
LeMiCa: Lexicographic Minimax Path Caching for
Efficient Diffusion-Based Video Generation

Huanlin Gao1,2∗ Ping Chen1,2∗ Fuyuan Shi1,2 Chao Tan1,2 Zhaoxiang Liu1,2

Fang Zhao1,2† Kai Wang1,2 Shiguo Lian1,2†

Data Science & Artificial Intelligence Research Institute, China Unicom1

Unicom Data Intelligence, China Unicom2

{gaohl51, chenp181, shify15, tanc10, liuzx178, zhaof50, wangk115,
liansg}@chinaunicom.cn

https://unicomai.github.io/LeMiCa

Abstract

We present LeMiCa, a training-free and efficient acceleration framework for
diffusion-based video generation. While existing caching strategies primarily
focus on reducing local heuristic errors, they often overlook the accumulation
of global errors, leading to noticeable content degradation between accelerated
and original videos. To address this issue, we formulate cache scheduling as a
directed graph with error-weighted edges and introduce a Lexicographic Minimax
Path Optimization strategy that explicitly bounds the worst-case path error. This
approach substantially improves the consistency of global content and style across
generated frames. Extensive experiments on multiple text-to-video benchmarks
demonstrate that LeMiCa delivers dual improvements in both inference speed and
generation quality. Notably, our method achieves a 2.9× speedup on the Latte
model and reaches an LPIPS score of 0.05 on Open-Sora, outperforming prior
caching techniques. Importantly, these gains come with minimal perceptual quality
degradation, making LeMiCa a robust and generalizable paradigm for accelerating
diffusion-based video generation. We believe this approach can serve as a strong
foundation for future research on efficient and reliable video synthesis. Our code is
available at https://github.com/UnicomAI/LeMiCa

1 Introduction

Diffusion models [10, 38] have made significant advancements in video generation [24, 53, 45],
particularly with DiT-based architectures [29], which greatly enhance visual quality. However,
these methods are often hindered by high memory usage, substantial computational costs, and long
inference latencies, limiting their use in interactive applications. This has led to increased interest in
more efficient and cost-effective generation strategies.

Existing approaches such as model distillation [39, 30, 42], pruning [7, 27], and quantization [34, 37,
8, 18] have been widely adopted to accelerate inference. While effective, these methods require careful
architectural design and retraining on large datasets, incurring high costs. Caching mechanisms [35,
26], in contrast, offer a retraining-free alternative for accelerating diffusion model inference. The
core idea is to reuse model outputs from specific timesteps during sampling to reduce redundant
computations and speed up the process [20, 44]. Selecting optimal cache timesteps, while balancing
video quality and inference speed, remains an open problem in video generation.

Ideally, a lossless video acceleration method should meet two essential criteria: (i) High visual
quality and (ii) Consistency between accelerated and original videos. However, existing cache-

∗Equal contribution
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://unicomai.github.io/LeMiCa
https://github.com/UnicomAI/LeMiCa

based methods [20, 51] maintain a certain level of visual quality, but they often introduce content
deviations and loss of high-frequency details, increasing the risk of uncontrolled degradation.

Timesteps𝒙𝑻 𝒙𝟎

𝒙𝑻 𝒙𝑻−𝟏 𝒙𝑻−𝟐 𝒙𝟎…

Original

Traditional

LeMiCa

No Cache Local-Greedy Cache

Global Outcome-Aware Cache

B = 30

B = 12

B = 10

𝒘𝒊𝒋

Directed Acyclic Graph (DAG)

T
ra

d
it

io
n

a
l

(T
ea

C
a
ch

e)
L

eM
iC

a
O

ri
g
in

a
l

Speed up (w/o)

Speed up 2.1x

Speed up 2.64x

Figure 1: Comparison between our globally controlled cache mechanism (LeMiCa) and traditional
local greedy cache methods. Top: The second row shows the traditional Local-Greedy approach,
which uses local error estimation and fixed thresholds for caching decisions. It assumes uniform
denoising contributions across time steps and ignores temporal heterogeneity and error propagation.
Our method (third row) introduces a Global Outcome-Aware Cache, evaluating cache segment
impacts through multiple prompts along a fixed sampling path, creating a static directed acyclic
graph (DAG). We then use Lexicographic MiniMax Path Optimization (LeMiCa) to find the optimal
cache path under a fixed inference budget (B, model forward steps). Bottom: LeMiCa outperforms
traditional methods (e.g., TeaCache) in maintaining structural consistency with faster inference and
better control over cache errors and distortions.

Upon further analysis, we identify two key limitations. First, representative methods [44, 20] typically
compute local errors between adjacent timesteps and apply fixed thresholds to decide whether to
cache. However, the diffusion denoising process exhibits significant temporal heterogeneity, with
varying noise levels and semantic richness across timesteps. Applying a uniform threshold throughout
the process may disrupt semantic alignment and introduce inconsistencies in decision-making, leading
to inaccurate caching behavior. Second, these methods mainly focus on minimizing local differences
between consecutive steps—what we refer to as Local-Greedy error. While this may reduce short-
term discrepancies, it overlooks how small errors accumulate over time, potentially resulting in a
dual loss in both video quality and content consistency. These issues are evident in TeaCache (a
state-of-the-art Local-Greedy method), as shown in Figure 1, particularly with the three frames in
the top and second rows, where caching introduces noticeable content deviations and visual quality
degradation.

To address these limitations, we propose Lexicographic Minimax Caching (LeMiCa), a static
caching framework that is model-agnostic and architecture-independent. Instead of using local greedy

2

strategies, LeMiCa treats cache scheduling as a global path planning problem. This is based on the
observation that well-trained diffusion models remain stable along a fixed sampling path.

