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ABSTRACT

The progress of humanity is driven by those successful discoveries accompanied
by countless failed experiments. Researchers often seek the potential research di-
rections by reading and then verifying them through experiments. The process
imposes a significant burden on researchers. In the past decade, the data-driven
black-box deep learning method demonstrates its effectiveness in a wide range of
real-world scenarios, which exacerbates the experimental burden of researchers
and thus renders the potential successful discoveries veiled. Therefore, automat-
ing such a research and development (R&D) process is an urgent need. In this
paper, we serve as the first effort to formalize the goal by proposing a Real-world
Data-centric automatic R&D Benchmark, namely RD2Bench. RD2Bench bench-
marks all the operations in data-centric automatic R&D (D-CARD) as a whole to
navigate future work toward our goal directly. We focus on evaluating the inter-
action and synergistic effects of various model capabilities and aiding in selecting
well-performing trustworthy models. Although RD2Bench is very challenging to
the state-of-the-art (SOTA) large language model (LLM) named GPT-4, indicating
ample research opportunities and more research efforts, LLMs possess promising
potential to bring more significant development to D-CARD: They are able to im-
plement some simple methods without adopting any additional techniques. We
appeal to future work to take developing techniques for tackling automatic R&D
into consideration, thus bringing the opportunities of the potential revolutionary
upgrade to human productivity.

1 INTRODUCTION

“I have not failed. I’ve just found 10,000 ways that won’t work.”

— Thomas Alva Edison

The advancement of human society and the enhancement of living standards are highly correlated
with the development of technology (Smith, 1937; Ranis & Fei, 1961; Perez, 2003; Brynjolfsson
& McAfee, 2014). Numerous truths and principles remain undiscovered in the world, awaiting
experimental exploration (Shapere, 1964; Popper, 2005). Those few successful discoveries, accom-
panied by countless failed experiments, propel the frontiers of technology. Historically, scientific re-
searchers, including Edison, have undertaken extensive experiments by conducting them manually.
In the age of AI, the influence of data-driven solutions, such as machine learning (ML) systems,
is rapidly expanding (Mikolov et al., 2013; Devlin et al., 2018; OpenAI, 2023b). These systems
are known for their robust fitting capabilities and their “black box” nature, which significantly in-
creases the experimental load on researchers and hinders the process of identifying and validating
effective methodologies. This paper concentrates on this critical scenario, which we refer to as Data-
Centric Research and Development (R&D). To cope with the prohibitively expensive costs and the
overwhelming volume of experiments required, we consider automating such an R&D process for
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higher research efficiency by leveraging the strong language understanding and programming abil-
ity of the state-of-the-art (SOTA) large language models (LLMs) (Srivastava et al., 2023). The brief
illustration of Data-Centric Automatic R&D (D-CARD) is shown in Figure 1.
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Figure 1: An overview of the R&D process. Researchers read papers and reports to extract the
implementable methods (usually formulated as mathematical formulas or model architectures) for
seeking potential research directions. Then, they correctly implement the methods to obtain the
results for further analysis and development.

The first step towards automatic R&D is to formalize the task and provide a benchmark for identify-
ing the potential effective methods and research directions. Intuitively, an outstanding methodology
identified by the benchmark should possess (1) strong language understanding ability to identify
the implementable methods or ideas (e.g., formulations and models) in the given raw information
(e.g., papers, reports, websites, etc.) and (2) strong implementation ability to accurately imple-
ment the methods by programming and then obtain reliable experimental results. Previous work
focuses on benchmarking the different aspects of the two abilities. Specifically, the language un-
derstanding ability of LLMs is partly evaluated through analyzing their performance on relation
extraction (Wadhwa et al., 2023), question answering (Zhuang et al., 2023), and other natural lan-
guage processing (NLP) tasks (Qin et al., 2023a). Meanwhile, the implementation ability of LLMs
is partly tested through the benchmarks like SWE-Bench (Jimenez et al., 2023b), ToolBench (Qin
et al., 2023c), ML-Bench (Liu et al., 2023b) and MetaTool (Anonymous, 2024), which study their
ability of solving GitHub issues, using tools to program, and determining whether to use tools in a
given scenario.

In this paper, we serve as the first effort to investigate the capabilities of the SOTA LLMs in tackling
automatic R&D and propose a Real-world Data-centric automatic R&D Benchmark (RD2Bench).
The scenario studied by RD2Bench possesses two unique and distinct characteristics that fundamen-
tally differentiate it from others. First, RD2Bench focuses on studying the real-world scenario where
all the operations in R&D are automatic and evaluated as a whole, thus navigating the related future
research efforts toward the goal of developing human technology more effectively. The real-world
scenario requires more comprehensive and advanced model capabilities and exhibits new challenges.
Second, we study the real-world automatic R&D in data-centric settings to navigate future work to-
ward the urgent experimental exploration need brought by black-box data-driven models. Compared
with existing benchmarks, RD2Bench possesses two significant advantages:

