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Abstract

Argument Mining (AM) involves detecting Ar-
gument Relations (ARs) between Argumen-
tative Discourse Units (ADUs) to uncover
the argument structure. AR detection tech-
niques often rely on micro-structural features
derived from the internal structure of ADUs.
However, argument structure is guided by
a macro-structure representing the functional
interdependence among ADUs of the argu-
ment. This macro-structure comprises seg-
ments, each segment containing ADUs serv-
ing specific functions to maintain coherence
within that segment (local coherence) and
cross-segment coherence (global coherence).
This paper proposes an approach capturing
such macro-structure encoding both local and
global coherence for detecting AR. Experi-
mental results on heterogeneous datasets show-
case a notable performance enhancement, out-
performing state-of-the-art models for both
in-dataset and cross-dataset evaluation scenar-
ios. The cross-dataset evaluation result under-
scores that the macro-structure boosts AR pre-
diction skill transferable to new dataset.

1 Introduction

Argument Mining (AM), a Natural Language
Processing (NLP) task, involves identifying and
analysing argument structures within text (Pers-
ing and Ng, 2016; Stab and Gurevych, 2017;
Eger et al., 2017; Potash et al., 2016; Lawrence
and Reed, 2020). It comprises several tasks in-
cluding segmenting arguments into Argumenta-
tive Discourse Units (ADUs) (Peldszus and Stede,
2015a), distinguishing argumentative units from
non-argumentative ones, classifying ADUs, la-
belling argument relation (AR) between ADUs, and
identifying argument schemes (Eger et al., 2017;
Lawrence and Reed, 2020). In this study, we focus
on classifying the AR between ADUs into support-
ing, attacking, and none-relation.

In the literature, AR detection is framed as de-
pendency parsing task (Peldszus and Stede, 2015b),
sequence tagging problem (Eger et al., 2017) and
sequence classification task, (Reimers et al., 2019;
Ruiz-Dolz et al., 2021). Across these configu-
rations, there is a notable emphasis on the fea-
tures derived from the internal structure of ADUs.
This feature resonates with the concept of “logical
form” central to deductive logic also referred to
as the micro-structure of an argument (Freeman,
2011). Some of these works apply classifiers on
the features derived from individual ADUs (Moens
et al., 2007), while others exploit the dependencies
between pairs of ADUs, using dependency pars-
ing (Muller et al., 2012b), similarity techniques
(Lawrence et al., 2014), linguistic indicators (Vil-
lalba and Saint-Dizier, 2012), and embeddings
from Large Language Models (LLMs) (Reimers
et al., 2019; Ruiz-Dolz et al., 2021).

AR, however, is governed by macro-structure
that represents an argument as an arrangement of
ADUs where these ADUs interact to fulfil func-
tional roles within a discourse (Grosz and Sidner,
1986; Grosz et al., 1995; Accuosto and Saggion,
2020; Boltuzi¢ and gnajder, 2016; Freeman, 2011).
Such functional support between ADUs allows
the formation of coherent argument structure in-
volving chain of thoughts. At global-level, the
macro-structure addresses the overall argument’s
communicative intent, known as discourse purpose
(DP) that is further divided into segments (local-
structures), addressing its discourse segment pur-
pose (DSP). The local-structure maintains coher-
ence within segments (local coherence) by tracing
the flow of ideas relevant to the DSP, while the
global-structure ensures cross-segment coherence
(global coherence) (Grosz et al., 1995; Lochbaum,
1994). Accordingly, AR is tied to its role within
the structure and contingent upon maintaining such
coherence.

The macro-structure of an argument, reflecting



such functional interdependence among ADUs, can
be captured by encoding argument flow into the
representation of argument.

Argument flow (Travis, 1984; Wang et al., 2019;
Kazemnejad et al., 2024) can be captured by lever-
aging ADU order, analogous to how positional
encoding in Transformers (Vaswani et al., 2017)
captures the sequence of tokens. In this context,
we use the sequential order of ADUs rather than
tokens. This feature aligns with the argumentation
framework proposed by Grosz and Sidner (1986),
suggesting that ADUs naturally form argument seg-
ments, similar to how words form phrases within
a sentence. ADUs within a segment serve spe-
cific roles, just as words in a phrase do, while dis-
course segments fulfil functions within the overall
discourse, like phrases in a sentence.

Additionally, argument flow can be captured by
tracking the transitions between participants of the
argument. This argument dynamic can be mod-
elled using theoretical frameworks like Inference
Anchoring Theory (IAT) (Budzynska and Reed,
2011), which explores the interplay between dia-
logue and argument structures, as also explored in
philosophy and linguistics through approaches like
Dialogue Macrogame Theory (Mackenzie, 1990;
Mann, 2002). This interaction between participants,
also known as proponent-opponent interaction
(Freeman, 2011), unfolds as a sequence of dialogue
moves such as “Asserting”, “Arguing”, “Question-
ing”, where each dialogue move is mapped to a
structural element within the argument structure
(Budzynska and Reed, 2011) (see Figure 3b for an
illustrative example).

Moreover, arguments can be deconstructed into
local-structures, which are crucial for tracing the
sequence of ADUs that contribute to the reasoning
both leading up to and following an AR. These
local-structures facilitate the identification of local
coherence and DSPs relevant to the AR, thereby
providing a specific relevant context. The example
in Figure 3a illustrates the interplay between local-
structures, where one local-structure addresses a
DSP pertaining to the Scottish National Party’s
internal divisions and disagreements, while another
focuses on conducting disagreements respectfully
(see Figure 2 for more examples).

In this study, we model AR prediction as a func-
tion of both micro-structure and macro-structure.
An argument is modelled by unified representa-
tion that integrates both micro-structure and macro-
structure. The micro-structure is captured through

the representation of ADUs, while the macro-
structure is addressed by modelling argument flow,
by leveraging ADU order and proponent-opponent
transitions. An attention mechanism is employed
to attend to these unified representation for cap-
turing the relationships among ADUs within the
argument, similar to the attention mechanism in
transformers attending to positional and token en-
coding for representing text (Vaswani et al., 2017).
The resulting attention output is used for identify-
ing local-structures relevant to AR while simultane-
ously detecting ARs through a multi-task learning
approach. The local-structures prediction functions
as an auxiliary task to supply contextual cues for
the AR prediction.

Our contributions are threefold: First, we in-
troduce an approach that explicitly incorporates
macro-structures to capture both local and global
coherence for AR detection. Second, we demon-
strate that leveraging macro-structures enhances
AR detection performance. Third, our evaluation
shows that integrating macro-structures provides
robust AR detection features that are transferable
to new datasets. It achieves a new state-of-the-art
performance in both cross-dataset and in-dataset
evaluation setups.

2 Related Works

Argument Mining. has been explored through
various approaches in the literature. One approach
frames AM as a dependency parsing task (Peldszus
and Stede, 2015b), employing discourse parsing
techniques (Muller et al., 2012a). Similarly, Peld-
szus and Stede (2016) aim to map Rhetorical Struc-
ture Theory (RST) trees to argumentation struc-
tures (Taboada and Mann, 2006) using sub-graph
matching and evidence graph models. Additionally,
AM has been framed as a token-based sequence
tagging problem (Eger et al., 2017), where tokens
are classified into argument components (premise,
conclusion) and their respective argument relations
(support, attack) using the BIO tagging approach.
Gemechu and Reed (2019) decompose propositions
into fine-grained components and use classifiers to
predict AR based on the relations between these
components. Several recent works fine-tuned pre-
trained LLM on AM data-set based on sequence
pair classification configurations (Reimers et al.,
2019; Ruiz-Dolz et al., 2021). These configura-
tions primarily focus on the internal structure of
ADUs, akin to the “logical form” central to de-



ductive logic. Freeman (Freeman, 2011) refers to
this as the “micro-structure of an argument”. How-
ever, these setups overlook the overall functioning
of whole ADUs in an argument and focus on the
micro-structure obtained from pairs of ADUs.

