
Beyond Images - Are a Thousand Words Better Than a Single Picture?
A Framework for Multi-Modal Knowledge Graph Dataset Enrichment

Anonymous ACL submission

Abstract001

Multi-Modal Knowledge Graphs (MMKGs) en-002
hance entity representations by incorporating003
text, images, audio, and video, offering a more004
comprehensive understanding of each entity.005
Among these modalities, images are especially006
valuable due to their rich content and the ease007
of large-scale collection. However, many im-008
ages are semantically unclear, making it chal-009
lenging for the models to effectively use them010
to enhance entity representations. To address011
this, we present the Beyond Images framework,012
which generates textual descriptions for entity013
images to more effectively capture their seman-014
tic relevance to the associated entity. By adding015
textual descriptions, we achieve up to 5% im-016
provement in Hits@1 for link prediction task017
across three MMKG datasets. Furthermore,018
our scalable framework reduces the need for019
manual construction by automatically extend-020
ing three MMKG datasets with additional im-021
ages and their descriptions. Our work high-022
lights the importance of textual descriptions023
for MMKGs. Our code and enriched datasets024
are publicly available at https://anonymous.025
4open.science/r/Beyond-Images-2266.026

1 Introduction027

Knowledge Graphs (KGs) organize information028

in a structured format, where entities are repre-029

sented as nodes and relationships as edges (Ma,030

2022). This structure enables efficient data stor-031

age and reveals connections across diverse knowl-032

edge (Wan et al., 2024). Multi-Modal Knowledge033

Graphs (MMKGs) incorporate additional modali-034

ties, e.g., images, audio, and video, to enrich entity035

representations (Chen et al., 2024b). As illustrated036

in Figure 1, an entity like “Amsterdam” can be037

described through text about its history and culture,038

images showcasing its canals and landmarks, and039

audio or video capturing its atmosphere. By com-040

bining multiple modalities, MMKGs provide richer041

and more distinctive entity representations, thereby042
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Figure 1: An illustration of a Multi-Modal Knowledge
Graph (MMKG), where entities like “Amsterdam” and
“Van Gogh Museum” can be described through multiple
modalities (e.g., text, images). Some images (such as lo-
gos or abstract artwork) may be semantically unclear,
causing ambiguous image embeddings in MMKGs.

improving downstream tasks such as link predic- 043

tion and KG completion (Koloski et al., 2025). 044

Images are important in MMKGs due to their 045

rich content and ease of large-scale collection. 046

However, most existing MMKG datasets and mod- 047

els suffer from challenges in capturing the full se- 048

mantics of images in relation to the entities they rep- 049

resent. Concretely, global feature extraction meth- 050

ods (e.g., Convolutional Neural Networks) gener- 051

ate high-level representations for entire images (Li 052

et al., 2022), while local feature extraction meth- 053

ods (e.g., Vision Transformers) divide images into 054

patches for more fine-grained processing (Dosovit- 055

skiy et al., 2020). Both approaches face challenges 056

with two types of images: sparse-semantic images 057

(e.g., brand logos) offer limited distinguishing fea- 058

tures (Su et al., 2024; Wang et al., 2020), while 059

rich-semantic images (e.g., abstract artwork) con- 060

tain complex semantics that are difficult to capture 061

accurately (Wilber et al., 2017) (see Appendix A). 062

To address this challenge, we study whether tex- 063

tual descriptions can serve as a more effective al- 064

ternative by asking: Are a thousand words better 065

than a single picture? This is especially important 066
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when images lack clear semantic relevance to en-067