(1) RD2Bench evaluates the interaction and synergistic effects of various model capabilities
instead of focusing on a single aspect of ability, which not only captures the frontier of SOTA LLMs
but also bridges the gap between studying “individual ability” and “real-world synergistic effects
of abilities”. In automatic R&D, an ML system fails to complete the task even if it possesses both
the strong information extraction ability and the strong programming or tool-using ability: While
it succeeds in extracting methods and implementing them, it fails in selecting the appropriate data
from the datasets or misunderstanding either the descriptions of data features or the requirements
expressed by prompts. Additionally, exhaustively enumerating all the aspects for benchmarking is
extremely challenging, which is overcame by RD2Bench.
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(2) RD2Bench tends to select well-performing trustworthy models instead of those models that
fail to learn rationales and causality yet possess outstanding performance. Specifically, ML systems
easily achieve SOTA performance on previous benchmarks by shortcut learning or learning spuri-
ous correlations instead of learning rationales or causality (Mudrakarta et al., 2018; Geirhos et al.,
2020; Cui & Athey, 2022; Wang et al., 2022; Chen et al., 2023). This renders a benchmark ineffec-
tive and misleading as it fails to accurately identify the well-performing trustworthy methods. For
example, an ML system achieves SOTA performance on dog classification by merely recognizing
grass (Zhang et al., 2021). RD2Bench, on the contrary, eliminates such models by its high difficulty
and large scope. The decision rules of models have to simultaneously satisfy at least four major
requirements: (1) accurately and comprehensively extracting the implementable methods; (2) pre-
cisely selecting the method-specific data for computation; (3) correctly writing the code according
to the logic expressed by methods and prompts; (4) successfully storing the correct results in a pre-
defined format. Therefore, the decision rules of models selected by this benchmark are stable (work
well in various situations), and thus getting closer to rationales and causality (Cui & Athey, 2022).

We evaluate the existing SOTA LLMs on RD2Bench to expose the bottleneck of them and charac-
terize the future research direction. RD2Bench reveals new insights: (1) Among the popular LLMs,
GPT-4 exhibits promising potency in dealing with the D-CARD task; (2) Detailed information of
data descriptions significantly improves the performance of GPT-4; (3) The ability to query domain-
specific knowledge is a basic requirement of D-CARD methods; (4) The more complex the method
is, the more unstable the model performance is.

2 RD2BENCH

Overall, our benchmark focuses on evaluating the finally implemented results according to the given
raw information (e.g., papers, reports, websites, etc.). Moreover, we also provide human-annotated
ground-truth information corresponding to the intermediate steps for debugging and more compre-
hensive evaluation, which not only aids in selecting the most trustworthy models by tracing back
model operations in each step but also facilitates the research efficiency by clearly locating the prob-
lems. RD2Bench selects those well-performing trustworthy models that are able to accurately cal-
culate the final results with precise operation in each step. We introduce the details of our proposed
RD2Bench in the following sections. In section 2.1, we introduce the details of human-annotated
ground truth and how we collect data to form RD2Bench. Then, we elaborate on the two necessary
steps, namely method extraction and method implementation, to perform R&D in section 2.2 and
section 2.3. Finally, we detail our adopted metrics in section 2.4.

2.1 DATA COLLECTION

turnover_correlation_with_price :
Description: Correlation coefficient between 
stock turnover rate and average price over the 
past 20 trading days 
Formulation: 

Variables:
Correlation:Function to calculate the correlation 
coefficient between two sets of data.
TurnoverRate: Stock turnover rate.
AveragePrice: Average stock price.               
20days: The period of 20 trading days used for 
the correlation calculation. 

Extraction Implementation

Figure 2: An example of formula implementation task.

As mentioned in the previous section, we are aiming to study the data-centric automatic R&D tasks
and take formula implementation and model architecture implementation as the two major tasks
included in this benchmark.
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For formula implementation, we collect finance reports and stock trading data as real-world input.
More specifically, the formula implementation task is to implement the factors function (usually
mathematical formulas that take complex numeric input data about stock, company, and market as
input and output a series of values with the time series) proposed in the report. To be more com-
prehensive, we include 11 factors from three major categories (fundamental, price-volume, high-
frequency, denoted as Data I, II, III in following) and four difficulty levels (easy, medium, hard, and
new factor). The difficulty level is manually labeled by domain experts according to the complexity
of implementation (code implementation and idea understanding) and the novelty of the task. All
ground truth implementations and formulas of the factors function are provided by us in the dataset.
With the help of domain experts, the ground truth implementations and formulas are reliable and
clear. One example of the formula implementation task is shown in Figure 2.

For model architecture implementation, we collect papers including (Gravina et al., 2023; Rossi
et al., 2023; Rampášek et al., 2022; Lim et al., 2021; Yang et al., 2023a; Wang et al., 2024)
and corresponding ground truth implementation codes using pytorch (Paszke et al., 2019) and
torch gemometric framework (Fey & Lenssen, 2019) in deep learning, more specifically, in graph
representation learning field. The model architecture implementation task is to implement the new
model architecture or layer proposed in the paper. We also manually label the difficulty level (easy,
medium, hard) of the task based on the complexity of implementation (computational graphs and
tensor operations) and the novelty of the task (brand new mechanism or new structure). All the
ground truth implementations are provided by excellent researchers and engineers, which are reli-
able and truthful for evaluation. See the A.2 for more details about the dataset and the task.

