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ABSTRACT

Reliable surface completion from sparse point clouds underpins many applica-
tions spanning content creation and robotics. While 3D diffusion transformers at-
tain state-of-the-art results on this task, we uncover that they exhibit a catastrophic
mode of failure: arbitrarily small on-surface perturbations to the input point cloud
can fracture the output into multiple disconnected pieces – a phenomenon we call
meltdown. Using activation-patching from mechanistic interpretability, we local-
ize meltdown to a single early denoising cross-attention activation. We find that
the singular-value spectrum of this activation provides a scalar proxy: its spectral
entropy rises when fragmentation occurs and returns to baseline when patched. In-
terpreted through diffusion dynamics, we show that this proxy tracks a symmetry-
breaking bifurcation of the reverse process. Guided by this insight, we introduce
PowerRemap, a drop-in, test-time control that stabilizes sparse point-cloud con-
ditioning. On Google Scanned Objects, PowerRemap has a stabilization rate of
98.3% for the state-of-the-art diffusion transformer WALA. Overall, this work
is a case study on how diffusion model behavior can be understood and guided
based on mechanistic analysis, linking a circuit-level cross-attention mechanism
to diffusion-dynamics accounts of trajectory bifurcations.

Figure 1: We investigate diffusion transformers on the task of surface reconstruction from sparse
point clouds. We find that arbitrarily small on-surface perturbations to a point cloud can turn a
shape into a speckle. We call this failure meltdown and study it through mechanistic interpretability
and diffusion dynamics. Based on this analysis, we propose a test-time intervention, PowerRemap,
which unlocks diffusion-based surface reconstruction under sparse conditions at test-time.
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1 INTRODUCTION

From virtual content creation to dexterous manipulation, many core applications in vision and
robotics hinge on reliable recovery of 3D surfaces from incomplete observations. This problem is
called surface reconstruction from point clouds (Huang et al., 2022). In real-world applications, the
available point clouds are often sparse, exacerbating the challenge of surface reconstruction. This
sparsity motivates generative priors: diffusion transformers attain state-of-the-art results in gener-
ative tasks for many modalities (Chen et al., 2024; Sahoo et al., 2024; Jia et al., 2025; Lu et al.,
2024b). Recently, they have been introduced to the 3D domain, overcoming challenges in surface
reconstruction from sparse point clouds due to learned priors from large-scale datasets (Sanghi et al.,
2024; Hui et al., 2024; Wu et al., 2024; Cao et al., 2024).

In this work, we investigate two state-of-the-art diffusion transformers for 3D surface reconstruc-
tion, WALA (Sanghi et al., 2024) and MAKE-A-SHAPE (Hui et al., 2024), on the task of surface
reconstruction from sparse point clouds. We observe an intriguing failure mode: an impercepti-
ble on-surface perturbation to the input point cloud can fracture the output into many disconnected
pieces. We call this failure mode meltdown and analyze it through two lenses – mechanistic inter-
pretability and diffusion dynamics – to understand its cause.

First, we employ activation patching to test the causal role of activations with respect to meltdown.
We find that a single cross-attention activation, early in the denoising process, controls the failure.
By investigating the effect of this activation, we find that its spectral entropy constitutes a proxy
of the observed failure phenomenon. Second, we find that the identified proxy tracks a symmetry-
breaking bifurcation of the reverse diffusion process. Based on these insights, we reverse-engineer a
test-time intervention, PowerRemap, which unlocks diffusion-based surface reconstruction under
sparse conditions at test-time.

Our contributions are summarized as follows:

1. Failure Phenomenon: Meltdown. We show that the state-of-the-art 3D diffusion trans-
formers WALA (Sanghi et al., 2024) and MAKE-A-SHAPE (Hui et al., 2024) perform sur-
face reconstruction from sparse point clouds in a brittle manner: small on-surface pertur-
bations to the input point cloud can fracture the output into multiple disconnected pieces.
We call this failure phenomenon meltdown.

2. Interpretability. This work provides a case study on how diffusion model behavior can
be understood and guided based on mechanistic interpretability. We link a circuit-level
cross-attention mechanism to diffusion-dynamics accounts of trajectory bifurcations.

3. Test-Time Intervention: PowerRemap. We propose a drop-in, test-time control to sta-
balize sparse point-cloud conditioning in diffusion transformers. PowerRemap averts
meltdown in 98.3% of cases on the Google Scanned Object (GSO) dataset (Downs et al.,
2022) for WALA.

We introduce the failure phenomenon, meltdown, in Section 2. In Section 3 and Section 4, we
analyze meltdown from the perspectives of mechanistic interpretability and diffusion dynamics,
respectively. Section 3.4 introduces our method, PowerRemap and presents results for it on the
GSO dataset. Finally, we link meltdown to diffusion dynamics in Section 4 and discuss on current
limitations in Section 6.

2 FAILURE PHENOMENON: MELTDOWN

We study a state-of-the-art diffusion transformer for 3D shape generation, namely WALA (Sanghi
et al., 2024). In Appendix B, we show that many observations and insights transfer to another 3D
diffusion transformer, namely MAKE-A-SHAPE (Hui et al., 2024). Such models can generate sur-
faces from several input modalities, including point clouds, thus solving the surface reconstruction
task: given a set P = {pi}Ni=1 ⊂ S ⊂ R3 of N points sampled from an underlying surface S , the
model G should reconstruct a surface consistent with the input and approximating the underlying
surface G(P) ≈ S. In many real-world scenarios (e.g., fast scene capture), N can be small, i.e. the
point cloud is sparse.
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As illustrated in Figure 1, we observe that there exist two sparse point clouds P,Q that are close in
the input space, but the corresponding outputs differ severely: G(P) is a connected surface while
G(Q) is a fragmented “speckle” of disconnected pieces. We will refer to this sudden catastrophic
fracture as meltdown.

To study this failure phenomenon systematically, let us first introduce the topological quantity C that
counts the connected components of the output surface and serves as a quantifyable identifier of the
healthy (C = 1) versus unhealthy output (C > 1). Furthermore, let us consider a running example
where the points are sampled from a simple sphere: S = {x : ∥x∥2 = 1}. This allows us to perform
experiments that precisely control for the distribution of the points. Specifically, we fix the random
seed and first identify two point clouds of the same size N = 400: P0 which produces a sphere
output C(G(P0)) = 1 and P1 which produces a speckle output C(G(P1)) ≫ 1 (typically around
100). Using spherical interpolation (geodesics on general surfaces), we can construct a continuous
family of point clouds Pρ ⊂ S. We sweep ρ ∈ [0, 1] and record C(ρ) := C (G (Pρ)).

