
Published as a conference paper at ICLR 2021

LEARNING CROSS-DOMAIN CORRESPONDENCE FOR
CONTROL WITH DYNAMICS CYCLE-CONSISTENCY

Qiang Zhang
Shanghai Jiao Tong University
zhangqiang2016@sjtu.edu.cn

Tete Xiao
UC Berkeley
txiao@eecs.berkeley.edu

Alexei A. Efros
UC Berkeley
efros@eecs.berkeley.edu

Lerrel Pinto
New York University
lerrel@cs.nyu.edu

Xiaolong Wang
UC San Diego
xiw012@ucsd.edu

ABSTRACT

At the heart of many robotics problems is the challenge of learning correspon-
dences across domains. For instance, imitation learning requires obtaining cor-
respondence between humans and robots; sim-to-real requires correspondence
between physics simulators and the real world; transfer learning requires corre-
spondences between different robotics environments. This paper aims to learn
correspondence across domains differing in representation (vision vs. internal
state), physics parameters (mass and friction), and morphology (number of limbs).
Importantly, correspondences are learned using unpaired and randomly collected
data from the two domains. We propose dynamics cycles that align dynamic
robot behavior across two domains using a cycle-consistency constraint. Once
this correspondence is found, we can directly transfer the policy trained on one
domain to the other, without needing any additional fine-tuning on the second
domain. We perform experiments across a variety of problem domains, both in
simulation and on real robot. Our framework is able to align uncalibrated monoc-
ular video of a real robot arm to dynamic state-action trajectories of a simulated
arm without paired data. Video demonstrations of our results are available at:
https://sjtuzq.github.io/cycle_dynamics.html.

1 INTRODUCTION

Humans have a remarkable ability to learn motor skills by mimicking behaviors of agents that look
and act very differently from them. For example, developmental psychologists has shown that
18-month-old children are able to infer the intentions and imitate behaviors of adults (Meltzoff, 1995).
Imitation is not easy: children likely need to infer correspondences between their observations and
their internal representations, which effectively aligns the two domains. Learning such a cross-domain
correspondence is particularly valuable for robotics and control. For example, in imitation learning,
if we want robots to imitate the motor skills of humans (or robots with different morphologies), we
need to find the correspondence in both visual observations and morphology dynamics. Similarly,
when transferring a policy trained in simulation to a real robot, we, again, need to align visual inputs
and physics parameters across different environments.

To align the skills across different domains, several prior approaches have proposed learning invariant
feature representations across the domains (Gupta et al., 2017; Sermanet et al., 2018). Policies or
visual representations are trained to be invariant to the changes which are irrelevant to the downstream
task, while maintaining useful information for cross-domain alignment. However, these methods
require paired and aligned trajectories, usually collected by pre-trained policies or human labeling,
which is often too expensive to collect for real-world learning problems. Additionally, invariance is a
rather strong constraint, and might not be universally suitable. The reason is that different invariances
might be beneficial for different downstream tasks, which has been recently studied in self-supervised
visual representation learning (Tian et al., 2020).

1

https://sjtuzq.github.io/cycle_dynamics.html

Published as a conference paper at ICLR 2021

(a) X-arm robot real-sim alignment

(b) HalfCheetah cross physics alignment

(c) Swimmer cross morphology alignment

Ph
ys

ic
s W

or
ld

 I

Physics W
orld II

observation
& action

correspondence

x𝑡𝑡

a𝑡𝑡
x𝑡𝑡 1+

Render of y𝑡𝑡

Render of y𝑡𝑡 1+

u𝑡𝑡

observation
correspondence

observation
correspondence

action
correspondence

Figure 1: We propose to learn observation correspondence (blue arrow) and action correspondence (red arrow)
across domains using Dynamics Cycle-Consistency. Our applications include: (a) Aligning real robot images
with simulation states; (b) Aligning actions between environments with different physics parameters (We use
different rendering to indicate that the physics are different); (c) Aligning both actions and observations between
agents at the same time with different morphology.

Instead of learning invariances, an emerging line of research focuses on finding correspondences by
learning to translate between two different domains with unpaired data (Zhu et al., 2017; Bansal et al.,
2018). While this translation technique has shown encouraging results in imitation learning (Smith
et al., 2019) and sim-to-real transfer (Hoffman et al., 2017; James et al., 2019), it is limited to finding
correspondences only in the visual observation space. However, in real-world applications, besides
visual observations, the physics parameters and morphology dynamics between two domains are
also often misaligned. Hence, solely learning with passive visual correspondences, one is unable to
reason about the effects of dynamics. We must go beyond the image space and explicitly incorporate
dynamics information to truly extend correspondence learning to aligning behaviors.

In this paper, we take the first steps toward learning correspondences which can align behaviors on a
range of domains including different modalities (vision vs. agent state), different physical parameters
(friction and mass), and different morphologies. Importantly, we use unpaired and unaligned data
from the two domains to learn the correspondences. Specifically, we propose to find observation
correspondences and action correspondences at the same time using dynamics cycle-consistency. Our
dynamics cycles chain the observations and actions across time and domains together. The consistency
in the dynamics cycle indicates consistent translation and prediction results. The input data to our
learning algorithm takes the form of 3-element tuples from both domains: current state, action and the
next state. Figure 1(a) exemplifies our model, which is a 4-cycle chain containing the observations of
one domain (xt,xt+1) (real robot in Figure 1(a)) at two time steps, and another domain (yt,yt+1)
(simulation in Figure 1(a)). To form a cycle, we learn a domain translator G : xt 7→ yt to translate
images to states and a predictive forward dynamics model in state space F : yt×ut 7→ yt+1 where
ut represents the action taken at time t, and at is the corresponding action in the real robot domain.
The forward model in the real robot domain is not necessary in our framework. The training signal
is: given observations in time t, the future prediction in time t + 1 should be consistent under the
consistent action taken across two domains, namely dynamics cycle-consistency.

We explore applications both in simulation and with a real robot. In simulation, we adopt multiple
tasks in the MuJoCo (Todorov et al., 2012) physics engine, and show that our model can find
correspondence and align two domains across different modalities, physical parameters (Figure 1(b)),
and morphologies (Figure 1(c)). Given the alignment, we can transfer a reinforcement learning (RL)
policy trained in one domain directly to another domain without further optimizing the RL objective.
For our real robot experiments, we use the xArm Robot (Figure 1(a)). Given only uncalibrated
monocular videos of the xArm performing random actions, our method learns correspondences
between the real robot and simulated robot without any paired data. At test time, given a video of the
robot arm executing a smooth trajectory, we can generate the same trajectory in simulation.