2.2 METHOD EXTRACTION

This section evaluates the model’s ability to recognize and extract information from formulas and
to innovate within an automated R&D context. The model must identify actionable methods from
extensive research data and extract all necessary information to realize these methods, which is
critical for the subsequent code implementation.

This initial benchmark session tests the model’s capability to accurately and comprehensively ex-
tract all conditions required for the methods it analyzes, and to develop the corresponding code
implementation. The model should not proceed with incomplete methods but must fully understand
and code for complete ones. We specify a format for information extraction that aligns with a manu-
ally labeled format or an appendix. We measure the model’s extraction accuracy using the F1 score,
considering both entity recognition and mention. For description accuracy, we compare the model’s
output with a manually annotated template, aiming for over 90% similarity. Developers can manu-
ally review this for precise evaluation. The model may encounter methods in the source material that
are mentioned by name without detailed formulas or definitions. In such cases, the model can opt
not to extract information or infer details based on the material’s semantics. We encourage the latter
approach to foster creativity and support future research that may introduce new methods and for-
mulas. Currently, only methods explicitly named in the material are subject to this creative review,
but future benchmarks may assess the model’s ability to introduce entirely new concepts without
prior mentions.

As most of our input data is encoded in the form of document files, we first use parsing tools to
extract text content from files. Azure document intelligence API (4.0) is used for parsing reports
and academic papers in PDF format.

2.3 METHOD IMPLEMENTATION

In this section, we evaluate the performance of LLM in the implementation of methods. Given all
the necessary conditions provided to the model after the previous step, the model needs to select
the necessary data and write code from scratch to implement the method with an informative and
well-organized prompt. Details of the prompt are included in the dataset, which is also shown in
A.3. We encourage model use of Python and popular data analysis and machine learning libraries.
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2.4 METRICS

The goal of the benchmark is to evaluate the performance of LLM in data-centric R&D tasks, cor-
rectness and efficiency are the two major aspects we care about. To be more comprehensive and
reveal more signals of performance, we propose multiple metrics for each task and each stage of the
task. For formula implementation, we care about the average and maxima “running success rate”,
“format success rate”, “Pearson correlation” and “value accuracy” across multiple independent at-
tempts. To be simple, “avg.”, “exe.”, “form.”, “corr.”, “acc.” denotes the average value, number of
successful execution times, number of the matched result formats, the correlation, and the accuracy
of corresponding values, respectively. See more details about the metrics calculation details in App
A.1.

For model architecture implementation, we believe a successful implementation of a model should
be consistent with the ground truth implementation as the model be viewed as a numeric function
and combination of tensor transformations. Therefore, we propose these two metrics for the model
architecture implementation task: tensor shape consistency rate (tsc.), tensor value consistency rate
(tvc.). To be more specific, for each layer of the model, we calculate the consistency rate of the tensor
shape and tensor value between the ground truth implementation and the implementation generated
by the LLM. All the ground truth tensor value is determined by ground truth implementation codes
with random Gaussian noise. Therefore, the formula for the two metrics is as follows, where Si

shape

and Si
value are the consistency rate of tensor shape and tensor value in layer i, respectively, and di is

the maximum length of the two tensors as the two tensors are Zi and Z∗
i , the ground truth and the

generated tensor, respectively:

Si
shape(Zi,Z

∗
i ) =

(
1 + exp

(∑d
j=1 |dim(Zi)j − dim(Z∗

i )j |
d

))−1

,

Si
value(Zi,Z

∗
i ) =

(
1 + exp

(∑d
j=1 |Z

(j)
i − Z

∗(j)
i |

d

))−1

,

d = max(len(dim(Zi)), len(dim(Z∗
i ))),

(1)

while the shorter tensor is padded with zeros to match the length of the longer tensor. As the final
score of the two metrics, we use the weighted sum of the consistency rate of all layers, weight
increases with the depth of the layer and is summed as one.

Sfinal =

∑n
i=1 S

i · γi∑n
i=1 γ

i
, (2)

where n is the number of layers in the model, γ is a tunable hyperparameter to control the weight
increase, and we set γ = 1.1 in our experiments.

An example of the calculation is shown in Figure 3, using model LinkX (Lim et al., 2021) as an
example. Meanwhile, we also include ”average running success rate” as the basic metric for the
model architecture implementation task, which is the same as the formula implementation task.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

As we have numeric input and output in R&D tasks, we set numeric equability with 1e-6 as tolerance
for the evaluation of the implementation of methods. We set the base models as GPT-4-turbo (Ope-
nAI, 2023a), GPT-4-32k (OpenAI, 2023a), GPT-35-turbo-16k (OpenAI, 2023a) and Llama2 (Tou-
vron et al., 2023) for the experiments. All the methods mentioned above, and their corresponding
results are executed with Azure OpenAI API. There is no external data, resources, human feedback,
or internet access involved in the experiments. We perform 20 independent attempts for each model
and calculate the average and maximum value of each metric.
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Figure 3: An example of metrics calculation for model architecture implementation task.