LeMiCa takes a global view of error by introducing the Global Outcome-Aware error, which quantifies
the impact of each cache segment on the final output, effectively eliminating temporal heterogeneity
and mitigating error propagation. Based on this metric, LeMiCa constructs a Directed Acyclic Graph
(DAG), where each edge represents a possible cache segment and is weighted by its global impact on
output quality. This graph is generated offline using multiple prompts and full sampling trajectories.

We then apply lexicographic minimax optimization to identify the path that minimizes worst-case
degradation. Among all feasible paths under a fixed budget, the one with the smallest maximum error
is selected. If multiple paths have the same maximum error, the next largest error is compared, and so
on. This strategy explicitly constrains the worst-case error, effectively preventing global degradation
caused by locally unstable cache decisions, and significantly improving content consistency and
video quality in accelerated generation.

In summary, the contributions of this paper are:

• We propose LeMiCa, a novel, training-free cache scheduling framework that formulates
the generation process as a globally optimized DAG traversal task, offering a principled
alternative to heuristic and locally greedy approaches.

• We conduct an in-depth analysis of the cache optimization problem and appropriately
introduce the Lexicographic Minimax Path Optimization strategy to solve the graph under a
fixed cache budget, effectively suppressing error peaks and enhancing global consistency.

• Experiments show that, compared to existing cache techniques, ours achieves dual improve-
ments in inference speed and generation quality across various base models, such as a 2.9X
speedup on Latte and an LPIPS of 0.05 on Open-Sora.

2 Related Work

Diffusion Model Acceleration. Diffusion models exhibit strong versatility across domains, but
their iterative nature incurs high computational costs, positioning inference acceleration as a central
research challenge. Current efforts to accelerate diffusion model sampling focus primarily on reduc-
ing sampling steps via schedulers. Denoising Diffusion Implicit Models (DDIM) [38] represents one
of the earliest attempts to accelerate sampling by extending the original Denoising Diffusion Proba-
bilistic Model (DDPM) [10] to non-Markovian settings. The Efficient Denoising Model (EDM) [13]
introduces a design framework that optimizes specific aspects of the diffusion process. Concurrently,
there is growing attention to more efficient and accurate methods for solving stochastic differential
equations (SDEs) and ordinary differential equations (ODEs) [40, 12, 21, 3]. Other approaches
introduce knowledge distillation [9], training a student model to condense the multi-step outputs of
the original diffusion model into fewer steps [22], including Progressive Distillation [30], Consistency
Distillation [39, 14, 6, 42, 52], Adversarial Diffusion Distillation [32, 31], and Score Distillation
Sampling [47, 46]. Additionally, methods such as quantization [17, 36, 34], pruning [7, 27], optimiza-
tion [19], and parallelism [50, 15, 5, 4] have been proposed and applied to various diffusion-based
generative tasks. However, these methods often require large amounts of computational resources and
data for training or intricate engineering designs, which increases the complexity of their application.

Cache in Diffusion Models. Caching mechanisms [35] have recently attracted attention as a
retraining-free alternative for accelerating diffusion model inference [44, 25]. The core idea is to
reuse model outputs from certain timesteps during sampling to reduce redundant computations [33].
DeepCache [26] accelerates the Unet structure using manually set rules. T-GATE [49] and ∆-DiT [2]
apply this idea to DiT-based networks [29], achieving advanced image generation acceleration [54, 16].
With the breakthrough of Sora [28] in video generation, researchers have extended this acceleration
concept from image generation to video generation. In this context, PAB [51] observed a U-shaped
pattern in attention differences across timesteps in the diffusion process, and based on this, proposed
a strategy to cache and broadcast intermediate features at various timestep intervals. FasterCache [23]
realized the significant redundancy in conditional generation (CFG) and further enhanced inference
speed by utilizing a dynamic feature-based caching mechanism. TeaCache [20] leverages the
correlation between timestep embeddings and model outputs, incorporating threshold-based indicators

3

and polynomial fitting to guide caching. Although these methods have improved the efficiency
of diffusion-based generation, the core challenge remains in how to accelerate inference while
maintaining content consistency and preserving details.

3 Method

3.1 Background: Denoising Diffusion Models

Denoising Diffusion Models achieve generative modeling by simulating the gradual noising and
denoising process of data. The core of these models consists of two key stages: diffusion and
denoising. During the forward diffusion process, the model starts from a real sample x0 ∼ q(x) and
gradually adds Gaussian noise over T timesteps. The noised sample xt at timestep t is given by:

xt =
√
αt xt−1 +

√
1− αt zt, zt ∼ N (0, I), t = 1, . . . , T, (1)

where αt controls the noise strength at each step. As t increases, the samples converge to a standard
normal distribution N (0, I). In the reverse denoising process, the model reconstructs the original
data distribution by iteratively denoising through a neural network. The conditional probability for
each step is modeled as:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where µθ and Σθ are learned mean and covariance functions. Due to the multi-step nature of
denoising, diffusion models typically incur significant computational overhead during generation.

3.2 Rethinking Cache in Diffusion Sampling

0 20 40 60 80 100
Denoising Process (%)

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or

t1 t2

L1rel

len = 1

(a) Local vs. Global Cache Error Control

0 25 50 75 100
Denoising Process (%)

0.0

0.2

0.4

0.6

0.8

E
rr

or

len = 1
len = 2
len = 3
len = 4
len = 5
len = 6
len = 7
len = 8

(b) Segment-wise Error Trends

Figure 2: Rethinking cache reuse in denoising diffusion via error estimation. (a) The traditional Local-
Greedy (L1rel) strategy uses fixed thresholds on local output differences between adjacent timesteps
to decide when to cache. This assumes uniform temporal sensitivity, which can be misleading—for
instance, caching at t2 yields lower final error than t1, despite t1 seeming smoother locally. This
highlights the role of temporal heterogeneity. (b) Our Global Outcome-Aware (segment-wise error)
strategy estimates final output error when caching outputs over segments of length len, starting from
timestep i. The plot shows that early caches cause greater error, supporting an outcome-sensitive,
trajectory-aware strategy over fixed local heuristics.