2 RELATED WORK

Learning invariant representations. To find cross-domain alignment, researchers have proposed
to learn representations which are invariant to the changes unrelated to the downstream task (Tobin
et al., 2017; Peng et al., 2018; Gupta et al., 2017; Sermanet et al., 2018; Liu et al., 2017b; Pinto et al.,

2

Published as a conference paper at ICLR 2021

2017; Sadeghi & Levine, 2016; Yan et al., 2020; Chen et al., 2020; Andrychowicz et al., 2018). For
example, domain randomization (Tobin et al., 2017; Sadeghi & Levine, 2016; Andrychowicz et al.,
2018; Ramos et al., 2019; Zakharov et al., 2019; Wu et al., 2019) aligns the simulated and real world
for policy transfer. However, it assumes that differences between two domains can be covered by
hand-crafted augmentations, which may not hold when the domain changes happen to lie outside
of these assumptions. To align two domains where the dynamics are different, Gupta et al. (2017)
propose to learn invariant features with pairs of states from two domains. However, paired data is
hard to collect, and the method is limited to state space, while real-world observations are often based
on images (Taylor & Stone, 2009).

Learning translation. Instead of learning invariance, our method is related to works which learn the
mapping across two domains for alignment (Taylor et al., 2007; Ammar et al., 2015; Tzeng et al.,
2015; Joshi & Chowdhary, 2018; Kim et al., 2019; Smith et al., 2019). For example, Tzeng et al.
(2015) design an approach to weakly align pairs of images in the source and target domains. Given
the paired images, they can perform adaption from simulation to real robot. However, this work has
only focused on translation between visual observations. Going beyond visual adaptation, Ammar
et al. (2015) utilize unsupervised manifold alignment to find correspondence between states across
domains from demonstrations. However, this method uses hand designed features, which restricts
its generalization ability. Kim et al. (2019) propose imitation learning with unpaired and unaligned
demonstrations. While with less constraint, it requires a trained RL policy to collect demonstrations
in both domains for training, and RL is involved in the correspondence learning process. This leads to
learning correspondence only relevant to a specific task. In contrast, most of our experiments assume
that we do not know the downstream task and we do not have access to the rewards for RL. Hence,
it is a more general problem setting and can be used for a variety of applications. Our method can
learn correspondence between simulated and real robot through unpaired and randomly collected
trajectories.

In transfer learning, several works have looked at architectural novelties to improve transfer across
RL problems (Parisotto et al., 2015; Pinto et al., 2016; Rusu et al., 2016a; Barreto et al., 2017;
Omidshafiei et al., 2017; Rusu et al., 2016b). Our method of using cycle consistency pursues an
orthogonal direction of architecture design and is compatible with these approaches.

Cycle-Consistency. Our work is inspired by literature on cycle-consistency (Zhou et al., 2016; Zhu
et al., 2017; Liu et al., 2017a; Hoffman et al., 2017; Bansal et al., 2018; Bousmalis et al., 2018;
James et al., 2019). For example, CycleGAN (Zhu et al., 2017) uses cycle-consistency loss with the
Generative Adversarial Networks (Goodfellow et al., 2014) for unpaired image-to-image translation,
which is subsequently extended for videos (Bansal et al., 2018) and domain adaptation (Hoffman
et al., 2017). Similar techniques are applied in sim-to-real transfer by training a image translation
model between simulation and real-world images (Stein & Roy, 2018) or aligning both the simulation
and real images to the same canonical space (James et al., 2019). Recently, Rao et al. (2020) propose
RL-CycleGAN to perform sim2real image translations by adding an extra supervision signal from
the Q function. However, all these works are restricted to visual alignments, while ours can align
agents cross different dynamics and structures.

3 LEARN CORRESPONDENCE USING DYNAMICS CYCLE-CONSISTENCY

Problem setup. We aim to learn correspondence across various domains, i.e., input modalities,
physics parameters, and morphology. We formulate the trajectories of domain X and Y as τX

.
=

(xt,at,xt+1) and τY
.
= (yt,ut,yt+1), where x ∈ Rn1 and y ∈ Rn2 are observation representations

in domain X and Y , a ∈ Rm1 and u ∈ Rm2 are action representations in domain X and Y , and t is
time step. Without loss of generality, we assume to learn correspondence from domain X to domain
Y . 1 Suppose that we have observation alignment functions G : X 7→ Y , and action alignment
function H : X×A 7→ U and its inverse counterpart H−1 as a function P : Y×U 7→ A. We define
two types of correspondence as follows.

Observation Correspondence, i.e., what the representation of one observation in domain X should
correspond to if it is in domain Y , and vice versa. For example, if X is visual sensing of an agent
while Y is the state (e.g., joint angle) of the same agent, G functions as a state estimator. If X is the

1We will subsequently show that for various applications only action mapping ought to be bidirectional,
whereas observation mapping can be unidirectional.

3

Published as a conference paper at ICLR 2021

(b) Cross-modality only

𝐺 (𝐷𝑌)

𝐹

𝐺 (𝐷𝑌)

𝐼

domain 𝑋 domain 𝑌

𝐼

dynamics

cycle loss

a𝑡

x𝑡 y𝑡
~

x𝑡 1+ y𝑡 1+
~

u𝑡
~

𝐹(,)y𝑡 u𝑡
~ ~

𝐼

𝐹

𝐼

𝐻 (𝐷𝑈)

domain 𝑋 domain 𝑌

𝑃 (𝐷𝐴)

dynamics

cycle loss

a𝑡

x𝑡 y𝑡
~

x𝑡 1+ y𝑡 1+
~

u𝑡
~

𝐹(,)y𝑡 u𝑡
~ ~

(a) Cross-physics only (c) Joint model

𝐺 (𝐷𝑌)

𝐹

𝐺 (𝐷𝑌)

𝐻 (𝐷𝑈)

domain 𝑋 domain 𝑌

𝑃 (𝐷𝐴)

dynamics

cycle loss

a𝑡

x𝑡 y𝑡
~

x𝑡 1+ y𝑡 1+
~

u𝑡
~

𝐹(,)y𝑡 u𝑡
~ ~

Figure 2: Model framework: (a) Model for only cross-physics alignment; (b) Model for only cross-modality
alignment; (c) Joint model for cross-modality-and-physics alignment. Red arrows indicate correspondences
between actions and blue arrows indicate correspondence between observations.

state of one agent while Y is the state of a structurally different agent, such as a Sawyer arm and a
UR5 arm, G aligns the states at a same stage towards a common goal (e.g., robot joint positions). We
denote two correspondent observations between X and Y as x⇔ y.

