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Abstract

Multi-Modal Knowledge Graphs (MMKGs) en-
hance entity representations by incorporating
text, images, audio, and video, offering a more
comprehensive understanding of each entity.
Among these modalities, images are especially
valuable due to their rich content and the ease
of large-scale collection. However, many im-
ages are semantically unclear, making it chal-
lenging for the models to effectively use them
to enhance entity representations. To address
this, we present the Beyond Images framework,
which generates textual descriptions for entity
images to more effectively capture their seman-
tic relevance to the associated entity. By adding
textual descriptions, we achieve up to 5% im-
provement in Hits@1 for link prediction task
across three MMKG datasets. Furthermore,
our scalable framework reduces the need for
manual construction by automatically extend-
ing three MMKG datasets with additional im-
ages and their descriptions. Our work high-
lights the importance of textual descriptions
for MMKGs. Our code and enriched datasets
are publicly available at https://anonymous.
4open.science/r/Beyond-Images-2266.

1 Introduction

Knowledge Graphs (KGs) organize information
in a structured format, where entities are repre-
sented as nodes and relationships as edges (Ma,
2022). This structure enables efficient data stor-
age and reveals connections across diverse knowl-
edge (Wan et al., 2024). Multi-Modal Knowledge
Graphs (MMKGs) incorporate additional modali-
ties, e.g., images, audio, and video, to enrich entity
representations (Chen et al., 2024b). As illustrated
in Figure 1, an entity like “Amsterdam” can be
described through text about its history and culture,
images showcasing its canals and landmarks, and
audio or video capturing its atmosphere. By com-
bining multiple modalities, MMKGs provide richer
and more distinctive entity representations, thereby
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Figure 1: An illustration of a Multi-Modal Knowledge
Graph ( ), where entities like “Amsterdam” and
“Yan Gogh Museum” can be described through multiple
modalities (e.g., text, images). Some images (such as lo-
20s or ) may be semantically unclear,
causing ambiguous image embeddings in MMKGs.

improving downstream tasks such as link predic-
tion and KG completion (Koloski et al., 2025).
Images are important in MMKGs due to their
rich content and ease of large-scale collection.
However, most existing MMKG datasets and mod-
els suffer from challenges in capturing the full se-
mantics of images in relation to the entities they rep-
resent. Concretely, global feature extraction meth-
ods (e.g., Convolutional Neural Networks) gener-
ate high-level representations for entire images (Li
et al., 2022), while local feature extraction meth-
ods (e.g., Vision Transformers) divide images into
patches for more fine-grained processing (Dosovit-
skiy et al., 2020). Both approaches face challenges
with two types of images: sparse-semantic images
(e.g., brand logos) offer limited distinguishing fea-
tures (Su et al., 2024; Wang et al., 2020), while
rich-semantic images (e.g., abstract artwork) con-
tain complex semantics that are difficult to capture
accurately (Wilber et al., 2017) (see Appendix A).
To address this challenge, we study whether tex-
tual descriptions can serve as a more effective al-
ternative by asking: Are a thousand words better
than a single picture? This is especially important
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when images lack clear semantic relevance to en-
tities. Our automated framework standardizes and
enriches MMKG datasets by converting both exist-
ing and newly collected images into textual descrip-
tions. This text-driven approach reduces the im-
pact of semantically ambiguous images by adding
meaningful textual descriptions to the model. Ad-
ditionally, MMKG dataset construction is highly
labor-intensive, as it often requires domain experts
to filter and validate images manually, making the
process time-consuming and easily influenced by
individual biases (Chen et al., 2024a). Our frame-
work addresses this by supporting large-scale im-
age collection while reducing the need for labor-
intensive dataset creation and manual filtering. In
some models, replacing images with their textual
descriptions results in more efficient and compact
representations, highlighting the importance of tex-
tual descriptions in MMKGs. Our contributions
are as follows:

* We generate meaningful textual descriptions
from images to preserve semantic information.
This text-driven approach highlights the role
of textual descriptions in MMKGs.

» Experiments on three datasets with four mod-
els, which show a 2%-5% improvement
in Hits@1 for link prediction, confirming
that text-based image representations enhance
model accuracy.

* A framework automating large-scale image
collection, reducing reliance on experts and
eliminating individual biases in dataset con-
struction.

2 Related Work

2.1 Multi-Modal Knowledge Graphs

Multi-Modal Knowledge Graphs (MMKGs) com-
bine data from multiple modalities, such as text,
images, and numerical features, to enhance tasks
such as link prediction and knowledge completion.
Liu et al. (2019) introduced MMKGs that use nu-
merical and visual information, demonstrating im-
provements in link prediction. Building on this, Lin
et al. (2022) introduced the MCLEA model, which
leverages contrastive learning to integrate multi-
modal information for entity alignment. MCLEA
first learns modality-specific representations and
then applies contrastive learning to jointly model
intra-modal and inter-modal interactions. Fur-
ther progress was made with the MMKRL model

(Lu et al., 2022), which includes a knowledge re-
construction module to integrate structured and
multi-modal data into a unified space. This model
also uses adversarial training to enhance robust-
ness and performance. More recently, (Lee et al.,
2024) introduced the MR-MKG method, which
uses MMKGs to improve reasoning capabilities in
large language models. Additionally, (Chen et al.,
2025) developed the SNAG model, which effec-
tively combines structural, visual, and textual fea-
tures, leading to better results in knowledge graph
link prediction.