Figure 1 illustrates the outcome of this experiment. As we sweep ρ from 0 to 1, we first observe
a long plateau of C(ρ) = 1, followed by a sudden jump to C(ρ) ≫ 1 over a very narrow range
of ρ. Refining the steps around this transition, we observe an effectively discontinuous jump in the
macroscopic descriptor C(ρ).

In Appendix B, we report observing meltdown across different diffusion transformers, i.e., WALA
(Sanghi et al., 2024) and MAKE-A-SHAPE (Hui et al., 2024), denoising strategies, i.e., DDIM (Song
et al., 2021) and DDPM (Ho et al., 2020b), and Google Scanned Objects (Downs et al., 2022).

3 MECHANISTIC INTERPRETATION AND INTERVENTION

After observing and quantifying meltdown in WALA, we ask: What is the root cause of this phe-
nomenon? To address this question, we turn to the growing field of mechanistic interpretability.

Mechanistic interpretability (Geiger et al., 2021; Wang et al., 2023b; Sharkey et al., 2025) studies
the internal mechanisms by which networks generalize, aiming to reverse-engineer representations
so that model behavior can be predicted and guided. Core workflows of mechanistic interpretability
involve decomposing models into analyzable components, and describing their roles and the flow of
information between them. In this regard, activation patching (Heimersheim & Nanda, 2024; Zhang
& Nanda, 2024) is one of the most prominent techniques. It tests the causal role of activations by
swapping them between a healthy and a unhealthy run and measuring the respective outcome. In
our context, we transition between a healthy (sphere) and unhealthy (speckle) run by continuously
moving along a meltdown path quantified by our control parameter ρ. This enables us to transi-
tion between a healthy and unhealthy run in a controlled manner, which are ideal conditions for
systematic activation patching to identify the root cause of meltdown.

3.1 WALA: DIFFUSION TRANSFORMER

Before we investigate the mechanistic behavior, we briefly summarize the relevant parts of the
WALA diffusion transformer. A more detailed description is available in Appendix A, the origi-
nal work (Sanghi et al., 2024), and the references therein.

Transformer. WALA is a latent diffusion model with a point-net encoder E, U-ViT-style (Hooge-
boom et al., 2023) denoising backbone B, and VQ-VAE decoder (van den Oord et al., 2017)
D. The U-ViT B = BK−1 ◦ · · · ◦ B0 has K = 32 transformer blocks Bk. The condition
C ∈ R1024×1024 enters via both AdaLN modulation Esser et al. (2024) and cross-attention. De-
noting by Zk ∈ R1728×1152 the tokens entering the k-th block, it computes Bk : Zk 7→ Zk+1 as
a combination of multi-head self-attention SA and cross-attention CA layers (col. 2) with residual
connections (col. 3):

Z̊ = ˚AdaLN(Zk,C), Y̊ = SA(Z̊), R̊ = Y̊ + Zk, (1a)
×

Z =
×

AdaLN(R̊,C),
×

Y = CA(
×

Z,C),
×

R =
×

Y + R̊, (1b)

Z̄ = ¯AdaLN(
×

R,C), Ȳ = MLP(Z̄), Zk+1 = Ȳ +
×

R. (1c)
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Algorithm 1 Localizing Meltdown via Activation Patching

Require: Encoder E; latent diffusion transformer B; decoder D; healthy point-cloud P; unhealthy
point-cloud Q

1: Z0
T ∼ N (0, I) ▷ sample initial noise

Record healthy activations:
2: CP ← E(P) ▷ embed the healthy point-cloud
3: for t = T : 1 do ▷ denoising loop
4: for k = 0 : K − 1 do ▷ block loop

5: Zk+1
t ← Bk(Zk

t ,CP) and record Yhealthy
k,t ←

×

Y
6: end for
7: Z0

t−1 ← DDIM(ZK−1
t ) ▷ discrete denoising update

8: end for
Patch unhealthy activations:

9: CQ ← E(Q) ▷ embed the unhealthy point-cloud
10: for t′ = T : 1 do ▷ denoising substitution loop
11: for k′ = 0 : K − 1 do ▷ block substitution loop
12: for t = T : 1 do ▷ denoising loop
13: for k = 0 : K − 1 do ▷ block loop

14: Zk+1
t ← Bk(Zk

t ,CQ) but patch
×

Y ← Yhealthy
k,t if t′ = t and k′ = k

15: end for
16: Z0

t−1 ← DDIM(ZK−1
t ) ▷ discrete denoising update

17: end for
18: Ck,t ← C(D(ZK−1

0 )) ▷ decode shape and count connected components after patch
19: end for
20: end for
21: return repair map {Ck,t}k=0:K−1,t=1:T

Diffusion. WALA is trained in the standard DDPM (Ho et al., 2020b) framework. At inference,
the reverse diffusion maps an initial Gaussian latent ZT ∼ N (0, I) to Z0 by iterating over a fixed
schedule of denoising steps t ∈ T = {T, . . . , 0}, where at each step the denoiser conditioned on C
updates Zt → Zt−1. At inference-time, we can sample using DDIM (Song et al., 2021) or DDPM
(Ho et al., 2020b).

3.2 LOCALIZING MELTDOWN VIA ACTIVATION PATCHING

In a diffusion transformer, activations span two axes: network depth (blocks) k ∈ K = {0, · · · , 31}
and diffusion time (denoising steps) t ∈ T = {7, · · · , 0}. This depth–time grid K × T constitutes
the search space for the activation patching. In our search, we specifically target the token-wise

cross-attention write
×

Y ∈ R1728×1152 which serves as the additive interface to the residual stream
through which the context C influences the latent tokens. We scan the depth-time grid as given in
Algorithm 1 and record healthy activations to patch them for forward passes based on an unhealthy
point cloud.

We depict the result of the search procedure in Figure 2. We identify a single cross-attention write,

Y ≡
×

Y4,7, to be responsible for meltdown. The location of this activation is consistent with prior
work that finds cross-attention to have the strongest impact on the generated output in the early
denoising time-steps (Liu et al., 2025). An intuition for this is that at early denoising steps the
diffusion model overly relies on the conditioning as there is no other meaningful signal present.

The goal of mechanistic interpretability is to reverse-engineer internal mechanisms that are human-
understandable functions. Since we observe the meltdown as we increase ρ, we ask whether there is
an interpretable function of Y(ρ) that allows us to understand the mechanistic cause of meltdown.
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Figure 2: Our search in activation space finds that a single cross-attention write Y4,7 controls melt-
down.

3.3 INVESTIGATING THE EFFECT OF PATCHING

Having localized the failure to a single cross-attention write Y, we ask which properties of this write
predict meltdown and its rescue under patching. Empirically, we find a single scalar that captures
the effect: the spectral entropy (Powell & Percival, 1979).