End-to-end AM aims to leverage the interdepen-
dence between tasks to enhance performance (Pers-
ing and Ng, 2016; Stab and Gurevych, 2017; Eger
et al., 2017; Potash et al., 2016; Morio et al., 2022).
Persing and Ng (2016) and Stab and Gurevych
(2017) employ a pipeline architecture, training in-
dependent models for each sub-task and subse-
quently defining an Integer Linear Programming
(ILP) model to encode global constraints. Eger
et al. (2017) propose a neural end-to-end paradigm,
addressing the problem in a joint multi-task setup
and exploiting the inter-dependency between tasks.
Additionally, Morio et al. (2022) introduce an end-
to-end cross-corpus training approach, while Bao
et al. (2022) presents a generative framework for
end-to-end AM using a constrained pointer mech-
anism (CPM) and reconstructed positional encod-
ing (RPE). None of these works explicitly encode
macro-structure other than exploiting the inter-
dependency between the AM tasks.

While advances in transfer learning, leveraging
LLMs, showcase encouraging performance on in-
dataset evaluation, they encounter challenges when
applied to different datasets from distinct domains.
Studies in the NLI domain reveal their struggle to
learn robust features applicable across datasets (Mc-
Coy et al., 2019). These shortcomings stem from
shortcut learning (Wu et al., 2023; McCoy et al.,
2023), leading models to adopt shallow heuristics
hindering the capacity to generalise (Naik et al.,
2018; Poliak et al., 2018; Nie et al., 2019; Mc-
Coy et al., 2019). Notably, McCoy et al. (2019)
shows that NLI models learn invalid heuristics that
are regularly expressed in the dataset, while Po-
liak et al. (2018) show that they tend to predict
entailment solely based on hypotheses, exploiting
dataset-specific artifacts by neglecting discourse-
level context—a crucial concept in AR prediction.

Structural Encoding in LLMs. Recent ad-
vancements extend Transformers in encoding long
text and capturing document structures (He et al.,
2024; Cao and Wang, 2022; Liu et al., 2022; Bai
et al., 2021; Zaheer et al., 2020; Beltagy et al.,
2020). He et al. (2024) and Cao and Wang (2022)
use section structure to represent document hierar-
chy, while Liu et al. (2022) employs hierarchical
sparse attention and special tokens for encoding

local and global information. Bai et al. (2021) pro-
pose the encoding of the positional information of
various linguistic segments. Beltagy et al. (2020)
present Longformer, an LLM that employs a com-
bination of local windowed attention and global at-
tention, for processing long documents. Similarly,
Zaheer et al. (2020) introduce BigBird, a model
that leverages a sparse attention mechanism com-
bining global, local, and random attention patterns,
to handle longer sequences.

While these approaches attempt to incorporate
structural information similarly to our work, they
often rely on document-specific elements such
as section titles, which are not present in argu-
ment structures, while generic approaches typi-
cally use token-level attention mechanisms. Our
method differs by focusing on argument-specific
features (argument flow) and attention mechanisms
to model interactions between high-level linguis-
tic units (ADUs) and their functional relationships,
while simultaneously capturing logical segments
of argument (local-structures).

3 Macro-Structure

An argument is a coherent arrangement of utter-
ances organised in a specific order (Grosz and Sid-
ner, 1986; Toulmin, 1958; Freeman, 2011). Free-
man (2011) propose a framework describing how
these utterances collectively contribute to natu-
ral language argumentation, particularly focusing
on their supportive roles and structural patterns,
termed as “macro-structure”. This framework en-
compasses techniques such as divergent, conver-
gent, linked, and serial reasoning, which illustrate
how reasons combine to support conclusions. It
underscores the significance of understanding the
entire sequence of ideas within an argument, in-
cluding claims, challenges, responses, and counter-
responses, to establish coherent structure.
Coherence within discourse can be viewed at
two levels: local coherence and global coherence.
Local coherence refers to coherence among the ut-
terances in a segment of an argument, while global
coherence refers to the coherence spanning seg-
ments (Grosz and Sidner, 1986; Grosz et al., 1995).
Grosz and Sidner argue that the coherence depends
on the intentional structure of discourse addressed
via the overall DP and DSP (Grosz and Sidner,
1986; Grosz et al., 1995). These intentions are
reflective of the speaker’s goals, akin to Gricean
conversational implicatures (Grice, 1975). In a



multi-party discourse, the DSP for a given segment
aligns with the intention of the conversational par-
ticipant initiating that segment (Lochbaum, 1994).
Freeman (2011) models these interactions as the
interplay between the proponents and opponents,
showing how proponents assert and address oppo-
nents’ challenges, forming a chain of reasoning
and highlighting the importance of tracing these
transitions for understanding the argument.

IAT (Budzynska and Reed, 2011) offers a frame-
work representing how argument structure is linked
to the intentional structure and the dynamics within
dialogue structure. In essence, IAT offers a macro-
structural analysis by representing the intentional
structure and illocutionary dynamics within argu-
mentative discourse, by linking dialogical moves
to their communicative intentions and illocution-
ary forces. For example, Figure (1b) illustrates
participant interactions alongside argument struc-
tures, showcasing diverse dialogue moves such as
“Asserting”, “Arguing”, “Questioning”, “Illocut-
ing”, and “Restating” (Budzynska and Reed, 2011).
Annotated corpora, such as the corpus of US presi-
dential debate 2016 (Visser et al., 2019) annotated
following such framework, exemplify how dialogi-
cal interactions unfold as a series of moves, each
mapped to a structural element within the argument
graph. Although these dynamics are common in
dialogue, similar conceptualisations apply to mono-
logue, where a speaker delivers multiple utterances
to an audience (Grosz et al., 1995).

4 Method
4.1 Data

Heterogeneous datasets encompassing various do-
mains and genres are utilised, including student per-
suasive essay corpora (AAEC) (Stab and Gurevych,
2017), argumentative micro text (MTC) (Peldszus
and Stede, 2013), the US 2016 presidential debate
corpus (US2016) (Visser et al., 2019), and a cor-
pus of argument and conflict in broadcast debate
(QT30) (Hautli-Janisz et al., 2022). The AAEC
and MTC, are monolingual, while the US2026 and
QT30 are dialogical. AAEC consists of student
essays and MTC is created through a controlled
text generation experiment, whereas US2026 and
QT30 are derived from real-world discussions.

4.2 Local-Structure Annotation

The four datasets are automatically annotated to
identify local-structure for each AR. We traverse

argument structure as a graph to identify segments
(local-structures) containing each AR, with ADUs
and ARs represented as nodes connected by edges.
It involves both upward and downward traversals
from the AR node. Given an AR, the upward traver-
sal identifies the chains of ADUs leading to the AR,
capturing the local coherence that builds up to the
current AR. The downward traversal identifies the
chain of ADUs following the AR, ensuring the con-
tinuity of the argument.

The beginning of a local-structure is marked by
a node that lacks inward connections (start ADU),
signifying the starting point of the segment and the
end is marked by a node without successors (end
ADU), indicating the conclusion of the segment. If
the start ADU involves multiple downward chains
(divergent structure), all such chains are included.
Moreover, every sub-graph including serial, diver-
gent, convergent and linked structures between the
start and end ADUs are included to ensure a com-
plete and coherent segment (additional information
can be found in the Appendix C).

4.3 Data Study

Table 1 shows the summary of the datasets statis-
tics. Accordingly, 73% of the argument structures
involve more than one local-structure, where 67%
of those involves 2 to 7 local-structures, with the
exception of MTC. The lack of local-structures in
MTC is expected since the arguments are short
and addressing defined argument intentions (an ar-
gument has about 5 ADUs and one of the ADUs
serves as the central claim). Across the dataset,
64% of AR are between ADUs located 1 to 5 dis-
tance away from each other. Distance refers to the
difference between the positions of the two ADUs
in the argument. Notably, 17% of the AR are be-
tween ADUs within a distance of 1.

4.4 Model

An argument is represented with a unified model
that encodes both micro and macro-structures (Sec-
tion 4.4.1). This unified representation is utilised
for AR prediction within a joint multi-task learn-
ing framework, where local-structure identification
serves as an auxiliary task to provide additional
macro-structural context (Section 4.4.2).

