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Abstract

We present LeMiCa, a training-free and efficient acceleration framework for
diffusion-based video generation. While existing caching strategies primarily
focus on reducing local heuristic errors, they often overlook the accumulation
of global errors, leading to noticeable content degradation between accelerated
and original videos. To address this issue, we formulate cache scheduling as a
directed graph with error-weighted edges and introduce a Lexicographic Minimax
Path Optimization strategy that explicitly bounds the worst-case path error. This
approach substantially improves the consistency of global content and style across
generated frames. Extensive experiments on multiple text-to-video benchmarks
demonstrate that LeMiCa delivers dual improvements in both inference speed and
generation quality. Notably, our method achieves a 2.9× speedup on the Latte
model and reaches an LPIPS score of 0.05 on Open-Sora, outperforming prior
caching techniques. Importantly, these gains come with minimal perceptual quality
degradation, making LeMiCa a robust and generalizable paradigm for accelerating
diffusion-based video generation. We believe this approach can serve as a strong
foundation for future research on efficient and reliable video synthesis. Our code is
available at https://github.com/UnicomAI/LeMiCa

1 Introduction

Diffusion models [10, 38] have made significant advancements in video generation [24, 53, 45],
particularly with DiT-based architectures [29], which greatly enhance visual quality. However,
these methods are often hindered by high memory usage, substantial computational costs, and long
inference latencies, limiting their use in interactive applications. This has led to increased interest in
more efficient and cost-effective generation strategies.

Existing approaches such as model distillation [39, 30, 42], pruning [7, 27], and quantization [34, 37,
8, 18] have been widely adopted to accelerate inference. While effective, these methods require careful
architectural design and retraining on large datasets, incurring high costs. Caching mechanisms [35,
26], in contrast, offer a retraining-free alternative for accelerating diffusion model inference. The
core idea is to reuse model outputs from specific timesteps during sampling to reduce redundant
computations and speed up the process [20, 44]. Selecting optimal cache timesteps, while balancing
video quality and inference speed, remains an open problem in video generation.

Ideally, a lossless video acceleration method should meet two essential criteria: (i) High visual
quality and (ii) Consistency between accelerated and original videos. However, existing cache-
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based methods [20, 51] maintain a certain level of visual quality, but they often introduce content
deviations and loss of high-frequency details, increasing the risk of uncontrolled degradation.
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Figure 1: Comparison between our globally controlled cache mechanism (LeMiCa) and traditional
local greedy cache methods. Top: The second row shows the traditional Local-Greedy approach,
which uses local error estimation and fixed thresholds for caching decisions. It assumes uniform
denoising contributions across time steps and ignores temporal heterogeneity and error propagation.
Our method (third row) introduces a Global Outcome-Aware Cache, evaluating cache segment
impacts through multiple prompts along a fixed sampling path, creating a static directed acyclic
graph (DAG). We then use Lexicographic MiniMax Path Optimization (LeMiCa) to find the optimal
cache path under a fixed inference budget (B, model forward steps). Bottom: LeMiCa outperforms
traditional methods (e.g., TeaCache) in maintaining structural consistency with faster inference and
better control over cache errors and distortions.

Upon further analysis, we identify two key limitations. First, representative methods [44, 20] typically
compute local errors between adjacent timesteps and apply fixed thresholds to decide whether to
cache. However, the diffusion denoising process exhibits significant temporal heterogeneity, with
varying noise levels and semantic richness across timesteps. Applying a uniform threshold throughout
the process may disrupt semantic alignment and introduce inconsistencies in decision-making, leading
to inaccurate caching behavior. Second, these methods mainly focus on minimizing local differences
between consecutive steps—what we refer to as Local-Greedy error. While this may reduce short-
term discrepancies, it overlooks how small errors accumulate over time, potentially resulting in a
dual loss in both video quality and content consistency. These issues are evident in TeaCache (a
state-of-the-art Local-Greedy method), as shown in Figure 1, particularly with the three frames in
the top and second rows, where caching introduces noticeable content deviations and visual quality
degradation.

To address these limitations, we propose Lexicographic Minimax Caching (LeMiCa), a static
caching framework that is model-agnostic and architecture-independent. Instead of using local greedy
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strategies, LeMiCa treats cache scheduling as a global path planning problem. This is based on the
observation that well-trained diffusion models remain stable along a fixed sampling path.