3.2 RESULTS OF FORMULA IMPLEMENTATION

In this section, we compare the performance of different models in the model architecture imple-
mentation task. We use the proposed metrics to evaluate the performance of the models. The results
are shown in Table 1, Table 2, and Table 3. We observe that the GPT-4-turbo and GPT-4-32k achieve
better performance than GPT-35-turbo-16k and LLaMa-2-70b in the model architecture implemen-
tation task. Overall experimental results indicate ample room for further research and the difficulty
of the task and the challenges in automating R&D tasks. Specifically, we obtain the following four
major findings revealed by the experimental results.

Category Difficulty Method Name avg. exe. avg. form. avg. corr. max. corr. max. acc. avg. acc.

Data I

simple PEG 90.00% 0.00% None None None None
medium Turnover STD 1M 80.00% 60.00% 0.314 0.839 0.001 0.000
hard turnover correlation with price 20.00% 10.00% 0.371 0.936 0.000 0.000
discovery Liquidity Factor 90.00% 55.00% None None None None

Data II
simple One Month Volatility 75.00% 45.00% 0.770 1.000 0.000 0.000
medium Vol20 90.00% 15.00% 0.566 1.000 0.000 0.0
hard Alpha#70 15.00% 0.00% None None None None

Data III

simple DailyRDvar 20.00% 0.00% None None None 0.005
medium AdjRDvar 65.00% 0.00% None None None 0.003
hard AdjRDskew 40.00% 5.00% NaN None None 0.000
discovery minute pv corr 35.00% 5.00% 0.915 0.947 0.744 0.248

Table 1: The performance of GPT-4-turbo on formula implementation task.

Category Difficulty Method Name avg. exe. avg. form. avg. corr. max. corr. max. acc. avg. acc.

Data I

simple PEG 75.00% 0.00% None None None None
medium Turnover STD 1M 75.00% 75.00% 0.194 0.243 0.000 0.000
hard turnover correlation with price 25.00% 15.00% 0.123 0.193 0.000 0.000
discovery Liquidity Factor 85.00% 50.00% None None None None

Data II
simple One Month Volatility 60.00% 40.00% 0.474 1.000 0.000 0.000
medium Vol20 20.00% 20.00% 0.527 1.000 0.000 0.000
hard Alpha#70 20.00% 0.00% None None None None

Data III

simple DailyRDvar 35.00% 5.00% None None 0.008 0.001
medium AdjRDvar 35.00% 0.00% None None 0.001 0.000
hard AdjRDskew 40.00% 5.00% NaN None None 0.000
discovery minute pv corr 20.00% 0.00% 0.434 0.858 0.002 0.001

Table 2: The performance of GPT-4-32k on formula implementation task.

LLM agents hold promising potential to tackle D-CARD. We can observe from Table 1 and Ta-
ble 2 that GPT-4 possesses the ability to tackle some simple D-CARD cases without adopting any
additional techniques. Specifically, GPT-4 achieves a high (more than 0.8) maximum correlation
coefficient with the ground-truth results in implementing both simple and medium formulations.
Especially, both GPT-4-turbo and GPT-4-32k achieve the maximum correlation value in implement-
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ing simple One Month Volatility and Vol20, respectively. However, GPT-4 fails to precisely match
the exact ground-truth values due to some minor mistakes, such as missing the domain common
knowledge (e.g., using percent change rather than using difference when calculating the growth),
mismatching the output format, and unnecessarily introducing additional computational operations.

Precisely understanding and selecting data requires more detailed data information in D-
CARD. As shown in Table 1 and Table 2, we observe a special situation where GPT-4 significantly
fails to implement a simple formulation while succeeds in implementing the harder ones. After
analyzing its generated code, we find that GPT-4 confuses the different semantic meanings of data
features due to their close natural language descriptions, which renders the subsequent calculation
ineffective. For example, GPT-4 confuses the two terms named “volume” and “volatility” and al-
ways opts to use “volume” data when “volatility” is required. If we manually improve our initial
prompt by adding a more detailed description, GPT-4 succeeds in understanding the semantic dif-
ference and obtains over 99% performance in the accuracy of values.

The ability to query domain-specific knowledge is a basic requirement of D-CARD methods.
As we mentioned in the first finding, missing domain common knowledge impedes GPT-4 from cal-
culating the precisely matched final results. Additionally, we find that the implementation of some
operations in a formulation also requires domain-specific knowledge. For example, in the financial
domain, it’s clear enough for the financial practitioners to implement the operation named “Ind-
Neutralize(x,g)” by merely giving the description “x cross-sectionally neutralized against groups
g”. However, in the code generated by GPT-4, it defines a function named “IndNeutralize(series,
industry)” and leaves its content blank by merely adding a notation “Please replace this with your
actual function definition”.