4.4.1 Argument Representation

The unified argument representation is achieved
by combining two types of embeddings: ADU em-
beddings, which capture the micro-structure of the



Dataset No_arg No_ADU No_RA No_CA Loc_struct Dist_ARs
AAEC 402 6089 4841 497 33 2.6
MTC 112 576 272 171 1.2 1.3
US2016 499 8610 2830 942 5.1 32
QT30 724 11266 2756 558 7 4.8

Table 1: Summary of dataset showing the number of arguments (No_arg), the average number of ADUs within each
argument (No_ADU), the number of support (No_RA), attack (No_CA), the average number of local-structures
(Loc_struct), and distance between ADUs involving AR (Dist_ARs).

argument, and argument flow embeddings, which
capture the macro-structure.

ADU Embedding. Each ADU is represented
by a fixed-size embedding of dimension d. A pre-
trained LLM generates contextualised embeddings
for the argument, where ADUs are separated by
the special token [SEP]. Mean pooling is applied
to token embeddings from the final output layer to
obtain each ADU’s representation, with the [SEP]
token marking ADU boundaries (see Section B.1
for additional details).

Argument Flow Embedding. ADU order and
proponent-opponent transitions are leveraged to en-
code argument flow. Both absolute (Vaswani et al.,
2017) and relative Shaw et al. (2018) positional em-
beddings are explored for this purpose. Absolute
positional embedding follows the sine-cosine tech-
nique proposed in Transformers (Vaswani et al.,
2017), generating an n. X d matrix, where n is the
number of ADUs and d is the embedding size. Rel-
ative positional embeddings follow the approach
introduced by Shaw et al. (2018), capturing the
relative distances between ADU positions using
learnable embeddings e.

For the ADU order based embedding, positional
index of each ADU, reflecting their sequential or-
der within the argument is used. Unlike the stan-
dard positional embedding which utilise token po-
sitions, our approach uses ADU positions. It is
also worth noting that the embedding used to rep-
resent ADUs (at the ADU embedding step) is de-
rived from a pre-trained LLM, which already in-
corporates token-based positional embeddings. For
proponent-opponent transition embeddings, each
ADU is assigned a unique numerical index rep-
resenting the participant making the ADU, cap-
turing participants transitions. Each participant is
assigned a unique index ranging from 0 to n — 1,
where n is the total number of participants. In
multi-participant dialogues, ADUs are tagged with
these indices to track shifts between participants

while in single-participant monologues, all ADUs
are assigned the same index.

Unified Argument Representation. Let A rep-
resent an argument consisting of n ADUs, denoted
as A = {a1,as,...,a,}, where a; denotes the i-th
ADU. The unified embedding of each ADU; inte-
grating argument-flow information is computed as:

ADU = ADU; 9 0; 6 P; (1)

where ADU; is the ADU embedding, O; is the
order embedding, P; is the proponent-opponent
transition embedding and @ is the fusion operation
integrating the argument flow. This results in an
n X d matrix, where n is the number of ADUs and
d is the embedding size.

In the absolute positional embedding, the fusion
operation is the summation of the embeddings to
obtain ADU/, ., and a multi-head attention mecha-
nism is applied to capture contextual dependencies
between ADUs. In contrast, the relative positional
embedding integrates argument flow embeddings
dynamically during the attention score (R) compu-
tation as follows:

T

R = softmax <QK

Vi

where Q, K, and V are the query, key, and value

embeddings of the ADUs, and O and P are the or-

der and proponent-opponent transition embeddings,

respectively. In both approaches, the multi-head

attention computes cross-attention scores between

ADUs, since each position in the attention matrix

represents an ADU. Further details on both strate-
gies are provided in Section B.2.

+O+P> (2)

4.4.2 Predicting Argument Relations

AR prediction is framed within a joint multi-
task learning, where one task identifies the local-
structure, and the other predicts the AR. Given A’
representing the unified argument representation,
and ADU;, ADU; denoting the pair of ADUs



under consideration, the input to the model can be
represented as {A’, (ADU,;, ADUj)} (see A.2).
The output from the cross-attention mechanisms
on A’ is combined with the unified embeddings
of ADU;, ADU;, and processed through a feed-
forward network to predict AR and local-structures
(see Appendix B.2 for more details). The outputs
for both tasks are given by:

Output = LS-cls(H) & AR-cls(H)  (3)

where H represents shared model parameters.

The AR-cls is a classification layer predict-
ing AR and LS-cls is a token classification layer
identifying the relevant local-structure. For the
LS-cls, the BIO (Beginning, Inside, Outside) label-
ing scheme (Ramshaw and Marcus, 1999) is used.
Each token in the argument is assigned one of the
three BIO labels to predict the ADUs constituted by
the respective local-structure described in Section
4.2. Both tasks share the same input and model
parameters, and the overall loss function is the sum
of the losses from both tasks.

Baselines. Two baseline configurations are
evaluated: vanilla sequence-pair classification (V-
SeqCls), which fine-tunes various LLMs on con-
catenated ADU pairs, and vanilla argument context
(V-ArgC), which uses the entire argument along
with ADU pairs.

S Experiment

5.1 Training setup

The models train for 6 epochs, with a batch size
of 16 samples. Adam optimisation (Kingma and
Ba, 2014) is used with a learning rate of 2 x 107°
and categorical cross-entropy loss to minimise the
cost function. Results represent the average of
three runs using different random seeds. More
experimental setup provided in the Appendix A.
The code used in this work can be publicly accessed
at https://github.com/ANONYMOUS (redacted).

5.2 Evaluation Setup

Two evaluation setups are employed to assess the
model’s robustness in the AR prediction task.

In-Dataset Evaluation: Each dataset is divided
into 70% training, 20% test, and 10% validation
sets.

Cross-dataset Evaluation: A model is trained
on the combination of n — 1 data sources and evalu-
ated on the remaining data source, repeated n times
for each data source. This setup aims to evaluate

the model’s performance on unseen data source,
providing insights into its adaptability and robust-
ness across different datasets.

In both settings, macro precision (P), recall (R),
and F-measure (F) are reported for the test dataset.
Please note that the local-structure prediction task
is not evaluated, as it serves as an auxiliary task.

5.3 Model configurations

Pre-trained LLMs are fine-tuned based on the ar-
gument representation presented in Section 4.4.1
using the multi-task setting described in Section
4.4.2. Diverse LLMs are explored to evaluate their
efficacy in leveraging the macro-structural features:
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), Big Bird (Zaheer et al., 2020), and Di-
aloGPT (Zhang et al., 2020). BERT, RoBERTa, and
Big Bird are pre-trained on generic datasets, while
DialoGPT is pre-trained on dialogical datasets for
capturing dialogue dynamics. Big Bird (Zaheer
et al., 2020) extends Transformers with sparse at-
tention by integrating global, local, and random
patterns, enabling it to handle longer sequences and
tasks requiring long context. Evaluating these mod-
els with and without the MSR-RAM configuration
establishes robust baselines, with DialoGPT and
Big Bird standing out as particularly strong base-
lines, given the relevancy of pre-training strategies
and datasets (see Appendix A.3 for more details).

5.4 Results

The findings underscore the role of incorporat-
ing macro-structural features in enhancing the per-
formance of AR identification. Table 2 shows
the performance of each configuration, the base-
lines and comparison systems across the datasets.
As can be seen from the Table, MSR-RAM con-
figurations consistently surpasses the baselines
both in in-dataset and cross-dataset evaluation set-
tings. Specifically, MSR-RAM configuration out-
performs both V-SeqClas and V-ArgC configura-
tions, with an average performance improvement
of 9.2%, 8.5% on in-dataset and 10%, 9.3% on
cross-dataset evaluations, respectively.