Action Correspondence, i.e., with correspondent initial observations which actions to execute so
that the next observations in two domains remain correspondent. For example, if X and Y are two
environments with different physics parameters, with the initial observations xt, yt and xt ⇔ yt,
after action at is executed in domain X and leads to the next observation xt+1, alignment function
H should find the action ut which leads to next observation yt+1 in domain Y where xt+1 ⇔ yt+1,
and vice versa for H−1. We denote two correspondent actions from X and Y as (xt,at)⇔ (yt,ut).

Learning observation correspondence and action correspondence enables estimating states from
visual input, adapting to environments with different physics, and being able to function even when
the structure of the agent changes.

Method. We begin by simply mapping states across domains by adversarial training. Given
unpaired samples {xi} ∈ X , and {yi} ∈ Y , a mapping functionG can be learned with a discriminator
DY with the adversarial objective, where G tries to map x onto the distribution of y, while DY tries
to distinguish translated samples G(x) against real samples y:

min
G

max
DY

Ladv (G,DY) = Ey∼p(y)
[
logDY (y)

]
+ Ex∼p(x)

[
log
(
1−DY (G(x))

)]
(1)

The adversarial objective reaches global optimal when the mapping function G can perfectly ground
the translated samples onto the distribution defined by {yi}.
We learn an action mapping function H : X×A 7→ U which maps actions from domain X to domain
Y , and model its inverse counterpart H−1 as a function P : Y×U 7→ A with separate parameters.
Besides using two adversarial losses with discriminators DU in Y and DA in X , i.e., Ladv(H,DU)
and Ladv(P,DA), we add cross-domain cycle consistency loss (Zhu et al., 2017) into the objective:

min
H,P
Ldom cyc (H,P) = Ea∼p(a)

[∥∥P (y, H(x,a))− a
∥∥
1

]
, (2)

which implies that the translated action should be able to be translated back: P (y, H(x,a)) ≈ a.

Nevertheless, the structure of learnt mapping by adversarial training is loosely constrained. Vanilla
adversarial training may map all samples X to a few samples of Y , which still minimizes the adver-
sarial objective. Adding domain cycle consistency loss does not solve the problem fundamentally: for
example, given two correspondent but unpaired observations, i.e., xt,yt and xt+1,yt+1, G can map
xt to yt+1 and G−1 can still map yt+1 back to xt, which does not violate domain cycle-consistency.

Beyond only relying domain cycle consistency, we exploit the transition dynamics of two domains,
termed as dynamics cycle-consistency. As illustrated in Figure 2(c), we map the observation-action
pair at time step t xt and at from domain X to Y using G and H , then execute the translated
observation and action ỹt and ũt) in domain Y by its transition dynamics TY : Y×U 7→ Y to get the
next observation, which is expected to be correspondent to the next observation from domain X , i.e.,
TY (ỹt, ũt)⇔ xt+1. According to the definition of observation correspondence, TY (ỹt, ũt) should

4

Published as a conference paper at ICLR 2021

be the same as G(xt+1), as expressed in the objective:

min
G,H
L(G,H)dyn cyc = E(xt,at,xt+1)∼p(τX)

[∥∥G(xt+1)− TY (G(xt), H(xt,at))
∥∥
1

]
. (3)

One obstacle remains. The transition dynamics TY in Equation 3 is in fact the physical property of
a simulator or the real world, hence it is not differentiable for back-propagation. In consequence,
we train a forward model which takes an observation-action pair as input and predicts the next
observation to approximate the dynamics of the environment. Since we have access to trajectories
from Y , we can directly train the forward model using supervised regression objective:

min
F
Lforward(F) = E(yt,ut,yt+1)∼p(τY)

[∥∥yt+1 − F (yt,ut)
∥∥
1

]
(4)

Note that forward model F is first pre-trained and it is not optimized together with the dynamics
cycle-consistency objective, as otherwise G and F can learn to map everything to zero so that
Ldyn cyc becomes zero, which leads to a trivial solution. Consequently, our full objective is:

Lfull = λ0Ldyn cyc(G,H)+λ1

(
Ladv(H,DU) + Ladv(P,DA) + Ldom cyc(H,P)

)
+λ2Ladv(G,DY) (5)

where λ0, λ1 and λ2 are constants balancing the losses.

Algorithm 1: Alternatingly Joint Training Algorithm
Input: Domain X: τX = {(xt,at,xt+1)}
Domain Y: τY = {(yt,ut,yt+1)}
// Training Forward Model Stage
train Lforward(F) (Eq. 4) to learn transition dynamics
TY in domain Y;
// Alternatingly Training Stage
for i = 1 to e do

reset λ1, set λ2 = 0; fix weight of G;
for j = 1 to e1 do

using Lfull (Eq. 5) to train model H and P ;
reset λ2, set λ1 = 0; fix weight of H and P ;
for j = 1 to e2 do

using Lfull (Eq. 5) to train model G;
return State alignment model G
Action alignment model H and P

Optimization. We collect unpaired tra-
jectories τX and τY by executing random
actions from both domains. Directly opti-
mizing the full objective end-to-end leads
to model collapse, as it involves joint op-
timization with multiple neural networks:
G and H can easily discover a “short-
cut” solution, where the translated ob-
servations and actions are not valid but
they can fool the forward model to opti-
mize the dynamics cycle-consistency ob-
jective. Since the forward model is only
optimized on trajectory data τY , thus we
first pre-train the forward model and fix
its parameters throughout the following
training procedure. We initialize the ac-
tion mapping function using an algorithm
detailed in the Appendix A.4. We pro-
pose to employ alternating training procedure for the full objective: When we train the observation
mapping function G and its auxiliary discriminator DY , we fix the action mapping function H
and P ; then when the action mapping function H and P with DU and DA are trained, we fix the
observation mapping function G. Since the action mapping functions are reasonably initialized, at
the beginning of training procedure the observation mapping function is optimized. It is grounded on
good action mappings, as well as the dynamics of environments by dynamics cycle consistency, thus
it is constrained from learning an arbitrary short cut. Subsequently, action mapping functions can be
further fine-tuned once we obtain a good observation mapping function (Algorithm 1).

