pi and Pj are the turn numbers of 1180

ADUs i and j within the argument. 1181

The attention output is then computed as: 1182

Out =
∑
j

A′i,jVj 1183

where Out is the output of the attention layer. 1184

13



ADU-1 Emb

Multi-head Attention Layer

AR Local
Structure
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Linear  Layer Linear Layer
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Transition Embedding

ADU
Order Embedding

Figure 1: Architecture for capturing both micro and
macro argument structures using absolute positional
embeddings.

B.3 Feedforward Layers1185

The output of the attention mechanism Out is con-1186

catenated with the CLS token embeddings of the1187

pair of ADUs (premise, conclusion), forming the1188

combined representation:1189

C = [Out,CLS]1190

The combined representation C is then fed into1191

a feedforward neural network, which consists of1192

two linear layers. The final layer outputs the classi-1193

fication logits z:1194

z = FFN(C)1195

where z ∈ Rk and k is the number of AR for1196

AR detection (in sequence-classification fashion)1197

and local-structure prediction (in token-level clas-1198

sification task fashion).1199

B.4 GPT for AR Prediction1200

B.4.1 Experimental Settings1201

We utilise the chat completion configuration of1202

ChatGPT-4 for predicting AR.1203

1. Configurations: We use GPT-4 based on1204

gpt-3.5-turbo-instruct. We set a maxi-1205

mum token limit of 2048, a temperature of 1206

0.7, a top-p probability of 0.9. 1207

2. Prompts Strategy: We explored two strate- 1208

gies: zero-shot and few-shot prompts. In 1209

the zero-shot setting, only instruction based 1210

prompts without examples are used. We also 1211

try few-shot setup, where specific examples 1212

are provided as part of the instruction. Interest- 1213

ingly, our analysis revealed that the example- 1214

based experiment achieved a higher score 1215

compared to the zero-shot prompt in the AR 1216

prediction. As a result, our experiment is 1217

based on example-based prompting. We cre- 1218

ate prompt templates that include instructions 1219

and two examples randomly selected from a 1220

list of examples. 1221

Prompt Design for Zero-Shot AR Prediction: 1222

We prompt GPT-4 to classify the relationship be- 1223

tween the ADUs as supporting, contradicting, or 1224

having no clear AR using the following prompt 1225

template. 1226

You are a 3-class classifier model tasked with 1227

assigning a label to the argument 1228

relation between two argument units 1229

(argument 1 and argument 2). 1230

Classify the following pair of arguments, 1231

argument 1: {ADU_1} 1232

argument 2: {ADU_2}, 1233

into: 1234

"support" (if argument 1 supports 1235

argument 2), 1236

"contradict" (if argument 1 attacks 1237

argument 2), 1238

and "None" (if no argument relation exists 1239

between argument 1 and argument 2). 1240

Please enter: 1241

1 - for support, 1242

2 - for contradict, 1243

0 - for None relation. 1244

Examples from each argument 1245

relation types are provided below: 1246

Example 1: the argument relation between 1247

the argument "people feel, when they have 1248

been voicing opinions on different matters, 1249

that they have been not listened to", and 1250

the argument "people 1251

feel that they have been treated 1252

disrespectfully on all sides of the 1253

different arguments and disputes going on" 1254

is support, and hence prediction label is 1. 1255
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Example 2: The argument relation between1256