Despite these advancements, MMKGs still face
notable challenges. Many rely on manual data cu-
ration, which limits scalability and can introduce
biases. Human experts often prefer straightforward
images, potentially overlooking others that, while
less obvious, could provide valuable additional
information about the entity (Misra et al., 2016).
To address this gap, we propose an automated ap-
proach that associates images with entities without
manual intervention.

2.2 Automated Dataset Enrichment

Automated dataset enrichment is crucial in scaling
the construction of MMKGs. An et al. (2018) intro-
duced a method that connects textual descriptions
with knowledge graph entities, improving the se-
mantic consistency of text embeddings. Building
on this, Guo et al. (2022) proposed an approach that
uses pre-trained vision-language models to gen-
erate textual descriptions from images, enriching
multi-modal datasets effectively. Further advance-
ments include the ADAGIO framework (Xiang
et al., 2021), which uses genetic programming to
learn efficient augmentation frameworks for knowl-
edge graphs, enhancing data augmentation pro-
cesses. Similarly, Kuo and Kira (2022) provides a
lightweight automated knowledge graph construc-
tion solution by extracting keywords and evaluat-
ing relationships using graph Laplacian learning.
Lastly, Rezayi et al. (2021) automates knowledge
graph creation from unstructured text by integrating
natural language processing techniques for entity
extraction and relationship mapping, providing an
end-to-end solution for converting raw text into
structured knowledge.

However, most of these methods still involve
some degree of manual filtering or rely on domain
experts to choose images, making the process time-
consuming and eliminating individual biases. To
overcome these limitations, we introduce a fully



MKG-W MKG-Y DBI15K
Entity 15,000 15,000 12,842
Relation 169 28 279
Train 34,196 21,310 79,222
Validation 4,276 2,665 9,902
Test 4,274 2,663 9,904
Text 14,123 12,305 9,078

Original Images
Total Img 27,841 42,242 603,435
Avg Img 3.00 3.00 53.35
Img w/ Timestamp 0 0 0
Entity w/ Img 9,285 14,099 11,311
New Images

Total Img 81,323 56,646 176,858
Avg Img 5.81 4.23 14.58
Img w/ Timestamp 55,317 39,281 124,721
Entity w/ Img 14,002 14,388 12,130

Table 1: Overview of three public MMKG datasets,
summarizing key statistics including the number of enti-
ties, relations, dataset splits, and image attributes. The
table details original images, newly downloaded images,
average images per entity, and images with timestamps.

automated framework that retrieves, filters and con-
verts images into textual representations. This ap-
proach simplifies dataset construction while reduc-
ing reliance on human intervention, improving both
scalability and consistency.

3 Methodology

This section introduces our framework for auto-
matically enriching three widely used public Multi-
Modal Knowledge Graph (MMKG) datasets with
extracted images and their corresponding textual
descriptions. The framework is shown in Figure 2.
Additionally, we provide statistics on the original
and updated datasets to illustrate the enrichment
achieved through our framework in Table 1.

3.1 Datasets Information

We used three widely adopted public datasets to
validate our approach: MKG-W,! MKG-Y,? and
DB15K.? Each dataset contains three key compo-
nents: structured knowledge, textual descriptions,
and images. Details of the dataset are provided in
Table 1.

MKG-W (Multi-modal KG-Wikipedia) is a
dataset constructed by extracting structured knowl-
edge from Wikipedia (Sun et al., 2020). Textual de-
scriptions were obtained from DBpedia and aligned
with the corresponding entities using additional
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sameAs links provided in the same work. Images
were further extended using web search engines
and manually screened by human experts (Xu et al.,
2022). The dataset contains 15,000 samples, each
identified by its corresponding Wikidata URL.

MKG-Y (Multi-modal KG-YAGO) is a dataset
constructed by extracting structured knowledge
from YAGO (Sun et al., 2020). Similar to MKG-W,
textual descriptions were obtained from DBpedia
and aligned with entities using sameAs links. Im-
ages were extended using web search engines and
manually screened by experts (Xu et al., 2022). The
dataset consists of 15,000 samples, each identified
by its corresponding YAGO entity name.

DB15K (MMKB-DB15K) is an open-source
MMKG introduced in (Liu et al., 2019). Its struc-
tured knowledge is derived from a subset of DBpe-
dia, as described in (Lehmann et al., 2015). Since
the original dataset lacked textual descriptions for
entities, (Xu et al., 2022) extended it with textual
information from DBpedia. Images were collected
using search queries based on entity names, notable
types, and Wikipedia URIs. This image acquisition
process involved multiple steps. First, images were
retrieved from three search engines: Google Im-
ages, Bing Images, and Yahoo Images, storing up
to 20 top-ranked results per entity. Second, images
smaller than 224 pixels or with an extreme aspect
ratios (one side 2.5 times larger than the other) were
filtered out. Third, corrupted, low-quality, and du-
plicate images (determined by pixel-wise similarity
below a predefined threshold) were removed. Fi-
nally, the remaining images images were scaled to
a maximum height or width of 500 pixels while
maintaining their aspect ratio. The DB15K dataset
contains 12,842 samples, with each sample named
according to its corresponding DBpedia URL.