LeMiCa takes a global view of error by introducing the Global Outcome-Aware error, which quantifies
the impact of each cache segment on the final output, effectively eliminating temporal heterogeneity
and mitigating error propagation. Based on this metric, LeMiCa constructs a Directed Acyclic Graph
(DAG), where each edge represents a possible cache segment and is weighted by its global impact on
output quality. This graph is generated offline using multiple prompts and full sampling trajectories.

We then apply lexicographic minimax optimization to identify the path that minimizes worst-case
degradation. Among all feasible paths under a fixed budget, the one with the smallest maximum error
is selected. If multiple paths have the same maximum error, the next largest error is compared, and so
on. This strategy explicitly constrains the worst-case error, effectively preventing global degradation
caused by locally unstable cache decisions, and significantly improving content consistency and
video quality in accelerated generation.

In summary, the contributions of this paper are:

• We propose LeMiCa, a novel, training-free cache scheduling framework that formulates
the generation process as a globally optimized DAG traversal task, offering a principled
alternative to heuristic and locally greedy approaches.

• We conduct an in-depth analysis of the cache optimization problem and appropriately
introduce the Lexicographic Minimax Path Optimization strategy to solve the graph under a
fixed cache budget, effectively suppressing error peaks and enhancing global consistency.

• Experiments show that, compared to existing cache techniques, ours achieves dual improve-
ments in inference speed and generation quality across various base models, such as a 2.9X
speedup on Latte and an LPIPS of 0.05 on Open-Sora.

2 Related Work

Diffusion Model Acceleration. Diffusion models exhibit strong versatility across domains, but
their iterative nature incurs high computational costs, positioning inference acceleration as a central
research challenge. Current efforts to accelerate diffusion model sampling focus primarily on reduc-
ing sampling steps via schedulers. Denoising Diffusion Implicit Models (DDIM) [38] represents one
of the earliest attempts to accelerate sampling by extending the original Denoising Diffusion Proba-
bilistic Model (DDPM) [10] to non-Markovian settings. The Efficient Denoising Model (EDM) [13]
introduces a design framework that optimizes specific aspects of the diffusion process. Concurrently,
there is growing attention to more efficient and accurate methods for solving stochastic differential
equations (SDEs) and ordinary differential equations (ODEs) [40, 12, 21, 3]. Other approaches
introduce knowledge distillation [9], training a student model to condense the multi-step outputs of
the original diffusion model into fewer steps [22], including Progressive Distillation [30], Consistency
Distillation [39, 14, 6, 42, 52], Adversarial Diffusion Distillation [32, 31], and Score Distillation
Sampling [47, 46]. Additionally, methods such as quantization [17, 36, 34], pruning [7, 27], optimiza-
tion [19], and parallelism [50, 15, 5, 4] have been proposed and applied to various diffusion-based
generative tasks. However, these methods often require large amounts of computational resources and
data for training or intricate engineering designs, which increases the complexity of their application.

Cache in Diffusion Models. Caching mechanisms [35] have recently attracted attention as a
retraining-free alternative for accelerating diffusion model inference [44, 25]. The core idea is to
reuse model outputs from certain timesteps during sampling to reduce redundant computations [33].
DeepCache [26] accelerates the Unet structure using manually set rules. T-GATE [49] and ∆-DiT [2]
apply this idea to DiT-based networks [29], achieving advanced image generation acceleration [54, 16].
With the breakthrough of Sora [28] in video generation, researchers have extended this acceleration
concept from image generation to video generation. In this context, PAB [51] observed a U-shaped
pattern in attention differences across timesteps in the diffusion process, and based on this, proposed
a strategy to cache and broadcast intermediate features at various timestep intervals. FasterCache [23]
realized the significant redundancy in conditional generation (CFG) and further enhanced inference
speed by utilizing a dynamic feature-based caching mechanism. TeaCache [20] leverages the
correlation between timestep embeddings and model outputs, incorporating threshold-based indicators

3



and polynomial fitting to guide caching. Although these methods have improved the efficiency
of diffusion-based generation, the core challenge remains in how to accelerate inference while
maintaining content consistency and preserving details.