tities. Our automated framework standardizes and068

enriches MMKG datasets by converting both exist-069

ing and newly collected images into textual descrip-070

tions. This text-driven approach reduces the im-071

pact of semantically ambiguous images by adding072

meaningful textual descriptions to the model. Ad-073

ditionally, MMKG dataset construction is highly074

labor-intensive, as it often requires domain experts075

to filter and validate images manually, making the076

process time-consuming and easily influenced by077

individual biases (Chen et al., 2024a). Our frame-078

work addresses this by supporting large-scale im-079

age collection while reducing the need for labor-080

intensive dataset creation and manual filtering. In081

some models, replacing images with their textual082

descriptions results in more efficient and compact083

representations, highlighting the importance of tex-084

tual descriptions in MMKGs. Our contributions085

are as follows:086

• We generate meaningful textual descriptions087

from images to preserve semantic information.088

This text-driven approach highlights the role089

of textual descriptions in MMKGs.090

• Experiments on three datasets with four mod-091

els, which show a 2%–5% improvement092

in Hits@1 for link prediction, confirming093

that text-based image representations enhance094

model accuracy.095

• A framework automating large-scale image096

collection, reducing reliance on experts and097

eliminating individual biases in dataset con-098

struction.099

2 Related Work100

2.1 Multi-Modal Knowledge Graphs101

Multi-Modal Knowledge Graphs (MMKGs) com-102

bine data from multiple modalities, such as text,103

images, and numerical features, to enhance tasks104

such as link prediction and knowledge completion.105

Liu et al. (2019) introduced MMKGs that use nu-106

merical and visual information, demonstrating im-107

provements in link prediction. Building on this, Lin108

et al. (2022) introduced the MCLEA model, which109

leverages contrastive learning to integrate multi-110

modal information for entity alignment. MCLEA111

first learns modality-specific representations and112

then applies contrastive learning to jointly model113

intra-modal and inter-modal interactions. Fur-114

ther progress was made with the MMKRL model115

(Lu et al., 2022), which includes a knowledge re- 116

construction module to integrate structured and 117

multi-modal data into a unified space. This model 118

also uses adversarial training to enhance robust- 119

ness and performance. More recently, (Lee et al., 120

2024) introduced the MR-MKG method, which 121

uses MMKGs to improve reasoning capabilities in 122

large language models. Additionally, (Chen et al., 123

2025) developed the SNAG model, which effec- 124

tively combines structural, visual, and textual fea- 125

tures, leading to better results in knowledge graph 126

link prediction. 127

Despite these advancements, MMKGs still face 128

notable challenges. Many rely on manual data cu- 129

ration, which limits scalability and can introduce 130

biases. Human experts often prefer straightforward 131

images, potentially overlooking others that, while 132

less obvious, could provide valuable additional 133

information about the entity (Misra et al., 2016). 134

To address this gap, we propose an automated ap- 135

proach that associates images with entities without 136

manual intervention. 137

2.2 Automated Dataset Enrichment 138

Automated dataset enrichment is crucial in scaling 139

the construction of MMKGs. An et al. (2018) intro- 140

duced a method that connects textual descriptions 141

with knowledge graph entities, improving the se- 142

mantic consistency of text embeddings. Building 143

on this, Guo et al. (2022) proposed an approach that 144

uses pre-trained vision-language models to gen- 145

erate textual descriptions from images, enriching 146

multi-modal datasets effectively. Further advance- 147

ments include the ADAGIO framework (Xiang 148

et al., 2021), which uses genetic programming to 149

learn efficient augmentation frameworks for knowl- 150

edge graphs, enhancing data augmentation pro- 151

cesses. Similarly, Kuo and Kira (2022) provides a 152

lightweight automated knowledge graph construc- 153

tion solution by extracting keywords and evaluat- 154

ing relationships using graph Laplacian learning. 155

Lastly, Rezayi et al. (2021) automates knowledge 156

graph creation from unstructured text by integrating 157

natural language processing techniques for entity 158

extraction and relationship mapping, providing an 159

end-to-end solution for converting raw text into 160

structured knowledge. 161

However, most of these methods still involve 162

some degree of manual filtering or rely on domain 163

experts to choose images, making the process time- 164

consuming and eliminating individual biases. To 165

overcome these limitations, we introduce a fully 166
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MKG-W MKG-Y DB15K

Entity 15,000 15,000 12,842
Relation 169 28 279
Train 34,196 21,310 79,222
Validation 4,276 2,665 9,902
Test 4,274 2,663 9,904
Text 14,123 12,305 9,078

Original Images
Total Img 27,841 42,242 603,435
Avg Img 3.00 3.00 53.35
Img w/ Timestamp 0 0 0
Entity w/ Img 9,285 14,099 11,311

New Images
Total Img 81,323 56,646 176,858
Avg Img 5.81 4.23 14.58
Img w/ Timestamp 55,317 39,281 124,721
Entity w/ Img 14,002 14,388 12,130

Table 1: Overview of three public MMKG datasets,
summarizing key statistics including the number of enti-
ties, relations, dataset splits, and image attributes. The
table details original images, newly downloaded images,
average images per entity, and images with timestamps.

automated framework that retrieves, filters and con-167

verts images into textual representations. This ap-168

proach simplifies dataset construction while reduc-169

ing reliance on human intervention, improving both170

scalability and consistency.171

3 Methodology172

This section introduces our framework for auto-173

matically enriching three widely used public Multi-174

Modal Knowledge Graph (MMKG) datasets with175

extracted images and their corresponding textual176

descriptions. The framework is shown in Figure 2.177

Additionally, we provide statistics on the original178

and updated datasets to illustrate the enrichment179

achieved through our framework in Table 1.180

3.1 Datasets Information181

We used three widely adopted public datasets to182

validate our approach: MKG-W,1 MKG-Y,2 and183

DB15K.3 Each dataset contains three key compo-184

nents: structured knowledge, textual descriptions,185

and images. Details of the dataset are provided in186

Table 1.187

MKG-W (Multi-modal KG-Wikipedia) is a188

dataset constructed by extracting structured knowl-189

edge from Wikipedia (Sun et al., 2020). Textual de-190

scriptions were obtained from DBpedia and aligned191

with the corresponding entities using additional192

1https://github.com/quqxui/MMRNS
2https://github.com/quqxui/MMRNS
3https://github.com/mniepert/mmkb

sameAs links provided in the same work. Images 193

were further extended using web search engines 194

and manually screened by human experts (Xu et al., 195

2022). The dataset contains 15,000 samples, each 196

identified by its corresponding Wikidata URL. 197

MKG-Y (Multi-modal KG-YAGO) is a dataset 198

constructed by extracting structured knowledge 199

from YAGO (Sun et al., 2020). Similar to MKG-W, 200

textual descriptions were obtained from DBpedia 201

and aligned with entities using sameAs links. Im- 202

ages were extended using web search engines and 203

manually screened by experts (Xu et al., 2022). The 204

dataset consists of 15,000 samples, each identified 205

by its corresponding YAGO entity name. 206

DB15K (MMKB-DB15K) is an open-source 207

MMKG introduced in (Liu et al., 2019). Its struc- 208

tured knowledge is derived from a subset of DBpe- 209

dia, as described in (Lehmann et al., 2015). Since 210

the original dataset lacked textual descriptions for 211

entities, (Xu et al., 2022) extended it with textual 212

information from DBpedia. Images were collected 213

using search queries based on entity names, notable 214

types, and Wikipedia URIs. This image acquisition 215

process involved multiple steps. First, images were 216

retrieved from three search engines: Google Im- 217

ages, Bing Images, and Yahoo Images, storing up 218

to 20 top-ranked results per entity. Second, images 219

smaller than 224 pixels or with an extreme aspect 220

ratios (one side 2.5 times larger than the other) were 221

filtered out. Third, corrupted, low-quality, and du- 222

plicate images (determined by pixel-wise similarity 223

below a predefined threshold) were removed. Fi- 224

nally, the remaining images images were scaled to 225

a maximum height or width of 500 pixels while 226

maintaining their aspect ratio. The DB15K dataset 227

contains 12,842 samples, with each sample named 228

according to its corresponding DBpedia URL. 229

3.2 Standardizing and Aligning Original 230

Images 231

Many existing datasets provide only image embed- 232

dings rather than raw images, and those that do 233

include images use inconsistent naming conven- 234

tions, making alignment challenging. To address 235

this, we standardized image naming by mapping 236

all entities to their corresponding Wikidata IDs 237

(QIDs). This ensures compatibility across systems 238

and facilitates dataset expansion. Additionally, this 239

approach also enables the retrieval of additional 240

images and metadata from Wikipedia for further 241

enrichment. Details are in Table 1 and Appendix B. 242
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𝒆𝟏: Amsterdam
𝑸𝑰𝑫: Q727

entity description: 
Amsterdam is the capital and most populated city of the 
Netherlands. Amsterdam was founded at the...