The cross-dataset evaluation result demonstrate
the ability of MSR-RAM configurations in learning
transferable skills across datasets. As can be seen
in Table 2, in contrast to MSR-RAM, the vanilla
configurations struggle to exceed random chance
performance in cross-dataset evaluation settings.
Note that the cross-dataset evaluation in Table 2
involves training on n — 1 data sources and test-
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LLM Model In-dataset Cross-dataset
AAEC MTC US16 QT30 AVG AAEC MTC US16 QT30 AVG
Comparison Bao et al. (2022) 50 n/a n/a n/a 50 n/a n/a n/a n/a n/a
Peldszus and Stede (2016) n/a 53 n/a n/a 53 n/a n/a n/a n/a n/a
Eger et al. (2017) 51 n/a n/a n/a 51 n/a n/a n/a n/a n/a
Gemechu and Reed (2019) 77 75 62 n/a 71 n/a n/a n/a n/a n/a
Morio et al. (2022) 55 58 n/a n/a 57 n/a n/a n/a n/a n/a
GPT-4 63+2 48+2 5542 60+2 5742 n/a n/a n/a n/a n/a
BERT V-SeqCls 67 £0.0 61+0.2 66+0.0 67+0.2 65+0.1 43+0.3 304+0.3 33+0.2 36+0.1 36+0.2
V-ArgC 68+0.1 61+0.1 694+0.0 67+0.1 66+0.0 45+0.3 314+0.2 32+0.1 38+0.3 37+0.1
MSR-RAM?bs 79+0.1 78+0.2 76+0.1 774+0.1 78+0.1 50+0.3 42402 48+0.2 50+0.2 48+0.0
MSR-RAM™! 79+0.2  794+0.1 78+0.1 78+0.2 7940.1 51403 434+0.3 40+0.3 534+0.3 50+0.1
Roberta V-SeqCls 75+40.0 63+0.1 744+0.0 754+0.1 724+0.1 454+0.2 374+0.1 46+0.2 46+0.1 44+0.1
V-ArgC 7540.1  65+0.2 74+0.1 76+0.1 734+0.1 46+0.2 39+0.1 47403 45+0.1 44+0.2
MSR-RAM?bs 79+0.1 80+0.2 784+0.1 7940.0 794+0.0 53+0.2 454+0.3 54402 52403 5140.1
MSR-RAM™! 80+0.2 81+0.1 79+0.2 80+0.1 80+0.0 55+0.3 46+0.2 55+0.3 52+0.3 52+0.0
DGPT V-SeqCls 76+0.1 63+0.0 73+£0.0 74+0.1 7240 46+0.0 39+0.1 47+0.0 45+0.0 44+0.0
V-ArgC 754£0.0 67+0.1 75+£0.0 7440.1 734+0.0 474+0.1 40+0.0 48+0.1 46+0.1 45+0.0
MSR-RAM?bs 80+0.0 81+0.1 79+0.0 80+0.0 80+0.0 56+0.1 49402 554+0.1 53+0.2 54+0.1
MSR-RAM™! 81+0.1 82+0.2 80+0.1 81+0.0 81£0.1 57+0.2 51402 554+0.1 53+0.2 54+0.2
Big Bird V-SeqCls 78+0.1  65+0.0 76+0.0 78+0.1 7440 48+0.0 41+0.1 49+0.0 46+0.0 46+0.0
V-ArgC 77+£0.0 66+0.1 77+0.0 774+0.1 744+0.0 474+0.1 41+0.0 48+0.1 47+0.1 46+0.0
MSR-RAM?bs 81+0.0 82+0.1 81+0.0 81+0.0 82+0.0 60+0.1 534+0.2 554+0.1 54+0.2 56+0.1
MSR-RAM™! 83+0.1 82+0.2 81+0.1 82+0.0 82+0.1 59402 51402 564+0.1 55+0.2 55+0.2

Table 2: In-dataset and cross-dataset evaluation performance of MSR-RAM, baselines and the comparison systems.

ing on the remaining one. Detailed cross-dataset
performance, where models are trained on individ-
ual datasets and evaluated on others, is provided
in Table 5 in the Appendix. As shown in Table 5,
the MSR-RAM configurations demonstrate com-
petitive performance in cross-dataset evaluation,
comparable to state-of-the-art results reported in in-
dataset evaluation. Notably, Big Bird based MSR-
RAM, trained on QT30 but evaluated on AAEC,
MTC achieve comparable result to the SOTA mod-
els trained and evaluated on AAEC and MTC.

The MSR-RAM configuration is compared
against related works including (Eger et al., 2017),
(Peldszus and Stede, 2016), (Gemechu and Reed,
2019), (Morio et al., 2022), (Bao et al., 2022)
and OpenAl’s GPT-4 (OpenAl, 2023). Eger et al.
(2017) investigate a multi-task setup to exploit the
dependency between component identification and
AR prediction, achieving an F1-score of 51 for
AR identification on AAEC dataset. Peldszus and
Stede (2016) aim to map RST trees to argumen-
tation structures (Taboada and Mann, 2006) using
sub-graph matching and an evidence graph model
and achieve an overall F-measure of 53 in identi-
fying ARs on MTC dataset. Morio et al. (2022)
introduces a multi-task architecture built on Long-
former, integrating task-specific classifiers based
on biaffine model to identify and classify argument
spans and determine AR between them. Bao et al.
(2022) presents a framework for end-to-end AM
that uses CPM to define ADU boundaries and cat-

egories, and RPE to correct order biases in auto-
regressive models. To evaluate GPT-4 on the AR
prediction task, a few-shot prompting approach is
used. Details of the experimental setup and the
prompt template are provided in Section B.4.

As can be seen in Table 2, our approach out-
performs all the comparison systems. Please note
that direct comparisons between our approach and
the comparison systems must be interpreted in con-
text due to differences in task setup; for example,
Eger et al. (2017), (Morio et al., 2022), and (Bao
et al., 2022) combine argument segmentation with
AR identification, while the work of Gemechu and
Reed (2019) and MSR-RAM focus solely on AR
identification based on correctly segmented ADUs.

LLMs show consistent performance improve-
ments across architectures when using MSR-RAM
configurations. DialoGPT based MSR-RAM sur-
pass the standard LL.Ms, with the exception of Big
Bird. This improvement is expected due to its pre-
training on dialogical data, demonstrating the ad-
vantages of more relevant task-specific pre-training
compared to generic datasets. Configurations util-
ising Big Bird outperform all other LLMs, sug-
gesting its ability to capture both local and global
context as claimed by the authors. It is worth noting
that Big Bird with the MSR-RAM configuration
shows a significant performance boost, averaging
7.4% and 9.5% in in-dataset and cross-dataset eval-
uations, respectively, compared to Big Bird without
this configuration.



5.5 Error Analysis

We analyse the error types observed in MSR-RAM
versus the baseline. Analysis of 50 argument
maps showed that 53% of the baseline’s miss-
classification occur within the same local-structure,
compared to only 12% for MSR-RAM. This in-
dicates a 77.4% reduction in miss-classifications
within the local-structure, reflecting a better adher-
ence to argument flow. Unlike NLI, AM requires
coherence constraints that prevent evaluating ARs
in isolation. Thus, while ADU pairs might involve
ARs, the coherence can invalidate ARs that dis-
rupt the overall argumentative flow. A common
error, termed jump to conclusion Error, occurs
when an AR is formed by skipping necessary in-
termediate ARs. This happens when an ADU A
is incorrectly linked directly to ADU C, despite
A and C' being connected through an intermediary
ADU B. For instance, as can be seen from the out-
put of the baseline result in Appendix 4, while AR
(19) might be considered as valid AR, the coher-
ence enforced by AR (2) role in the argument could
invalidate it. Errors of this type account for 14% in
MSR-RAM compared to 56% in the baseline.

5.6 Ablation study

Config Monologue Dialogue Average
Full (Abs) 80 79 80
Full (Rel) 81 80 81
P~ (Abs) 70 75 73
P (Abs) 74 77 76
P~ (Rel) 70 76 73
P (Rel) 74 78 76
O~ (Abs) 75 76 76
O™ (Abs) 79 79 79
O~ (Rel) 77 78 78
O™ (Rel) 81 79 80

Table 3: In-dataset F-1 scores for configurations with
absolute (Abs) and relative (Rel) positional embed-
dings on monological and dialogical datasets.