3 Method

3.1 Background: Denoising Diffusion Models

Denoising Diffusion Models achieve generative modeling by simulating the gradual noising and
denoising process of data. The core of these models consists of two key stages: diffusion and
denoising. During the forward diffusion process, the model starts from a real sample x0 ∼ q(x) and
gradually adds Gaussian noise over T timesteps. The noised sample xt at timestep t is given by:

xt =
√
αt xt−1 +

√
1− αt zt, zt ∼ N (0, I), t = 1, . . . , T, (1)

where αt controls the noise strength at each step. As t increases, the samples converge to a standard
normal distribution N (0, I). In the reverse denoising process, the model reconstructs the original
data distribution by iteratively denoising through a neural network. The conditional probability for
each step is modeled as:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where µθ and Σθ are learned mean and covariance functions. Due to the multi-step nature of
denoising, diffusion models typically incur significant computational overhead during generation.

3.2 Rethinking Cache in Diffusion Sampling
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Figure 2: Rethinking cache reuse in denoising diffusion via error estimation. (a) The traditional Local-
Greedy (L1rel) strategy uses fixed thresholds on local output differences between adjacent timesteps
to decide when to cache. This assumes uniform temporal sensitivity, which can be misleading—for
instance, caching at t2 yields lower final error than t1, despite t1 seeming smoother locally. This
highlights the role of temporal heterogeneity. (b) Our Global Outcome-Aware (segment-wise error)
strategy estimates final output error when caching outputs over segments of length len, starting from
timestep i. The plot shows that early caches cause greater error, supporting an outcome-sensitive,
trajectory-aware strategy over fixed local heuristics.

Traditional cache reuse in diffusion sampling typically adopts a Local-Greedy strategy (Figure 2a),
where caching is based on local differences between adjacent model outputs, often measured by the
relative L1 distance [20]:

L1rel(O, t) =
∥Ot −Ot+1∥1

∥Ot+1∥1
(3)
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where Ot is the output at timestep t. High local differences prompt full inference; low differences
lead to cache reuse. This step-wise strategy assumes uniform importance across timesteps.

However, diffusion processes are inherently temporally heterogeneous—early steps shape global
structure, while later steps refine details. Thus, as illustrated in Figure 2a, a seemingly minor change
at an early step (e.g., t1) can have a larger impact on the final output than a larger change at a later
step (e.g., t2). Local metrics fail to account for this asymmetric error propagation, motivating a
rethinking of cache strategies.

To address this, we propose a Global Outcome-Aware view that considers the long-term impact
of cache reuse over time. Specifically, we define a cache segment (i, j) means full inference is
performed at timesteps i and j, while all intermediate steps t ∈ (i, j) reuse cached outputs:

L1glob(i → j) =
1

N

∥∥∥xcache(i→j)
0 − xoriginal

0

∥∥∥
1

(4)

Here, xoriginal
0 is the output with no caching, and x

cache(i→j)
0 is the output with segment-level cache.

As shown in Figure 2b, the global error depends not just on segment length but also on its temporal
position—early caches induce amplified downstream errors, while later caches are less disruptive.

These findings reveal two key insights: (1) Global error propagation is non-uniform and time-
dependent, invalidating fixed-threshold heuristics; (2) The position of the cache segment matters more
than its length. Building on these insights, we formulate cache planning as a graph-based constrained
path optimization problem over the sampling trajectory.

3.3 Lexicographic Minimax Path Caching

Based on the rethinking of cache in Sec 3.2, we propose LeMiCa, a method that integrates sparse
directed graph construction with optimal graph search under peak error control.

Graph Construction. We construct a directed acyclic graph, as shown in Figure 1, where each edge
represents a candidate cache segment along the original sampling trajectory. To reduce complexity, we
impose a maximum skip length based on the prior that long-range reuse typically leads to large errors,
thus avoiding full graph construction. Edge weights are evaluated by replaying cached segments
using intermediate states from a full denoising pass. To ensure generality, we build a static graph by
averaging edge errors across diverse prompts and noise seeds.

Graph Optimization. Given a directed acyclic graph G with globally error-weighted edges, we
frame the caching problem as selecting a path from source s to target t that includes exactly B full
computation steps and an arbitrary number of cached segments. This budget-constrained formulation
allows flexible reuse while bounding computational cost.

As shown in Figure 2b, early-stage cache errors amplify exponentially during denoising, while
late-stage errors remain more localized. This asymmetric error propagation renders traditional
shortest-path heuristics— which minimize only additive cost—suboptimal, as they fail to control the
dominant sources of degradation.