Original Dataset

new image description:
• Amsterdam skyline silhouette vector 

illustration
• red x on a white background
• a painting of colorful buildings in a city

original image description:
• the scene is of a canal with buildings 

on both sides
• colorful buildings in a city

Generated Image DescriptionAutomatically Downloaded 
New Images

Embedding (𝑫&𝑰)Dataset Source

MMKG
modelEmbedding (𝑮)

𝑫: entity description 
embedding

𝑰: orignal image
embedding

𝑮 𝒐 : orignal image 
description embedding

𝑮 𝒏 : new image 
description embedding Existing Method

Beyond Images

Figure 2: Overview of our framework. Each entity in the dataset is linked to its corresponding Wikidata ID (Dataset
Source), automatically downloads additional images from Wikipedia (Automatically Downloaded New Images),
and uses pre-trained model BLIP-2 to generate textual descriptions for both original and newly downloaded images
(Generated Image Description). These descriptions are then embedded to produce G(o) and G(n), which, along
with entity description embeddings D and image embeddings I, are used as inputs to the MMKG model.

3.3 Downloading New Images243

With the obtained Wikidata URLs for all three244

datasets, we accessed the corresponding English245

Wikipedia pages for each sample and retrieved all246

associated images. For each image, we accessed its247

details page to download the file along with rele-248

vant metadata (e.g., timestamps). Details of newly249

downloaded images are provided in Table 1.250

3.4 Generating Textual Descriptions for251

Original and New Images252

We used the BLIP-24 (Li et al., 2023) model to253

generate textual descriptions from images. BLIP-2254

efficiently bridges images and text by integrating255

a frozen image encoder with a frozen language256

model, connected through a lightweight Querying257

Transformer. This design is particularly well-suited258

for our task, as it effectively translates visual fea-259

tures into meaningful textual descriptions while260

minimizing computational overhead and eliminat-261

ing the need for extensive retraining.262

In our implementation, we used the “blip2-263

flan-t5-xxl” model to generate textual descrip-264

tions from images. To efficiently process im-265

4https://huggingface.co/Salesforce/
blip2-flan-t5-xxl

ages, we implemented a function called “gener- 266

ate_batch_descriptions”, which handles input im- 267

ages in batches and generates detailed textual de- 268

scriptions for each image. This function takes 269

as input a list of image paths and a prompt 270

(prompt=“Describe the scene, objects, colors, and 271

other details in detail”.) to guide the model in gen- 272

erating comprehensive semantic descriptions. 273

During processing, images in each batch were 274

encoded as tensors using a processor and passed 275

through the model to generate textual descriptions. 276

These descriptions and their corresponding file- 277

names were saved to an output file, providing mean- 278

ingful textual data for MMKG tasks. The final 279

output files are summarized in Appendix C. 280

The dataset provides detailed information for 281

each image, such as URLs, metadata, and automat- 282

ically generated textual descriptions. Each entry 283

consists of a unique identifier (id), links to the 284

corresponding Wikipedia page (page_url) and im- 285

age file (image_url), metadata extracted from the 286

image (table_data), and textual descriptions gen- 287

erated by BLIP-2 (image_blip2_detail). The 288

metadata includes various attributes such as date 289

(Formatted_Date), author, and resolution, which 290

are crucial for MMKG research. 291
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3.5 Using Both Original and Enriched292