3.2 Standardizing and Aligning Original
Images

Many existing datasets provide only image embed-
dings rather than raw images, and those that do
include images use inconsistent naming conven-
tions, making alignment challenging. To address
this, we standardized image naming by mapping
all entities to their corresponding Wikidata IDs
(QIDs). This ensures compatibility across systems
and facilitates dataset expansion. Additionally, this
approach also enables the retrieval of additional
images and metadata from Wikipedia for further
enrichment. Details are in Table 1 and Appendix B.


https://github.com/quqxui/MMRNS
https://github.com/quqxui/MMRNS
https://github.com/mniepert/mmkb

Dataset Source

entity description:
eq: Amsterdam v P

QID: Q727

R

WIKIDATA WiKIPEDIA
RARIEEDL

Automatically Downloaded
New Images

Original Dataset

Amsterdam is the capital and most populated city of the
Netherlands. Amsterdam was founded at the...

Generated Image Description

Embedding (D&I)

D: entity description
embedding

»

I: orignal image
embedding

MMKG

Embedding (G) model

original image description:

* the scene is of a canal with buildings

on both sides

AMSTERDAM

illustration

new image description:
¢ Amsterdam skyline silhouette vector

¢ red x on a white background
¢ a painting of colorful buildings in a city

G (0): orignal image
‘ d

escription embedding

* colorful buildings in a city

Existing Method

» G (n): new image
description embedding

Beyond Images

Figure 2: Overview of our framework. Each entity in the dataset is linked to its corresponding Wikidata ID (Dataset
Source), automatically downloads additional images from Wikipedia (Automatically Downloaded New Images),
and uses pre-trained model BLIP-2 to generate textual descriptions for both original and newly downloaded images
(Generated Image Description). These descriptions are then embedded to produce G(o) and G(n), which, along
with entity description embeddings D and image embeddings I, are used as inputs to the MMKG model.

3.3 Downloading New Images

With the obtained Wikidata URLs for all three
datasets, we accessed the corresponding English
Wikipedia pages for each sample and retrieved all
associated images. For each image, we accessed its
details page to download the file along with rele-
vant metadata (e.g., timestamps). Details of newly
downloaded images are provided in Table 1.

3.4 Generating Textual Descriptions for
Original and New Images

We used the BLIP-2* (Li et al., 2023) model to
generate textual descriptions from images. BLIP-2
efficiently bridges images and text by integrating
a frozen image encoder with a frozen language
model, connected through a lightweight Querying
Transformer. This design is particularly well-suited
for our task, as it effectively translates visual fea-
tures into meaningful textual descriptions while
minimizing computational overhead and eliminat-
ing the need for extensive retraining.

In our implementation, we used the “blip2-
fan-t5-xxI” model to generate textual descrip-
tions from images. To efficiently process im-

4https://huggingface.co/Salesfor‘ce/
blip2-flan-t5-xx1

ages, we implemented a function called “gener-
ate_batch_descriptions”, which handles input im-
ages in batches and generates detailed textual de-
scriptions for each image. This function takes
as input a list of image paths and a prompt
(prompt="“Describe the scene, objects, colors, and
other details in detail”.) to guide the model in gen-
erating comprehensive semantic descriptions.

During processing, images in each batch were
encoded as tensors using a processor and passed
through the model to generate textual descriptions.
These descriptions and their corresponding file-
names were saved to an output file, providing mean-
ingful textual data for MMKG tasks. The final
output files are summarized in Appendix C.

The dataset provides detailed information for
each image, such as URLs, metadata, and automat-
ically generated textual descriptions. Each entry
consists of a unique identifier (id), links to the
corresponding Wikipedia page (page_url) and im-
age file (image_url), metadata extracted from the
image (table_data), and textual descriptions gen-
erated by BLIP-2 (image_blip2_detail). The
metadata includes various attributes such as date
(Formatted_Date), author, and resolution, which
are crucial for MMKG research.
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3.5 Using Both Original and Enriched
Datasets as Model Inputs

Existing MMKG models typically use three types
of inputs: structured knowledge, textual descrip-
tions, and images. In this work, we extended the
input by incorporating two additional types of tex-
tual descriptions: one generated from the dataset’s
original images and another generated from newly
downloaded images (Section 3.4).

This modification affected only model inputs,
leaving the loss function unchanged. This simple
adjustment improved model performance, demon-
strating the effectiveness of incorporating textual
descriptions from images.

4 [Experiments

This section introduces our experimental setup and
presents a detailed discussion of the experiments
conducted to evaluate our framework on three
widely used public MMKG datasets using four dif-
ferent models. Implementation details can be found
in Appendix D. In our experiments, we primarily
focus on the following two Research Questions
(RQs):

RQ1. Is a thousand words better than a single
picture? Does using Beyond Images to standardize
and enrich datasets lead to improved model perfor-
mance? (Section 4.2)

RQ2. Can textual descriptions generated from
images effectively replace image embeddings?
Specifically, in which cases do text-based repre-
sentations serve as a suitable alternative to image
embeddings? (Section 4.3)

4.1 Evaluated Models

To provide a comprehensive evaluation, we employ
four Multi-Modal Knowledge Graph (MMKG)
models: MMRNS, MyGO, NativE, and AdaMF.
These models were chosen because they use
datasets containing the original images we were
able to retrieve, thereby ensuring fairness and con-
sistency.

MMRNS’ (Xu et al., 2022) enhances MMKG
completion through a knowledge-guided cross-
modal attention mechanism and contrastive se-
mantic sampling. By integrating relational em-
beddings, it improves the representation of both
positive and negative samples, leading to signif-
icant performance improvements on multimodal
KG benchmarks.