The more complex the method is, the more unstable the model performance is. As shown in
the columns of Table 1 and Table 2 named “avg. exe.”, “avg. form.”, and “avg. corr.”, respectively,
we can observe that the performance variance of GPT-4 is significantly higher with the complexity
of formulations getting higher. In 20 times of execution, GPT-4 generates the successfully executed
code in 18 times when implementing the medium Vol20 while only three times in implementing
hard Alpha#70.

Category Difficulty Method Name GPT-35-turbo-16k LLaMa-2-70b

avg. exe. avg. form. avg. exe. avg. form.

Data I

simple PEG 0.00% 0.00% 0.00% 0.00%
medium Turnover STD 1M 0.00% 0.00% 0.00% 0.00%
hard turnover correlation with price 0.00% 0.00% 0.00% 0.00%
discovery Liquidity Factor 0.00% 0.00% 0.00% 0.00%

Data II
simple One Month Volatility 0.00% 0.00% 0.00% 0.00%
medium Vol20 0.00% 0.00% 0.00% 0.00%
hard Alpha#70 0.00% 0.00% 0.00% 0.00%

Data III

simple DailyRDvar 0.00% 0.00% 0.00% 0.00%
medium AdjRDvar 0.00% 0.00% 0.00% 0.00%
hard AdjRDskew 5.00% 0.00% 0.00% 0.00%
discovery minute pv corr 5.00% 0.00% 0.00% 0.00%

Table 3: The performance of GPT-35-turbo-16k and LLaMa-2-70b on formula implementation task.

As shown in Table 3, the performance of GPT-35 and LLaMa2 is poor, even failing in execution
codes. However, GPT-4 models shown in Table 1 and 2 have a much better performance. This
indicates that the performance of the model in the data-centric R&D task is highly related to the
model’s pre-training and capacity. Therefore, we posit that continually training and improving the
foundation model is a promising direction for future research in the field of data-centric R&D tasks.

3.3 RESULTS OF MODEL ARCHITECTURE IMPLEMENTATION

In this section, we compare the performance of different LLMs in the model architecture imple-
mentation task and summarize the results in Table 4 and 5. As shown in the table, we can see
the GPT-4-turbo, GPT-35-turbo-16k, and GPT-4-32K have similar running success rates, but differ
variously in tvc. and tsc.. The LLaMa-2-70b has the lowest running success rate and other met-
rics. Notice that even though a significant gap still exists between GPT-35, LLaMa-2, and GPT-4,
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it is much smaller than the gap in the formula implementation task. The overall running success
rates are also higher than formula implementation task. We can conclude that we can have similar
observations in the model architecture implementation task as in the formula implementation task.

Model Name Difficulty
GPT-4-turbo GPT-4-32K

avg. exe. avg. tsc. avg. tvc. max. tsc. max. tvc. avg. exe. avg. tsc. avg. tvc. max. tsc. max. tvc.

PMLP Easy 100.00% 1.00 1.00 1.00 1.00 100.00% 1.00 1.00 1.00 1.00

LinkX Easy 100.00% 1.00 0.85 1.00 1.00 100.00% 0.90 0.90 1.00 1.00

VisNet Hard 45.00% 0.29 0.09 0.37 0.49 45.00% 0.21 0.09 0.37 0.49

AntiSymmetric Medium 80.00% 0.71 0.59 0.73 0.88 70.00% 0.56 0.66 0.66 0.88

GPSConv Medium 75.00% 0.56 0.62 0.65 1.00 75.00% 0.53 0.62 0.65 0.72

DirGNNConv Medium 100.00% 0.80 0.68 0.86 0.94 90.00% 0.65 0.62 0.82 0.91

Table 4: The performance of GPT-4-turbo and GPT-4-32k on model architecture implementation
task.

Model Name Difficulty
GPT-35-turbo-16k LLaMa-2-70b

avg. exe. avg. tsc. avg. tvc. max. tsc. max. tvc. avg. exe. avg. tsc. avg. tvc. max. tsc. max. tvc.

PMLP Easy 100.00% 0.75 0.75 1.00 1.00 60.00% 0.45 0.55 1.00 1.00

LinkX Easy 100.00% 0.60 0.34 1.00 1.00 30.00% 0.20 0.15 1.00 1.00

VisNet Hard 5.00% 0.03 0.00 0.16 0.40 0.00% 0.00 0.00 0.00 0.00

AntiSymmetric Medium 45.00% 0.16 0.21 0.61 0.22 0.00% 0.00 0.00 0.00 0.00

GPSConv Medium 45.00% 0.24 0.19 0.45 0.42 0.00% 0.00 0.00 0.00 0.00

DirGNNConv Medium 65.00% 0.56 0.29 0.71 0.42 0.00% 0.00 0.00 0.00 0.00

Table 5: The performance of GPT-35-turbo-16k and LLaMa-2-70b on model architecture imple-
mentation task.