Definition 1 (Spectral entropy). Let σi be the singular values of the matrix Y. The spectral entropy
of Y is

H = −
∑
i

pi log pi with pi =
σ2
i∑
j σ

2
j

(2)

being the normalized directional energies.

Low H indicates that the update concentrates its energy in a few directions; high H indicates a more
isotropic, spread-out update. Figure 3a plots connectivity C(ρ) and Figure 3b plots spectral entropy
H(ρ) along the same path ρ for three diffusion seeds. In the baseline run, H(ρ) increases roughly
monotonically and smoothly with ρ; at some ρ = ρmelt the surface fragments (C > 1). When
we patch Y with its healthy value, H(ρ) remains flat at the healthy level and the surface remains
connected for all ρ. Thus H(ρ) serves as a simple proxy that tracks failure (baseline) and rescue
(patched) at the causal site.

(a) Connected components C vs. ρ (b) Spectral entropy H vs. ρ

Figure 3: As we move from a healthy to an unhealthy run, we observe that the baseline case shows
a smooth rise in spectral entropy and a sudden jump in connectivity. Patching our Y keeps the
spectral entropy at healthy levels and preserves connectivity. This behavior is consistent across
diffusion seeds.

3.4 POWERREMAP : A TEST-TIME SPECTRAL INTERVENTION

Having identified the cross-attention write Y and the spectral entropy H of its singular spectrum as
a proxy that tracks failure and rescue, we now ask whether we can directly steer this quantity at test-
time without access to healthy activations, which in-turn presumes access to a healthy point-cloud
which is not the practice case. Our approach is simple: modify Y so that H decreases while leaving
the feature-directions (singular vectors of Y) intact.
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3.4.1 METHOD

We introduce a minimal intervention that changes only the magnitudes of the singular values of Y
and keeps its singular vectors fixed.
Definition 2 (PowerRemap). Let Y = UΣV⊤ be the SVD of Y with singular values σi ≥ 0.
Let σmax = maxi σi > 0 and γ > 1. Then define

Σ′ = σmax

(
Σ

σmax

)γ

, PowerRemap(Y) = UΣ′ V⊤. (3)

Proposition 1 (PowerRemap lowers spectral entropy). Let H and PowerRemap be defined as
above. For any γ > 1,

H
(
PowerRemap(Y)

)
≤ H(Y),

with equality iff all σi > 0 are equal.

This compresses the spectrum (smaller singular values shrink faster), which by construction targets
the proxy parameter without changing the singular vectors of the features. We refer to the Appendix
C for a corresponding proof.

3.4.2 EVALUATION AT SCALE

We evaluate the effectiveness of PowerRemap on Google Scanned Objects (GSO) (Downs et al.,
2022). GSO is a diverse corpus of 1,030 scanned household objects and was not used to train
WALA. As depicted in Table 1, we identify meltdown in 89.9% out of the 1,030 shapes and find
that PowerRemap stabilizes failure in 98.3% of cases. We depict qualitative examples of the base-
line meltdown and the corresponding PowerRemap in Figure 4. In Appendix B.3, we detail our
experimental setup and show that our method aids in reducing meltdown for MAKE-A-SHAPE. We
also experimented with alternative ways of reducing the spectral entropy, for example reducing the
temperature of the cross-attention block responsible for meltdown. However, those attempts did not
alleviate the failure mode.

Table 1: Category-wise evaluation of PowerRemap on GSO (Top-3 Categories). Our method
stabilizes failures in 98.3% of cases.

Category Shapes Meltdown occurs [%] PowerRemap rescues [%]
Shoe 254 97.2 99.6
Consumer goods 248 97.6 99.2
Unknown 216 88.4 95.8
Other 112 92.9 99.0

Total 1030 89.9 98.3

Figure 4: Example results on the Google Scanned Objects dataset. We identify meltdown behavior
in the WALA baseline model for 97.2% shapes. Out of these, the PowerRemap intervention rescues
98.3%, producing valid connected outputs.
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4 DIFFUSION DYNAMICS

Diffusion dynamics refers to a collection of ideas describing the generative diffusion process using
established theory from statistical physics (Raya & Ambrogioni, 2023; Biroli et al., 2024; Yu &
Huang, 2025; Ambrogioni, 2025), information theory (Ambrogioni, 2025), information geometry
(Chen et al., 2023; Ventura et al., 2025), random-matrix theory (Ventura et al., 2025), and dynamical
systems (Ambrogioni, 2025). Key concepts from diffusion dynamics allow us to frame both the
observed failure phenomenon and the intervention, ultimately connecting the mechanistic analysis
to a theoretically established interpretation of the generative diffusion process.

4.1 PRELIMINARIES

We introduce key ideas of diffusion dynamics adapted from Raya & Ambrogioni (2023); Biroli et al.
(2024); Ambrogioni (2025). The reverse-time diffusion can be viewed as a noisy gradient flow in a
time-dependent potential u(·, s):

dXt = −∇xu(Xt, s)dt+ g(s)dWt, u(x, s) = −g2(s) log p(x, s) + Φ(x, s), (4)

where p(·, s) is the forward marginal, g is the noise scale, and Φ(x, s) =
∫ x

0
f(z)dz integrates the

forward drift f . The potential u is essentially a scaled and shifted marginal. The critical points x∗

of this potential ∇u(x∗, s) = 0 are the attractors of the dynamics. Early in the generation (t ≈ 0),
there is a global symmetric basin with a stable central fixed point, and the trajectories exhibit mean-
reverting fluctuations around it. As noise decreases, the energy landscape deforms and, at a critical
time τ∗, the fixed point loses stability and the landscape bifurcates into two basins. Such bifurcations
repeat until at t ≈ T the potential has many fixed points aligning with the data modes (i.e., the data
points under an exact score assumption). These bifurcation times τ∗ can be interpreted as decision
times where the sample trajectory is committed to a future attractor basin.

Around the degenerate critical point x∗(τ∗), two paths that are nearby for t < τ∗ may diverge
exponentially for t > τ∗ due to the Lyapunov exponent becoming positive (the smallest eigenvalue
of ∇2u obtained from linearizing the reverse dynamics around the critical point). This can amplify
tiny input differences and is the mechanism behind sending trajectories to different attractors.

This selection of one among many symmetry-equivalent states is called spontaneous symmetry
breaking. A canonical example is a ferromagnet: at high temperature (t ≈ T ) spins are disordered,
while as t → 0 they align. Any magnetization direction is a priori equivalent, yet each realization
picks one. The underlying symmetry is visible only in the ensemble over many realizations.