Datasets as Model Inputs293

Existing MMKG models typically use three types294

of inputs: structured knowledge, textual descrip-295

tions, and images. In this work, we extended the296

input by incorporating two additional types of tex-297

tual descriptions: one generated from the dataset’s298

original images and another generated from newly299

downloaded images (Section 3.4).300

This modification affected only model inputs,301

leaving the loss function unchanged. This simple302

adjustment improved model performance, demon-303

strating the effectiveness of incorporating textual304

descriptions from images.305

4 Experiments306

This section introduces our experimental setup and307

presents a detailed discussion of the experiments308

conducted to evaluate our framework on three309

widely used public MMKG datasets using four dif-310

ferent models. Implementation details can be found311

in Appendix D. In our experiments, we primarily312

focus on the following two Research Questions313

(RQs):314

RQ1. Is a thousand words better than a single315

picture? Does using Beyond Images to standardize316

and enrich datasets lead to improved model perfor-317

mance? (Section 4.2)318

RQ2. Can textual descriptions generated from319

images effectively replace image embeddings?320

Specifically, in which cases do text-based repre-321

sentations serve as a suitable alternative to image322

embeddings? (Section 4.3)323

4.1 Evaluated Models324

To provide a comprehensive evaluation, we employ325

four Multi-Modal Knowledge Graph (MMKG)326

models: MMRNS, MyGO, NativE, and AdaMF.327

These models were chosen because they use328

datasets containing the original images we were329

able to retrieve, thereby ensuring fairness and con-330

sistency.331

MMRNS5 (Xu et al., 2022) enhances MMKG332

completion through a knowledge-guided cross-333

modal attention mechanism and contrastive se-334

mantic sampling. By integrating relational em-335

beddings, it improves the representation of both336

positive and negative samples, leading to signif-337

icant performance improvements on multimodal338

KG benchmarks.339

5https://github.com/quqxui/MMRNS

MyGO6 (Zhang et al., 2024b) introduces fine- 340

grained tokenization and contrastive learning tech- 341

nique to improve multi-modal entity representa- 342

tions. Its cross-modal entity encoder effectively 343

captures complex interactions among modalities, 344

at the time of publication this method surpassed 19 345

recent models. 346

NativE7 (Zhang et al., 2024a) addresses imbal- 347

anced modality distributions by employing a dual 348

adaptive fusion module combined with modality 349

adversarial training. It achieved state-of-the-art 350

results across diverse datasets while ensuring effi- 351

ciency and generalizability. 352

AdaMF8 (Zhang et al., 2024c) employs adaptive 353

modality weights and modality-adversarial train- 354

ing to tackle modality imbalance in MMKGs. It 355

achieves superior multi-modal fusion and outper- 356

forms 19 recent methods, establishing new state-of- 357

the-art results on MMKGC benchmarks. 358

4.2 Main Results (RQ1) 359

The main results are shown in Table 2, which sum- 360

marizes the link prediction performance of four 361

models (MMRNS, MyGO, NativE, and AdaMF) 362

across three datasets (MKG-W, MKG-Y, and 363

DB15K) under different settings. 364

Model performance is evaluated using rank- 365

based metrics, including Mean Reciprocal Rank 366

(MRR) and Hits@K (K = 1, 3, 10). MRR cal- 367

culates the average of the reciprocal ranks of the 368

correct answers in the predicted ranking list, while 369

Hits@K measures the proportion of correct an- 370

swers appearing within the top K predictions. Both 371

metrics are commonly used in evaluating link pre- 372

diction tasks, with higher scores indicating better 373

model performance. Full results are in Appendix E. 374

In Table 2, the first row for each model presents 375

the experimental results on the original datasets, as 376

reproduced from the original papers. “D” repre- 377

sents entity descriptions, “I” denotes image embed- 378

dings, “G(o)” refers to textual descriptions gen- 379

erated from original images, and “G(n)” corre- 380

sponds to textual descriptions from newly down- 381

loaded images using our Beyond Images frame- 382

work. “Improvement (↑%)” represents the percent- 383

age increase (Boost = Our Result−Baseline Result
Baseline Result ) in 384

performance of the enriched datasets compared to 385

the original datasets. 386

6https://github.com/zjukg/MyGO
7https://github.com/zjukg/NATIVE
8https://github.com/zjukg/AdaMF-MAT
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Model MKG-W MKG-Y DB15K
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

MMRNS 35.03 28.59 37.49 47.47 35.93 30.53 39.07 45.47 32.68 23.01 37.86 51.01
MMRNS (D+I+G(o)) 35.73 29.65 38.37 48.69 36.59 31.78 40.19 46.43 33.57 24.04 39.13 52.71
MMRNS (D+I+G(n)) 36.13 29.93 38.58 49.02 36.93 31.96 40.33 46.58 33.37 23.78 39.02 52.40

MMRNS (D+I+G(o+n)) 36.26 30.08 38.70 49.19 37.03 32.12 40.46 46.70 33.67 24.16 39.27 52.89
Improvement (↑%) 3.50% 5.20% 3.21% 3.62% 3.07% 5.21% 3.56% 2.71% 3.04% 5.01% 3.71% 3.69%

MyGO 36.10 29.78 38.54 47.75 38.51 33.39 39.03 47.87 37.72 30.08 41.26 52.21
MyGO (D+I+G(o)) 37.19 30.85 39.65 48.75 39.63 34.73 39.88 48.90 38.84 31.53 42.37 53.74
MyGO (D+I+G(n)) 37.28 31.26 39.74 49.18 39.83 35.07 40.20 49.22 38.77 31.23 42.30 53.24

MyGO (D+I+G(o+n)) 37.42 31.42 39.88 49.35 39.97 35.26 40.32 49.37 38.97 31.69 42.49 53.92
Improvement (↑%) 3.66% 5.51% 3.48% 3.35% 3.80% 5.60% 3.31% 3.13% 3.31% 5.36% 2.99% 3.27%

NativE 36.58 29.56 39.65 48.94 39.04 34.79 40.89 46.18 37.16 28.01 41.36 54.13
NativE (D+I+G(o)) 37.37 30.56 40.44 49.93 39.63 35.95 41.93 47.03 38.68 28.83 42.48 55.11
NativE (D+I+G(n)) 37.57 30.68 40.85 50.27 39.75 36.12 42.11 47.43 38.30 28.77 42.35 55.03

NativE (D+I+G(o+n)) 37.69 30.80 40.97 50.41 39.83 36.27 42.25 47.56 38.84 28.92 42.61 55.22
Improvement (↑%) 3.02% 4.21% 3.32% 3.01% 2.01% 4.25% 3.32% 2.98% 4.52% 3.25% 3.02% 2.02%

AdaMF 35.85 29.04 39.01 48.42 38.57 34.34 40.59 45.76 35.14 25.30 41.11 52.92
AdaMF (D+I+G(o)) 36.92 30.16 39.78 49.34 39.79 35.37 41.45 46.41 36.20 26.24 42.29 54.35
AdaMF (D+I+G(n)) 37.20 30.35 39.77 49.73 40.05 35.86 41.89 46.78 35.85 26.08 42.13 54.24

AdaMF (D+I+G(o+n)) 37.36 30.50 39.85 49.88 40.21 36.04 42.02 46.88 36.32 26.34 42.43 54.51
Improvement (↑%) 4.21% 5.02% 2.15% 3.02% 4.25% 4.95% 3.52% 2.46% 3.35% 4.12% 3.20% 3.00%

Table 2: Link prediction results of four models across three datasets. “D” represents entity descriptions, “I” denotes
image embeddings, “G(o)” refers to textual descriptions generated from original images, and “G(n)” corresponds
to textual descriptions from newly downloaded images. “H@n” stands for “Hits at n.” The “Improvement (↑%)”
indicates the performance gain of the best-performing model (highlighted in bold) over the baseline model.