Traditional cache reuse in diffusion sampling typically adopts a Local-Greedy strategy (Figure 2a),
where caching is based on local differences between adjacent model outputs, often measured by the
relative L1 distance [20]:

L1rel(O, t) =
∥Ot −Ot+1∥1

∥Ot+1∥1
(3)

4

where Ot is the output at timestep t. High local differences prompt full inference; low differences
lead to cache reuse. This step-wise strategy assumes uniform importance across timesteps.

However, diffusion processes are inherently temporally heterogeneous—early steps shape global
structure, while later steps refine details. Thus, as illustrated in Figure 2a, a seemingly minor change
at an early step (e.g., t1) can have a larger impact on the final output than a larger change at a later
step (e.g., t2). Local metrics fail to account for this asymmetric error propagation, motivating a
rethinking of cache strategies.

To address this, we propose a Global Outcome-Aware view that considers the long-term impact
of cache reuse over time. Specifically, we define a cache segment (i, j) means full inference is
performed at timesteps i and j, while all intermediate steps t ∈ (i, j) reuse cached outputs:

L1glob(i → j) =
1

N

∥∥∥xcache(i→j)
0 − xoriginal

0

∥∥∥
1

(4)

Here, xoriginal
0 is the output with no caching, and x

cache(i→j)
0 is the output with segment-level cache.

As shown in Figure 2b, the global error depends not just on segment length but also on its temporal
position—early caches induce amplified downstream errors, while later caches are less disruptive.

These findings reveal two key insights: (1) Global error propagation is non-uniform and time-
dependent, invalidating fixed-threshold heuristics; (2) The position of the cache segment matters more
than its length. Building on these insights, we formulate cache planning as a graph-based constrained
path optimization problem over the sampling trajectory.

3.3 Lexicographic Minimax Path Caching

Based on the rethinking of cache in Sec 3.2, we propose LeMiCa, a method that integrates sparse
directed graph construction with optimal graph search under peak error control.

Graph Construction. We construct a directed acyclic graph, as shown in Figure 1, where each edge
represents a candidate cache segment along the original sampling trajectory. To reduce complexity, we
impose a maximum skip length based on the prior that long-range reuse typically leads to large errors,
thus avoiding full graph construction. Edge weights are evaluated by replaying cached segments
using intermediate states from a full denoising pass. To ensure generality, we build a static graph by
averaging edge errors across diverse prompts and noise seeds.

Graph Optimization. Given a directed acyclic graph G with globally error-weighted edges, we
frame the caching problem as selecting a path from source s to target t that includes exactly B full
computation steps and an arbitrary number of cached segments. This budget-constrained formulation
allows flexible reuse while bounding computational cost.

As shown in Figure 2b, early-stage cache errors amplify exponentially during denoising, while
late-stage errors remain more localized. This asymmetric error propagation renders traditional
shortest-path heuristics— which minimize only additive cost—suboptimal, as they fail to control the
dominant sources of degradation.

To better address this imbalance, we adopt a lexicographic minimax criterion that explicitly min-
imizes the highest cache error along the path, followed by the second highest, and so on. Unlike
training-based approaches such as ShortDF [3], which directly seek the shortest error path, our for-
mulation—commonly used in control systems for robust worst-case optimization—offers improved
stability in error-sensitive settings. Formally, the optimization problem is defined as:

min
P∈P(B)

s→t

LexMax (sort_desc ({w(e) | e ∈ Pcache})) (5)

Here, P(B)
s→t denotes the set of all paths from s to t with exactly B full steps, and Pcache ⊂ P are

the cached segments within a given path P . The operator LexMax lexicographically minimizes the
sorted error vector, ensuring worst-case robustness. The detailed algorithm pseudocode is provided
in the Appendix (Section A).

5

Table 1: Comparison of inference efficiency and visual quality across different models and accelera-
tion strategies on a single GPU.

Method Efficiency Visual Quality
FLOPs (P)↓ Speedup↑ Latency (s)↓ VBench↑ LPIPS↓ SSIM↑ PSNR↑

Open-Sora 1.2 (51 frames, 480P)
Original 3.15 1× 26.54 79.22% — — —
∆-DiT 3.09 1.03× 25.87 78.21% 0.569 0.481 11.91

T-GATE 2.75 1.19× 22.22 77.61% 0.350 0.676 15.50
PAB 2.50 1.43× 18.52 76.95% 0.174 0.822 23.58

TeaCache-slow 2.40 1.50× 17.58 79.20% 0.134 0.837 23.50
TeaCache-fast 1.64 2.10× 12.63 78.24% 0.252 0.743 19.03

LeMiCa-slow 2.30 1.52× 17.43 79.26% 0.050 0.923 31.32
LeMiCa-fast 1.45 2.44× 10.86 78.34% 0.187 0.798 21.76

Latte (16 frames, 512×512)
Original 3.36 1× 11.18 77.40% — — —
∆-DiT 3.36 1.02× 10.85 52.00% 0.851 0.108 8.65

T-GATE 2.99 1.13× 9.88 75.42% 0.261 0.693 19.55
PAB 2.52 1.36× 8.21 73.13% 0.390 0.642 17.16

TeaCache-slow 1.94 1.65× 6.76 77.40% 0.195 0.775 21.52
TeaCache-fast 1.15 2.60× 4.30 76.09% 0.318 0.674 18.04