4.2 APPLICATION TO MELTDOWN AND INTERVENTION

To test the diffusion dynamic perspective of the meltdown phenomenon and the intervention, we
perform several experiments predicted by this view. However, we must first introduce conditioning
in the above diffusion dynamics view. For a fixed condition C, this extension is trivial: simply
modify the marginal p(·, s) = p(·, s|C). However, a family of conditions, like the univariate inter-
polation {C(ρ)|ρ ∈ [0, 1]}, introduces an additional dependence in the above formalism, and it is
not obvious how to analyze the evident bifurcation around C∗ instead of τ∗. Fortunately, since the
symmetry breaking originates locally around the bifurcation time τ∗ and point x∗, a small change
in the condition dC can be related to a small change in the initial condition dxT through the total
differential of the reverse path γ : (t, xT ,C) 7→ xt. Qualitatively, this allows us to consider different
xT for a fixed C in place of different C for a fixed xT .

Ensemble. Spontaneous symmetry breaking suggests that even though a single trajectory commits
to a single attractor (sphere versus speckle), both “symmetric” configurations are visited over an
ensemble of random trajectories. We record the trajectories for 100 initial conditions xT ∼ N (0, I)
over the ρ ∈ [0, 1] range and plot the resulting shape connected component distribution in Figure
5a. The extremes ρ = 0, 1 are far from a critical condition, and all trajectories converge to the
respective attractors. However, at the intermediate conditions, the ensemble of trajectories visits
both attractors, with the ratio of fractured shapes increasing steadily with ρ. In expectation, the
component curve ExT

[C(ρ)] exhibits a smooth behavior, relaxing the discrete jump in C(ρ) for a
single xT .
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Trajectories. We can illustrate and qualitatively confirm the explanation for meltdown suggested
by the diffusion dynamics perspective by considering an intermediate ρ = 0.4 for which the ensem-
ble visits both attractors. This is visualized in Figure 5b for 1000 trajectories, projected onto a 2D
linear subspace spanned by the first two principal components of the final distribution p(·, 0), which
shows two major modes and some minor modes. The baseline trajectories are colored blue/red for
sphere/speckle results. The initial distribution p(·, T ) is a Gaussian from which all the trajectories
originate. The first denoising step resembles the initial mean-reverting stage of denoising (Biroli
et al., 2024; Ventura et al., 2025) as the trajectories remain close. The second step marks the sym-
metry breaking. We can also imagine a “decision boundary” between the blue and red trajectories:
this is the projected separatrix that demarcates the two attractor basins. The intervention alters the
first step, after which the close bundle of trajectories flows smoothly to a tight minor mode of the
baseline.

(a) (b)

Figure 5: A collection of diffusion trajectories reveals additional insights about the meltdown phe-
nomenon. (a) In expectation over the initial noise, both the sphere and speckle shapes are produced
at intermediate conditions, relaxing the sharp meltdown behavior for a fixed initial noise. (b) Latent
diffusion trajectories projected onto a 2D linear subspace spanned by the first two principal compo-
nents of the final distribution of the baseline. The PowerRemap trajectories in green form a tight
bundle following a different path that converges to a minor mode of the baseline distribution.

Potential. We calculate the potential similar to the procedure introduced by Raya & Ambro-
gioni (2023). We select a pair of representative trajectories from each attractor and interpo-
late between them along a variance-preserving curve xt(α) = cos(α)xsphere

t + sin(α)xspeckle
t for

α ∈ [−0.2π, 1.2π]. Figure 6 reveals the two diffusion stages separated by the bifurcation time
τ∗ ≈ 5, where the single potential well flattens and splits into the two attractor basins.

Figure 6: The potential u (related to the marginal probability via Eq. (4)) reveals the two diffusion
stages separated by the bifurcation time τ∗ ≈ 5, where the single potential well flattens and splits
into the two attractor basins. The particle’s location just before this early bifurcation commits it
to the final attractor and ultimately determines the generated shape. Small perturbations around
this time become amplified, giving the appearance of discrete jumps that characterize the observed
meltdown.
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5 RELATED WORK

Activation patching In the literature, activation patching has been used to locate mechanistic
modules of causal interest in many modalities, ranging from language (Wang et al., 2023a; Meng
et al., 2022; Conmy et al., 2023) to vision-language (Golovanevsky et al., 2025) and audio (Fac-
chiano et al., 2025). To the best of our knowledge, this is the first work that leverages activation
patching in the geometry domain. The differentiating factor of geometry over the modalities men-
tioned before is that it is objectively measurable at the output (connectedness) as well as at the input
(point cloud). Using point-cloud inputs as opposed to text prompts allows us to continuously inter-
polate between a healthy and an unhealthy run. As a result, we can quantify how the causal influence
of an identified site changes smoothly along this interpolation.

Spectral entropy. Spectral measures are increasingly used in interpretability. Skean et al. (2025)
study the matrix entropy of hidden layers, while Yunis et al. (2024) and Lu et al. (2024a) relate
weight spectra to generalization. Our analysis provides further evidence that the spectral properties
of model internals are indicative of behavior.

6 DISCUSSION AND LIMITATIONS

While we identify a simple interpretable proxy for the meltdown (spectral entropy) and also reduce
the effect of activation patching to a simple intervention (PowerRemap), we cannot argue for the
uniqueness of these, for a concrete example, how to select the strength γ of the remap. There ex-
ists a phenomenological hierarchy: the generated shape, the diffusion process, and the transformer
circuits. While we link the sharp meltdown behavior to bifurcations in the diffusion dynamics, and
a specific circuit to the generated shape, a question remains: why does a decreased spectral entropy
reduce invalid outputs? A speculative explanation is that since the Y matrix stacks outputs of all
cross-attention heads, the first singular vectors are features identified by multiple heads. Corre-
spondingly, the relative boost of the aligned features may facilitate a “consensus” which is required
for a valid output. A fully satisfactory answer would presume this link to be universal across models,
not a mere particularity of the circuit. Preliminary results on the MAKE-A-SHAPE model suggest
the link between the spectral entropy and the validity of the output transfers to a large degree, but
more work is needed to draw strong conclusions.