3.4 LIMITATIONS

We also strongly want to include as many as possible of current state-of-the-art evolving tricks and
techniques in the benchmark in further works, which will lead to a more comprehensive evaluation
and reveal more signals of the performance of the models. We have primarily tried to apply tricks
like “self-refine/correct/reflection” and “automatic curriculum” to improve the performance of LLM
agents in this benchmark, and we find that the improvement is marginal in the performance of
the models. For more details and a more comprehensive evaluation, we will include them in not-
far-future works. We believe that the benchmark will be a valuable tool for the community to
evaluate the performance of the models in the data-centric R&D tasks and to develop new models
and techniques to address the challenges and opportunities in the domain.

4 RELATE WORK

4.1 LLM AS AUTONOMOUS AGENT

In the past few years, LLM has made great achievements in both academia and industry (OpenAI,
2023a; Touvron et al., 2023), and has achieved results that surpass the previous level in a number of
classic tasks (Zhao et al., 2023). Research has shown that with the growth of data volume and model
size (Zoph et al., 2022), LLM has emerged with stronger reasoning and other capabilities (Ouyang
et al., 2022). These capabilities enable LLM to exhibit certain agent-like behaviors in some tasks
such as using or creating tools (Qin et al., 2023b; Qian et al., 2023), planning (Yao et al., 2023;
Brown et al., 2020), and memory. Therefore, more and more researchers have expressed their ex-
pectations for its human-like and overall capabilities, and have made preliminary explorations of
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it as an independent agent (Wang et al., 2023a; Shinn et al., 2023). Multi-agent collaboration (Wu
et al., 2023; Li et al., 2023) is also introduced to LLM for better accuracy and generalizability. More-
over, for reducing human efforts and automatically exploring, previous work focuses on autonomous
LLM agents for general purpose are purposed (Yang et al., 2023b; Shen et al., 2023). Positive views
further believe that the realization of AGI may come from the evolution of autonomous LLM and
some inspiring examples have been released (Penov et al., 2024).

However, most research still focuses on limited scenarios that are given with clear and fixed ques-
tions and backgrounds. A recent work (Yang et al., 2023d) has attempted to introduce LLM to the
R&D field and formalize the R&D process as a sequence of tasks. However, there is no easy-to-use
benchmark for the community and current R&D tasks may be too general and can’t reveal signifi-
cant signals. In this work, we propose a benchmark for LLM in data-centric R&D tasks and provide
a comprehensive evaluation.

4.2 SEMI-AUTOMATIC R&D WITH AGENTS

Scientific research and development (R&D) is a time-consuming and important process. In the past,
R&D has been mainly conducted by human researchers with countless failed experimental explo-
rations and creative observation conclusions. Agents have been introduced to R&D to reduce human
efforts and automatically explore. Recently, there have been attempts to partly automate R&D, in-
cluding the automatic chemical synthesis planning (Boiko et al., 2023), automatic molecular design
(Joshi & Kumar, 2021; Schneider, 2017; Boiko et al., 2023), automatic theorem proving (Wang
et al., 2023b; Yang et al., 2023c). However, these attempts mainly focus on automatic searching for
possible solutions and optimizations with symbolic representation (Lu et al., 2023) and heuristic
techniques (Whalen, 2016), but less addressing long-horizon planning, implementation, and rea-
soning for the next step idea exploration. Moreover, the data-centric R&D tasks currently have not
been explored in the community, and no benchmark has been proposed for the community. Pre-
vious works have applied LLM to real-world R&D tasks such as debugging issues (Tian et al.,
2024; Jimenez et al., 2023a) or only focus on data-centric but not real-world R&D tasks (Liu et al.,
2023a). In this work, we propose a benchmark for LLM in data-centric R&D tasks and evaluate the
performance of LLMs.

5 CONCLUSION

In this paper, we serve as the first effort to tackle the real-world data-centric automatic R&D scenario
in the hope of significantly improving the research efficiency of scientists and thus contributing to
the revolution of human productivity. Specifically, we first propose RD2Bench that benchmarks all
the operations in D-CARD as a whole to navigate future work toward the ultimate goal of automating
data-centric R&D directly. RD2Bench focuses on evaluating the interaction and synergistic effects
of various model capabilities and aiding in selecting the well-performing trustworthy models. Based
on RD2Bench, we find that although the most SOTA GPT-4 shows its promising potency in tackling
D-CARD, there remains ample room for future work.
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A APPENDIX

A.1 FORMULA IMPLEMENTATION TASK METRICS CALCULATION DETAILS

As mentioned above, we have multiple metrics (the average and maxima score across multiple in-
dependent attempts, including ”running success rate”, ”format success rate”, ”pearson correlation”
and ”value accuracy”). Assume the ground truth factor value is Y with length n (the length of the
time series), and the generated factor value is Y∗, the calculation of the metrics is as follows:

Running success is defined as successful execution. Any error occurs in python interpreter during
the execution that stop the execution is considered as a failure. We calculate the ratio of the number
of successful execution times to the total number of attempts, denoted as avg. exe.