Shttps://github.com/qugxui/MMRNS

MyGO®° (Zhang et al., 2024b) introduces fine-
grained tokenization and contrastive learning tech-
nique to improve multi-modal entity representa-
tions. Its cross-modal entity encoder effectively
captures complex interactions among modalities,
at the time of publication this method surpassed 19
recent models.

NativE’ (Zhang et al., 2024a) addresses imbal-
anced modality distributions by employing a dual
adaptive fusion module combined with modality
adversarial training. It achieved state-of-the-art
results across diverse datasets while ensuring effi-
ciency and generalizability.

AdaMF® (Zhang et al., 2024c) employs adaptive
modality weights and modality-adversarial train-
ing to tackle modality imbalance in MMKGs. It
achieves superior multi-modal fusion and outper-
forms 19 recent methods, establishing new state-of-
the-art results on MMKGC benchmarks.

4.2 Main Results (RQ1)

The main results are shown in Table 2, which sum-
marizes the link prediction performance of four
models (MMRNS, MyGO, NativE, and AdaMF)
across three datasets (MKG-W, MKG-Y, and
DB15K) under different settings.

Model performance is evaluated using rank-
based metrics, including Mean Reciprocal Rank
(MRR) and Hits@K (K =1, 3, 10). MRR cal-
culates the average of the reciprocal ranks of the
correct answers in the predicted ranking list, while
Hits@ K measures the proportion of correct an-
swers appearing within the top K predictions. Both
metrics are commonly used in evaluating link pre-
diction tasks, with higher scores indicating better
model performance. Full results are in Appendix E.

In Table 2, the first row for each model presents
the experimental results on the original datasets, as
reproduced from the original papers. “D” repre-
sents entity descriptions, “I”’ denotes image embed-
dings, “G(o)” refers to textual descriptions gen-
erated from original images, and “G(n)” corre-
sponds to textual descriptions from newly down-
loaded images using our Beyond Images frame-
work. “Improvement (1%)” represents the percent-
age increase (Boost = Rif;iteﬁfea;e;isﬁtR“w) in
performance of the enriched datasets compared to
the original datasets.

®https://github.com/zjukg/MyGO
"https://github.com/zjukg/NATIVE
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Model MKG-W MKG-Y DB15K
MRR H@l H@3 H@10| MRR H@l H@3 H@l0| MRR H@l H@3 H@10
MMRNS 35.03 2859 37.49 4747|3593 3053 39.07 4547 | 32.68 23.01 3786 51.01
MMRNS (D+I+G(0)) | 35.73 29.65 3837 48.69 | 36.59 31.78 40.19 46.43 | 33.57 24.04 39.13 52.71
MMRNS (D+I+G(n)) | 36.13 2993 3858 49.02 | 36.93 31.96 4033 46.58 | 33.37 23.78 39.02 52.40
MMRNS (D+I+G(o+n)) | 36.26 30.08 38.70 49.19 | 37.03 32.12 40.46 46.70 | 33.67 24.16 39.27 52.89
Improvement (%) |3.50% 5.20% 3.21% 3.62% |3.07% 5.21% 3.56% 2.71% |3.04% 5.01% 3.71% 3.69%
MyGO 36.10 29.78 3854 47.75 | 3851 3339 39.03 47.87 | 37.72 30.08 41.26 52.21
MyGO (D+I+G(0)) 37.19 30.85 39.65 48.75 | 39.63 3473 39.88 4890 | 38.84 31.53 4237 53.74
MyGO (D+I+G(n)) 37.28 3126 39.74 49.18 | 39.83 35.07 40.20 49.22 | 38.77 3123 4230 5324
MyGO (D+I+G(o+n)) | 37.42 31.42 39.88 49.35 | 39.97 3526 40.32 49.37 | 38.97 31.69 4249 53.92
Improvement (%) |3.66% 5.51% 3.48% 3.35% |3.80% 5.60% 3.31% 3.13% |3.31% 5.36% 2.99% 3.27%
NativE 36.58 29.56 39.65 4894 | 39.04 3479 40.89 46.18 | 37.16 28.01 4136 54.13
NativE (D+I+G(0)) 37.37 30.56 40.44 4993 | 39.63 3595 4193 47.03 | 38.68 28.83 4248 55.11
NativE (D+I+G(n)) 37.57 30.68 40.85 5027 | 39.75 36.12 42.11 47.43 | 38.30 28.77 4235 55.03
NativE (D+I+G(o+n)) | 37.69 30.80 40.97 50.41 | 39.83 36.27 4225 47.56 | 38.84 28.92 42.61 55.22
Improvement (1%) |3.02% 4.21% 3.32% 3.01% |2.01% 4.25% 3.32% 2.98% |4.52% 3.25% 3.02% 2.02%
AdaMF 35.85 29.04 39.01 4842 | 3857 3434 40.59 45.76 | 35.14 2530 41.11 5292
AdaMF (D+I+G(o)) | 36.92 30.16 39.78 49.34 | 39.79 3537 4145 46.41 | 36.20 2624 4229 5435
AdaMF (D+I+G(n)) | 37.20 3035 39.77 49.73 | 40.05 35.86 41.89 46.78 | 35.85 26.08 42.13 54.24
AdaMF (D+I+G(o+n)) | 37.36 30.50 39.85 49.88 | 40.21 36.04 42.02 46.88 | 36.32 26.34 42.43 54.51
Improvement (1%) |4.21% 5.02% 2.15% 3.02% |4.25% 4.95% 3.52% 2.46% |3.35% 4.12% 3.20% 3.00%

Table 2: Link prediction results of four models across three datasets. “D” represents entity descriptions, “I”” denotes
image embeddings, “G(0)” refers to textual descriptions generated from original images, and “G(n)” corresponds
to textual descriptions from newly downloaded images. “H@n” stands for “Hits at n.” The “Improvement (1%)”
indicates the performance gain of the best-performing model (highlighted in bold) over the baseline model.