7 CONCLUSION

We identified an intriguing failure mode in the state-of-the-art diffusion model WALA (Sanghi et al.,
2024) for 3D surface reconstruction, namely meltdown: small on-surface perturbations to the input
point cloud result in fragmented output shapes. This failure mode can be traced back to activations
after a cross-attention branch at early stages of the reverse diffusion process. We found that the
spectral entropy of the activations is an indicator of impending meltdown. Based on these insights,
we proposed a simple but efficient test-time remedy, PowerRemap, that reduces spectral entropy
and successfully rescues meltdown in the majority of cases on the widely used Google Scanned
Objects (Downs et al., 2022) dataset. While our analysis was derived from (Sanghi et al., 2024), we
observed that meltdown and its mechanistic cause transfer to another diffusion-based 3D diffusion
transformer, MAKE-A-SHAPE (Hui et al., 2024), suggesting broader relevance beyond a single
architecture. Beyond this practical remedy, we established a connection between meltdown and
bifurcations in diffusion dynamics, offering a mechanistic lens on how instabilities arise during
the reverse process. We believe this perspective not only advances the robustness of 3D surface
reconstruction but also opens new avenues for interpretability research in diffusion models.

REPRODUCIBILITY STATEMENT

We describe all experimental setups in the main text. Appendix B provides exact reproduction
protocols and lists the random seeds for every result.
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A BACKGROUND

In this section, we provide background information on the diffusion transformers WALA (Sanghi
et al., 2024) and MAKE-A-SHAPE (Hui et al., 2024) along the dimensions diffusion (Appendix A.1)
and transformer (Appendix A.2).

A.1 DIFFUSION

Forward transition. Diffusion generative models synthesize data by inverting a Markov chain
that gradually corrupts an observation x0 ∼ pdata with Gaussian noise over T discrete timesteps
(Sohl-Dickstein et al., 2015; Ho et al., 2020a). The forward (noising) transition is

q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
, t = 1, . . . , T, (5)

q(xt | x0) = N
(
xt;
√
ᾱt x0, (1− ᾱt)I

)
, with ᾱt=

t∏
s=1

(1− βs), (6)

where the variance schedule {βt}Tt=1 ⊂ (0, 1) is chosen so that xT is nearly i.i.d. N (0, I). Both
architectures are associated with a cosine variance schedule.

Noise prediction objective. Instead of directly regressing x0, the denoising neural networks ϵθ of
WALA and MAKE-A-SHAPE have been trained to predict the added noise:

Lsimple(θ) = Et,x0,ϵ

[∥∥ϵ− ϵθ(
√
ᾱt x0 +

√
1− ᾱt ϵ︸ ︷︷ ︸

xt

, t)
∥∥2
2

]
, ϵ ∼ N (0, I). (7)

This “ϵ-parameterization” empirically stabilizes training and is adopted by nearly all modern models
(Ho et al., 2020a).

Denoising (DDPM). Given a trained ϵθ, the original Denoising Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020a) samples via the stochastic reverse transition

pθ(xt−1 |xt) = N
(
xt−1;

1√
1− βt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)

︸ ︷︷ ︸
µθ(xt,t)

, σ2
t I
)
, σ2

t = β̃t, (8)

where β̃t = βt
1−ᾱt−1

1−ᾱt
. Iterating Eq. equation 8 from t=T to 1 produces x0 in T noisy steps.

Denoising (DDIM). Song et al. (2021) showed that the same model admits a deterministic implicit
sampler (DDIM) obtained by setting the variance term to zero:

xt−1 =
√
ᾱt−1

(xt −
√
1− ᾱt ϵθ(xt, t)√

ᾱt

)
︸ ︷︷ ︸

x̂0

+
√

1− ᾱt−1 ϵθ(xt, t). (9)

Eq. equation 9 preserves the marginal q(xt−1 | x0), enabling user-specified inference schedules
(e.g., t = T,. . . ,1 with T ≫ 1 for high fidelity or sparse subsets for speed) without retraining.
Crucially, Eqs. equation 8–equation 9 share the same ϵθ trained via Eq. equation 7. Hence one can
train with the log-likelihood–consistent DDPM objective but sample using DDPM or DDIM.

Classifier-free guidance. Both architectures employ classifier-free guidance (CFG) (Ho & Sal-
imans, 2022). CFG biases the denoising direction toward a user condition without requiring an
external classifier. For a current latent xt and the shared noise predictor ϵθ, we obtain two esti-
mates at the same step t: the unconditional prediction ϵuncond (with the condition omitted) and the
conditional prediction ϵcond (under the desired condition). We then form a guided estimate

ϵ̃ = ϵuncond + s
(
ϵcond − ϵuncond

)
, s ≥ 0,

and substitute ϵ̃ in place of ϵθ(xt, t) in the DDPM/DDIM updates (Eqs. equation 8–equation 9).
Setting s = 1 at inference-time ignores updates from the unconditional stream, i.e., ϵ̃ = ϵcond.
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A.2 TRANSFORMER

The noise–prediction objective equation 7 only specifies what to learn but leaves open ow the de-
noiser ϵθ is parameterised. Classical DDPMs adopt a convolutional UNET encoder–decoder (Ron-
neberger et al., 2015; Ho et al., 2020a), whereas modern large-scale models (e.g. Stable Diffusion,
Imagen) replace the convolutional blocks with Transformer layers, yielding the UViT (“U-shaped
Vision Transformer”) backbone that now dominates high-fidelity diffusion systems(Bao et al., 2023;
Karras et al., 2022). Both architectures, WALA and MAKE-A-SHAPE, implement a diffusion gen-
erative model via Transformer layers.

A.2.1 OVERVIEW

Both methods adopt a wavelet–latent diffusion pipeline in which 3D shapes are represented as multi-
scale wavelet coefficients and a U-ViT-style denoising backbone (Hoogeboom et al., 2023) is trained
in the DDPM (Ho et al., 2020b) framework. The key difference lies in how the wavelet data are fed
to the diffusion core.

1. WALA first compresses the full wavelet tree with a convolutional VQ-VAE (stage 1), map-
ping the diffusible wavelet tree to a latent grid. The latent grid is then modeled by a 32-layer
U-ViT (stage 2), where each Transformer layer runs self-attention and cross-attention, to-
taling 32 cross-attention calls.

2. MAKE-A-SHAPE skips the auto-encoder and instead packs selected wavelet coefficients
into a compact grid. The U-ViT backbone then downsamples this tensor to a bottleneck
volume. The bottleneck is traversed by a 16-layer U-ViT core—8 self-attention layers
immediately followed by 8 cross-attention layers— before up-sampling restores the packed
grid

A.2.2 CONDITIONING PATHWAY (POINT-CLOUD)

In general, both MAKE-A-SHAPE and WALA share a common pipeline: PointNet encoding
followed by aggregation and injecting the resulting latent vectors into the U-ViT generator via (i)
affine modulation of normalization layers and (ii) cross-attention.

In particular, MAKE-A-SHAPE injects the conditioning latent vectors into the U-ViT genera-
tor at three stages: (1) concatenation: the latent vectors are aggregated and concatenated as
additional channels of the input noise coefficients, (2) affine modulation: the latent vectors
are aggregated and subsequently utilized to condition the convolution (down-sampling) and de-
convolution (up-sampling) layers via modulating the affine parameters of the group normalization
layers, (3) cross-attention: each condition latent vector is augmented with an element-wise
positional encoding and then fed into a cross-attention module alongside the bottleneck volume.