Table 2 demonstrates that using the enriched387

datasets improves performance across all metrics388

(MRR, Hits@1, Hits@3, and Hits@10) for every389

model. For example, the MyGO model achieves a390

3.66% and 5.51% boost in MRR and Hits@1. Simi-391

lar trends are observed on the MKG-Y and DB15K392

datasets, further confirming the general applicabil-393

ity and effectiveness of our method across different394

datasets and models. These results highlight the395

importance of incorporating textual descriptions396

generated from images to enhance MMKG tasks.397

It is important to note that, as shown in Table 2,398

the four models exhibit better improvements on399

the DB15K dataset when using textual descriptions400

generated from the original images provided in the401

dataset. This result differs from the trends observed402

for the MKG-W and MKG-Y datasets. We hy-403

pothesize this difference arises because the DB15K404

dataset contains more original images than the num-405

ber of images automatically downloaded using our406

Beyond Images framework (as detailed in Table 1).407

Hence, for the DB15K dataset, the performance of408

“G(o)” surpasses that of “G(n)”, because the larger409

number of generated textual descriptions in “G(o)”,410

compared to “G(n)”, enables the model to learn411

richer and more accurate entity representations.412

4.3 Ablation Study (RQ2) 413

Figure 3 shows the performance differences of four 414

models on the MKG-W dataset when using various 415

combinations of input modalities. The y-axis repre- 416

sents Hits@1, while the x-axis corresponds to the 417

following input scenarios. “D”: Textual descrip- 418

tions provided for entities in the original dataset. 419

“I”: Image embeddings of the entities in the original 420

dataset. “G”: T,extual descriptions generated for 421

images by the Beyond Images framework. In the 422

“G” scenario, “o” denotes descriptions generated 423

from original images, while “n” indicates descrip- 424

tions generated from newly downloaded images. 425

The figure shows that model performance is rel- 426

atively poor when only two modalities are used. 427

However, performance improves when all three 428

modalities are combined, with the best results 429

achieved when “D+I+G(o+n)” are used together. 430

This highlights the benefits of multimodal integra- 431

tion, which enables models to fully leverage com- 432

plementary information across modalities, effec- 433

tively mitigating potential semantic gaps in individ- 434

ual modalities and achieving superior prediction 435

results. 436

Additionally, we observe varying impacts of tex- 437

tual and visual information across different models. 438

In MyGO and NativE, textual information has a 439
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Figure 3: Hits@1 comparison across four models on the MKG-W dataset under different modality combinations.
“D” represents entity descriptions, “I” denotes image embeddings, “G(o)” refers to textual descriptions from original
images, and “G(n)” corresponds to those from newly downloaded images. The importance of textual and visual
information varies across models. Models using global image embeddings (MMRNS, AdaMF) benefit more from
visual inputs, while those using tokenized image embeddings (MyGO, NativE) rely more on textual descriptions.

more significant impact than visual information440

(textual information > visual information). In con-441

trast, for MMRNS and AdaMF, visual information442

plays a more prominent role (visual information443

> textual information). We believe that this differ-444

ence is driven by how images are processed and445

integrated into the representation space within each446

model. In MMRNS and AdaMF model, global447

image embeddings encode an entire image into a448

single vector, preserving high-level semantic infor-449

mation that aligns well with entity-level reasoning450

in knowledge graphs. This approach ensures that451

key visual attributes relevant to the entity are re-452

tained, often making visual information more influ-453

ential than textual descriptions. In contrast, MyGO454

and NativE split image into multiple discrete visual455

tokens, shifting from a global to a localized per-456

spective. While this allows for fine-grained feature457

extraction, it may disrupt semantic coherence at458

the entity level, reducing the effectiveness of vi-459

sual information for knowledge graph reasoning.460

Additionally, tokenized embeddings may introduce461

redundancy or irrelevant details.462

Each approach has advantages depending on463

the task in MMKGs. Global image embeddings 464

work well for entity recognition and concept align- 465

ment, while tokenized embeddings are better for 466

fine-grained visual reasoning, such as object inter- 467

actions and spatial relationships. The impact of 468

textual and visual information varies with the rep- 469

resentation method: global embeddings enhance 470

visual contributions, whereas textual descriptions 471

become more important in detailed multi-modal 472

tasks. These findings emphasize the importance of 473

selecting the appropriate modality representation 474

strategy for specific applications. 475

In these ablation experiments, single-modality 476

(i.e., only “D”, “G” or “I”) tests were not con- 477

ducted, as MMKG completion relies on the syn- 478

ergy of multiple modalities. A single-modality 479

alone cannot provide comprehensive knowledge 480

completion. The goal is to evaluate the contribution 481

of each modality rather than test their standalone 482

effectiveness. By comparing models with and with- 483

out specific modalities, we can more accurately 484

assess the benefits of multimodality. 485
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4.4 Case Analysis: Boosting Performance486

with Textual Descriptions487

To demonstrate how generated textual descriptions488

enhance model performance, we compared the pre-489

dictions of the “D+I” and “D+I+G” configurations.490

The most significant improvement was observed491

in the triple “(Hot Sauce Committee Part Two,492

performer, Beastie Boys)”. In this example, the493

head entity is “Hot Sauce Committee Part Two”,494

the relation is “performer”, and the tail entity is495

“Beastie Boys”. When the model was given the rela-496

tion “performer” along with the textual description497

of the tail entity “Beastie Boys”, the correct head498

entity’s rank improved significantly from 13,680499

to 1,330. Likewise, when provided with the head500

entity “Hot Sauce Committee Part Two”, its tex-501

tual description, and the relation “performer”, the502

rank of the correct tail entity improved from 11,435503

to 4,628. This demonstrates the effectiveness of504

adding textual descriptions generated from images,505

as they enhance entity representation alignment.506

(a) Hot Sauce Committee
Part Two image 1: “The cover
of beastboys hot sauce com-
mittee part two”.

(b) Hot Sauce Committee
Part Two image 2: “The scene
shows a group of men walking
on a bridge”.

(c) Beastie Boys image 1:
“three men are leaning on a
stair railing”.

(d) Beastie Boys image 2:
“The logo for beastie boys is
shown in black and white”.

Figure 4: Triple: (Hot Sauce Committee Part Two, per-
former, Beastie Boys). Images (a) and (b) correspond to
the head entity Hot Sauce Committee Part Two, while
images (c) and (d) represent the tail entity Beastie Boys.
The textual descriptions generated by BLIP-2 capture
key semantic details like the entity name and album title.
This helps the model better align entity representations,
significantly improving performance.

Figure 4 presents the existing images and the 507

textual descriptions generated for this triple. These 508

images highlight the challenge of “sparse-semantic 509

images (e.g., brand logos),” where visual em- 510

beddings primarily capture abstract shapes and 511

patterns, providing limited semantic information. 512

Such images often lack distinctive features, mak- 513

ing it difficult for the model to learn meaningful 514

connections. As a result, relying solely on image 515

embeddings may lead to weak or inaccurate entity 516

representations. However, incorporating textual 517

descriptions generated from these images helps 518

mitigate this limitation. Specifically, the generated 519

text “G” in this example includes details such as 520

the entity name and album title, allowing the model 521

to better align the entity with other modalities (“D” 522

and “I”). 523

5 Conclusion and Future Work 524

In this paper, we introduced Beyond Images, an au- 525

tomated framework for standardizing and enriching 526

Multi-Modal Knowledge Graph (MMKG) datasets 527

by generating meaningful textual descriptions for 528

both existing and newly collected images. This 529

text-driven approach enhances semantic represen- 530

tations across a spectrum of images, from those 531

with sparse-semantics (e.g., brand logos) to those 532

with rich-semantics (e.g., abstract artwork), mitigat- 533

ing the impact of semantic unclarity. Additionally, 534

it removes the need for extensive expert filtering, 535

making dataset construction more scalable. 536

We evaluated Beyond Images using four state-of- 537

the-art models on three public datasets, achieving 538

2%-5% improvement in the link prediction task. 539

These results highlight the importance of language 540

in MMKGs, especially when images are weakly re- 541

lated to entities. Furthermore, the proposed textual 542

representations derived from image descriptions 543

offer a more compact and efficient alternative to 544

images for some of the evaluated models. 545

For future work, we plan to extend this frame- 546

work to additional datasets to support large-scale 547

MMKG research and further validate our approach. 548

Additionally, we aim to investigate more complex 549

tasks that incorporate temporal information (Huang 550

et al., 2023). Concretely, we plan to explore the 551

impact of image timestamps on dynamic entity evo- 552

lution, to gain deeper insights into knowledge evo- 553

lution in multi-modal environments. 554
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Limitations555