LeMiCa-slow 1.88 1.69× 6.60 77.45% 0.091 0.865 27.65
LeMiCa-fast 1.00 2.93× 3.81 76.75% 0.273 0.70 19.43

CogVideoX (49 frames, 480P)
Original 12.45 1× 43.08 77.13% — — —

PAB 9.26 1.43× 32.07 75.95% 0.064 0.916 29.85
TeaCache-slow 6.93 1.70× 25.34 76.79% 0.053 0.928 31.07
TeaCache-fast 4.53 2.45× 17.58 76.06% 0.176 0.804 22.95

LeMiCa-slow 6.91 1.72× 25.02 76.89% 0.023 0.958 35.93
LeMiCa-fast 4.26 2.61× 16.48 76.20% 0.132 0.846 25.59

4 Experiments

4.1 Experimental Setup

Metrics For fair comparison, we follow prior works and report both efficiency and visual quality
metrics. Efficiency is measured by FLOPs and latency. Visual quality is evaluated using VBench [11]
(human preference), LPIPS [48] (perceptual similarity), SSIM [43] (structural consistency), and
PSNR (pixel-level accuracy).

Baselines and Compared Methods We evaluate our method on representative diffusion-based
video models: Open-Sora [53], Latte [24], and CogVideoX [45]. Baselines include ∆-DiT [2],
T-GATE [49], PAB [51], and TeaCache [20]. Among them, T-GATE and ∆-DiT are designed for
images, while PAB and TeaCache target video. Accordingly, we compare against PAB and TeaCache
on CogVideoX, and against all four baselines on Open-Sora and Latte.

Implementation Details Experiments are conducted on NVIDIA H100 GPUs using PyTorch.
To construct the DAG for Global Outcome-Aware error modeling, we sample 70 prompts (10 per
attribute) from T2V-CompBench [41], following standard practice [41, 20]. The DAG construction
and forward inference use distinct datasets to ensure fair and robust evaluation. Sampling is repeated
10 times with different seeds, and results are averaged to reduce bias.

4.2 Comparison with State-of-the-Art Methods

Quantitative Comparison Table 1 compares LeMiCa with baselines across four metrics: VBench,
LPIPS, SSIM, and PSNR. LeMiCa includes two variants: LeMiCa-slow (fidelity-focused) and

6

LeMiCa-fast (speed-focused). It consistently outperforms training-free acceleration baselines across
models, schedulers, resolutions, and video lengths. LeMiCa-slow achieves the best reconstruction
quality, reducing LPIPS from 0.134 to 0.05 on Open-Sora and from 0.195 to 0.091 on Latte—over
2× improvement vs. TeaCache-slow. LeMiCa-fast improves inference speed from 2.60× to 2.93×
on Latte compared to TeaCache-fast, while preserving visual quality. Unlike prior methods relying
on online greedy strategies, LeMiCa precomputes its caching policy, eliminating runtime overhead.
Overall, LeMiCa provides efficient video generation with minimal perceptual quality degradation.

Original (w/o Speed up) TeaCache LeMiCa (ours)

O
pe

n-
so

ra
La

tt
e

Co
gV

id
eo

X

Figure 3: Visual comparison under the fidelity-focused setting (LeMiCa-slow vs. TeaCache-slow)
across different models. Differences are highlighted in red boxes.

Visualization We compare video acceleration methods from both quality and speed perspectives. As
shown in Fig. 3, under the fidelity-focused setting, LeMiCa excels in preserving content consistency
and fine details, as highlighted in red boxes. This demonstrates its ability to maintain high-quality
visuals even when prioritizing fidelity. In contrast, Fig. 4 illustrates that under the speed-focused se-

Original (w/o Speed up) TeaCache LeMiCa (ours)

O
pe

n-
so

ra
La

tt
e

Co
gV

id
eo

X

Latency: 26.54s Latency: 12.63s (2.10x) Latency: 10.86s (2.44x)

Latency: 11.18s Latency: 4.30s (2.60x) Latency: 3.81s (2.93x)

Latency: 43.08s Latency: 17.58s (2.45x) Latency:16.48s (2.61x)

Figure 4: Visual comparison under a speed-focused setting (LeMiCa-fast vs. TeaCache-fast). LeMiCa-
fast better preserves content consistency and video quality under a high speedup (>2×).

7

tting, LeMiCa-fast significantly outperforms TeaCache-fast, achieving superior acceleration rates
while still maintaining competitive performance. These results highlight LeMiCa’s ability to balance
quality and speed across different configurations. Additional qualitative examples can be found in the
Appendix (Section E).

4.3 Ablation Studies

Acceleration vs. Performance trade-off Figure 5 presents the quality-latency trade-off between
our proposed LeMiCa and TeaCache. To ensure comparable computational budgets, LeMiCa is
configured with 19, 12, 9, and 7 inference steps (i.e., inference budget B), corresponding to TeaCache
thresholds of 0.1, 0.2, 0.3, and 0.5, respectively. Across all latency regimes, LeMiCa consistently
achieves a superior quality-efficiency balance, outperforming TeaCache on all reference-based metrics.
Importantly, under extreme acceleration (latencies below 8 seconds), LeMiCa maintains robust and
high-quality performance.

8 12 16 20
Latency (s)

73.5

75.0

76.5

78.0

79.5

VB
en

ch
 S

co
re

8 12 16 20
Latency (s)

0.64

0.72

0.80

0.88

0.96

1
- L

PI
PS

8 12 16 20
Latency (s)

0.66

0.72

0.78

0.84

0.90

SS
IM

8 12 16 20
Latency (s)

16

20

24

28

32

PS
NR

LeMiCa

TeaCache

LeMiCa LeMiCa
LeMiCa

TeaCache
TeaCache

TeaCache

Figure 5: Quality-latency trade-off comparison between LeMiCa and TeaCache.