WALA injects the conditioning latent vectors into the U-ViT generator at two stages: (1)
affine modulation: the latent vectors are linearly projected via a global projection network and used
to modulate the scale and bias parameters of GroupNorm layers in both the ResNet and attention
blocks (AdaGN) (Esser et al., 2024), (2) cross-attention: each latent vector, augmented with an
element-wise positional encoding, is employed as the key and value in cross-attention modules
interleaved within each transformer block.
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B EXPERIMENTS

This section shows that many observations and insights gained through studying the diffusion trans-
former WALA (Sanghi et al., 2024) under DDIM sampling on spheres transfer (i) to the diffusion
transformer MAKE-A-SHAPE (Hui et al., 2024) (ii) sampling under DDPM and (iii) other shapes
(GSO). Additionally, this section details the experimental setup to reproduce our results. In particu-
lar:

1. GENERAL (B.1): This section provides an overview on our experimental setup.

2. SPHERE EXPERIMENTS (B.2):

(a) GENERAL (B.2.1: This section provides an overview on the setup for the sphere ex-
periments.

(b) WALA, DDIM (B.2.2): This section reports the experimental setup for the sphere
experiments in the main text.

(c) WALA, DDPM (B.2.3): This sections reports additional results for WALA under
DDPM sampling.

(d) MAKE-A-SHAPE, DDIM (B.2.4): This section provides results for MAKE-A-SHAPE
under DDIM sampling.

(e) MAKE-A-SHAPE, DDPM B.2.5: This section provides results for MAKE-A-SHAPE
under DDPM sampling.

3. GOOGLE SCANNED OBJECTS (GSO) (B.3): This section details our experiments on GSO
(Downs et al., 2022).

B.1 GENERAL

This section provides a general overview on the experimental setup for all results reported in this
work.

Restrict Analysis to Conditional Stream. As the failure behavior, meltdown, is independent of
the unconditional stream, we exclusively investigate the conditional prediction stream. That is, we
set the CFG scale s = 1.0 and restrict our mechanistic analysis (e.g. activations) and diffusion
dynamics analysis (e.g., latents xT ) to the conditional stream.

Seeding. Randomness regarding a diffusion trajectory is controlled globally by seed-
ing Python, NumPy, and PyTorch (torch.backends.cudnn.deterministic=True,
benchmark=False) so that every evaluation at a given ρ starts from the same terminal noise
xT .

B.2 SPHERE EXPERIMENTS

This section (i) provides a detailed account on our setup for the sphere experiments and (ii) reports
additional results for meltdown on MAKE-A-SHAPE and DDPM sampling.

B.2.1 SETUP

We detail the minimal, fully reproducible setup used to produce the sphere experiments for WALA
and MAKE-A-SHAPE. Throughout, the control parameter is ρ ∈ [0, 1], and the phenomenological
order parameter is the number of connected components C(ρ) in the generated mesh.

Conditioning clouds on the sphere. We work on S = {x : ∥x∥2 = 1} and fix N = 400 points for
WALA and N = 1200 for MAKE-A-SHAPE. The base cloud P(0) uses a golden-angle (Fibonacci)
sphere distribution:

g = π(3−
√
5), i ∈ {0, . . . , N − 1}, yi = 1− 2(i+ 0.5)

N
, ri =

√
1− y2i , θi = g i,

pi(0) =
(
ri cos θi, yi, ri sin θi

)
.
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A second target cloud P(1) is produced by jittering each pi(0) with i.i.d. Gaussian noise ni ∼
N (0, 0.12I3) and renormalizing to the unit sphere:

p̃i =
pi(0) + ni

∥pi(0) + ni∥2
, P(1) = {p̃i}Ni=1.

We then move each point along the surface via per-point spherical linear interpolation (SLERP)
between corresponding pairs:

pi(ρ) = slerp
(
pi(0), p̃i; ρ

)
=

sin((1− ρ)ωi)

sinωi
pi(0) +

sin(ρωi)

sinωi
p̃i, ωi = arccos

(
⟨pi(0), p̃i⟩

)
.

This yields the cloud path P(ρ) = {pi(ρ)}Ni=1 used throughout.

Decoding and component counting. Given P(ρ), we compute a conditioning code via the
model’s encoder and sample a latent with the diffusion sampler to yield G(P(ρ)), i.e. a mesh.
We report

C(ρ) = len(trimesh.split(mesh)),

i.e., the number of connected components in trimesh.

Grid over the control parameter. W sweep a uniform grid of ρ values, i.e., ρ ∈
{0, 0.05, . . . , 1.0}.

Connectivity curve C(ρ). We evaluate C(ρ) on the uniform ρ grid. For each ρ, we reseed the
RNGs to reproduce the identical terminal noise xT . The curve reported is is the set

{(ρ, C(ρ))}ρ∈{0,0.05,...,1.0},

from which the observed plateau at C(ρ) = 1 and the subsequent jump to C(ρ) > 1 over a narrow
ρ-interval (a connectivity bifurcation) are directly obtained.

Spectral entropy curve H(ρ). We evaluate the spectral entropy of the localized cross–attention
write on the same uniform control grid ρ ∈ {0, 0.05, . . . , 1.0} and with identical terminal noise
across ρ.

For each ρ, we encode the cloud P(ρ), run a single sampling trace, and read out the token-wise
cross-attention write at the chosen site, Y(ρ). Let {σi(ρ)}i be the singular values of Y(ρ) (SVD of
the matrix with shape tokens × features). We form normalized directional energies

pi(ρ) =
σi(ρ)

2∑
j σj(ρ)2

, H(ρ) = −
∑
i

pi(ρ) log pi(ρ),

using the natural logarithm. The reported curve is the set{
(ρ, H(ρ))

}
ρ∈{0,0.05,...,1.0}.

B.2.2 WALA, DDIM

Key hyperparameters.

Model ADSKAILab/WaLa-PC-1B
Sampler DDIM (η = 0)
Diffusion rescale 8 steps (diffusion rescale timestep=8), i.e., default
CFG weight 1.0 (scale=1.0), i.e., we consider only conditional stream
Points per cloud N = 400
Cloud source Unit sphere, golden-angle placement
Target cloud Gaussian jitter σ = 0.1 on R3, renormalize to S2
Interpolation Per-point SLERP, control ρ ∈ [0, 1]
ρ grid 21 values: 0, 0.05, . . . , 1.0
Seeds 0− 1000 for all RNG calls
Order parameter C(ρ) = # connected components (trimesh.split)
Device cuda (CPU is functionally equivalent but slower)
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B.2.3 WALA, DDPM

The activation-patching grid for WALA under DDPM is equivalent to Figure 2, i.e., WALA under
DDIM. The corresponding for curves can be found in Figure 7.