Table 2 demonstrates that using the enriched
datasets improves performance across all metrics
(MRR, Hits@1, Hits@3, and Hits@10) for every
model. For example, the MyGO model achieves a
3.66% and 5.51% boost in MRR and Hits@1. Simi-
lar trends are observed on the MKG-Y and DB15K
datasets, further confirming the general applicabil-
ity and effectiveness of our method across different
datasets and models. These results highlight the
importance of incorporating textual descriptions
generated from images to enhance MMKG tasks.

It is important to note that, as shown in Table 2,
the four models exhibit better improvements on
the DB15K dataset when using textual descriptions
generated from the original images provided in the
dataset. This result differs from the trends observed
for the MKG-W and MKG-Y datasets. We hy-
pothesize this difference arises because the DB15K
dataset contains more original images than the num-
ber of images automatically downloaded using our
Beyond Images framework (as detailed in Table 1).
Hence, for the DB15K dataset, the performance of
“G(0)” surpasses that of “G(n)”, because the larger
number of generated textual descriptions in “G(0)”,
compared to “G(n)”, enables the model to learn
richer and more accurate entity representations.

4.3 Ablation Study (RQ2)

Figure 3 shows the performance differences of four
models on the MKG-W dataset when using various
combinations of input modalities. The y-axis repre-
sents Hits@1, while the x-axis corresponds to the
following input scenarios. “D”: Textual descrip-
tions provided for entities in the original dataset.
“I’’: Image embeddings of the entities in the original
dataset. “G”: T,extual descriptions generated for
images by the Beyond Images framework. In the
“G” scenario, “0” denotes descriptions generated
from original images, while “n” indicates descrip-
tions generated from newly downloaded images.

The figure shows that model performance is rel-
atively poor when only two modalities are used.
However, performance improves when all three
modalities are combined, with the best results
achieved when “D+I+G(o+n)” are used together.
This highlights the benefits of multimodal integra-
tion, which enables models to fully leverage com-
plementary information across modalities, effec-
tively mitigating potential semantic gaps in individ-
ual modalities and achieving superior prediction
results.

Additionally, we observe varying impacts of tex-
tual and visual information across different models.
In MyGO and NativE, textual information has a
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Figure 3: Hits@1 comparison across four models on the MKG-W dataset under different modality combinations.
“D” represents entity descriptions, “I”’ denotes image embeddings, “G(0)” refers to textual descriptions from original
images, and “G(n)” corresponds to those from newly downloaded images. The importance of textual and visual
information varies across models. Models using global image embeddings (MMRNS, AdaMF) benefit more from
visual inputs, while those using tokenized image embeddings (MyGO, NativE) rely more on textual descriptions.

more significant impact than visual information
(textual information > visual information). In con-
trast, for MMRNS and AdaMF, visual information
plays a more prominent role (visual information
> textual information). We believe that this differ-
ence is driven by how images are processed and
integrated into the representation space within each
model. In MMRNS and AdaMF model, global
image embeddings encode an entire image into a
single vector, preserving high-level semantic infor-
mation that aligns well with entity-level reasoning
in knowledge graphs. This approach ensures that
key visual attributes relevant to the entity are re-
tained, often making visual information more influ-
ential than textual descriptions. In contrast, MyGO
and NativE split image into multiple discrete visual
tokens, shifting from a global to a localized per-
spective. While this allows for fine-grained feature
extraction, it may disrupt semantic coherence at
the entity level, reducing the effectiveness of vi-
sual information for knowledge graph reasoning.
Additionally, tokenized embeddings may introduce
redundancy or irrelevant details.

Each approach has advantages depending on

the task in MMKGs. Global image embeddings
work well for entity recognition and concept align-
ment, while tokenized embeddings are better for
fine-grained visual reasoning, such as object inter-
actions and spatial relationships. The impact of
textual and visual information varies with the rep-
resentation method: global embeddings enhance
visual contributions, whereas textual descriptions
become more important in detailed multi-modal
tasks. These findings emphasize the importance of
selecting the appropriate modality representation
strategy for specific applications.

In these ablation experiments, single-modality
(i.e., only “D”, “G” or “I”) tests were not con-
ducted, as MMKG completion relies on the syn-
ergy of multiple modalities. A single-modality
alone cannot provide comprehensive knowledge
completion. The goal is to evaluate the contribution
of each modality rather than test their standalone
effectiveness. By comparing models with and with-
out specific modalities, we can more accurately
assess the benefits of multimodality.