Sample Requirements for Graph Construction To investigate how many samples LeMiCa
requires to offline construct the DAG, we randomly select n ∈ {1, 5, 10, 20} from the original 350
samples (70 prompts × 5 seeds), and compute the optimal caching path under the lexicographic
minimax criterion. Each setting is repeated 20 times to reduce randomness. Importantly, distinct
datasets are used for DAG construction and forward inference to guarantee fairness and robustness
in evaluation. Video quality is then evaluated on 50 selected VBench prompts, with average results
reported. Table 2 shows that LeMiCa achieves strong performance with a single sample (e.g., PSNR
24.51), rapidly approaching the upper bound with 10 samples and essentially saturating at 20 samples
across all metrics. This demonstrates LeMiCa’s ability to construct high-quality cache paths with
minimal samples and underscores the robustness of its static caching strategy across varying prompts
and seeds.

Table 2: Impact of sample size on cache
path graph quality.

Number of Samples VBench↑ LPIPS↓ SSIM↑ PSNR↑

1 78.58 0.164 0.838 24.51

5 78.70 0.161 0.843 24.57

10 78.95 0.158 0.844 24.56

20 79.16 0.152 0.843 24.60

350 79.27 0.143 0.851 24.67

Table 3: Impact of different path strategies on video
reconstruction quality.

Path Strategy VBench↑ LPIPS↓ SSIM↑ PSNR↑

Original 79.24 - - -

Shortest Path 76.04 0.203 0.809 22.90

MiniMax Path 79.27 0.143 0.851 24.67

Trajectory Robustness Since the cache mechanism is inherently tied to the original denoising
trajectory, it is essential to assess whether a training-free cache method remains effective when the
trajectory changes. To this end, we vary the trajectory scale parameter in the sampling schedule
from its default value of 1.0 to several alternative values (0.5, 0.75, 1.25, 1.5), introducing different
diffusion paths during inference. As shown in Figure 6, the left panel illustrates the effect of
trajectory scaling on the denoising paths, while the right panel demonstrates that LeMiCa consistently
outperforms the current state-of-the-art method, TeaCache, across all trajectories in terms of LPIPS.
These results confirm that our method remains effective even under varying denoising paths.

8

0 20 40 60 80 100
Denoising Process (%)

0

200

400

600

800

1000

Ti
m

es
te

p

Denoising Trajectory

scale 0.5
scale 0.75
scale 1.0
scale 1.25
scale 1.5

0.5 0.75 1.0 1.25 1.5
Scale

0.05

0.10

0.15

0.20

0.25

0.30

LP
IP

S

Teacache
LeMiCa

Figure 6: Performance comparison between LeMiCa and TeaCache across different denoising
trajectories. Left: Denoising step trajectories under different scale settings. Right: LPIPS performance
across various denoising trajectories.

Shortest Path vs. Lexicographic MiniMax Path We compare the performance of the Shortest
Path strategy and the Lexicographic MiniMax Path strategy in video reconstruction tasks. As shown
in Table 3, the MiniMax Path strategy consistently outperforms the baseline Shortest Path strategy
in both VBench scores and reconstruction metrics. This observation is consistent with our analysis:
the edge errors cached during the sampling process are not independent and thus cannot be simply
accumulated linearly.

Performance at different resolutions and lengths Our method incorporates Dynamic Sequence
Parallelism (DSP) [51]to support high-resolution long-video generation across multiple GPUs. To
assess its sampling acceleration performance across varying video sizes, we conducted tests on videos
with different lengths and resolutions. As shown in Figure 7, our method maintains stable acceleration
even as video resolution and frame count increase, highlighting its potential for handling longer and
higher-resolution videos.

2.27x 4.46x 6.30x 8.29x 2.27x 4.51x 6.63x 8.52x 2.27x 4.23x 6.26x 8.27x 2.26x 4.21x 6.40x 8.60x

Figure 7: LeMiCa inference efficiency under various video durations and resolutions.

5 Conclusion

We propose LeMiCa, a general and efficient caching framework for accelerating diffusion-based
video generation. Unlike locally greedy strategies, LeMiCa formulates cache scheduling as a global
path optimization problem using lexicographic minimax over a static DAG, effectively constraining
worst-case degradation. With the introduction of the Global Outcome-Aware error, our method
captures the long-term impact of caching decisions, mitigating temporal heterogeneity and error
accumulation. Extensive experiments demonstrate that LeMiCa consistently improves both efficiency
and visual quality across diverse diffusion models. More broadly, LeMiCa offers a new perspective
on structured caching in generative modeling, which may inspire future research in other domains
such as 3D, multi-view, or multi-modal generation where controllable acceleration remains an open
challenge.

9

References
[1] Zechen Bai, Hai Ci, and Mike Zheng Shou. Impossible videos. arXiv preprint arXiv:2503.14378, 2025.

[2] Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis, Yiren
Zhao, and Tao Chen. Delta dit: A training-free acceleration method tailored for diffusion transformers.
arXiv preprint arXiv:2406.01125, 2024.

[3] Ping Chen, Xingpeng Zhang, Zhaoxiang Liu, Huan Hu, Xiang Liu, Kai Wang, Min Wang, Yanlin Qian, and
Shiguo Lian. Optimizing for the shortest path in denoising diffusion model. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2025.

[4] Zigeng Chen, Xinyin Ma, Gongfan Fang, Zhenxiong Tan, and Xinchao Wang. Asyncdiff: Parallelizing
diffusion models by asynchronous denoising. arXiv preprint arXiv:2406.06911, 2024.