"there would be no non-tariff barriers1257

with the deal done with the EU" and1258

the argument "there are lots of1259

non-tariff barriers1260

with the deal done with the EU"1261

is contradiction, and1262

hence prediction label is 2.1263

Note: We use the actual examples to show sup-1264

port and contradiction relations, which should be a1265

placeholder variable in the final prompt template.1266

C Local Structures Extraction from1267

Argument Map1268

Local-structures are segments of the argument map1269

that represent coherent chains of ADUs leading to1270

and following an AR. We present Algorithm 1 to1271

outline the procedure for extracting local-structures1272

from a global argument map. The algorithm takes1273

as input the argument map represented as nodes1274

and edges, where each node represents ADUs and1275

the ARs. The relations between ADUs are pre-1276

sented based on the edges between the ADU and1277

AR nodes.1278

The algorithm generates a comprehensive list of1279

local-structures that are pertinent to the respective1280

ARs within the overarching argument map. Each1281

of these local-structures is identified and cataloged1282

according to their relevance to specific AR in the1283

argument map. For illustrative purposes, Figure1284

2 presents several examples showcasing argument1285

maps that feature multiple local-structures. In these1286

examples, the local-structures are annotated with1287

numerical labels. Each number used for annotation1288

corresponds to a distinct local-structure. ARs that1289

share the same numerical label are part of the same1290

local-structure.1291

The algorithm iterates through each ADU node1292

in the argument map. It performs an upward traver-1293

sal to identify the chain of ADUs leading to the1294

AR node and a downward traversal to identify the1295

chain of ADUs following the AR node. The algo-1296

rithm marks the end of each local-structure in the1297

upward traversal by identifying nodes without in-1298

ward connections and in the downward traversal by1299

identifying nodes without successors. It includes1300

all chains of ADUs that end at the same node to1301

form the local-structure.1302

D Cross-Dataset Evaluation 1303

Cross-dataset evaluation involves training a model 1304

on one dataset and assessing its performance on the 1305

remaining three datasets. This approach is crucial 1306

for evaluating a model’s ability to generalise and 1307

transfer its skills across different datasets. In ar- 1308

gument mining, achieving consistent performance 1309

improvements through cross-dataset evaluation is 1310

particularly noteworthy. This is because models 1311

that perform well in in-dataset evaluations often 1312

show diminished performance when tested on dif- 1313

ferent datasets, sometimes achieving results com- 1314

parable to random chance. 1315

Table 5 provides a comprehensive overview 1316

of the cross-dataset evaluation results. It clearly 1317

demonstrates that the MSR-RAM configurations 1318

consistently outperform the baseline models by a 1319

significant margin. Notably, in some cases, the 1320

MSR-RAM configurations approach or even match 1321

the performance of state-of-the-art (SOTA) models 1322

when evaluated in a standard in-dataset setup. This 1323

indicates that MSR-RAM not only improves perfor- 1324

mance within the same dataset but also shows sub- 1325

stantial effectiveness in transferring learned skills 1326

across diverse datasets. 1327

Model Data AAEC US16 QT30 MTC
BERT AAEC - 48 52 40

US16 53 - 60 45
QT30 52 57 - 44
MTC 49 45 47 -

RoBERTa AAEC - 51 50 44
US16 57 - 52 49
QT30 58 63 - 47
MTC 52 51 55 -

DialogPT AAEC - 53 50 47
US16 60 - 61 54
QT30 60 61 - 53
MTC 56 48 47 -

BIG-BIRD AAEC - 55 52 49
US16 63 - 64 52
QT30 62 61 - 54
MTC 52 53 49 -

Table 5: Cross-dataset evaluation performance of
MSR-RAMrel trained on one dataset and evaluated on
the other. The result presents the evaluation perfor-
mance of MSR-RAM configuration based on relative
positional embedding.

E Macro-structure 1328

Example of argument annotated based on AIT 1329

showcasing argument dynamics along with the ar- 1330

gument inferential structure is presented in Figure 1331

3b. The map annotates each dialogue move with 1332
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Figure 2: An example of argument structures involving multiple segments. ADUs are logically interconnected via
AR to form coherent argument structure. Figure (a) and (b) are taken from AAEC, while (c) and (d) are taken from
QT30. As can be seen from the figure, (a) and (b) forms one complete graph while (c) and (d) are scattered into
multiple disconnected graphs forming islands of argument segments.

Algorithm 1 Extract Local-Structures from Argument Map

Require: Argument map represented as nodes and edges, with each node categorised as ADU, and AR
Ensure: List of local-structures

Initialise an empty list to store local-structures: local_structures
Identify nodes corresponding to AR Nodes in the argument map
for each ADU Node in the argument map do

Perform an upward traversal to identify the chain of ADUs leading to the AR
Perform a downward traversal to identify the chain of ADUs following the AR Node
Mark the start of each local-structure in the upward traversal by identifying nodes without inward

connections
Mark the end of each local-structure in the downward traversal by identifying nodes without

successors
Include all chains of ADUs between the start and end node
Add the identified local-structure to local_structures

end for
return local_structures
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its corresponding illocutionary force (e.g., Asser-1333

tions, Questions, Transitions, Illocuting and Ar-1334

guing) and illustrates how these moves influence1335

the inferential structure. Assertions are declara-1336

tive statements made within the dialogue that con-1337

tribute to the overall argument structure. In the1338

IAT framework, assertions are mapped to infer-1339

ential structures where they serve as propositions1340

that provide content for the argument. Questions1341

are interrogative acts that challenge or probe the1342

content of assertions by prompting responses that1343

substantiate or refute the initial assertions. Tran-1344

sitions in dialogue represent the movement from1345

one communicative act to another and are essential1346

for understanding how arguments develop dynami-1347

cally. Arguing is an illocutionary act that involves1348

presenting and defending an argument and mapped1349

as a type of illocutionary scheme that connects1350

propositions through logical relations. In this pa-1351

per, given that our aim is to capture argument flow1352

at high level, we employ the transitions between the1353

participants only instead of leveraging the specific1354

dialog moves used by the participants.1355

F Error Analysis1356

Figure 4 presents an example of an argument map1357

generated by the baseline model. In this map, ar-1358

gument relations are labeled with numbers, and1359

incorrect AR predictions are highlighted with an1360

(x) symbol. The figure provides a visual represen-1361

tation of the errors made by the baseline model,1362

allowing for a clearer understanding of the error1363

types in AR predictions.1364
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(a) Argument structure with segments. (b) Argument structure along with dialog structure.

Figure 3: Argument structures annotated based on IAT (Budzynska and Reed, 2011). ADUs are logically intercon-
nected via AR to form coherent argument structure. The left figure shows the interplay between local-structures
addressing specific DSPs: one on the Scottish National Party’s internal divisions and another on respectful dis-
agreement. The right figure illustrates the interaction between participants alongside the argument structures. It
demonstrates how transitions between different dialogue moves are linked to changes in the inferential structure,
capturing the dynamic nature of argumentation.
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Figure 4: Example of error analysis. The argument map displays relations with arbitrary numbering, where incor-
rect predictions are marked with an (x) symbol.
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