Key hyperparameters.

Model ADSKAILab/WaLa-PC-1B
Sampler DDPM
Diffusion rescale 8 steps (diffusion rescale timestep=8)
CFG weight 1.0 (scale=1.0) (we consider only conditional stream)
Points per cloud N = 400
Cloud source Unit sphere, golden-angle placement
Target cloud Gaussian jitter σ = 0.1 on R3, renormalize to S2
Interpolation Per-point SLERP, control ρ ∈ [0, 1]
ρ grid 21 values: 0, 0.05, . . . , 1.0
Seeds 0 for all RNG calls
Order parameter C(ρ) = # connected components (trimesh.split)
Device cuda (CPU is functionally equivalent but slower)

(a) Connected components C vs. ρ (b) Spectral entropy H vs. ρ

Figure 7: [WALA, DDPM]. Our results from WALA under DDIM sampling transfer to WALA under
DDPM sampling.

B.2.4 MAKE-A-SHAPE, DDIM

We report the result for the activation search procedure for MAKE-A-SHAPE under DDIM in Figure
8. The corresponding curves are depicted in Figure 9.

Key hyperparameters.

Model ADSKAILab/Make-A-Shape-point-cloud-20m
Sampler DDIM
Diffusion rescale 100 steps (diffusion rescale timestep=8), i.e., default
CFG weight 1.0 (scale=1.0), i.e., we consider only conditional stream
Points per cloud N = 1200
Cloud source Unit sphere, golden-angle placement
Target cloud Gaussian jitter σ = 0.1 on R3, renormalize to S2
Interpolation Per-point SLERP, control ρ ∈ [0, 1]
ρ grid 21 values: 0, 0.05, . . . , 1.0
Seeds 0 for all RNG calls
Order parameter C(ρ) = # connected components (trimesh.split)
Device cuda (CPU is functionally equivalent but slower)
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B.2.5 MAKE-A-SHAPE, DDPM

The activation-patching grid for MAKE-A-SHAPE under DDPM is equivalent to Figure 8, i.e.,
MAKE-A-SHAPE under DDIM. The corresponding curves can be found in Figure 10.

Key hyperparameters.

Model ADSKAILab/Make-A-Shape-point-cloud-20m
Sampler DDPM
Diffusion rescale 100 steps (diffusion rescale timestep=8), i.e., default
CFG weight 1.0 (scale=1.0) (we consider only conditional stream)
Points per cloud N = 1200
Cloud source Unit sphere, golden-angle placement
Target cloud Gaussian jitter σ = 0.1 on R3, renormalize to S2
Interpolation Per-point SLERP, control ρ ∈ [0, 1]
ρ grid 21 values: 0, 0.05, . . . , 1.0
Seeds 0 for all RNG calls
Order parameter C(ρ) = # connected components (trimesh.split)
Device cuda (CPU is functionally equivalent but slower)
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B.3 GOOGLE SCANNED OBJECTS (GSO)

This section provides (i) evidence that meltdown exists across a variety of shapes, i.e., across the
diverse GSO corpus, and diffusion transformers, i.e., WALA and MAKE-A-SHAPE. Furthermore it
details our setup to evaluate our method PowerRemap on GSO (Downs et al., 2022) as well as the
results of these evaluations.

General. We evaluate PowerRemap on the Google Scanned Objects (GSO) repository of 1,030
real, scanned household objects (Downs et al., 2022) on the WALA and MAKE-A-SHAPE architec-
tures, using DDIM sampling Song et al. (2021). For each object, we load the corresponding mesh
as the ground-truth surface S ⊂ R3, center it and scale it to the unit cube.

Find meltdown. We reuse the notation of §2. Given a mesh S and generator G, we first determine
a sparse point budget by searching the smallest N over a grid for which a Poisson-disk sample
A = {ai}Ni=1 ⊂ S yields a healthy output C(G(A)) = 1. We then define a surface-constrained
meltdown path by jittering A and projecting back to S to obtain B = {bi}Ni=1, and interpolate
on-manifold

Pρ = ΠS
(
(1− ρ)A+ ρB

)
, ρ ∈ [0, 1],

where ΠS is nearest-point projection. With a fixed random seed (reseeded before every inference),
we sweep ρ on a geometric grid to bracket a jump in connectivity, then refine by bisection to the
smallest ε such that C(G(Pε))≫ 1.

Algorithm 2 Adversarial meltdown search on GSO (Downs et al., 2022)

Require: surface S, generator G, component counter C(·), seed s = 0
1: normalize S; find smallest N s.t. A∼Poisson(S, N) gives C(G(A))=1 (reseed s)
2: B ← ΠS(A+ ξ) ▷ jitter & project
3: sweep ρ on a geometric grid; find ρlo<ρhi with C(ρlo)=1, C(ρhi)>1
4: ε← bisection(ρlo, ρhi) with reseeding to s
5: return (N, ε, C0=C(G(A)), Cε=C(G(Pε)))

Evaluate PowerRemap. The task of reconstructing a global surface from a sparse point cloud has
only two possible outcomes: success or failure. Thus, we assess the effectiveness PowerRemap
on GSO by counting the number of times it succeeded in reducing Cε to 1, i.e., turning a speckle
into a shape. Hence, we treat each shape as a Bernoulli trial under our adverserial search on GSO
(Algorithm 2). Each trail has an outcome p ∈ {0, 1}, where p = 1 iff the reconstruction meets the
criterion Cε = 1; otherwise p = 0. We first identify baseline failures as those with C0,baseline =
1 and Cε,baseline > 1. We then apply PowerRemap only to these failures and count a remedy
when Cε,PowerRemap = 1.For both diffusion transformers, WALA and MAKE-A-SHAPE, we set the
hyperparameter γ = 100 in PowerRemap for all our experiments.

Results. For WALA, we found meltdown in 926/1,030 (89.9%) shapes. Our method
PowerRemap remedies failure in 910/926 (98.3%) cases. Table 2 depicts the performance of
our method across all shape categories. For MAKE-A-SHAPE, we found meltdown in 910/1,030
(88.9%) shapes. Our method PowerRemap remedies failure in 92/910 (10.1%) cases. Table 3
depicts the performance of our method across all shape categories.