[5] Jiarui Fang, Jinzhe Pan, Xibo Sun, Aoyu Li, and Jiannan Wang. xdit: an inference engine for diffusion
transformers (dits) with massive parallelism. arXiv preprint arXiv:2411.01738, 2024.

[6] Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models made
easy. arXiv preprint arXiv:2406.14548, 2024.

[7] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[8] Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Ptqd: Accurate post-training
quantization for diffusion models. Advances in Neural Information Processing Systems, 36, 2024.

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[11] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu,
Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video generative
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
21807–21818, 2024.

[12] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas. Gotta go
fast when generating data with score-based models. arXiv preprint arXiv:2105.14080, 2021.

[13] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. Advances in neural information processing systems, 35:26565–26577, 2022.

[14] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong
He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning probability flow ode
trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

[15] Muyang Li, Tianle Cai, Jiaxin Cao, Qinsheng Zhang, Han Cai, Junjie Bai, Yangqing Jia, Kai Li, and Song
Han. Distrifusion: Distributed parallel inference for high-resolution diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7183–7193, 2024.

[16] Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming Cheng,
and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models. arXiv e-prints,
pages arXiv–2312, 2023.

[17] Yanjing Li, Sheng Xu, Xianbin Cao, Xiao Sun, and Baochang Zhang. Q-dm: An efficient low-bit quantized
diffusion model. Advances in neural information processing systems, 36:76680–76691, 2023.

[18] Yanjing Li, Sheng Xu, Xianbin Cao, Xiao Sun, and Baochang Zhang. Q-dm: An efficient low-bit quantized
diffusion model. Advances in Neural Information Processing Systems, 36, 2024.

[19] Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. Oms-dpm: Optimizing the model
schedule for diffusion probabilistic models. In International Conference on Machine Learning, pages
21915–21936. PMLR, 2023.

[20] Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang, Qixiang
Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion model. CoRR,
abs/2411.19108, 2024.

10

[21] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver
for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095, 2022.

[22] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthesizing
high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378, 2023.

[23] Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, and Kwan-Yee K
Wong. Fastercache: Training-free video diffusion model acceleration with high quality. arXiv preprint
arXiv:2410.19355, 2024.

[24] Xin Ma, Yaohui Wang, Xinyuan Chen, Gengyun Jia, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, and Yu Qiao.
Latte: Latent diffusion transformer for video generation. Transactions on Machine Learning Research,
2025.

[25] Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating diffusion
transformer via layer caching. Advances in Neural Information Processing Systems, 37:133282–133304,
2024.

[26] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free. arXiv
preprint arXiv:2312.00858, 2023.

[27] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. Advances in neural information processing systems, 36:21702–21720, 2023.

[28] OpenAI. Sora, 2024. https://openai.com/index/sora/.

[29] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[30] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

[31] Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rombach. Fast
high-resolution image synthesis with latent adversarial diffusion distillation. In SIGGRAPH Asia 2024
Conference Papers, pages 1–11, 2024.

[32] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion distillation.
In European Conference on Computer Vision, pages 87–103. Springer, 2024.

[33] Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
caching in diffusion transformer acceleration. arXiv preprint arXiv:2407.01425, 2024.

[34] Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on diffusion
models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
1972–1981, 2023.

[35] Alan Jay Smith. Cache memories. ACM Computing Surveys (CSUR), 14(3):473–530, 1982.

[36] Junhyuk So, Jungwon Lee, Daehyun Ahn, Hyungjun Kim, and Eunhyeok Park. Temporal dynamic
quantization for diffusion models. Advances in neural information processing systems, 36:48686–48698,
2023.

[37] Junhyuk So, Jungwon Lee, Daehyun Ahn, Hyungjun Kim, and Eunhyeok Park. Temporal dynamic
quantization for diffusion models. Advances in Neural Information Processing Systems, 36, 2024.

[38] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

[39] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

[40] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

[41] Kaiyue Sun, Kaiyi Huang, Xian Liu, Yue Wu, Zihan Xu, Zhenguo Li, and Xihui Liu. T2v-compbench: A
comprehensive benchmark for compositional text-to-video generation. arXiv preprint arXiv:2407.14505,
2024.

11

[42] Cunzheng Wang, Ziyuan Guo, Yuxuan Duan, Huaxia Li, Nemo Chen, Xu Tang, and Yao Hu. Target-driven
distillation: Consistency distillation with target timestep selection and decoupled guidance. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pages 7619–7627, 2025.

[43] Zhou Wang and Alan C Bovik. A universal image quality index. IEEE signal processing letters, 9(3):81–84,
2002.

[44] Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating diffusion models through
block caching. arXiv preprint arXiv:2312.03209, 2023.

[45] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi
Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert
transformer. arXiv preprint arXiv:2408.06072, 2024.

[46] Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill
Freeman. Improved distribution matching distillation for fast image synthesis. Advances in neural
information processing systems, 37:47455–47487, 2024.

[47] Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman, and
Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 6613–6623, 2024.

[48] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 586–595, 2018.

[49] Wentian Zhang, Haozhe Liu, Jinheng Xie, Francesco Faccio, Mike Zheng Shou, and Jürgen Schmid-
huber. Cross-attention makes inference cumbersome in text-to-image diffusion models. arXiv preprint
arXiv:2404.02747, 2024.

[50] Xuanlei Zhao, Shenggan Cheng, Chang Chen, Zangwei Zheng, Ziming Liu, Zheming Yang, and Yang You.
Dsp: Dynamic sequence parallelism for multi-dimensional transformers. arXiv preprint arXiv:2403.10266,
2024.