To better address this imbalance, we adopt a lexicographic minimax criterion that explicitly min-
imizes the highest cache error along the path, followed by the second highest, and so on. Unlike
training-based approaches such as ShortDF [3], which directly seek the shortest error path, our for-
mulation—commonly used in control systems for robust worst-case optimization—offers improved
stability in error-sensitive settings. Formally, the optimization problem is defined as:

min
P∈P(B)

s→t

LexMax (sort_desc ({w(e) | e ∈ Pcache})) (5)

Here, P(B)
s→t denotes the set of all paths from s to t with exactly B full steps, and Pcache ⊂ P are

the cached segments within a given path P . The operator LexMax lexicographically minimizes the
sorted error vector, ensuring worst-case robustness. The detailed algorithm pseudocode is provided
in the Appendix (Section A).
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Table 1: Comparison of inference efficiency and visual quality across different models and accelera-
tion strategies on a single GPU.

Method Efficiency Visual Quality
FLOPs (P)↓ Speedup↑ Latency (s)↓ VBench↑ LPIPS↓ SSIM↑ PSNR↑

Open-Sora 1.2 (51 frames, 480P)
Original 3.15 1× 26.54 79.22% — — —
∆-DiT 3.09 1.03× 25.87 78.21% 0.569 0.481 11.91

T-GATE 2.75 1.19× 22.22 77.61% 0.350 0.676 15.50
PAB 2.50 1.43× 18.52 76.95% 0.174 0.822 23.58

TeaCache-slow 2.40 1.50× 17.58 79.20% 0.134 0.837 23.50
TeaCache-fast 1.64 2.10× 12.63 78.24% 0.252 0.743 19.03

LeMiCa-slow 2.30 1.52× 17.43 79.26% 0.050 0.923 31.32
LeMiCa-fast 1.45 2.44× 10.86 78.34% 0.187 0.798 21.76

Latte (16 frames, 512×512)
Original 3.36 1× 11.18 77.40% — — —
∆-DiT 3.36 1.02× 10.85 52.00% 0.851 0.108 8.65

T-GATE 2.99 1.13× 9.88 75.42% 0.261 0.693 19.55
PAB 2.52 1.36× 8.21 73.13% 0.390 0.642 17.16

TeaCache-slow 1.94 1.65× 6.76 77.40% 0.195 0.775 21.52
TeaCache-fast 1.15 2.60× 4.30 76.09% 0.318 0.674 18.04

LeMiCa-slow 1.88 1.69× 6.60 77.45% 0.091 0.865 27.65
LeMiCa-fast 1.00 2.93× 3.81 76.75% 0.273 0.70 19.43

CogVideoX (49 frames, 480P)
Original 12.45 1× 43.08 77.13% — — —

PAB 9.26 1.43× 32.07 75.95% 0.064 0.916 29.85
TeaCache-slow 6.93 1.70× 25.34 76.79% 0.053 0.928 31.07
TeaCache-fast 4.53 2.45× 17.58 76.06% 0.176 0.804 22.95

LeMiCa-slow 6.91 1.72× 25.02 76.89% 0.023 0.958 35.93
LeMiCa-fast 4.26 2.61× 16.48 76.20% 0.132 0.846 25.59

4 Experiments

4.1 Experimental Setup

Metrics For fair comparison, we follow prior works and report both efficiency and visual quality
metrics. Efficiency is measured by FLOPs and latency. Visual quality is evaluated using VBench [11]
(human preference), LPIPS [48] (perceptual similarity), SSIM [43] (structural consistency), and
PSNR (pixel-level accuracy).

Baselines and Compared Methods We evaluate our method on representative diffusion-based
video models: Open-Sora [53], Latte [24], and CogVideoX [45]. Baselines include ∆-DiT [2],
T-GATE [49], PAB [51], and TeaCache [20]. Among them, T-GATE and ∆-DiT are designed for
images, while PAB and TeaCache target video. Accordingly, we compare against PAB and TeaCache
on CogVideoX, and against all four baselines on Open-Sora and Latte.