Config Monologue Dialogue Average
LD 74 (69) 76(73)  75(71)
Lep 47 (41) 48 (44) 48 (43)

Table 4: Fl-scores for configurations without local-
structure and (baseline) on monological and dialogical
datasets, in in-dataset (ID) and cross-dataset (CD) eval-
uations. Baseline results are shown in parentheses.

The impact of each macro-structural feature on
the performance of the models is analysed.

Argument flow: As can be seen from Table 3,
both order embedding (O) and proponent-opponent
transition embedding (P) prove to be effective,
with O surpassing P, while their fusion achieve
a new SOTA performance. On average, this fu-
sion attains 6.1%, 11.6% performance increase in
dialogical and monological datasets on in-dataset
evaluation settings. The performance gain is cal-
culated as the difference between the average F1-
scores of the positional embeddings (representing
SOTA) and the average Fl-scores of V-SeqCls
and V-ArgC (representing the baseline), across the
configurations. To isolate their individual effects,
we assess O and P independently, with (+) and
without (-) the inclusion of local-structures, for
both absolute (Abs) and relative (Rel) positional
embeddings. O contributes to an average 8.4%
and 5.2% enhancement with and without local-
structures, respectively, while P contributes to a
4.7% and 2% improvement with and without local-
structures. Notably, P, prevalent in dialog settings,
provide only marginal improved performance in
monologue datasets.

Local-structure prediction: The findings un-
derscore the significance of incorporating local-
structure prediction in the multi-task setting. Table
4 shows that omitting the local-structure predic-
tion sub-task results in a 4.5% decrease in overall
performance. We observe that only 16% of errors
originating from cross local-structures, when local-
structure prediction is incorporated. This highlights
the effectiveness of local-structure in preserving co-
herence both at local and global levels.

6 Conclusion

This study introduces MSR-RAM, a method to in-
corporate macro-structural features for robustness
AM. By explicitly capturing both local and global-
structural information, MSR-RAM outperforms ex-
isting methods across diverse datasets, achieving
new SOTA result. MSR-RAM’s result in cross-
dataset evaluations highlights its effectiveness in
learning generic, transferable features, marking
an advancement in overcoming the challenge of
domain adaptation in AM. Future research could
delve into modelling more nuanced dialogical fea-
tures to encode argument flow, including the incor-
poration of specific dialog moves such as “assert-

ing”, “arguing”, and “questioning”.



Limitations

Despite its merits, the MSR-RAM approach has
the following limitations:

Limited Applicability to Other NLP Tasks:
The proponent-opponent features and local-
structure encoding are specifically designed for ar-
gumentation tasks. As such, their applicability to
other NLP tasks that do not involve argumentative
structures is limited.

Pre-Training Objectives Not Addressed: Al-
though the evaluation focuses on fine-tuning for
leveraging macro-structural features, it does not
address the training objectives that could be em-
ployed during the pre-training phase of LLMs to
better integrate these features.

Interpretability and Explainability: The ex-
planations for the model’s performance are based
on empirical results, ablation studies, and error
analysis. While these analyses are valuable, ad-
ditional techniques such as attention mechanism
analysis could provide a more comprehensive un-
derstanding of model behavior.

References

Pablo Accuosto and Horacio Saggion. 2020. Min-
ing arguments in scientific abstracts with discourse-
level embeddings. Data & Knowledge Engineering,
129:101840.

He Bai, Peng Shi, Jimmy Lin, Yuqing Xie, Luchen Tan,
Kun Xiong, Wen Gao, and Ming Li. 2021. Segatron:
Segment-aware transformer for language modeling
and understanding. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
12526-12534.

Jianzhu Bao, Yuhang He, Yang Sun, Bin Liang, Jiachen
Du, Bing Qin, Min Yang, and Ruifeng Xu. 2022.
A generative model for end-to-end argument min-
ing with reconstructed positional encoding and con-
strained pointer mechanism. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 10437—-10449.

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Filip BoltuZi¢ and Jan Snajder. 2016. Fill the gap! an-
alyzing implicit premises between claims from on-
line debates. In Proceedings of the Third Workshop
on Argument Mining (ArgMining2016), pages 124—
133.

Katarzyna Budzynska and Chris Reed. 2011. Whence
inference. University of Dundee Technical Report.

Shuyang Cao and Lu Wang. 2022. Hibrids: At-
tention with hierarchical biases for structure-aware
long document summarization.  arXiv preprint
arXiv:2203.10741.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Steffen Eger, Johannes Daxenberger, and Iryna
Gurevych. 2017. Neural end-to-end learning
for computational argumentation mining. arXiv
preprint arXiv:1704.06104.

James B Freeman. 2011. Dialectics and the
macrostructure of arguments: A theory of argument
structure, volume 10. Walter de Gruyter.

Debela Gemechu and Chris Reed. 2019. Decompo-
sitional argument mining: A general purpose ap-
proach for argument graph construction. In Proceed-
ings of the 57st Annual Meeting of the Association
for Computational Linguistics, pages 1341-1351.

HP Grice. 1975. Logic and conversation. Syntax and
Semantics, 3:43-58.

Barbara J Grosz, Aravind K Joshi, and Scott Weinstein.
1995. Centering: A framework for modelling the
local coherence of discourse.

Barbara J Grosz and Candace L Sidner. 1986. Atten-
tion, intentions, and the structure of discourse. Com-
putational linguistics, 12(3):175-204.

Annette Hautli-Janisz, Zlata Kikteva, Wassiliki Siskou,
Kamila Gorska, Ray Becker, and Chris Reed. 2022.
Qt30: A corpus of argument and conflict in broad-
cast debate. In Proceedings of the 13th Language
Resources and Evaluation Conference, pages 3291—
3300. European Language Resources Association
(ELRA).

Haoyu He, Markus Flicke, Jan Buchmann, Iryna
Gurevych, and Andreas Geiger. 2024. Hdt: Hi-
erarchical document transformer. arXiv preprint
arXiv:2407.08330.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan
Natesan Ramamurthy, Payel Das, and Siva Reddy.
2024. The impact of positional encoding on length
generalization in transformers. Advances in Neural
Information Processing Systems, 36.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

John Lawrence and Chris Reed. 2020.
mining: A survey.
45(4):765-818.

Argument
Computational Linguistics,

John Lawrence, Chris Reed, Colin Allen, Simon McAl-
ister, and Andrew Ravenscroft. 2014. Mining argu-
ments from 19th century philosophical texts using
topic based modelling. In Proceedings of the First
Workshop on Argumentation Mining, pages 79-87.



Yang Liu, Jiaxiang Liu, Li Chen, Yuxiang Lu, Shikun
Feng, Zhida Feng, Yu Sun, Hao Tian, Hua Wu, and
Haifeng Wang. 2022. Ernie-sparse: Learning hierar-
chical efficient transformer through regularized self-
attention. arXiv preprint arXiv:2203.12276.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Karen Elizabeth Lochbaum. 1994. Using collaborative
plans to model the intentional structure of discourse.
Harvard University.

Jim Mackenzie. 1990. Four dialogue systems. Studia
logica, 49:567-583.

William C Mann. 2002. Dialogue macrogame theory.
In Proceedings of The Third SIGdial Workshop on
Discourse and Dialogue, pages 129-141.

R Thomas McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntac-
tic heuristics in natural language inference. arXiv
preprint arXiv:1902.01007.

R Thomas McCoy, Shunyu Yao, Dan Friedman,
Matthew Hardy, and Thomas L Griffiths. 2023. Em-
bers of autoregression: Understanding large lan-
guage models through the problem they are trained
to solve. arXiv preprint arXiv:2309.13638.

Marie-Francine Moens, Eric Boiy, Raquel Mochales
Palau, and Chris Reed. 2007. Automatic detec-
tion of arguments in legal texts. In Proceedings of
the 11th international conference on Artificial intel-
ligence and law, pages 225-230. ACM.

Gaku Morio, Hiroaki Ozaki, Terufumi Morishita, and
Kohsuke Yanai. 2022. End-to-end argument min-
ing with cross-corpora multi-task learning. Transac-
tions of the Association for Computational Linguis-
tics, 10:639-658.