Tasks. Our formation of correspondence learning is broad and general, and it enables many applica-
tions which typically require intricately designed frameworks or are hard to solve without paired data.
Specifically, we study the following three tasks:

The first task is cross-physics alignment, where domain X and domain Y are two environments with
different physics parameters but same input modality. As shown in Figure 2(a), same input modality
indicates that observation correspondence always holds, i.e., xt ≡ yt; different physics parameter
indicates that executing a same action at the same initial observation in separate environments results
in different next observation. After learning correspondences, assuming we have a policy in domain
Y , we can transfer it to domain X by mapping the predicted action of the policy u from domain Y to
X with action mapping function P . The translated action ã can then be executed in domain X .

The second task is cross-modality alignment, where domain X and domain Y are different sensing
(observation) modality of the same agent, which implies that action correspondence between two
domains always hold (see Figure 2(b)). In other words, H and P are both identity mapping, and
at ≡ ut. Thus we can set γ = 0 in Eq. 5 in training. A predominant choice is X being image while

5

Published as a conference paper at ICLR 2021

Y being state, where G essentially learns to perform state estimation. Moreover, we can execute a
policy which is originally trained on state space in image space, as the input xt in image space can
be translated by G before fed into the policy based on state space, yielding a predicted action ut,
which can be directly executed in domain X .

Combining the above-discusses two tasks yields the third task, in which cross-physics and cross-
modality alignment are realized simultaneously, thanks to our proposed joint alternative training
procedure. We refer to it as cross-modality-and-physics alignment, as shown in Figure 2(c). This
formulation can be further extended to another task, where domain X and Y are two agents with
different morphologies, termed as cross-morphology alignment. For example, domain X can be a
three-leg cheetah and domain Y can be a two-leg cheetah. In this case, the representations of x / y
and a / u are fundamentally different, yet intrinsically they share similarities in locomotion.

As the correspondence is established between two domains, it can be applied to different downstream
applications. Suppose that our goal is to transfer a policy trained in domain Y to X . Inference
includes three steps: (i) Given an observation xt in domain X , use observation mapping function G
to translate xt to yt; (ii) Execute the policy in domain Y given yt, and obtain the action output ut;
(iii) Translate the action ut from domain Y back to domain X with the action mapping function P .

Implementation Details. The networks D,F,H, P are implemented by MLPs, and network G is a
ResNet-18 (He et al., 2016) with a 4-layer MLP head. For the inputs of G, instead of using one static
image, we concatenate the current frame and two consecutive past frames together to capture any
motion information. We first train the forward dynamics model F for 20 epochs using Adam (Kingma
& Ba, 2014) with 0.0001 learning rate. We then train the other networks for 50 epochs with the same
learning rate. We set e1 and e2 to 5000 steps in Algorithm 1. See Appendix B for more details.

4 SIMULATION EXPERIMENTS

We first test the efficiency of our framework and conduct ablation studies in simulation environments.
We choose MuJoCo physics simulator as our test bed. We model domain X and Y as two different
environments, where input modality, physics parameters, and morphology structures of the agents
can vary. We believe that our method can be applied to a lot of environments. However, in this
paper we focus on the representative ones including four tasks based on OpenAI Gym (Brockman
et al., 2016), i.e., “HalfCheetah”, “FetchReach”, ”Walker” and ”Hopper”, and one task based on
DeepMind Control (Tassa et al., 2018), i.e., “FingerSpin”. We perform experiments with different
settings including: (i) Cross-physics alignment, where only the physical parameters are different
in two domains; (ii) Cross-modality alignment, where only the observation space is different; (iii)
Cross-modality-and-physics alignment, a joint task of (i) and (ii); (iv) Cross-morphology alignment,
where agent structures in two domains are different. To sample the training data, we randomly collect
50k unpaired trajectories in both domain X and domain Y in most settings. The evaluation dataset
size is 10k. Besides evaluating on the alignment errors, we also benchmark how well the pre-trained
RL policies in one domain can be transferred to another domain. To pre-train the policy, we use
DDPG (Lillicrap et al., 2015) with HER (Andrychowicz et al., 2017) for “FetchReach” and TD3
algorithm (Fujimoto et al., 2018) for other environments. Note that we do not need to further fine-tune
the policy for transferring to a new domain. We report the task success rate for “FetchReach” and
task rewards for the other environments. All RL policies are trained with 5 different seeds. More
details about our method implementation and the reference policies can be found in the Appendix B.

Tasks Oracle, Y Direct, Y→X DR, Y→X Ours, Y→X Oracle, X

HalfCheetah 6270±123 3651±665 3763±752 3997±438 6769±185

FingerSpin 804±89 483±186 492±284 562±124 765±68

FetchReach† 100% 100% 100% 100% 100%
Walker2d 875±24 516±395 546±258 667±174 816±17

Hopper 2364±635 1542±1041 1683±869 1919±794 2640±454

Table 1: Cross-physics. Results on transferring a policy trained on domain Y
to domain X . DR: domain randomization. †: Task successful rate is reported.

Cross-physics alignment.
In order to create en-
vironments with different
physics parameters, we
modify armature and mass
in the environments. We
use default armature and
torso mass parameters in
domain Y . To create do-
main X , we increase the ar-
mature for tasks including
“HalfCheetah”, “FetchReach”, “FingerSpin”, and modify the torso mass for “Walker” and “Hopper”
(see details in Appendix A.1). Different tasks are sensitive for different physical parameters, e.g.,

6

Published as a conference paper at ICLR 2021

(a) Data scale ablation (b) Ablation for discriminator (c) Ablation for supervised case

Figure 3: Ablation study with HalfCheetah. (a) L1 error for different dataset scale; (b) Ablation with
discriminators; (c) Combining our method with supervised state estimation (using paired image-state data).