Implementation Details Experiments are conducted on NVIDIA H100 GPUs using PyTorch.
To construct the DAG for Global Outcome-Aware error modeling, we sample 70 prompts (10 per
attribute) from T2V-CompBench [41], following standard practice [41, 20]. The DAG construction
and forward inference use distinct datasets to ensure fair and robust evaluation. Sampling is repeated
10 times with different seeds, and results are averaged to reduce bias.

4.2 Comparison with State-of-the-Art Methods

Quantitative Comparison Table 1 compares LeMiCa with baselines across four metrics: VBench,
LPIPS, SSIM, and PSNR. LeMiCa includes two variants: LeMiCa-slow (fidelity-focused) and
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LeMiCa-fast (speed-focused). It consistently outperforms training-free acceleration baselines across
models, schedulers, resolutions, and video lengths. LeMiCa-slow achieves the best reconstruction
quality, reducing LPIPS from 0.134 to 0.05 on Open-Sora and from 0.195 to 0.091 on Latte—over
2× improvement vs. TeaCache-slow. LeMiCa-fast improves inference speed from 2.60× to 2.93×
on Latte compared to TeaCache-fast, while preserving visual quality. Unlike prior methods relying
on online greedy strategies, LeMiCa precomputes its caching policy, eliminating runtime overhead.
Overall, LeMiCa provides efficient video generation with minimal perceptual quality degradation.
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Figure 3: Visual comparison under the fidelity-focused setting (LeMiCa-slow vs. TeaCache-slow)
across different models. Differences are highlighted in red boxes.

Visualization We compare video acceleration methods from both quality and speed perspectives. As
shown in Fig. 3, under the fidelity-focused setting, LeMiCa excels in preserving content consistency
and fine details, as highlighted in red boxes. This demonstrates its ability to maintain high-quality
visuals even when prioritizing fidelity. In contrast, Fig. 4 illustrates that under the speed-focused se-
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Figure 4: Visual comparison under a speed-focused setting (LeMiCa-fast vs. TeaCache-fast). LeMiCa-
fast better preserves content consistency and video quality under a high speedup (>2×).
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tting, LeMiCa-fast significantly outperforms TeaCache-fast, achieving superior acceleration rates
while still maintaining competitive performance. These results highlight LeMiCa’s ability to balance
quality and speed across different configurations. Additional qualitative examples can be found in the
Appendix (Section E).

4.3 Ablation Studies

Acceleration vs. Performance trade-off Figure 5 presents the quality-latency trade-off between
our proposed LeMiCa and TeaCache. To ensure comparable computational budgets, LeMiCa is
configured with 19, 12, 9, and 7 inference steps (i.e., inference budget B), corresponding to TeaCache
thresholds of 0.1, 0.2, 0.3, and 0.5, respectively. Across all latency regimes, LeMiCa consistently
achieves a superior quality-efficiency balance, outperforming TeaCache on all reference-based metrics.
Importantly, under extreme acceleration (latencies below 8 seconds), LeMiCa maintains robust and
high-quality performance.
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Figure 5: Quality-latency trade-off comparison between LeMiCa and TeaCache.

Sample Requirements for Graph Construction To investigate how many samples LeMiCa
requires to offline construct the DAG, we randomly select n ∈ {1, 5, 10, 20} from the original 350
samples (70 prompts × 5 seeds), and compute the optimal caching path under the lexicographic
minimax criterion. Each setting is repeated 20 times to reduce randomness. Importantly, distinct
datasets are used for DAG construction and forward inference to guarantee fairness and robustness
in evaluation. Video quality is then evaluated on 50 selected VBench prompts, with average results
reported. Table 2 shows that LeMiCa achieves strong performance with a single sample (e.g., PSNR
24.51), rapidly approaching the upper bound with 10 samples and essentially saturating at 20 samples
across all metrics. This demonstrates LeMiCa’s ability to construct high-quality cache paths with
minimal samples and underscores the robustness of its static caching strategy across varying prompts
and seeds.

Table 2: Impact of sample size on cache
path graph quality.

Number of Samples VBench↑ LPIPS↓ SSIM↑ PSNR↑

1 78.58 0.164 0.838 24.51

5 78.70 0.161 0.843 24.57

10 78.95 0.158 0.844 24.56

20 79.16 0.152 0.843 24.60

350 79.27 0.143 0.851 24.67

Table 3: Impact of different path strategies on video
reconstruction quality.