Philippe Muller, Stergos Afantenos, Pascal Denis, and
Nicholas Asher. 2012a. Constrained decoding for
text-level discourse parsing. In Proceedings of COL-
ING 2012, pages 1883-1900.

Philippe Muller, Stergos D. Afantenos, Pascal Denis,
and Nicholas Asher. 2012b. Constrained decod-
ing for text-level discourse parsing. Proceedings of
COLING 2012, pages 1883—-1900.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
arXiv preprint arXiv:1806.00692.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2019. Ad-
versarial nli: A new benchmark for natural language
understanding. arXiv preprint arXiv:1910.14599.

10

R OpenAl. 2023.  Gpt-4 technical report. arxiv
2303.08774. View in Article, 2:13.

Andreas Peldszus and Manfred Stede. 2013. Ranking
the annotators: An agreement study on argumenta-
tion structure. In Proceedings of the 7th linguistic
annotation workshop and interoperability with dis-
course, pages 196-204.

Andreas Peldszus and Manfred Stede. 2015a. Joint pre-
diction in mst-style discourse parsing for argumenta-
tion mining. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 938-948.

Andreas Peldszus and Manfred Stede. 2015b. Joint pre-
diction in mst-style discourse parsing for argumenta-
tion mining. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 938-948.

Andreas Peldszus and Manfred Stede. 2016. Rhetor-
ical structure and argumentation structure in mono-
logue text. In Proceedings of the Third Workshop on
Argument Mining, pages 103—112.

Isaac Persing and Vincent Ng. 2016. End-to-end argu-
mentation mining in student essays. In Proceedings
of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1384—1394.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language infer-
ence. arXiv preprint arXiv:1805.01042.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2016. Here’s my point: Joint pointer architecture for
argument mining. arXiv preprint arXiv:1612.08994.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAl blog, 1(8):9.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text
chunking using transformation-based learning. In
Natural language processing using very large cor-
pora, pages 157-176. Springer.

Nils Reimers, Benjamin Schiller, Tilman Beck, Jo-
hannes Daxenberger, Christian Stab, and Iryna
Gurevych. 2019. Classification and clustering of
arguments with contextualized word embeddings.
arXiv preprint arXiv:1906.09821.

Ramon Ruiz-Dolz, Jose Alemany, Stella M Heras Bar-
bera, and Ana Garcia-Fornes. 2021. Transformer-
based models for automatic identification of argu-
ment relations: A cross-domain evaluation. IEEE
Intelligent Systems, 36(6):62-70.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. arXiv preprint arXiv:1803.02155.



Christian Stab and Iryna Gurevych. 2017. Parsing ar-
gumentation structures in persuasive essays. Com-
putational Linguistics, 43(3):619—659.

Maite Taboada and William Mann. 2006. Rhetorical
structure theory: Looking back and moving ahead.
Discourse studies, 8(3):423-459.

Stephen Toulmin. 1958. The uses of argument, cam-
bridge univ.

Lisa deMena Travis. 1984. Parameters and effects of
word order variation. Ph.D. thesis, Massachusetts
Institute of Technology.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Maria P.G. Villalba and Patrick Saint-Dizier. 2012.
Some facets of argument mining for opinion anal-
ysis. COMMA, 245:23-34.

Jacky Visser, Barbara Konat, Rory Duthie, Marcin Kos-
zowy, Katarzyna Budzynska, and Chris Reed. 2019.
Argumentation in the 2016 us presidential elections:
annotated corpora of television debates and social
media reaction. Language Resources and Evalua-
tion, pages 1-32.

Benyou Wang, Donghao Zhao, Christina Lioma, Qi-
uchi Li, Peng Zhang, and Jakob Grue Simonsen.
2019. Encoding word order in complex embeddings.
arXiv preprint arXiv:1912.12333.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyiirek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob
Andreas, and Yoon Kim. 2023. Reasoning or recit-
ing? exploring the capabilities and limitations of lan-
guage models through counterfactual tasks. arXiv
preprint arXiv:2307.02477.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283-17297.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and William B Dolan. 2020. Dialogpt: Large-
scale generative pre-training for conversational re-
sponse generation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 270-
278.

A Experiment Setup

A.1 Training Procedure

Hyper-parameters: We employ Adam optimisa-
tion (Kingma and Ba, 2014) to minimise the cost
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function, using a learning rate of 2 x 10~ and
categorical cross-entropy loss and a batch size of
16.

Gradient Clipping: To prevent exploding gra-
dients during training, we applied gradient clip-
ping. We used a maximum gradient norm
(max_grad_norm) parameter to determine the
threshold for gradient clipping.

Warm-up and Learning Rate Schedule: We
employ a linear warm-up strategy for the learning
rate. The number of warm-up steps is set to 10%
of the total training steps. Following the warm-up
phase, the learning rate schedule is determined by
a lambda function. This function linearly increases
the learning rate during the warm-up phase and
decreases it linearly thereafter.

A.2 Input Setup

Except the V-SeqClas configurations, the entire
argument along with the pair of ADUs is provided
to the model.

The Input Format:“{Argument} [EG]
{premise} [SEP] {conclusion}”, where Argument
= {ADUI1 [SEP] ADU2 [SEP] ... ADUn}, with n
representing the number of ADUs in the argument.

Extracting Relevant Argument: For configu-
rations requiring the entire argument as input, if
the input length exceeds the maximum sequence
length of the underlying LLM, we extract a relevant
span of the argument pertaining to the premise and
conclusion. The process is detailed as follows:

1. Tokenisation: = Tokenise the argument,
premise and conclusion using a tokeniser.

2. Total Length Calculation:

* Compute the total token length, includ-
ing special tokens.

* Sum the lengths of premise tokens, con-
clusion tokens, argument tokens, and spe-
cial tokens ([CLS] and [SEP]).

. Span Selection:

* If the total length is within the maximum
sequence length of the LLM , concate-
nate the entire argument with the premise
and conclusion.

* If exceeding the maximum length:

— Locate the positions of the premise
and conclusion within the argument.



— Select a span that includes both the
premise and conclusion with addi-
tional surrounding context, ensuring
the total length remains within the
limit.

If including the span involving both
the premise and conclusion exceed
the maximum limit, start with the
premise, expand the span towards the
conclusion until the size constraint is
met, and append the conclusion to
the argument span.

4. Concatenation: Construct the final input text
by concatenating the selected argument span
with the premise and conclusion.

Maximum Number of ADUs in an Argument:
We set the maximum number of ADUs to 128 for
computational efficiency. This limit is sufficient, as
no argument in the dataset exceeds this number of
ADUs.

A.3 Selecting Pre-Trained L1.Ms

We experimented with various LLM types with
varying architecture, and nature of data used dur-
ing pre-training to investigate their effectiveness in
leveraging macro features. Accordingly, we cate-
gorise the models based on the following factors.
(A) Context size: local context, and global con-
text, (B) pre-training data-set genre: generic data-
set, dialogical data-set. We then select BERT (De-
vlin et al., 2018), RoBERTa (Liu et al., 2019), Big
Bird (Zaheer et al., 2020), and DialoGPT (Zhang
et al., 2020). BERT, RoBERTa and Big Bird are
pre-trained on generic datasets while DialoGPT is
pre-trained on dialogical datasets. Big Bird (Za-
heer et al., 2020) is designed to handle long input
sequences by incorporating both local and global
attention mechanisms. Unlike standard LLMs that
process shorter texts, it is optimised for documents
with higher linguistic structures. DialoGPT and
Big Bird establish strong baselines for this task.
DialoGPT is pre-trained on a dialogical dataset,
which is particularly relevant for argumentation
tasks, as opposed to generic datasets. Big Bird’s
effective local and global attention mechanisms are
also highly pertinent, given that ARs are influenced
by both local and macro structural features.

Both for the baselines and the MSR-RAM con-
figurations, we utilise the HuggingFace implemen-
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tation of BERT!, RoBERTa?, DialoGPT * and Big
Bird #. In the baseline setup (both with and without
argument context), we fine-tune the models based
on the output of the [CLS] token from the final
layer.