While our Beyond Images framework improves556

Multi-Modal Knowledge Graphs (MMKGs) by557

converting images into textual descriptions, it has558

certain limitations.559

First, the quality of the generated textual de-560

scriptions relies on the pre-trained vision-language561

model (BLIP-2). If the model produces inaccu-562

rate descriptions, the semantic alignment between563

images and entities may be weakened, potentially564

impacting downstream tasks.565

Second, while replacing images with text re-566

duces dependence on semantically ambiguous im-567

ages, it may also lead to the loss of fine-grained568

visual details. These details could be important for569

specific tasks, such as visual reasoning in MMKGs.570
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MMKG models typically embed images as vectors 758

and combine them with embeddings from other 759

modalities (e.g., text) to create richer entity repre- 760

sentations. These embedding methods generally 761

follow two approaches: 762

• Global feature extraction: Methods like Con- 763

volutional Neural Networks (CNNs) gener- 764

ate fixed-size global feature vectors for entire 765

images (Li et al., 2022). While efficient for 766

large-scale datasets, they often fail to capture 767

fine-grained details. 768

• Local feature extraction: Approaches such as 769

Vision Transformers (ViTs) divide images into 770

patches and embed each patch individually, 771

enabling finer-grained feature extraction and 772
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improved alignment with text (Dosovitskiy773

et al., 2020). However, these methods are774

computationally intensive and heavily reliant775

on image quality and alignment effectiveness.776

Challenges in Handling Specific Image Types.777

However, both approaches face challenges when778

processing certain types of image, where standard779

embedding methods fail to capture essential seman-780

tic features.781

• Sparse-Semantic Images (e.g., brand logos):782

These images contain limited visual informa-783

tion, often featuring simple geometric shapes784

or elements. While they may carry critical785

domain knowledge, existing models struggle786

to extract distinctive embeddings, reducing787

their effectiveness (Su et al., 2024; Wang et al.,788

2020).789

• Rich-Semantic Images (e.g., abstract artwork):790

These images are visually and semantically791

complex, including intricate scenes, interac-792

tions, or artistic expressions. Current embed-793

ding methods often struggle to fully capture794

these semantic relationships, leading to signif-795

icant information loss (Wilber et al., 2017).796

B Standardizing and Aligning Original797

Images798

To generate textual descriptions based on images,799

we require the original images from the datasets.800

However, many existing works only provide im-801

age embeddings (vectors) without the raw images.802

For those that do provide raw images, naming con-803

ventions for image files vary significantly. Some804

use Wikidata URLs, others use DBpedia URLs,805

and some rely on YAGO entity names. This in-806

consistency, especially with YAGO entity names807

that often include special characters such as \, /, or808

:, creates challenges in aligning image with entity809

names. Many operating systems are unable to han-810

dle filenames containing such characters, further811

complicating the alignment process and subsequent812

experiments.813

To address this, we first standardize the naming814

conventions for raw images in the datasets. Con-815

cretely, we align all entities using their Wikidata816

IDs (QIDs). The QIDs consist only of alphanu-817

meric characters, which are compatible with all818

operating systems, facilitating future reproduction819

and extensions. Additionally, QIDs serve as a820

bridge between entities and their Wikipedia pages,821

enabling us to download supplementary images 822

and metadata (e.g., timestamps) from Wikipedia 823

for dataset enrichment. Details are summarized in 824

Table 1. 825

MKG-W. We found that original images for dif- 826

ferent entities were stored in folders named after 827

the entities , but many special characters (e.g., \, 828

/, or :) were missing. Additionally, the image 829

filenames within these folders lacked any recogniz- 830

able pattern. To address this, we used the dataset’s 831

provided mapping file, which links DBpedia URLs 832

to Wikidata URLs, to identify the corresponding 833

entity names and QIDs for each entity. 834

Next, we removed all special characters from 835

both the extracted entity names and the folder 836

names containing the original images to facilitate 837

matching. Once the matching was complete, we 838

had the following information for each sample: en- 839

tity name, QID, and original images. Finally, we 840

renamed all images using the format qid_idx and 841

consolidated them into a single folder for use in 842

subsequent experiments. 843

MKG-Y. We followed a similar process as in 844

MKG-W (see above). The original images were 845

stored in folders named after the entities, but the 846

filenames lacked a consistent naming convention. 847

Unlike MKG-W, the original dataset did not pro- 848

vide a mapping file between DBpedia and Wikidata 849

URLs. However, it did include a mapping between 850

DBpedia URLs and sample names. 851

Using the DBpedia URLs, we accessed the cor- 852

responding DBpedia pages and leveraged sameAs 853

links to locate the corresponding Wikidata pages 854

and obtain the QIDs. We then matched the folders 855

containing raw images to their respective entities 856

and renamed the images using the qid_idx format. 857

Finally, all renamed images were consolidated into 858

a single folder for subsequent use. 859

DB15K. The original paper (Liu et al., 2019) 860

did not provide downloadable images, only image 861

embeddings and URLs for the images. As a result, 862

we re-downloaded the images using the provided 863

links. Each sample had 100 links from Google 864

Images, approximately 35 from Bing Images, and 865

50 from Yahoo Image Search. According to the 866

original paper, the top 20 images from each search 867

engine (for a total of 60 images per entity) should 868

be downloaded. 869

However, some links were no longer valid. To 870

ensure fairness in reproducing the results, we se- 871

quentially downloaded up to 20 images from each 872

search engine. If fewer than 20 valid images were 873
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available, we continued downloading from sub-874

sequent links until 20 images were obtained per875

search engine, maintaining the original dataset’s876

image count of 60 per sample.877

After downloading the images, we used the DB-878

pedia URLs to access the DBpedia pages, followed879

sameAs links to locate the corresponding Wikidata880

pages, and obtained the QIDs for each sample. Fi-881

nally, we renamed the images using the qid_idx882

format and consolidated them into a single folder883

for subsequent experiments.884

C Our Datasets Structure885

During processing, images in each batch were en-886

coded as tensors using a processor and then passed887

through the model to generate textual descriptions.888

The generated descriptions and their corresponding889

filenames were saved to an output file, providing se-890

mantically meaningful textual data for subsequent891

MMKG tasks. A summary of the final output files892

is provided in Table 3.893

Key Description

id Unique identifier for each image
page_url URL of the Wikipedia page
image_url URL of the image file
table_data Metadata of the image
- Description Brief description of the image
- Date Date associated with the image
- Author Author or creator of the image
- Formatted_Date Standardized date format
image_blip2_detail Detailed textual description

Table 3: Each image in the dataset includes unique
identifiers, source URLs, metadata (e.g., date, author),
and BLIP-2-generated textual descriptions.