Path Strategy VBench↑ LPIPS↓ SSIM↑ PSNR↑

Original 79.24 - - -

Shortest Path 76.04 0.203 0.809 22.90

MiniMax Path 79.27 0.143 0.851 24.67

Trajectory Robustness Since the cache mechanism is inherently tied to the original denoising
trajectory, it is essential to assess whether a training-free cache method remains effective when the
trajectory changes. To this end, we vary the trajectory scale parameter in the sampling schedule
from its default value of 1.0 to several alternative values (0.5, 0.75, 1.25, 1.5), introducing different
diffusion paths during inference. As shown in Figure 6, the left panel illustrates the effect of
trajectory scaling on the denoising paths, while the right panel demonstrates that LeMiCa consistently
outperforms the current state-of-the-art method, TeaCache, across all trajectories in terms of LPIPS.
These results confirm that our method remains effective even under varying denoising paths.
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Figure 6: Performance comparison between LeMiCa and TeaCache across different denoising
trajectories. Left: Denoising step trajectories under different scale settings. Right: LPIPS performance
across various denoising trajectories.

Shortest Path vs. Lexicographic MiniMax Path We compare the performance of the Shortest
Path strategy and the Lexicographic MiniMax Path strategy in video reconstruction tasks. As shown
in Table 3, the MiniMax Path strategy consistently outperforms the baseline Shortest Path strategy
in both VBench scores and reconstruction metrics. This observation is consistent with our analysis:
the edge errors cached during the sampling process are not independent and thus cannot be simply
accumulated linearly.

Performance at different resolutions and lengths Our method incorporates Dynamic Sequence
Parallelism (DSP) [51]to support high-resolution long-video generation across multiple GPUs. To
assess its sampling acceleration performance across varying video sizes, we conducted tests on videos
with different lengths and resolutions. As shown in Figure 7, our method maintains stable acceleration
even as video resolution and frame count increase, highlighting its potential for handling longer and
higher-resolution videos.

2.27x 4.46x 6.30x 8.29x 2.27x 4.51x 6.63x 8.52x 2.27x 4.23x 6.26x 8.27x 2.26x 4.21x 6.40x 8.60x

Figure 7: LeMiCa inference efficiency under various video durations and resolutions.

5 Conclusion

We propose LeMiCa, a general and efficient caching framework for accelerating diffusion-based
video generation. Unlike locally greedy strategies, LeMiCa formulates cache scheduling as a global
path optimization problem using lexicographic minimax over a static DAG, effectively constraining
worst-case degradation. With the introduction of the Global Outcome-Aware error, our method
captures the long-term impact of caching decisions, mitigating temporal heterogeneity and error
accumulation. Extensive experiments demonstrate that LeMiCa consistently improves both efficiency
and visual quality across diverse diffusion models. More broadly, LeMiCa offers a new perspective
on structured caching in generative modeling, which may inspire future research in other domains
such as 3D, multi-view, or multi-modal generation where controllable acceleration remains an open
challenge.
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//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 4.1 Implementation Details

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conform to the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss it in Appendix

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We have no new models/datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in our paper is cited or marked in the code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Would release the code
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Doesn’t cover large language models (LLMs)
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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LeMiCa: Lexicographic Minimax Path Caching for Efficient
Diffusion-Based Video Generation

Appendix

A Pseudocode: Lexicographic Minimax Path Selection

Below we present the full pseudocode implementation of the lexicographic minimax path selection
algorithm, as introduced in Section 3.3. The algorithm leverages dynamic programming to efficiently
compute an optimal caching path from source s to target t under a step budget constraint B. Unlike
standard shortest-path methods, our approach handles the non-additive and non-Markovian nature of
error accumulation by minimizing edge weights in a lexicographically ordered manner.