Pearson correlation is the correlation between the ground truth factor value and the generated factor
value.

corr. =
∑n

i=1(Y
∗
i − Ȳ∗)(Yi − Ȳ)√∑n

i=1(Y
∗
i − Ȳ∗)2

√∑n
i=1(Yi − Ȳ)2

,

Format success is defined as successful format matching, which is the final output dataframe format
is (datetime, factor name). We calculate the ratio of the number of the matched result formats to the
total number of attempts, denoted as avg. form.

Value accuracy is the accuracy of the generated factor value, which can be formulated as:

acc. =
1

n

n∑
i=1

I(|Y∗
i −Yi| < t),

Please note that we set the tolerance t for the value accuracy as 1e-6 in this paper, which means two
value is considered as equal if the absolute difference is less than 1e-6.

A.2 DATA COLLECTION DETAILS

As mentioned in the previous section, we collect papers including (Gravina et al., 2023; Rossi
et al., 2023; Rampášek et al., 2022; Lim et al., 2021; Yang et al., 2023a; Wang et al., 2024) and
corresponding codes using pyg (Fey & Lenssen, 2019), which are listed in the following table.

Paper Type Difficulty GT Code
PMLP Model Easy Link
LinkX Model Easy Link

AntiSymmetric Layer Medium Link
GPSConv Layer Medium Link

DirGNNCOnv Layer Medium Link
VisNet Model Hard Link

Table 6: Papers and corresponding ground truth implementation codes for the model architecture
implementation task

A.3 PROMPTS

The prompt for the model architecture implementation task is as follows:

The u s e r i s t r y i n g t o implement some f a c t o r s i n q u a n t i n v e s t m e n t ,
and you a r e t h e one t o h e l p w r i t e t h e py thon code .

The u s e r w i l l p r o v i d e t h e s o u r c e d a t a i n HDF5( H5 ) f o r m a t which you
can l o a d u s i n g pandas . r e a d h d f . The f i l e i s l o c a t e d n e a r your
py thon code f i l e which you can r e a d from ” . / s o u r c e d a t a . h5 ” .

A f t e r t h a t , you w i l l g e t a pandas d a t a f r a m e wi th t h e f o l l o w i n g
f o r m a t :
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https://arxiv.org/abs/2212.09034
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/models/pmlp.py
https://arxiv.org/abs/2110.14446
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/models/linkx.py
https://openreview.net/forum?id=J3Y7cgZOOS
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open , c l o s e , high , low , volume , vwap , cap , I n d C l a s s . i n d u s t r y I n d C l a s s .
s e c t o r , r e t u r n s , da t e , i n s t r u m e n t s

2020 −01 −02 , SH600000
, 1 5 8 . 5 3 8 1 3 2 , 1 5 8 . 5 3 8 1 3 2 , 1 6 0 . 6 9 9 4 3 2 , 1 5 8 . 2 8 3 8 5 9 , 4 0 6 0 9 4 5 . 0 ,

1 5 9 . 4 3 1 9 0 0 , 6 4 7 4 4 6 1 4 4 . 0 , 1 . 0 ,NaN
The e x p l a n a t i o n t o t h e example column names :
1 : r e t u r n s : d a i l y c l o s e − to − c l o s e r e t u r n s
2 : open , c l o s e , high , low , volume : s t a n d a r d d e f i n i t i o n s f o r d a i l y

p r i c e and volume d a t a
3 : vwap : d a i l y volume − w e i g h t e d a v e r a g e p r i c e
4 : cap : marke t c a p i t a l i z a t i o n i s t h e t o t a l v a l u e o f a company ’ s

o u t s t a n d i n g s h a r e s o f s t o c k
5 : I n d C l a s s . i n d u s t r y and I n d C l a s s . s e c t o r : a g e n e r i c p l a c e h o l d e r

f o r a b i n a r y i n d u s t r y c l a s s i f i c a t i o n such as GICS , BICS , NAICS
, SIC , e t c . , i n i n d n e u t r a l i z e ( x , I n d C l a s s . l e v e l ) , where l e v e l :

s e c t o r , i n d u s t r y , e t c . M u l t i p l e I n d C l a s s i n t h e same a l p h a
need n o t c o r r e s p o n d t o t h e same i n d u s t r y c l a s s i f i c a t i o n .

The u s e r w i l l p r o v i d e you a f o r m u l a t i o n o f t h e f a c t o r , which
c o n t a i n s some f u n c t i o n c a l l s and some o p e r a t o r s . You need t o
implement t h e f u n c t i o n c a l l s and o p e r a t o r s i n py thon . Your
code i s e x p e c t e d t o a l i g n t h e f o r m u l a t i o n i n any form which
means The u s e r needs t o g e t t h e e x a c t f a c t o r v a l u e s wi th your
code as e x p e c t e d .