The dataset provides detailed information for894

each image, such as URLs, metadata, and automat-895

ically generated textual descriptions. Each entry896

consists of a unique identifier (id), links to the897

corresponding Wikipedia page (page_url) and im-898

age file (image_url), metadata extracted from the899

image (table_data), and textual descriptions gen-900

erated by BLIP-2 (image_blip2_detail). The901

metadata includes various attributes such as date902

(Formatted_Date), author, and resolution, which903

are crucial for MMKG research.904

D Implementation Details905

Our experiments use the default hyperparameters906

for each Baseline model to ensure fair comparisons.907

All experiments were conducted on a Linux server908

equipped with a single NVIDIA H100 GPU. To909

generate textual descriptions from images, we used 910

the BLIP-2 model, with English as the output lan- 911

guage. The maximum generated text length is lim- 912

ited to 100 words. On average, each image gener- 913

ated 20 words, ranging from 15 to 25 words. The 914

generated text is then embedded into vectors using 915

BERT-base-uncased. 916

E Main Result 917

The main results are shown in Table 4, which sum- 918

marizes the link prediction performance of four 919

models (MMRNS, MyGO, NativE, and AdaMF) 920

across three datasets (MKG-W, MKG-Y, and 921

DB15K) under different settings. 922

Model performance is evaluated using rank- 923

based metrics, including Mean Reciprocal Rank 924

(MRR) and Hits@K (K = 1, 3, 10). MRR cal- 925

culates the average of the reciprocal ranks of the 926

correct answers in the predicted ranking list, while 927

Hits@K measures the proportion of correct an- 928

swers appearing within the top K predictions. Both 929

metrics are commonly used in evaluating link pre- 930

diction tasks, with higher scores indicating better 931

model performance. 932

The first row for each model presents the ex- 933

perimental results on the original datasets, as re- 934

produced from the original papers. “G” stands for 935

Generate, referring to our framework that gener- 936

ates textual descriptions from images. “o” indi- 937

cates that the textual descriptions were generated 938

from the original images provided in the dataset, 939

while “n” means that the descriptions were gener- 940

ated from images automatically downloaded us- 941

ing our Beyond Images framework. Improve- 942

ment represents the percentage increase (Boost = 943
Our Result−Baseline Result

Baseline Result ) in performance of the en- 944

riched datasets compared to the original datasets. 945

F Case Analysis: Boosting Performance 946

with Textual Descriptions 947

F.1 Example 1 948

All images are shown in Figure 5. Triple: (Hot 949

Sauce Committee Part Two, performer, Beastie 950

Boys). Images (a) and (b) correspond to the head 951

entity Hot Sauce Committee Part Two, while im- 952

ages (c) - (h) represent the tail entity Beastie Boys. 953

Triple: (Hot Sauce Committee Part Two, per- 954

former, Beastie Boys) 955

QID: (Q1933719, P175, Q214039) 956

Head entity’s rank: correct head entity’s rank 957

improved from 13,680 to 1,330. 958
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Model MKG-W MKG-Y DB15K
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

MMRNS 35.03 28.59 37.49 47.47 35.93 30.53 39.07 45.47 32.68 23.01 37.86 51.01
MMRNS (D+I+G(o)) 35.73 29.65 38.37 48.69 36.59 31.78 40.19 46.43 33.57 24.04 39.13 52.71

Improvement (↑%) 1.99% 3.70% 2.35% 2.57% 1.84% 4.11% 2.87% 2.11% 2.74% 4.49% 3.35% 3.34%
MMRNS (D+I+G(n)) 36.13 29.93 38.58 49.02 36.93 31.96 40.33 46.58 33.37 23.78 39.02 52.40

Improvement (↑%) 3.13% 4.68% 2.91% 3.26% 2.79% 4.69% 3.21% 2.44% 2.11% 3.36% 3.06% 2.72%
MMRNS (D+I+G(o+n)) 36.26 30.08 38.70 49.19 37.03 32.12 40.46 46.70 33.67 24.16 39.27 52.89

Improvement (↑%) 3.50% 5.20% 3.21% 3.62% 3.07% 5.21% 3.56% 2.71% 3.04% 5.01% 3.71% 3.69%

MyGO 36.10 29.78 38.54 47.75 38.51 33.39 39.03 47.87 37.72 30.08 41.26 52.21
MyGO (D+I+G(o)) 37.19 30.85 39.65 48.75 39.63 34.73 39.88 48.90 38.84 31.53 42.37 53.74
Improvement (↑%) 3.01% 3.61% 2.88% 2.10% 2.91% 4.01% 2.17% 2.14% 2.97% 4.81% 2.69% 2.92%
MyGO (D+I+G(n)) 37.28 31.26 39.74 49.18 39.83 35.07 40.20 49.22 38.77 31.23 42.30 53.24
Improvement (↑%) 3.28% 4.97% 3.12% 2.99% 3.42% 5.03% 3.01% 2.81% 2.78% 3.81% 2.53% 1.97%

MyGO (D+I+G(o+n)) 37.42 31.42 39.88 49.35 39.97 35.26 40.32 49.37 38.97 31.69 42.49 53.92
Improvement (↑%) 3.66% 5.51% 3.48% 3.35% 3.80% 5.60% 3.31% 3.13% 3.31% 5.36% 2.99% 3.27%