Tasks L1 Error ↓ RL Score ↑
Random Cycle-GAN Ours Oracle, Y Random, X Cycle-GAN Ours, Y→X Oracle, X

HalfCheetah 2.18 2.07 0.57 6270±123 −289±81 −119±65 1504±256 3689±247

FingerSpin 1.61 1.92 0.23 804±89 0±0 0±0 341±39 765± 68
FetchReach† 0.87 0.94 0.05 100% 0% 0% 92% 100%

Table 2: Evaluation of cross-modality alignment, including L1 error of state estimation, and RL policy
performance on the original domain Y and after transferring to domain X . †: Task successful rate is reported.

while changing armature yields noticeable effect on “HalfCheetah”, changing mass does not. We
tackle the hard cases where physical changes matter. In this setting, we obtain the unpaired training
data from two domains with a pre-trained policy in domain Y .

Results are shown in Table 1. The 1st column (Oracle, Y) reports the performance of the policy
in the original domain Y . Directly testing this policy in environment X results in significant drop
in terms of RL scores (2nd column), due to the disparity in physics parameters. We also train a
policy with physics domain randomization (DR, 3rd column) for direct transfer (see Appendix A.1
for details). Our method (4th column), which maps actions predicted by RL policy from domain Y to
X , demonstrates superior performance across all tasks compared to the direct deployment as well as
DR baselines. We provide results of training RL in domain X in the last column (Oracle X) as an
upperbound. We also implement Cycle-GAN, which only learns random projections between actions
in two domains, thus we do not report the numbers.

Cross-modality alignment. In this setting, we use RGB images as observations in domain X and
the internal state of agents as observations in domain Y , while keeping physics parameters the same.
G is then essentially a state estimator. We execute random actions without pre-trained policies in both
domains to obtain unpaired training trajectories. As even supervised learning for state estimation with
the same number of image-state pairs works poorly for “Walker” and “Hopper”, we report the results
on “HalfCheetah”, “FetchReach”, “FingerSpin” in this setting. We compute L1-distance between
the predicted states and the ground-truth states from simulator X (although we do not use them for
training) as an evaluation metric. We also use RL performance as another metric: we train an RL
policy in state space (domain Y), and test it in image space (domain X) by executing the predicted
action based on estimated states from images.

We compare with two baselines: a random projection baseline; a image-state Cycle-GAN baseline,
performing unpaired image-state translations without using dynamics (see Appendix C for details).
As shown in Table 2, our approach performs significantly better than the Cycle-GAN baseline in
both L1 error and the RL scores (the return reward), which shows the importance of incorporating
the dynamics into the cycle. Note that even when the ground-truth paired (image, state) samples
are provided, this is still difficult since images lie in a high-dimensional space. By exploiting the
dynamics cycle-consistency, our method is able to do state estimation for transferring RL policies.
We also provide results on directly training policy on the two domains (Oracle, Y and Oracle, X).

We perform ablation studies on different elements in training with the “HalfCheetah” environment:
(i) the number of training samples; (ii) the role of the discriminator. We report the results in Figure 3.
It can be seen that the L1 error of state estimation reduces as training data for our dynamic cycles
increases (a); training with the discriminators improves both L1 error and transferring policies by a

7

Published as a conference paper at ICLR 2021

large margin , comparing to training without the discriminator (b), as adversarial learning with the
discriminator can largely reduce the search space for finding correspondence.

We further explore our approach with supervised state estimation: Given paired image-state data, we
can train a state estimator with supervised learning. We combine our dynamics cycle-consistency
objective with the supervised objective to train the state estimator. As shown in Figure 3(c), We
compare the results on the model using dynamics cycle-consistency (“w”) and without the dynamics
cycle-consistency (“w/o”). The “L1 error” measured here are on the training states which are
randomly collected, the “Task reward” are from running the policy which sees states collected by the
policy. We observe improvement on transferring policies with the joint model over the counterpart
trained only with the supervised learning objective. In terms of L1 error of state estimation, although
using paired data (strong supervision) per se will yield the best model on L1 metric (especially
the state estimator in this way is trained via L1 loss. However, overfitting to the L1 loss does not
completely transfer to better policy performance on downstream tasks, since the policy can observe
novel states that are not in the training set. In our case, adding dynamics objective biases the L1
error by a small margin as the model cannot solely optimize for state estimation error, but it must
learn dynamics as well and in turn increases the task performance. Consequently, incorporating the
dynamics cycle-consistency can provide extra regularization and improve generalization on test data.

Tasks Oracle, Y Random Cycle-GAN Ours (only M) Ours (Full)

HalfCheetah 6270±123 −248±74 −226±84 856±385 1251±297
FingerSpin 804±89 0±0 0±0 243±54 305±43
FetchReach† 100% 0% 0% 92% 92%

Table 3: Cross-modality-and-physics. Results on transferring RL policies.

Cross-modality-and-
physics alignment. Eval-
uation on two domains
with different physics
parameters and different
input modalities. Following
the cross-modality setting,
we sample our unpaired training data randomly. We report the results of transferring RL policy in
Table 3. While this setting is very challenging and the cross-modality Cycle-GAN method fails (3rd
column), our method can discover the correspondence from randomly collected unpaired trajectories
(last column). We perform ablation by only training to align the observations, without the translator
between the actions (4th column). This shows the importance of our joint optimization approach.

Tasks Oracle, Y Random Cycle-GAN INIT Ours, Y→X
Cheetah 6270±123 −250±59 −43±52 −37±60 2471±382
Swimmer 366±26 −1±4 14±5 −15±3 204±56

Table 4: Cross-morphology. Results on transferring RL policies.

Cross-morphology align-
ment. Evaluation on two
domains with different mor-
phology. We experiment
with two tasks (see Ap-
pendix A.3): (i) domain Y
with 2-leg HalfCheetah and
domain X with 3-leg HalfCheetah; (ii) domain Y with 3-limb Swimmer and domain X with 4-limb
Swimmer. In this setting, the unpaired trajectories are also randomly sampled and our model learns
to align the observations and actions at the same time. Once the correspondence is found, we can
transfer the RL policies from domain Y to X . We compare to two baselines: one is the Cycle-GAN
to perform both state-state and action-action translations, the other is using our action repetition
initialization strategy before training (INIT, this baseline repeats the actions of the shared joints
while uses actions for novel joints from its nearest joint, see Appendix A.4). As shown in Table 4,
our approach can still perform reasonably well without finetuning the policy while the baselines
completely fail. The reason behind this is that both INIT and Cycle-GAN baseline share the critical
flaw: they do not take dynamics information into account. Given unpaired agent states, Cycle-GAN
cannot find the correspondence between the two domains. In contrast, our method learns dynamics
via dynamics cycle-consistency, which outperforms those which don’t by a large margin.