4.4 Case Analysis: Boosting Performance
with Textual Descriptions

To demonstrate how generated textual descriptions
enhance model performance, we compared the pre-
dictions of the “D+I"” and “D+I+G” configurations.
The most significant improvement was observed
in the triple “(Hot Sauce Committee Part Two,
performer, Beastie Boys)”. In this example, the
head entity is “Hot Sauce Committee Part Two”,
the relation is “performer”, and the tail entity is
“Beastie Boys”. When the model was given the rela-
tion “performer” along with the textual description
of the tail entity “Beastie Boys”, the correct head
entity’s rank improved significantly from 13,680
to 1,330. Likewise, when provided with the head
entity “Hot Sauce Committee Part Two’, its tex-
tual description, and the relation “performer”, the
rank of the correct tail entity improved from 11,435
to 4,628. This demonstrates the effectiveness of
adding textual descriptions generated from images,
as they enhance entity representation alignment.

BEASTIEBOYSHOTSAUCECOMMITTEEPARTTWO wT SAVCE
ICOMMITTEE PT.

(a) Hot Sauce Committee (b) Hot Sauce Committee
Part Two image 1: “The cover Part Two image 2: “The scene
of beastboys hot sauce com-shows a group of men walking
mittee part two”.

on a bridge”.

(c) Beastie Boys image 1:(d) Beastie Boys image 2:
“three men are leaning on a“The logo for beastie boys is
stair railing”. shown in black and white”.

Figure 4: Triple: (Hot Sauce Committee Part Two, per-
former, Beastie Boys). Images (a) and (b) correspond to
the head entity Hot Sauce Committee Part Two, while
images (c) and (d) represent the tail entity Beastie Boys.
The textual descriptions generated by BLIP-2 capture
key semantic details like the entity name and album title.
This helps the model better align entity representations,
significantly improving performance.

Figure 4 presents the existing images and the
textual descriptions generated for this triple. These
images highlight the challenge of “sparse-semantic
images (e.g., brand logos),” where visual em-
beddings primarily capture abstract shapes and
patterns, providing limited semantic information.
Such images often lack distinctive features, mak-
ing it difficult for the model to learn meaningful
connections. As a result, relying solely on image
embeddings may lead to weak or inaccurate entity
representations. However, incorporating textual
descriptions generated from these images helps
mitigate this limitation. Specifically, the generated
text “G” in this example includes details such as
the entity name and album title, allowing the model
to better align the entity with other modalities (“D”
and “I”).

5 Conclusion and Future Work

In this paper, we introduced Beyond Images, an au-
tomated framework for standardizing and enriching
Multi-Modal Knowledge Graph (MMKG) datasets
by generating meaningful textual descriptions for
both existing and newly collected images. This
text-driven approach enhances semantic represen-
tations across a spectrum of images, from those
with sparse-semantics (e.g., brand logos) to those
with rich-semantics (e.g., abstract artwork), mitigat-
ing the impact of semantic unclarity. Additionally,
it removes the need for extensive expert filtering,
making dataset construction more scalable.

We evaluated Beyond Images using four state-of-
the-art models on three public datasets, achieving
2%-5% improvement in the link prediction task.
These results highlight the importance of language
in MMKG:s, especially when images are weakly re-
lated to entities. Furthermore, the proposed textual
representations derived from image descriptions
offer a more compact and efficient alternative to
images for some of the evaluated models.

For future work, we plan to extend this frame-
work to additional datasets to support large-scale
MMKG research and further validate our approach.
Additionally, we aim to investigate more complex
tasks that incorporate temporal information (Huang
et al., 2023). Concretely, we plan to explore the
impact of image timestamps on dynamic entity evo-
lution, to gain deeper insights into knowledge evo-
lution in multi-modal environments.



Limitations

While our Beyond Images framework improves
Multi-Modal Knowledge Graphs (MMKGs) by
converting images into textual descriptions, it has
certain limitations.

First, the quality of the generated textual de-
scriptions relies on the pre-trained vision-language
model (BLIP-2). If the model produces inaccu-
rate descriptions, the semantic alignment between
images and entities may be weakened, potentially
impacting downstream tasks.

Second, while replacing images with text re-
duces dependence on semantically ambiguous im-
ages, it may also lead to the loss of fine-grained
visual details. These details could be important for
specific tasks, such as visual reasoning in MMKGs.
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improved alignment with text (Dosovitskiy
et al., 2020). However, these methods are
computationally intensive and heavily reliant
on image quality and alignment effectiveness.

Challenges in Handling Specific Image Types.
However, both approaches face challenges when
processing certain types of image, where standard
embedding methods fail to capture essential seman-
tic features.

* Sparse-Semantic Images (e.g., brand logos):
These images contain limited visual informa-
tion, often featuring simple geometric shapes
or elements. While they may carry critical
domain knowledge, existing models struggle
to extract distinctive embeddings, reducing
their effectiveness (Su et al., 2024; Wang et al.,
2020).

Rich-Semantic Images (e.g., abstract artwork):
These images are visually and semantically
complex, including intricate scenes, interac-
tions, or artistic expressions. Current embed-
ding methods often struggle to fully capture
these semantic relationships, leading to signif-
icant information loss (Wilber et al., 2017).

B Standardizing and Aligning Original

Images

To generate textual descriptions based on images,
we require the original images from the datasets.
However, many existing works only provide im-
age embeddings (vectors) without the raw images.
For those that do provide raw images, naming con-
ventions for image files vary significantly. Some
use Wikidata URLs, others use DBpedia URLs,
and some rely on YAGO entity names. This in-
consistency, especially with YAGO entity names
that often include special characters such as \, /, or
:, creates challenges in aligning image with entity
names. Many operating systems are unable to han-
dle filenames containing such characters, further
complicating the alignment process and subsequent
experiments.