B MSR-RAM Architecture

Our proposed model represents an argument based
on the embeddings of the ADUs and argument flow
(via order embedding and opponent-proponent tran-
sition embedding), building upon the principles of
the Transformer architecture (Vaswani et al., 2017).
It extends the standard Transformers block with ad-
ditional layers designed to learn the dependencies
among ADUs via ADU level attention mechanisms.
The architecture consists of three main components:
ADU embedding, argument flow embedding, and
multi-head attention mechanism. Each component
is described in detail below.

B.1 ADU Embedding

We utilise pre-trained LL.Ms (Devlin et al., 2018;
Liu et al., 2019; Radford et al., 2019; Zhang et al.,
2020) to obtain contextualised token embeddings
H € R™* for the entire input where 7 is the input
length and d is the hidden size of the model. ADUs
are identified within the sequence using the special
separator token ([SEP]). To obtain embeddings for
each ADU, we apply mean pooling over the token
embeddings within each ADU. Let H; € Rli*¢
represent the token embeddings for the i-th ADU,
where [; is the length of the i-th ADU. The ADU
embedding ADU; € R? is computed as:

l .
1 K3
ADU; = lijgzlliiJ

The resulting set of ADU embeddings forms a
matrix A € R™*?, where m is the number of
ADUs.

B.2 Argument Flow Embedding and
Multi-Head Attention

To capture the structural relationships between
ADUs, we introduce a custom attention mechanism

1https://huggingface.co/docs/transformers/en/
model_doc/bert

https://huggingface.co/docs/transformers/en/
model_doc/roberta

3https://huggingface.co/docs/transformers/en/
model_doc/dialogpt

4https://huggingface.co/docs/transformers/en/
model_doc/big_bird


 https://huggingface.co/docs/transformers/en/model_doc/bert
 https://huggingface.co/docs/transformers/en/model_doc/bert
https://huggingface.co/docs/transformers/en/model_doc/roberta
https://huggingface.co/docs/transformers/en/model_doc/roberta
https://huggingface.co/docs/transformers/en/model_doc/dialogpt
https://huggingface.co/docs/transformers/en/model_doc/dialogpt
https://huggingface.co/docs/transformers/en/model_doc/big_bird
https://huggingface.co/docs/transformers/en/model_doc/big_bird

that incorporates argument flow embedding. We
experiment with both fixed and relative positional
embeddings. For absolute positional embeddings,
we employ the sinusoidal position signal, following
the approach introduced by the Transformer model
(Vaswani et al., 2017). For relative positional em-
beddings, we adopt the method proposed by Shaw
et al. (2018), which encodes the relative distances
between ADU in the argument, a;; = e;_;, where
e represents the learnable embeddings and 5 — ¢
indicates the relative distance between ADU j and
ADU i. We leverage dual positional embeddings
to incorporate the two types of positional infor-
mation: the index representing the order of each
ADUs within the argument (ADU order embed-
ding) and the proponent-opponent transition em-
bedding. Both approaches are further explained
below.

Absolute Positional Encoding. As illustrated
in Figure 1, the embedding of an ADU, denoted
as ADUj, is enhanced with absolute positional in-
formation by incorporating both order embeddings
and transition embeddings. This process involves
the following steps:

1. Sinusoidal Function for Embeddings: Con-
sistent with the approach used in standard
Transformers, sinusoidal functions are em-
ployed to generate embeddings for argument
flow (T;) based on both ADU order (O;) and
proponent-opponent transitions (P;):

. . index
(index,2i) = S m

index

T(index,2i+1) = COs <1000021/clmde1>
where index denotes the position of the ADU
and dyoqge 1 the dimensionality of the model.
This method applies to both ADU order and
proponent-opponent transition embeddings,
providing a unified approach for incorporating
positional information.

2. Unified Representation of ADUs: Each
ADU is represented by fusing its ADU em-
bedding (ADU;), order embedding (O;),
and proponent-opponent transition embedding
(P;) to form a unified representation of ADU

(ADU, ) . A matrix Ay of size n X d is

formed, where n is the number of ADUs in the

argument and d is the embedding dimension:

A = ADU; + O; + Py

3. Multi-Head  Attention = Computation:
Multi-head attention is applied to the unified
embedding matrix A, to capture dependen-
cies and relationships among ADUs within
the argument:

Q = WQAab37 K= WKAab57
where Wg, Wi, and Wy are learnable
weight matrices.

The attention scores A/, ., which incorporate
both the ADU embeddings and the argument

flow information, are calculated as:
Q K’

bs' =

o Vi

Softmax is applied to the attention scores A
to obtain attention probabilities P ,ps:

A

/
abs

P.ys = softmax(Al)

The final output Out s of the attention mech-
anism is computed by weighting the values V
with the attention probabilities P yps:

Outyys = PV

Relative Positional Encoding. The attention
mechanism adjusts the attention scores A’ ; toin-
tegrate relative distances on the fly:

A

where Q, K, and V are the query, key, and value
matrices, respectively, derived from the ADUs em-
beddings.

jo represents the embeddings of the relative
order information and is given by,

jo = WO (pos,; — pos;)

where WO is the learnable weight matrix for
ADU positions, and O; and O; are the index re-
flecting the order of the ADUs ¢ and j within the
argument.

RE ; Tepresents the relative embeddings for
proponent-opponent transitions and is given by,

R}, = WP (P; — P;)

where WP is the learnable weight matrix for
turn number, and P; and P; are the turn numbers of
ADUs ¢ and 7 within the argument.

The attention output is then computed as:

A} ; = softmax ( +RY; + Ri; )

Out =Y A}V,
J

where Out is the output of the attention layer.

V= WVAabs
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Figure 1: Architecture for capturing both micro and
macro argument structures using absolute positional
embeddings.

B.3 Feedforward Layers

The output of the attention mechanism Out is con-
catenated with the CLS token embeddings of the
pair of ADUs (premise, conclusion), forming the
combined representation:

C = [Out, CLS]

The combined representation C is then fed into
a feedforward neural network, which consists of
two linear layers. The final layer outputs the classi-
fication logits z:

z = FFN(C)

where z € R¥ and k is the number of AR for
AR detection (in sequence-classification fashion)
and local-structure prediction (in token-level clas-
sification task fashion).

B.4 GPT for AR Prediction
B.4.1 Experimental Settings

We utilise the chat completion configuration of
ChatGPT-4 for predicting AR.

1. Configurations: We use GPT-4 based on
gpt-3.5-turbo-instruct. We set a maxi-
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mum token limit of 2048, a temperature of
0.7, a top-p probability of 0.9.

Prompts Strategy: We explored two strate-
gies: zero-shot and few-shot prompts. In
the zero-shot setting, only instruction based
prompts without examples are used. We also
try few-shot setup, where specific examples
are provided as part of the instruction. Interest-
ingly, our analysis revealed that the example-
based experiment achieved a higher score
compared to the zero-shot prompt in the AR
prediction. As a result, our experiment is
based on example-based prompting. We cre-
ate prompt templates that include instructions
and two examples randomly selected from a
list of examples.

Prompt Design for Zero-Shot AR Prediction:
We prompt GPT-4 to classify the relationship be-
tween the ADUs as supporting, contradicting, or
having no clear AR using the following prompt
template.

You are a 3-class classifier model tasked with

assigning a label to the argument
relation between two argument units
(argument 1 and argument 2).

Classify the following pair of arguments,
argument 1: {ADU_1}

argument 2: {ADU_2},

into:

"support” (if argument 1 supports
argument 2),

"contradict” (if argument 1 attacks
argument 2),

and "None"” (if no argument relation exists
between argument 1 and argument 2).
Please enter:

1 - for support,

2 - for contradict,

@ - for None relation.

Examples from each argument

relation types are provided below:
Example 1: the argument relation between
the argument "people feel, when they have
been voicing opinions on different matters,
that they have been not listened to"”, and
the argument "people

feel that they have been treated
disrespectfully on all sides of the
different arguments and disputes going on"
is support, and hence prediction label is 1.