[51] Xuanlei Zhao, Xiaolong Jin, Kai Wang, and Yang You. Real-time video generation with pyramid attention
broadcast. arXiv preprint arXiv:2408.12588, 2024.

[52] Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang, Changxing Ding, Dacheng Tao, and Tat-
Jen Cham. Trajectory consistency distillation: Improved latent consistency distillation by semi-linear
consistency function with trajectory mapping. arXiv preprint arXiv:2402.19159, 2024.

[53] Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all, 2024.
https://github.com/hpcaitech/Open-Sora.

[54] Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion transformers
with token-wise feature caching. CoRR, abs/2410.05317, 2024.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in the supplementary material.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

13

Justification: This paper does not involve theoretical proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 4.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

Answer: [Yes]

Justification: We would release the code and the code is submitted in the supplemental
material

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 4.1 and Appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We don’t report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 4.1 Implementation Details

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conform to the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss it in Appendix

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We have no new models/datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in our paper is cited or marked in the code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Would release the code
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

18

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Doesn’t cover large language models (LLMs)
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

LeMiCa: Lexicographic Minimax Path Caching for Efficient
Diffusion-Based Video Generation

Appendix

A Pseudocode: Lexicographic Minimax Path Selection

Below we present the full pseudocode implementation of the lexicographic minimax path selection
algorithm, as introduced in Section 3.3. The algorithm leverages dynamic programming to efficiently
compute an optimal caching path from source s to target t under a step budget constraint B. Unlike
standard shortest-path methods, our approach handles the non-additive and non-Markovian nature of
error accumulation by minimizing edge weights in a lexicographically ordered manner.

Algorithm 1 Lexicographic Minimax Path Selection

1: Input: Directed acyclic graph G = (V,E), start node s, end node t, step limit B
2: Output: Lexicographic Minimax Path P ∗

3: Initialization:
4: dp[v][k]: maximum edge weight on any k-step path to v

5: paths[v][k], edges[v][k]: corresponding node and edge sequences
6: dp[s][0]← 0, paths[s][0]← [[s]], edges[s][0]← [[]]

7: Main Loop:
8: for k = 0 to B − 1 do
9: for each node v with dp[v][k] <∞ do

10: for each neighbor u of v do
11: w ← weight of edge (v, u)

12: m← max(dp[v][k], w)

13: if m < dp[u][k + 1] then
14: dp[u][k + 1]← m

15: Update paths[u][k + 1], edges[u][k + 1] from v

16: else if m = dp[u][k + 1] then
17: Append new paths and edges from v to paths[u][k + 1], edges[u][k + 1]

18: end if
19: end for
20: end for
21: end for
22: Final Selection:
23: P ∗ ← min

(
zip(paths[t][B], edges[t][B]), key = λ(p, e) : sorted(e, reverse=True)

)

B Experiment Settings

B.1 Models

In this paper, we introduce LeMiCa, a novel caching technique designed to accelerate and enhance
a range of state-of-the-art video synthesis models, including Open-Sora 1.2 [53], Latte [24], and
CogVideoX [45]. Open-Sora 1.2 integrates 2D/3D VAEs and ST-DiT blocks for efficient video
compression and generation. Latte leverages spatio-temporal tokenization and Transformer layers to
model video distributions in the latent space. CogVideoX employs a 3D VAE and expert Transformers
with adaptive LayerNorm for modality fusion and high-fidelity generation. In our experiments, we
adopt the CogVideoX-2B variant.

B.2 Details of the Compared Methods

PAB introduces a pyramid-style broadcasting mechanism to reduce redundant attention computations
in diffusion models. By observing a U-shaped pattern in attention differences across steps, PAB

20

applies adaptive broadcast strategies based on the variance of different attention types (e.g., spatial,
temporal, cross-modal). Stable attention outputs are efficiently reused in later steps, reducing
computation. All experiments use PAB’s default parameter settings.

TeaCache is a training-free, architecture-agnostic caching method that exploits the correlation
between timestep embedding changes and model output differences across adjacent steps. By
introducing a unified threshold-based strategy, TeaCache decides when to activate caching through
an accumulated error-based discriminator. Since this method operates solely along the temporal
dimension without modifying specific model components, it offers strong generalization and broad
applicability.

B.3 Model Forward Steps

Model Forward Steps. In this work, we control the acceleration efficiency of LeMiCa via the
Model Forward Steps B. Smaller values of B reduce the denoising time, leading to higher speed-up
ratios. We consider two variants: LeMiCa-slow, which emphasizes visual fidelity, and LeMiCa-fast,
which prioritizes inference efficiency. The corresponding B values for each variant across different
models are listed in Table 4.

Table 4: Model forward steps B under different configurations.
Model Configuration Model Forward Steps B

Open-Sora 1.2
Original 30

LeMiCa-slow 19
LeMiCa-fast 11

Latte
Original 50

LeMiCa-slow 27
LeMiCa-fast 14

CogVideoX
Original 50

LeMiCa-slow 27
LeMiCa-fast 16

C OOD Generalization Analysis

We analyze the out-of-distribution (OOD) generalization ability of LeMiCa through two evaluation
setups: VBench and IP-VBench.

OOD Evaluation on VBench. LeMiCa is evaluated on VBench [11], which follows a distribution
distinct from T2V-CompBench [41] used for DAG construction. We quantify the distributional shift
by computing prompt-level distances using text embeddings and PCA (see Table 5).

Table 5: Distributional distance analysis between VBench and T2V-CompBench.

Attribute Description VBench

Distance VBench vs. T2V-CompBench 0.61
Radius 1 Std. Deviation of T2V-CompBench 0.39
Distance / Radius Ratio of distance to radius 1.58
OOD Status* Is it OOD? ✓

Despite this evident OOD setting, LeMiCa consistently maintains strong acceleration and visual
quality (Table 1), demonstrating robustness to unseen prompt distributions.