5 REAL ROBOT EXPERIMENTS

We use an xArm robot for the cross-modality alignment task. The goal is to estimate the simulation
states (domain Y) given the real robot images (domain X), without any paired image-state data. We
do not have access to the internal states of the real robot. We use an uncalibrated RGB camera to
capture the videos of the robot movements. We collect the real robot videos by randomly executing
end-effector positional control. We collect random trajectories in xArm simulator. The training set
includes 11k triplets (image, action, next image) of the real robot. We collect two testing sets from

8

Published as a conference paper at ICLR 2021

In
p

u
t

O
u

rs

C
y

cl
e-

G
A

N

Figure 4: Visualization of learnt correspondence from RGB images
to robot joint states with xArm robot. We render the predicted
states in simulation with green background. While Cycle-GAN
struggles to find the correct correspondence, the results of our method
highlights the importance of dynamics cycle-consistency objective.
(Best viewed in Adobe Acrobat to see the GIF of the last column.)

Method Random Smooth

Random G 0.30 0.18
Cycle-GAN (E) 0.18 0.21
Ours (E) 0.025 0.033
Ours (J) 0.031 0.044

Table 5: Real robot results. We mea-
sure the L1 error (smaller better) of end
effector position estimation. We experi-
ment with either (i) end effector position
(E), or (ii) joint positions (J) as the ob-
servations in simulator.

the real robot: a) 1,000 samples of random movement (Table 5, 1st col.), and b) 100 samples of
smooth movement (Table 5, 2nd col.).

We conduct experiments using either end-effector position or joint poses (7 joint positions) as
observations in simulation. Note the action is defined by the delta movement of the end-effector,
not the exact position of the end-effector. Thus there is no shortcuts for directly estimating the
end-effector position and even harder for joint positions. We measure the L1-distance between the
predicted and ground-truth end-effector position for evaluation. We compared our method with
Cycle-GAN baseline (Appendix C). As shown in Table 5, the results from Cycle-GAN is close to
random and our method with dyanmics cycle-consistency achieves much lower state estimation error.
Besides training with end-effector as observations (Ours (E)), we also use joint poses as observations
(Ours (J)) which increase the difficulty on learning the correspondence. The reason why Ours (J)
is harder is that end-effector (Ours (E)) estimation does not involve the structural information of
the robot, and it is of lower dimension. The joint poses contain 7 robot joint positions. Therefore
both the state mapper and the dynamic model should perform better with end-effector than joint
poses, yielding better overall performance. Even so, our results are still much better than Cycle-GAN
with end-effector observations. We also visualize the translation results by rendering the states in
simulation in Figure 4, and observes that our state estimation results are well aligned with the real
robot video.

6 CONCLUSION

We propose a novel framework to find observations and actions correspondence across two domains
using dynamics cycle-consistency. We show the efficacy of our method on multiple downstream
applications in both simulation and on a real robot. While previous approaches relies on paired data
or RL polices on collecting the data for learning, we provide a general framework that can learn
correspondence from randomly sampled, unpaired data, independent of the defined RL task. This
allows the correspondence to be generalized to diverse downstream applications.

Acknowledgements. We like to thank Jeannette Bohg for helpful discussions on this project. This
work was supported, in part, by grants from DARPA, NSF 1730158 CI-New: Cognitive Hardware and
Software Ecosystem Community Infrastructure (CHASE-CI), NSF ACI-1541349 CC*DNI Pacific
Research Platform, research grants from Berkeley DeepDrive and SAP, and gifts from Qualcomm
and TuSimple.

REFERENCES

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew E Taylor. Unsupervised cross-domain
transfer in policy gradient reinforcement learning via manifold alignment. In Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015. 3

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Advances in neural information processing systems, pp. 5048–5058, 2017. 6, 14

9

Published as a conference paper at ICLR 2021

Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub
Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous
in-hand manipulation. arXiv preprint arXiv:1808.00177, 2018. 3

Aayush Bansal, Shugao Ma, Deva Ramanan, and Yaser Sheikh. Recycle-gan: Unsupervised video
retargeting. In Proceedings of the European conference on computer vision (ECCV), pp. 119–135,
2018. 2, 3

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in neural
information processing systems, pp. 4055–4065, 2017. 3

Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal Kalakrish-
nan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, et al. Using simulation and domain
adaptation to improve efficiency of deep robotic grasping. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4243–4250. IEEE, 2018. 3

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016. 6

Bryan Chen, Alexander Sax, Gene Lewis, Iro Armeni, Silvio Savarese, Amir Zamir, Jitendra Malik,
and Lerrel Pinto. Robust policies via mid-level visual representations: An experimental study in
manipulation and navigation. arXiv preprint arXiv:2011.06698, 2020. 3

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1582–1591, 2018. 6,
14

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014. 3

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant
feature spaces to transfer skills with reinforcement learning. arXiv preprint arXiv:1703.02949,
2017. 1, 2, 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016. 6

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei A Efros,
and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. arXiv preprint
arXiv:1711.03213, 2017. 2, 3

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian Ibarz,
Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-sim: Data-
efficient robotic grasping via randomized-to-canonical adaptation networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 12627–12637, 2019. 2, 3

Girish Joshi and Girish Chowdhary. Cross-domain transfer in reinforcement learning using target
apprentice. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp.
7525–7532. IEEE, 2018. 3

Kun Ho Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, and Stefano Ermon. Cross domain imitation
learning. arXiv preprint arXiv:1910.00105, 2019. 3

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 6, 14

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015. 6, 14

10

Published as a conference paper at ICLR 2021

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation networks. In
Advances in neural information processing systems, pp. 700–708, 2017a. 3

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation: Learn-
ing to imitate behaviors from raw video via context translation. arXiv preprint arXiv:1707.03374,
2017b. 2

Andrew N Meltzoff. Understanding the intentions of others: re-enactment of intended acts by
18-month-old children. Developmental psychology, 1995. 1

Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and John Vian. Deep
decentralized multi-task multi-agent reinforcement learning under partial observability. In Pro-
ceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2681–2690.
JMLR. org, 2017. 3