Algorithm 1 Lexicographic Minimax Path Selection

1: Input: Directed acyclic graph G = (V,E), start node s, end node t, step limit B
2: Output: Lexicographic Minimax Path P ∗

3: Initialization:
4: dp[v][k]: maximum edge weight on any k-step path to v

5: paths[v][k], edges[v][k]: corresponding node and edge sequences
6: dp[s][0]← 0, paths[s][0]← [[s]], edges[s][0]← [[ ]]

7: Main Loop:
8: for k = 0 to B − 1 do
9: for each node v with dp[v][k] <∞ do

10: for each neighbor u of v do
11: w ← weight of edge (v, u)

12: m← max(dp[v][k], w)

13: if m < dp[u][k + 1] then
14: dp[u][k + 1]← m

15: Update paths[u][k + 1], edges[u][k + 1] from v

16: else if m = dp[u][k + 1] then
17: Append new paths and edges from v to paths[u][k + 1], edges[u][k + 1]

18: end if
19: end for
20: end for
21: end for
22: Final Selection:
23: P ∗ ← min

(
zip(paths[t][B], edges[t][B]), key = λ(p, e) : sorted(e, reverse=True)

)

B Experiment Settings

B.1 Models

In this paper, we introduce LeMiCa, a novel caching technique designed to accelerate and enhance
a range of state-of-the-art video synthesis models, including Open-Sora 1.2 [53], Latte [24], and
CogVideoX [45]. Open-Sora 1.2 integrates 2D/3D VAEs and ST-DiT blocks for efficient video
compression and generation. Latte leverages spatio-temporal tokenization and Transformer layers to
model video distributions in the latent space. CogVideoX employs a 3D VAE and expert Transformers
with adaptive LayerNorm for modality fusion and high-fidelity generation. In our experiments, we
adopt the CogVideoX-2B variant.

B.2 Details of the Compared Methods

PAB introduces a pyramid-style broadcasting mechanism to reduce redundant attention computations
in diffusion models. By observing a U-shaped pattern in attention differences across steps, PAB
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applies adaptive broadcast strategies based on the variance of different attention types (e.g., spatial,
temporal, cross-modal). Stable attention outputs are efficiently reused in later steps, reducing
computation. All experiments use PAB’s default parameter settings.

TeaCache is a training-free, architecture-agnostic caching method that exploits the correlation
between timestep embedding changes and model output differences across adjacent steps. By
introducing a unified threshold-based strategy, TeaCache decides when to activate caching through
an accumulated error-based discriminator. Since this method operates solely along the temporal
dimension without modifying specific model components, it offers strong generalization and broad
applicability.

B.3 Model Forward Steps

Model Forward Steps. In this work, we control the acceleration efficiency of LeMiCa via the
Model Forward Steps B. Smaller values of B reduce the denoising time, leading to higher speed-up
ratios. We consider two variants: LeMiCa-slow, which emphasizes visual fidelity, and LeMiCa-fast,
which prioritizes inference efficiency. The corresponding B values for each variant across different
models are listed in Table 4.

Table 4: Model forward steps B under different configurations.
Model Configuration Model Forward Steps B

Open-Sora 1.2
Original 30

LeMiCa-slow 19
LeMiCa-fast 11

Latte
Original 50

LeMiCa-slow 27
LeMiCa-fast 14

CogVideoX
Original 50

LeMiCa-slow 27
LeMiCa-fast 16

C OOD Generalization Analysis

We analyze the out-of-distribution (OOD) generalization ability of LeMiCa through two evaluation
setups: VBench and IP-VBench.

OOD Evaluation on VBench. LeMiCa is evaluated on VBench [11], which follows a distribution
distinct from T2V-CompBench [41] used for DAG construction. We quantify the distributional shift
by computing prompt-level distances using text embeddings and PCA (see Table 5).

Table 5: Distributional distance analysis between VBench and T2V-CompBench.

Attribute Description VBench

Distance VBench vs. T2V-CompBench 0.61
Radius 1 Std. Deviation of T2V-CompBench 0.39
Distance / Radius Ratio of distance to radius 1.58
OOD Status* Is it OOD? ✓

Despite this evident OOD setting, LeMiCa consistently maintains strong acceleration and visual
quality (Table 1), demonstrating robustness to unseen prompt distributions.

OOD Evaluation on IP-VBench. We further test LeMiCa on IP-VBench [1], which contains
intentionally unrealistic and semantically diverse prompts across four domains: Physical, Biological,
Social, and Geographical. These prompts differ significantly from training data, with Distance/Radius
nearly doubling compared to T2V-CompBench (see Table 6).