Discussion. We observe meltdown in both diffusion transformers under investigation. For WALA,
we find that setting a global hyperparameter γ = 100 yields a stabilization rate of 98.3%. For
MAKE-A-SHAPE, we find that the effectiveness of PowerRemap is more sensitive to the choice
of γ and conclude that further investigation is necessary. We note that preliminary results suggest
that (adaptive) softmax tuning is not capable to effectively reduce meltdown and PowerRemap is
needed to do so.
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Category #Shapes Meltdown Meltdown (%) PR Success PR@Melt
All 1030 926 89.9 910 98.3
Shoe 254 247 97.2 246 99.6
Consumer Goods 248 242 97.6 240 99.2
Unknown 216 191 88.4 183 95.8
Toys 147 89 60.5 85 95.5
Bottles and Cans and Cups 53 53 100.0 53 100.0
Bag 28 26 92.9 26 100.0
Media Cases 21 21 100.0 21 100.0
Action Figures 17 16 94.1 15 93.8
Board Games 17 16 94.1 16 100.0
Legos 10 6 60.0 6 100.0
Headphones 4 4 100.0 4 100.0
Keyboard 4 4 100.0 4 100.0
Mouse 4 4 100.0 4 100.0
Stuffed Toys 3 3 100.0 3 100.0
Hat 2 2 100.0 2 100.0
Camera 1 1 100.0 1 100.0
Car Seat 1 1 100.0 1 100.0

Table 2: [WALA (Sanghi et al., 2024)] Category-wise evaluation of PowerRemap on GSO. Melt-
down counts shapes where the baseline generator yields a single component on the unperturbed
input but multiple components after a small, on-surface perturbation (C0=1, Cε>1). Meltdown (%)
is Meltdown divided by #Shapes. PR Success counts—among meltdown shapes only—cases where
PowerRemap restores a single component (Cε,PowerRemap = 1). PR@Melt is the success rate on
meltdown shapes (PR Success / Meltdown, shown in %).

Category #Shapes Meltdown Meltdown (%) PR Success PR@Melt (%)
Global 1030 910 88.3 92 10.1
Consumer Goods 248 235 94.8 26 11.1
Shoe 254 234 92.1 17 7.3
Unknown 216 198 91.7 24 12.1
Toys 147 83 56.5 9 10.8
Bottles and Cans and Cups 53 50 94.3 1 2.0
Bag 28 28 100.0 8 28.6
Media Cases 21 21 100.0 3 14.3
Board Games 17 17 100.0 0 0.0
Action Figures 17 15 88.2 1 6.7
Legos 10 6 60.0 1 16.7
Mouse 4 4 100.0 1 25.0
Headphones 4 3 75.0 0 0.0
Stuffed Toys 3 3 100.0 1 33.3
Keyboard 4 2 50.0 0 0.0
Hat 2 2 100.0 0 0.0
Camera 1 1 100.0 0 0.0
Car Seat 1 1 100.0 0 0.0
Macro avg – – 88.4 – 9.9

Table 3: [MAKE-A-SHAPE (Hui et al., 2024)] Category-wise evaluation of PowerRemap on GSO.
Meltdown counts shapes where the baseline generator yields a single component on the unperturbed
input but multiple components after a small, on-surface perturbation (C0=1, Cε>1). Meltdown (%)
is Meltdown divided by #Shapes. PR Success counts—among meltdown shapes only—cases where
PowerRemap restores a single component (Cε,PowerRemap = 1). PR@Melt is the success rate on
meltdown shapes (PR Success / Meltdown, shown in %).

C POWERREMAP

Proof of Proposition 1. Let σi ≥ 0 be the singular values of Y and set zi := σ2
i (unnormalized

directional energies). The baseline normalized spectrum is pi := zi/
∑

j zj , with entropy H(Y) =

−
∑

i pi log pi.
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By definition, σ′
i = σmax

(
σi/σmax

)γ
, hence (σ′

i)
2 = σ 2−2γ

max σ2γ
i = κ zγi with a common κ > 0 that

cancels upon normalization. Therefore the post-intervention normalized spectrum is

p
(γ)
i =

zγi∑
j z

γ
j

.

We note that indices with zi = 0 keep p
(γ)
i = 0 for all γ > 0 and can be excluded without loss.

Write si := log zi (for the retained indices). Then

p
(γ)
i =

eγsi∑
j e

γsj
and ϕ(γ) := log

∑
j

eγsj .

Thus log p(γ)i = γsi − ϕ(γ) and the spectral entropy after the intervention is

H(γ) := −
∑
i

p
(γ)
i log p

(γ)
i = ϕ(γ) − γ

∑
i

p
(γ)
i si. (10)

Using the standard identity for the softmax measure,

ϕ′(γ) =

∑
i sie

γsi∑
j e

γsj
=

∑
i

p
(γ)
i si =: Ep(γ) [s],

equation 10 simplifies to
H(γ) = ϕ(γ)− γ ϕ′(γ).

Differentiating once gives

H ′(γ) = ϕ′(γ)−
(
ϕ′(γ) + γ ϕ′′(γ)

)
= − γ ϕ′′(γ).

It remains to identify ϕ′′(γ). A direct computation shows

d

dγ
p
(γ)
i = p

(γ)
i

(
si − Ep(γ) [s]

)
, hence ϕ′′(γ) =

d

dγ
Ep(γ) [s] =

∑
i

si
d

dγ
p
(γ)
i = Varp(γ)(s) ≥ 0.

Therefore
H ′(γ) = − γVarp(γ)(s) ≤ 0,

with equality iff all σi > 0 are equal.

We conclude that H(γ) is nonincreasing in γ; in particular, for any γ > 1,

H
(
PowerRemap(Y)

)
= H(γ) ≤ H(1) = H(Y).
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D USE OF LARGE LANGUAGE MODELS (LLMS)

To a limited extent, we used LLMs to aid or polish writing, i.e., in some instances, we used LLMs
to reformulate sentences.
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Figure 8: Activation-patching result for MAKE-A-SHAPE. Analogous to our result for WALA, we
find an early denoising cross-attention activation that controls meltdown behavior.
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(a) Connected components C vs. ρ (b) Spectral entropy H vs. ρ

Figure 9: [MAKE-A-SHAPE, DDIM]. Our results from WALA transfer to MAKE-A-SHAPE: As we
move from a healthy to an unhealthy run, we observe that the baseline case shows a smooth rise in
spectral entropy and a sudden jump in connectivity. Patching our Y keeps the spectral entropy at
healthy levels and preserves connectivity. This behavior is consistent across diffusion seeds.

(a) Connected components C vs. ρ (b) Spectral entropy H vs. ρ

Figure 10: [MAKE-A-SHAPE, DDPM]. Our results from [MAKE-A-SHAPE under DDIM sampling
transfer to WALA under DDPM sampling.
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