To address this, we first standardize the naming
conventions for raw images in the datasets. Con-
cretely, we align all entities using their Wikidata
IDs (QIDs). The QIDs consist only of alphanu-
meric characters, which are compatible with all
operating systems, facilitating future reproduction
and extensions. Additionally, QIDs serve as a
bridge between entities and their Wikipedia pages,
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enabling us to download supplementary images
and metadata (e.g., timestamps) from Wikipedia
for dataset enrichment. Details are summarized in
Table 1.

MKG-W. We found that original images for dif-
ferent entities were stored in folders named after
the entities , but many special characters (e.g., \,
/, or :) were missing. Additionally, the image
filenames within these folders lacked any recogniz-
able pattern. To address this, we used the dataset’s
provided mapping file, which links DBpedia URLs
to Wikidata URLSs, to identify the corresponding
entity names and QIDs for each entity.

Next, we removed all special characters from
both the extracted entity names and the folder
names containing the original images to facilitate
matching. Once the matching was complete, we
had the following information for each sample: en-
tity name, QID, and original images. Finally, we
renamed all images using the format qid_idx and
consolidated them into a single folder for use in
subsequent experiments.

MKG-Y. We followed a similar process as in
MKG-W (see above). The original images were
stored in folders named after the entities, but the
filenames lacked a consistent naming convention.
Unlike MKG-W, the original dataset did not pro-
vide a mapping file between DBpedia and Wikidata
URLSs. However, it did include a mapping between
DBpedia URLs and sample names.

Using the DBpedia URLs, we accessed the cor-
responding DBpedia pages and leveraged sameAs
links to locate the corresponding Wikidata pages
and obtain the QIDs. We then matched the folders
containing raw images to their respective entities
and renamed the images using the qid_idx format.
Finally, all renamed images were consolidated into
a single folder for subsequent use.

DB15K. The original paper (Liu et al., 2019)
did not provide downloadable images, only image
embeddings and URLs for the images. As a result,
we re-downloaded the images using the provided
links. Each sample had 100 links from Google
Images, approximately 35 from Bing Images, and
50 from Yahoo Image Search. According to the
original paper, the top 20 images from each search
engine (for a total of 60 images per entity) should
be downloaded.

However, some links were no longer valid. To
ensure fairness in reproducing the results, we se-
quentially downloaded up to 20 images from each
search engine. If fewer than 20 valid images were



available, we continued downloading from sub-
sequent links until 20 images were obtained per
search engine, maintaining the original dataset’s
image count of 60 per sample.

After downloading the images, we used the DB-
pedia URLs to access the DBpedia pages, followed
sameAs links to locate the corresponding Wikidata
pages, and obtained the QIDs for each sample. Fi-
nally, we renamed the images using the qid_idx
format and consolidated them into a single folder
for subsequent experiments.

C Our Datasets Structure

During processing, images in each batch were en-
coded as tensors using a processor and then passed
through the model to generate textual descriptions.
The generated descriptions and their corresponding
filenames were saved to an output file, providing se-
mantically meaningful textual data for subsequent
MMKG tasks. A summary of the final output files
is provided in Table 3.

Key Description

id Unique identifier for each image
page_url URL of the Wikipedia page
image_url URL of the image file
table_data Metadata of the image

- Description Brief description of the image

- Date Date associated with the image
- Author Author or creator of the image

Standardized date format
Detailed textual description

- Formatted_Date
image_blip2_detail

Table 3: Each image in the dataset includes unique
identifiers, source URLs, metadata (e.g., date, author),
and BLIP-2-generated textual descriptions.

The dataset provides detailed information for
each image, such as URLs, metadata, and automat-
ically generated textual descriptions. Each entry
consists of a unique identifier (id), links to the
corresponding Wikipedia page (page_url) and im-
age file (image_url), metadata extracted from the
image (table_data), and textual descriptions gen-
erated by BLIP-2 (image_blip2_detail). The
metadata includes various attributes such as date
(Formatted_Date), author, and resolution, which
are crucial for MMKG research.

D Implementation Details

Our experiments use the default hyperparameters
for each Baseline model to ensure fair comparisons.
All experiments were conducted on a Linux server
equipped with a single NVIDIA H100 GPU. To
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generate textual descriptions from images, we used
the BLIP-2 model, with English as the output lan-
guage. The maximum generated text length is lim-
ited to 100 words. On average, each image gener-
ated 20 words, ranging from 15 to 25 words. The
generated text is then embedded into vectors using
BERT-base-uncased.

E Main Result

The main results are shown in Table 4, which sum-
marizes the link prediction performance of four
models (MMRNS, MyGO, NativE, and AdaMF)
across three datasets (MKG-W, MKG-Y, and
DB15K) under different settings.

Model performance is evaluated using rank-
based metrics, including Mean Reciprocal Rank
(MRR) and Hits@K (K =1, 3, 10). MRR cal-
culates the average of the reciprocal ranks of the
correct answers in the predicted ranking list, while
Hits@ K measures the proportion of correct an-
swers appearing within the top K predictions. Both
metrics are commonly used in evaluating link pre-
diction tasks, with higher scores indicating better
model performance.