NativE 36.58 29.56 39.65 48.94 39.04 34.79 40.89 46.18 37.16 28.01 41.36 54.13
NativE (D+I+G(o)) 37.37 30.56 40.44 49.93 39.63 35.95 41.93 47.03 38.68 28.83 42.48 55.11
Improvement (↑%) 2.16% 3.38% 1.98% 2.02% 1.52% 3.33% 2.55% 1.83% 4.10% 2.92% 2.72% 1.81%
NativE (D+I+G(n)) 37.57 30.68 40.85 50.27 39.75 36.12 42.11 47.43 38.30 28.77 42.35 55.03
Improvement (↑%) 2.72% 3.80% 3.02% 2.72% 1.81% 3.83% 2.99% 2.71% 3.08% 2.72% 2.41% 1.66%

NativE (D+I+G(o+n)) 37.69 30.80 40.97 50.41 39.83 36.27 42.25 47.56 38.84 28.92 42.61 55.22
Improvement (↑%) 3.02% 4.21% 3.32% 3.01% 2.01% 4.25% 3.32% 2.98% 4.52% 3.25% 3.02% 2.02%

AdaMF 35.85 29.04 39.01 48.42 38.57 34.34 40.59 45.76 35.14 25.30 41.11 52.92
AdaMF (D+I+G(o)) 36.92 30.16 39.78 49.34 39.79 35.37 41.45 46.41 36.20 26.24 42.29 54.35
Improvement (↑%) 2.98% 3.84% 1.96% 1.90% 3.16% 2.99% 2.12% 1.43% 3.02% 3.71% 2.87% 2.71%
AdaMF (D+I+G(n)) 37.20 30.35 39.77 49.73 40.05 35.86 41.89 46.78 35.85 26.08 42.13 54.24
Improvement (↑%) 3.77% 4.51% 1.94% 2.70% 3.84% 4.44% 3.20% 2.23% 2.01% 3.08% 2.49% 2.49%

AdaMF (D+I+G(o+n)) 37.36 30.50 39.85 49.88 40.21 36.04 42.02 46.88 36.32 26.34 42.43 54.51
Improvement (↑%) 4.21% 5.02% 2.15% 3.02% 4.25% 4.95% 3.52% 2.46% 3.35% 4.12% 3.20% 3.00%

Table 4: Link prediction results of four models across three datasets. “D” represents entity descriptions, “I” denotes
image embeddings, “G(o)” refers to textual descriptions generated from original images, and “G(n)” corresponds
to textual descriptions from newly downloaded images. “H@n” stands for “Hits at n.” The “Improvement (↑%)”
indicates the performance gain of the best-performing model (highlighted in bold) over the Baseline model.

Tail entity’s rank: correct tail entity’s rank im-959

proved from 11,435 to 4,628.960

F.2 Example 2961

All images are shown in Figure 6. Triple: (Her962

Harem, cast member, Carroll Baker). Images (a) -963

(c) correspond to the head entity Her Harem, while964

images (d) - (m) represent the tail entity Carroll965

Baker.966

Triple: (Her Harem, cast member, Carroll967

Baker)968

QID: (Q3819142, P161, Q233891)969

Head entity’s rank: correct head entity’s rank970

improved from 10,177 to 8,611.971

Tail entity’s rank: correct tail entity’s rank im-972

proved from 571 to 72.973

F.3 Example 3974

All images are shown in Figure 7. Triple: (World975

(The Price of Love), performer, New Order). Im-976

ages (a) correspond to the head entity World (The977

Price of Love), while images (b) - (f) represent the 978

tail entity New Order. 979

Triple: (World (The Price of Love), performer, 980

New Order) 981

QID: (Q8035321, P175, Q214990) 982

Head entity’s rank: correct head entity’s rank 983

improved from 12,528 to 2,622. 984

Tail entity’s rank: correct tail entity’s rank im- 985

proved from 10,185 to 2,591. 986
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(a) Q1933719_1: “The cover of beastboys
hot sauce committee part two”.

(b) Q1933719_2: “The scene shows a
group of men walking on a bridge”.

(c) Q214039_1: “three men are leaning on
a stair railing”.

(d) Q214039_2: “The logo for beastie boys
is shown in black and white”.

(e) Q214039_3: “two men are standing on
stage with a microphone”.

(f) Q214039_4: “two men in black jackets
are on stage singing”.

(g) Q214039_5: “a man in a red suit and
hat is singing on stage”.

(h) Q214039_6: “a man in a suit and tie
singing”.

Figure 5: Triple: (Hot Sauce Committee Part Two, performer, Beastie Boys). Images (a) and (b) correspond to the
head entity Hot Sauce Committee Part Two, while images (c) - (h) represent the tail entity Beastie Boys.
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(a) Q3819142_1: “the
poster for the movie
harem”.

(b) Q3819142_2: “the
italian flag is shown on
a clapperboard”.

(c) Q3819142_3: “two
masks and a clapper
board on a black back-
ground”.

(d) Q233891_1: “a
black and white photo
of a woman with long
blonde hair”.

(e) Q233891_2: “a
black background with a
white tv screen”.

(f) Q233891_3: “mari-
lyn monroe in a black
and white photo”.

(g) Q233891_4: “a man
and woman in western at-
tire sit on a horse”.

(h) Q233891_5: “a
woman in a striped top
sits on a bench”.

(i) Q233891_6: “a
woman in a fur coat sits
on a white fur rug”.

(j) Q233891_7: “a woman
is standing in a shower”.

(k) Q233891_8: “the
scene shows a man and
woman talking to each
other”.

(l) Q233891_9: “a
woman in a white dress
is standing on a stage in
front of a large ship”.

(m) Q233891_10: “a
star on the hollywood
walk of fame for carroll
baker”.

Figure 6: Triple: (Her Harem, cast member, Carroll Baker). Images (a) - (c) correspond to the head entity Her
Harem, while images (d) - (m) represent the tail entity Carroll Baker.
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(a) Q8035321_1: “the cover of the world
album”.

(b) Q214990_1: “four black and white pho-
tos of four men”.

(c) Q214990_2: “a group of men are on
stage with guitars and drums”.

(d) Q214990_3: “a band is performing on
stage with a large screen behind them”.

(e) Q214990_4: “a blue and white wave
symbol”.

(f) Q214990_5: “a blue and red logo with
arrows pointing in different directions”.

Figure 7: Triple: (World (The Price of Love), performer, New Order). Images (a) correspond to the head entity
World (The Price of Love), while images (b) - (f) represent the tail entity New Order.
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