Your code s h o u l d c o n t a i n t h e f o l l o w i n g p a r t : t h e i m p o r t p a r t , t h e
f u n c t i o n p a r t , and t h e main p a r t . You s h o u l d w r i t e a main
f u n c t i o n name : ” c a l c u l a t e { f u n c t i o n n a m e }” and c a l l t h i s
f u n c t i o n i n ” i f n a m e == m a i n ” p a r t . Don ’ t w r i t e any
t r y − e x c e p t b l o c k i n your code . The u s e r w i l l c a t c h t h e
e x c e p t i o n message and p r o v i d e t h e f e e d b a c k t o you .

User w i l l w r i t e your code i n t o a py thon f i l e and e x e c u t e t h e f i l e
d i r e c t l y wi th ” py thon { y o u r f i l e n a m e } . py ” . You s h o u l d
c a l c u l a t e t h e f a c t o r v a l u e s and save t h e r e s u l t i n t o a HDF5( H5
) f i l e named ” r e s u l t . h5 ” i n t h e same d i r e c t o r y as your py thon
f i l e . The r e s u l t f i l e i s a HDF5( H5 ) f i l e c o n t a i n i n g a pandas
d a t a f r a m e . The i n d e x of t h e d a t a f r a m e i s t h e d a t e and
i n s t r u m e n t , and t h e s i n g l e column name i s t h e f a c t o r name , and
t h e v a l u e i s t h e f a c t o r v a l u e . The r e s u l t f i l e s h o u l d be saved

i n t h e same d i r e c t o r y as your py thon f i l e .

To h e l p you w r i t e t h e c o r r e c t code , t h e u s e r might p r o v i d e
m u l t i p l e i n f o r m a t i o n t h a t h e l p s you w r i t e t h e c o r r e c t code :

1 . The u s e r might p r o v i d e you t h e c o r r e c t code t o s i m i l a r f a c t o r s .
Your s h o u l d l e a r n from t h e s e code t o w r i t e t h e c o r r e c t code .

2 . The u s e r might p r o v i d e you t h e f a i l e d f o r me r code and t h e
c o r r e s p o n d i n g f e e d b a c k t o t h e code . The f e e d b a c k c o n t a i n s t o
t h e e x e c u t i o n , t h e code and t h e f a c t o r v a l u e . You s h o u l d
a n a l y z e t h e f e e d b a c k and t r y t o c o r r e c t t h e l a t e s t code .

3 . The u s e r might p r o v i d e you t h e s u g g e s t i o n t o t h e l a t e s t f a i l
code and some s i m i l a r f a i l t o c o r r e c t p a i r s . Each p a i r
c o n t a i n s t h e f a i l code wi th s i m i l a r e r r o r and t h e
c o r r e s p o n d i n g c o r r e c t e d v e r s i o n code . You s h o u l d l e a r n from
t h e s e s u g g e s t i o n t o w r i t e t h e c o r r e c t code .

P l e a s e r e s p o n s e t h e code i n t h e f o l l o w i n g j s o n f o r m a t . Here i s an
example s t r u c t u r e f o r t h e JSON o u t p u t :

{
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” code ” : ” The Python code as a s t r i n g . ”
}

The prompt for the model architecture implementation task is as follows:

The u s e r i s t r y i n g t o implement some models o r l a y e r s i n deep
l e a r n i n g , s p e c i f i c a l l y g raph l e a r n i n g a rea , and you a r e t h e
one t o h e l p w r i t e t h e py thon code .

Use p y t o r c h and pyg ( t o r c h g e o m e t r i c ) framework t o implement i t .
You can assume t h e i n p u t w i l l c o n t a i n s node f e a t u r e X [
num nodes , f e a t u r e d i m ] , e d g e i n d e x [ 2 , num edges ] ,
e d g e f e a t u r e [ num edges , n u m e d g e f e a t u r e s ] , y [ num nodes , * ]
when i s node − l e v e l t a r g e t s o r graph − l e v e l t a r g e t s o f shape
[ 1 , * ] , pos ( node p o s i t i o n m a t r i x ) [ num nodes , p o s i t i o n d i m ] .

The u s e r w i l l p r o v i d e you a f o r m u l a t i o n o f t h e model / l a y e r . You
need t o implement i t i n py thon .

Your code s h o u l d c o n t a i n t h e f o l l o w i n g p a r t : t h e i m p o r t p a r t , t h e
f u n c t i o n p a r t , and t h e main p a r t . You s h o u l d w r i t e a main
f u n c t i o n name : ” c a l c u l a t e { f u n c t i o n n a m e }” and c a l l t h i s
f u n c t i o n i n ” i f n a m e == m a i n ” p a r t . Don ’ t w r i t e any
t r y − e x c e p t b l o c k i n your code . The u s e r w i l l c a t c h t h e
e x c e p t i o n message and p r o v i d e t h e f e e d b a c k t o you .

User w i l l w r i t e your code i n t o a py thon f i l e and e x e c u t e t h e f i l e
d i r e c t l y wi th ” py thon { y o u r f i l e n a m e } . py ” .

P l e a s e r e s p o n s e t h e code i n t h e f o l l o w i n g j s o n f o r m a t . Here i s an
example s t r u c t u r e f o r t h e JSON o u t p u t :

{
” code ” : ” The Python code as a s t r i n g . ”

}
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