OOD Evaluation on IP-VBench. We further test LeMiCa on IP-VBench [1], which contains
intentionally unrealistic and semantically diverse prompts across four domains: Physical, Biological,
Social, and Geographical. These prompts differ significantly from training data, with Distance/Radius
nearly doubling compared to T2V-CompBench (see Table 6).

Across all domains, LeMiCa substantially outperforms TeaCache in LPIPS, SSIM, and PSNR,
underscoring its strong generalization and robustness under severe OOD conditions.

21

Table 6: Quantitative OOD performance on IP-VBench across four semantic domains.
Method Domain LPIPS (↓) SSIM (↑) PSNR (↑) Distance/Radius OOD Status*

TeaCache Physical 0.093 0.911 26.7 2.09 ✓
Biological 0.171 0.839 24.0 1.90 ✓

Social 0.144 0.842 24.9 1.93 ✓
Geographical 0.072 0.914 29.8 2.13 ✓

Overall 0.120 0.877 26.4 2.01 ✓

LeMiCa Physical 0.039 0.954 34.6 2.09 ✓
Biological 0.054 0.905 31.4 1.90 ✓

Social 0.040 0.946 33.1 1.93 ✓
Geographical 0.038 0.945 34.9 2.13 ✓

Overall 0.042 0.938 33.5 2.01 ✓

D Offline Cost

The graph construction in LeMiCa is an entirely offline, three-stage process. First, Edge Weight
Estimation estimates reconstruction errors by running full-generation passes on approximately 20
sampled prompts; this task is fully parallelizable (leveraging 8 GPUs in our experiments) and only
needs to be run once per model configuration. The subsequent stages, Graph Construction (fusing
jump edges into a sparse DAG) and Path Optimization (employing a lexicographic minimax search to
find acceleration paths), are both highly efficient, each completing in under 1 second. As detailed
in Table 7, these offline procedures incur negligible overhead, yet this low-cost offline computation
yields up to 2.44× acceleration during inference generation.

Table 7: Offline cost analysis of LeMiCa on OpenSora.
Stage Description Time Cost (Ref) Affects Inference

Edge Weight Estimation Full-generation error estimation ∼3.18 min / prompt No
Graph Construction Build sparse DAG <1 sec No
Path Optimization Minimax search for jump paths <1 sec No
Inference Acceleration Execute jump paths with caching Up to 2.44× faster Yes

E More Visual Results

We present additional visual comparisons across three foundational models: Open-Sora [53],
Latte [24], and CogVideoX [45]. Results are grouped into two settings: fidelity-focused and speed-
focused.

E.1 Fidelity-Focused

We perform frame-by-frame comparisons to assess fine-grained differences in quality (LeMiCa-slow
vs. TeaCache-slow). Since this setting uses relatively low acceleration ratios, artifacts are less
obvious in real-time playback. To address this, we extract representative frames that highlight detail
preservation, object integrity, and temporal consistency. As shown in Figures 8, 9, 10, 11, and 12, our
method consistently produces more coherent results across all baselines.

E.2 Speed-Focused

To evaluate robustness under aggressive acceleration, we compare videos generated with higher
speed-up ratios (LeMiCa-fast vs. TeaCache-fast). This setting is designed to prioritize generation
speed without significantly compromising visual quality. Under such conditions, baseline methods
are more prone to issues such as flickering, object drift, and reduced temporal consistency. In contrast,
our method maintains strong temporal and semantic coherence, even at high generation speeds.

As part of the supplementary material, we include the following video files: Speed-Focused Open-
Sora.mp4, Speed-Focused Latte.mp4, and Speed-Focused CogVideoX.mp4.

22

Figure 8: More visual results on Open-Sora (Part I).

23

Figure 9: More visual results on Open-Sora (Part II).

24

Figure 10: More visual results on CogVideoX.

25

Figure 11: More visual results on Latte (Part I).

26

Figure 12: More visual results on Latte (Part II).

27

F Limitation

Although our method achieves strong performance in both acceleration and video fidelity, it still has
certain limitations. First, when the original video quality is low, particularly in scenarios involving
complex motion dynamics, it struggles to consistently generate satisfactory results. This reflects a
dependency on the representational capacity of the underlying diffusion model. Second, under high
acceleration ratios, some degree of quality degradation remains inevitable due to the significantly
reduced number of model forward steps. We believe that continued progress in foundational video
generation models will help alleviate these issues. Moreover, since our approach focuses solely on
temporal step scheduling and is agnostic to model architecture, it can be quickly adapted to future,
more powerful diffusion models.

G Social Impact

Diffusion-based video generation models are often limited by high inference time and computational
cost. Our method alleviates this by significantly improving efficiency without requiring additional
training. This enables broader access to high-quality video synthesis, particularly in resource-
constrained settings. By reducing computation during the inference process, our approach also lowers
energy use and carbon emissions, contributing to more sustainable AI development. Furthermore, we
will release our code to support future research.

28

	Introduction
	Related Work
	Method
	Background: Denoising Diffusion Models
	Rethinking Cache in Diffusion Sampling
	Lexicographic Minimax Path Caching

	Experiments
	Experimental Setup
	Comparison with State-of-the-Art Methods
	Ablation Studies

	Conclusion
	Pseudocode: Lexicographic Minimax Path Selection
	Experiment Settings
	Models
	Details of the Compared Methods
	Model Forward Steps

	OOD Generalization Analysis
	Offline Cost
	More Visual Results
	Fidelity-Focused
	Speed-Focused

	Limitation
	Social Impact