Across all domains, LeMiCa substantially outperforms TeaCache in LPIPS, SSIM, and PSNR,
underscoring its strong generalization and robustness under severe OOD conditions.
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Table 6: Quantitative OOD performance on IP-VBench across four semantic domains.
Method Domain LPIPS (↓) SSIM (↑) PSNR (↑) Distance/Radius OOD Status*

TeaCache Physical 0.093 0.911 26.7 2.09 ✓
Biological 0.171 0.839 24.0 1.90 ✓

Social 0.144 0.842 24.9 1.93 ✓
Geographical 0.072 0.914 29.8 2.13 ✓

Overall 0.120 0.877 26.4 2.01 ✓

LeMiCa Physical 0.039 0.954 34.6 2.09 ✓
Biological 0.054 0.905 31.4 1.90 ✓

Social 0.040 0.946 33.1 1.93 ✓
Geographical 0.038 0.945 34.9 2.13 ✓

Overall 0.042 0.938 33.5 2.01 ✓

D Offline Cost

The graph construction in LeMiCa is an entirely offline, three-stage process. First, Edge Weight
Estimation estimates reconstruction errors by running full-generation passes on approximately 20
sampled prompts; this task is fully parallelizable (leveraging 8 GPUs in our experiments) and only
needs to be run once per model configuration. The subsequent stages, Graph Construction (fusing
jump edges into a sparse DAG) and Path Optimization (employing a lexicographic minimax search to
find acceleration paths), are both highly efficient, each completing in under 1 second. As detailed
in Table 7, these offline procedures incur negligible overhead, yet this low-cost offline computation
yields up to 2.44× acceleration during inference generation.

Table 7: Offline cost analysis of LeMiCa on OpenSora.
Stage Description Time Cost (Ref) Affects Inference

Edge Weight Estimation Full-generation error estimation ∼3.18 min / prompt No
Graph Construction Build sparse DAG <1 sec No
Path Optimization Minimax search for jump paths <1 sec No
Inference Acceleration Execute jump paths with caching Up to 2.44× faster Yes

E More Visual Results

We present additional visual comparisons across three foundational models: Open-Sora [53],
Latte [24], and CogVideoX [45]. Results are grouped into two settings: fidelity-focused and speed-
focused.

E.1 Fidelity-Focused

We perform frame-by-frame comparisons to assess fine-grained differences in quality (LeMiCa-slow
vs. TeaCache-slow). Since this setting uses relatively low acceleration ratios, artifacts are less
obvious in real-time playback. To address this, we extract representative frames that highlight detail
preservation, object integrity, and temporal consistency. As shown in Figures 8, 9, 10, 11, and 12, our
method consistently produces more coherent results across all baselines.

E.2 Speed-Focused

To evaluate robustness under aggressive acceleration, we compare videos generated with higher
speed-up ratios (LeMiCa-fast vs. TeaCache-fast). This setting is designed to prioritize generation
speed without significantly compromising visual quality. Under such conditions, baseline methods
are more prone to issues such as flickering, object drift, and reduced temporal consistency. In contrast,
our method maintains strong temporal and semantic coherence, even at high generation speeds.

As part of the supplementary material, we include the following video files: Speed-Focused Open-
Sora.mp4, Speed-Focused Latte.mp4, and Speed-Focused CogVideoX.mp4.
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Figure 8: More visual results on Open-Sora (Part I).
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Figure 9: More visual results on Open-Sora (Part II).

24



Figure 10: More visual results on CogVideoX.
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Figure 11: More visual results on Latte (Part I).
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Figure 12: More visual results on Latte (Part II).
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F Limitation

Although our method achieves strong performance in both acceleration and video fidelity, it still has
certain limitations. First, when the original video quality is low, particularly in scenarios involving
complex motion dynamics, it struggles to consistently generate satisfactory results. This reflects a
dependency on the representational capacity of the underlying diffusion model. Second, under high
acceleration ratios, some degree of quality degradation remains inevitable due to the significantly
reduced number of model forward steps. We believe that continued progress in foundational video
generation models will help alleviate these issues. Moreover, since our approach focuses solely on
temporal step scheduling and is agnostic to model architecture, it can be quickly adapted to future,
more powerful diffusion models.

G Social Impact

Diffusion-based video generation models are often limited by high inference time and computational
cost. Our method alleviates this by significantly improving efficiency without requiring additional
training. This enables broader access to high-quality video synthesis, particularly in resource-
constrained settings. By reducing computation during the inference process, our approach also lowers
energy use and carbon emissions, contributing to more sustainable AI development. Furthermore, we
will release our code to support future research.
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