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015. 3

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. 2018 IEEE International Conference on Robotics
and Automation (ICRA), May 2018. 2

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han, Yong-Lae Park, and Abhinav Gupta. The curious robot:
Learning visual representations via physical interactions. In European Conference on Computer
Vision, pp. 3–18. Springer, 2016. 3

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel. Asym-
metric actor critic for image-based robot learning. arXiv preprint arXiv:1710.06542, 2017. 2

Fabio Ramos, Rafael Possas, and Dieter Fox. Bayessim: Adaptive domain randomization via
probabilistic inference for robotics simulators. Robotics: Science and Systems XV, Jun 2019. 3

Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine, Julian Ibarz, and Mohi Khansari. Rl-cyclegan:
Reinforcement learning aware simulation-to-real. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11157–11166, 2020. 3

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016a. 3

Andrei A Rusu, Mel Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia Hadsell.
Sim-to-real robot learning from pixels with progressive nets. arXiv preprint arXiv:1610.04286,
2016b. 3

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real image.
arXiv preprint arXiv:1611.04201, 2016. 3

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1134–1141. IEEE,
2018. 1, 2

Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine. Avid: Learning
multi-stage tasks via pixel-level translation of human videos. arXiv preprint arXiv:1912.04443,
2019. 2, 3

Gregory J Stein and Nicholas Roy. Genesis-rt: Generating synthetic images for training secondary
real-world tasks. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp.
7151–7158. IEEE, 2018. 3

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018. 6

11

Published as a conference paper at ICLR 2021

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul):1633–1685, 2009. 3

Matthew E Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task mappings for temporal
difference learning. Journal of Machine Learning Research, 8(Sep):2125–2167, 2007. 3

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning. arXiv preprint arXiv:2005.10243, 2020. 1

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep 2017. 2, 3

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. 2

Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate Saenko,
and Trevor Darrell. Adapting deep visuomotor representations with weak pairwise constraints.
arXiv preprint arXiv:1511.07111, 2015. 3

Yilin Wu, Wilson Yan, Thanard Kurutach, Lerrel Pinto, and Pieter Abbeel. Learning to manipulate
deformable objects without demonstrations. arXiv preprint arXiv:1910.13439, 2019. 3

Wilson Yan, Ashwin Vangipuram, Pieter Abbeel, and Lerrel Pinto. Learning predictive representations
for deformable objects using contrastive estimation. arXiv preprint arXiv:2003.05436, 2020. 3

Sergey Zakharov, Wadim Kehl, and Slobodan Ilic. Deceptionnet: Network-driven domain random-
ization. In Proceedings of the IEEE International Conference on Computer Vision, pp. 532–541,
2019. 3

Tinghui Zhou, Philipp Krahenbuhl, Mathieu Aubry, Qixing Huang, and Alexei A Efros. Learning
dense correspondence via 3d-guided cycle consistency. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 117–126, 2016. 3

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017. 2, 3, 4

12

Published as a conference paper at ICLR 2021

A EXPERIMENT SETTING

A.1 CROSS-PHYSICS AGENT SETTING

The physical parameters in cross-physics settings are shown in Table 6. The “Parameter” column
represents which type of parameter is changed in each task. Recall that we train the RL policy in
domain Y and evaluate in domain X in our evaluation. The numbers in the columns of domain X
and domain Y are the physics values for each domain. The physics parameter in domain Y is defined
by default in the OpenAI Gym MuJoCo simulation environment. The physics parameter in domain
X is selected so that it can cause obvious distortion to the policy trained in domain Y (as shown in
Table 1). Note that we did not perform physics parameter search for improving our method. For the
domain randomization baseline, the parameter value for each episode is uniformly sampled from the
range shown in the last column.

Parameter Envs Domain X Domain Y DR Range

Armature
HalfCheetah 0.3 0.1 [0.2, 0.4]
FingerSpin 2.0 0.0 [1.0, 3.0]
FetchReach 3.0 1.0 [2.0, 4.0]

Torso Mass
Walker 0.4 1.0 [0.0, 0.8]
Hopper 1.2 1.0 [0.8, 1.6]

Table 6: Cross physics physical hyperparameter settings. The parameters in domain X , domain Y and
parameter range for domain randomization baseline for each task.

A.2 CROSS-MODALITY AGENT SETTING

In this setting, the resolution of the image observation in domain X is 256×256 and we concatenate
three images (current and previous two frames) as the observation input for G to estimate the state.
By concatenating multiple images instead of one, it allows the representation to capture the velocities
and motion of the agent, which is a common practice for vision-based RL.

A.3 CROSS-MORPHOLOGY AGENT SETTING

We introduce two tasks for the cross-morphology experiments including the “HalfCheetah” and
“Swimmer” environments. As shown in Figure 5, for “HalfCheetah”, we modify the agent by adding
one more hind leg of the same structure as the original hind leg to obtain a three-leg cheetah. For
“Swimmer”, we add one more limb cloned from the original third limb, leading to a four-limb
swimmer.

Two-leg Cheetah Three-leg Cheetah Three-limb Swimmer Four-limb Swimmer

Figure 5: Cross-morphology agent introduction. Left: two-leg Cheetah and its three-leg counterpart. Right:
three-limb swimmer its four-limb counterpart. Please check out our supplementary video for visualization.

A.4 INITIALIZATION FOR ACTION ALIGNMENT MODEL

In the cross-modality-and-physics alignment, for agents with the same morphology and structure,
we initialize the action translation between two domains by identity mapping, and only train the
observation alignment model (G) in the beginning. Then we unfreeze the action alignment model (H
and P) and jointly train all models by our alternative training procedure.

13

Published as a conference paper at ICLR 2021

For agents of different morphology (e.g., different number of limbs and joints), the dimensions
of action spaces are naturally different. Thus it is impossible to initiate action mapping functions
with identity mapping. Note that we can still use identity mapping for the original joints and limbs
between two domains. For extra joints and limbs, we borrow the mapping function from nearby
joints to initialize the novel joints. For example, in our experiments, we can find correspondence
between the three-leg cheetah and the two-leg cheetah. For the newly-added leg, we use and repeat the
nearby original hind leg actions to initialize its actions. There is no correspondence established from
this initialization, as shown by the experiment results—we provides this initialization baseline for
cross-morphology policy transfer in Table 4. This baseline perform much worse than our approach.