Example 2: The argument relation between
"there would be no non-tariff barriers
with the deal done with the EU" and

the argument "there are lots of
non-tariff barriers

with the deal done with the EU"

is contradiction, and

hence prediction label is 2.

Note: We use the actual examples to show sup-
port and contradiction relations, which should be a
placeholder variable in the final prompt template.

C Local Structures Extraction from
Argument Map

Local-structures are segments of the argument map
that represent coherent chains of ADUs leading to
and following an AR. We present Algorithm 1 to
outline the procedure for extracting local-structures
from a global argument map. The algorithm takes
as input the argument map represented as nodes
and edges, where each node represents ADUs and
the ARs. The relations between ADUs are pre-
sented based on the edges between the ADU and
AR nodes.

The algorithm generates a comprehensive list of
local-structures that are pertinent to the respective
ARs within the overarching argument map. Each
of these local-structures is identified and cataloged
according to their relevance to specific AR in the
argument map. For illustrative purposes, Figure
2 presents several examples showcasing argument
maps that feature multiple local-structures. In these
examples, the local-structures are annotated with
numerical labels. Each number used for annotation
corresponds to a distinct local-structure. ARs that
share the same numerical label are part of the same
local-structure.

The algorithm iterates through each ADU node
in the argument map. It performs an upward traver-
sal to identify the chain of ADUs leading to the
AR node and a downward traversal to identify the
chain of ADUs following the AR node. The algo-
rithm marks the end of each local-structure in the
upward traversal by identifying nodes without in-
ward connections and in the downward traversal by
identifying nodes without successors. It includes
all chains of ADUs that end at the same node to
form the local-structure.
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D Cross-Dataset Evaluation

Cross-dataset evaluation involves training a model
on one dataset and assessing its performance on the
remaining three datasets. This approach is crucial
for evaluating a model’s ability to generalise and
transfer its skills across different datasets. In ar-
gument mining, achieving consistent performance
improvements through cross-dataset evaluation is
particularly noteworthy. This is because models
that perform well in in-dataset evaluations often
show diminished performance when tested on dif-
ferent datasets, sometimes achieving results com-
parable to random chance.

Table 5 provides a comprehensive overview
of the cross-dataset evaluation results. It clearly
demonstrates that the MSR-RAM configurations
consistently outperform the baseline models by a
significant margin. Notably, in some cases, the
MSR-RAM configurations approach or even match
the performance of state-of-the-art (SOTA) models
when evaluated in a standard in-dataset setup. This
indicates that MSR-RAM not only improves perfor-
mance within the same dataset but also shows sub-
stantial effectiveness in transferring learned skills
across diverse datasets.

Model Data AAEC US16 QT30 MTC
BERT AAEC - 48 52 40
US16 53 - 60 45
QT30 52 57 - 44
MTC 49 45 47 -
RoBERTa AAEC - 51 50 44
US16 57 - 52 49
QT30 58 63 - 47
MTC 52 51 55 -
DialogPT AAEC - 53 50 47
US16 60 - 61 54
QT30 60 61 - 53
MTC 56 48 47 -
BIG-BIRD AAEC - 55 52 49
US16 63 - 64 52
QT30 62 61 - 54
MTC 52 53 49 -

Table 5: Cross-dataset evaluation performance of

MSR-RAM"™ trained on one dataset and evaluated on
the other. The result presents the evaluation perfor-
mance of MSR-RAM configuration based on relative
positional embedding.

E Macro-structure

Example of argument annotated based on AIT
showcasing argument dynamics along with the ar-
gument inferential structure is presented in Figure
3b. The map annotates each dialogue move with
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(c) An argument structure with 3 segments (A,B and C

(d) An argument structure with 5 segments (A,B,C,D and
E)

Figure 2: An example of argument structures involving multiple segments. ADUs are logically interconnected via
AR to form coherent argument structure. Figure (a) and (b) are taken from AAEC, while (c) and (d) are taken from
QT30. As can be seen from the figure, (a) and (b) forms one complete graph while (c) and (d) are scattered into
multiple disconnected graphs forming islands of argument segments.

Algorithm 1 Extract Local-Structures from Argument Map

Require: Argument map represented as nodes and edges, with each node categorised as ADU, and AR
Ensure: List of local-structures
Initialise an empty list to store local-structures: local_structures
Identify nodes corresponding to AR Nodes in the argument map
for each ADU Node in the argument map do
Perform an upward traversal to identify the chain of ADUs leading to the AR
Perform a downward traversal to identify the chain of ADUs following the AR Node
Mark the start of each local-structure in the upward traversal by identifying nodes without inward
connections
Mark the end of each local-structure in the downward traversal by identifying nodes without
successors
Include all chains of ADUs between the start and end node
Add the identified local-structure to local_structures

end for

return local_structures




its corresponding illocutionary force (e.g., Asser-
tions, Questions, Transitions, Illocuting and Ar-
guing) and illustrates how these moves influence
the inferential structure. Assertions are declara-
tive statements made within the dialogue that con-
tribute to the overall argument structure. In the
IAT framework, assertions are mapped to infer-
ential structures where they serve as propositions
that provide content for the argument. Questions
are interrogative acts that challenge or probe the
content of assertions by prompting responses that
substantiate or refute the initial assertions. Tran-
sitions in dialogue represent the movement from
one communicative act to another and are essential
for understanding how arguments develop dynami-
cally. Arguing is an illocutionary act that involves
presenting and defending an argument and mapped
as a type of illocutionary scheme that connects
propositions through logical relations. In this pa-
per, given that our aim is to capture argument flow
at high level, we employ the transitions between the
participants only instead of leveraging the specific
dialog moves used by the participants.

F Error Analysis

Figure 4 presents an example of an argument map
generated by the baseline model. In this map, ar-
gument relations are labeled with numbers, and
incorrect AR predictions are highlighted with an
(x) symbol. The figure provides a visual represen-
tation of the errors made by the baseline model,
allowing for a clearer understanding of the error
types in AR predictions.
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(a) Argument structure with segments.

(b) Argument structure along with dialog structure.

Figure 3: Argument structures annotated based on IAT (Budzynska and Reed, 2011). ADUs are logically intercon-
nected via AR to form coherent argument structure. The left figure shows the interplay between local-structures
addressing specific DSPs: one on the Scottish National Party’s internal divisions and another on respectful dis-
agreement. The right figure illustrates the interaction between participants alongside the argument structures. It
demonstrates how transitions between different dialogue moves are linked to changes in the inferential structure,

capturing the dynamic nature of argumentation.

itis well known and clnically "X
proven that smoking is extremely
hazardous to the smoker and ohers
who have been exposed to the fume

over a period of time T

Default Inference

Recent death statistic released by
the Malaysian Ministry of Health
shows that the top killer was lung

related diseases caused by smoking

.

Default Inference

0 X
e
( pefaut |memnce>
~— _—

Default Inference Default Inference

1w X

Default Inference

Alarge proportion of death involved
second hand smoker particularly young
children and pregnant women who were
wulnerable to these lethal diseases

the number of fatality can be
significantly reduced if a total ban
on public smoking is implemented

Default Inference

X

Defauilt Inference Defauit Inference

12 X

Defauit Inference

the move will do more good by looking
atthe quality of health and image of
anation in long run

Default Inference

This step has curbed down the numbers

of smokers in the country and as a
result, Brunei remains a place known
for its tranquility and cleanliness

v’

v

the image of a healthy nation can be
promoted when government restricts
public smoking by imposing stern
penalty to the offender

|

Default Inference

smoking in public area is certainly

helping in curtailing the associated

health risks and to create a healthy
nation

Default Inference ) ————

the effort to prohibit people from

5 X

&——— Defaultinference

the Brunei goverment had recently X
| enforced a law against smoking i
public areas such as cafés, hospital
and shopping street

Default Inference

Default Inference

This example shows the benefit of
restricting public smoking to a
country as a whole

Default Inference

Default Inference

10X

Default Inference

Figure 4: Example of error analysis. The argument map displays relations with arbitrary numbering, where incor-

rect predictions are marked with an (x) symbol.
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