B IMPLEMENTATION DETAILS

B.1 NETWORK ARCHITECTURE

The network architectures for each separate settings are as follows:

Cross-physics. The discriminator D is a five-layer MLP (hidden size: 32, 64, 128, 32) which takes
states as input and predicts whether a state is true or fake. The forward dynamics model F is a
four-layer MLP (hidden size: 64, 128, 32) which takes current state and action as input and predicts
the next state. The observation alignment function G is an identity mapping. The action alignment
functions H and P are MLPs (hidden size: 32, 64, 128, 32) which take current state and action as
input and predicts corresponding action in the other domain.

Cross-modality. The discriminator D and the forward dynamics model F are the same as that in
the “cross-physics” setting. The observation alignment function G is a ResNet-18 and followed by
an MLP head (hidden size: 256, 64, 32) which outputs corresponding state. The action alignment
functions H and P are identity mapping.

Cross-morphology. Newtorks D,F,H and P are the same as that in the “cross-physics” setting.
The observation alignment function G is the same as that in the “cross-modality” setting.

B.2 TRAINING

Given the dataset of unpaired and unaligned samples from two domains, we first train the forward
dynamics model F on domain Y until it converges, we use Adam optimizer (Kingma & Ba, 2014)
with initial learning rate 0.001 which is decreased by half every three epochs and train the network
for 20 epochs. This is the same for all the settings. Secondly, we train the action alignment functions
H,P or observation alignment function G by optimizing Eq. 5. The pipeline and optimization chain
for each separate settings are as follows:

Cross-physics. We optimize the alignment functions H,P here. We set λ0 = 200, λ1 = 1, and
λ2 = 0 in Eq. 5, where λ2 = 0 means we are not using the observation alignment function G. Note
that although the forward dynamics model F is involved in the back-propagation, we are fixing the
weights of F . We train the models by using the Adam optimizer for 50 epochs with a batch size of
32. The learning rate is set to 0.001 and decreased by 1/3 for every 10 epochs.

Cross-modality. We optimize the observation alignment function G. We set λ0 = 200, λ1 = 0,
and λ2 = 3 in Eq. 5, where λ1 = 0 means we are not using the action alignment function H,P .
Similarly, the forward dyanmics model F is freezed. We train the model with Adam for 50 epochs
with a batch size of 32. The learning rate is set to 0.001 and decreased by 1/3 for every 10 epochs.

Cross-morphology (Joint training). Networks H , P , and G are optimized by Adam optimizer
while the forward dyanmics model F is freezed. We combine the training procedure in cross-physics
and cross-modality settings following Algorithm 1. The model is trained for 10 epochs with a batch
size of 32. The training alternates every 5000 steps (e1 and e2). Note each epoch contains more
training steps in joint training. The learning rate is set to 0.0001.

B.3 REFERENCE POLICY

We use DDPG (Lillicrap et al., 2015) with HER (Andrychowicz et al., 2017) for “FetchReach” and
TD3 (Fujimoto et al., 2018) for other environments. For DDPG, we train the policy for 50 epochs of
400 episodes in each epoch. The policy exploration epsilon ratio is 0.3 and the reward discount factor

14

Published as a conference paper at ICLR 2021

is 0.98. For TD3, we train the policy for 400k time steps. The initial exploration step is 25k. The
reward discount factor is 0.99, the target network update rate is 0.005 and exploration noise standard
deviation level is 0.1. When evaluating the performance of the policies, we calculate 50 episode
rollout rewards across 5 different seeds. We report the rewards with variance in all tables.

C DETAILS OF CYCLE-GAN BASELINES

Here we introduce the details of Cycle-GAN baseline for each different settings.

Cross-physics. In this setting, the Cycle-GAN baseline translates actions between two domains.
The generators and discriminators are MLPs and the cycle loss is the L1 loss. The MLP network
structures follow our approach. The results show that the policy fails to perform across domains and
the mapping is close to random, so we have not included this baseline in the table.

Cross-modality. In this setting, the Cycle-GAN baseline translates between image and its cor-
responding state. The image-to-state generator is the same as G. The state-to-image generator is
composed of MLPs and six upsampling blocks. Each block consists of one transposed convolution
layer, one BatchNorm layer and one ReLU activation layer. The cycle loss is L1 loss. This setting is
also applied to our real robot experiment.

Cross-morphology. The Cycle-GAN model translates states and actions between two domains.
All generators and discriminators are MLPs and the cycle loss is L1 loss.

We visualize in Figure 6 the learned correspondence from the cross-modality alignment on the
HalfCheetah experiment (Table 3), where observations of images are translated to states. In each plot,
x-axis represents the true-state of the image and the y-axis represents the translation result from the
network. Each point in the plot represents a random sample. We can see that our method is able to
translate the image to the correct states as most of the dots are in the diagonal line (y = x), while
Cycle-GAN yield near random translation similar to the random baseline. The result underlines the
significance of incorporating dynamics into cycle-consistency.

Image-State Cycle-Gan Baseline Random Shuffle Baseline Ours

Figure 6: Correspondence visualization for Cycle-GAN baseline and ours. Cycle-GAN model performs
nearly the same as the random shuffle baseline while our model can correctly find the correspondence between
the image modality and the state modality.

The qualitative visualizations for Cycle-GAN and ours are shown in Figure 7 for the cross-modality
alignment on HalfCheetah. These five sub-figures from left to right in sequence are as follows: (a)
One random image observation sample from the dataset. (b) The rendered image from the state which
is predicted by Cycle-GAN model. (c) The rendered image from the state which is predicted by our
model. (d) The image with a new renderer for our model prediction, giving a different rendering view
of the state. (e) The training curve of L1 error for self-supervised state estimation. After training, our
model output is almost the same as the ground-truth while the Cycle-GAN model completely fails.

(a) Random sample (b) Cycle-GAN (c) Ours (d) New render (e) Training curve

Figure 7: Qualitative visualization for Cycle-GAN baseline and ours. The rendered image (c) from our
model prediction looks almost the same like the original input image (a) while Cycle-GAN baseline (b) fails.
The last small figure visualizes the L1 error between the ground-truth state and our model prediction during
the training process and proves the effectiveness of our method in self-supervised state estimation. More
visualizations are presented in the project page link given in the abstract.

15

	anm0:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