The first row for each model presents the ex-
perimental results on the original datasets, as re-
produced from the original papers. “G” stands for
Generate, referring to our framework that gener-
ates textual descriptions from images. “o0” indi-
cates that the textual descriptions were generated
from the original images provided in the dataset,
while “n” means that the descriptions were gener-
ated from images automatically downloaded us-
ing our Beyond Images framework. Improve-
ment represents the percentage increase (Boost =
Our Result—Baseline Result) in performance of the en-

. Baseline Result o
riched datasets compared to the original datasets.

F Case Analysis: Boosting Performance
with Textual Descriptions

F.1 Example1

All images are shown in Figure 5. Triple: (Hot
Sauce Committee Part Two, performer, Beastie
Boys). Images (a) and (b) correspond to the head
entity Hot Sauce Committee Part Two, while im-
ages (c) - (h) represent the tail entity Beastie Boys.

Triple: (Hot Sauce Committee Part Two, per-
former, Beastie Boys)

QID: (Q1933719, P175, Q214039)

Head entity’s rank: correct head entity’s rank
improved from 13,680 to 1,330.



Model MKG-W MKG-Y DB15K
MRR H@l H@3 H@10| MRR H@l H@3 H@l0| MRR H@l H@3 H@10
MMRNS 35.03 2859 37.49 4747|3593 3053 39.07 4547 | 32.68 23.01 3786 51.01
MMRNS (D+I+G(0)) | 35.73 29.65 3837 48.69 | 36.59 31.78 40.19 46.43 | 33.57 24.04 39.13 52.71
Improvement (%) 1.99% 3.70% 2.35% 2.57% |1.84% 4.11% 2.87% 2.11% |2.74% 4.49% 3.35% 3.34%
MMRNS (D+I+G(n)) | 36.13 2993 3858 49.02 | 36.93 31.96 4033 4658 | 33.37 2378 39.02 52.40
Improvement (1%) 313% 4.68% 291% 3.26% |2.79% 4.69% 321% 2.44% |2.11% 3.36% 3.06% 2.72%
MMRNS (D+I+G(o+n)) | 36.26 30.08 38.70 49.19 | 37.03 32.12 40.46 46.70 | 33.67 24.16 39.27 52.89
Improvement (%) |3.50% 5.20% 3.21% 3.62% |3.07% 5.21% 3.56% 2.71% |3.04% 5.01% 3.71% 3.69%
MyGO 36.10 29.78 3854 47.75 | 3851 3339 39.03 47.87 | 37.72 30.08 4126 52.21
MyGO (D+I+G(0)) 37.19 30.85 39.65 48.75 | 39.63 3473 39.88 4890 | 38.84 31.53 4237 53.74
Improvement (1%) 301% 3.61% 2.88% 2.10% |2.91% 4.01% 2.17% 2.14% |297% 4.81% 2.69% 2.92%
MyGO (D+I+G(n)) 37.28 31.26 39.74 49.18 | 39.83 35.07 40.20 49.22 | 38.77 31.23 4230 5324
Improvement (1%) 328% 497% 3.12% 2.99% |3.42% 5.03% 3.01% 2.81% |2.78% 3.81% 2.53% 1.97%
MyGO (D+I+G(o+n)) | 37.42 31.42 39.88 49.35 | 39.97 3526 40.32 49.37 | 38.97 31.69 4249 53.92
Improvement (1%) |3.66% 5.51% 3.48% 3.35% |3.80% 5.60% 3.31% 3.13% |3.31% 5.36% 2.99% 3.27%
NativE 36.58 29.56 39.65 4894 | 39.04 3479 40.89 46.18 | 37.16 28.01 4136 54.13
NativE (D+I+G(0)) 37.37 30.56 40.44 4993 | 39.63 3595 4193 47.03 | 38.68 28.83 4248 55.11
Improvement (%) 2.16% 3.38% 198% 2.02% |1.52% 3.33% 2.55% 1.83% |4.10% 2.92% 2.72% 1.81%
NativE (D+I+G(n)) 37.57 30.68 4085 5027 | 39.75 36.12 42.11 4743 | 38.30 28.77 4235 55.03
Improvement (%) 272% 3.80% 3.02% 2.72% | 1.81% 3.83% 2.99% 2.711% |3.08% 2.72% 2.41% 1.66%
NativE (D+I+G(o+n)) | 37.69 30.80 40.97 50.41 | 39.83 36.27 4225 47.56 | 38.84 28.92 42.61 55.22
Improvement (%) |3.02% 4.21% 3.32% 3.01% |2.01% 4.25% 3.32% 2.98% |4.52% 3.25% 3.02% 2.02%
AdaMF 35.85 29.04 39.01 4842 | 3857 3434 40.59 45.76 | 35.14 2530 41.11 5292
AdaMF (D+I+G(o)) | 36.92 30.16 39.78 49.34 | 39.79 3537 4145 46.41 | 36.20 2624 4229 5435
Improvement (1%) 298% 3.84% 1.96% 190% |3.16% 2.99% 2.12% 1.43% |3.02% 3.711% 2.87% 2.71%
AdaMF (D+I+G(n)) | 37.20 30.35 39.77 49.73 | 40.05 35.86 41.89 46.78 | 35.85 26.08 42.13 5424
Improvement (1-%) 377% 451% 1.94% 2.710% | 3.84% 4.44% 3.20% 2.23% |2.01% 3.08% 2.49% 2.49%
AdaMF (D+I+G(o+n)) | 37.36 30.50 39.85 49.88 | 40.21 36.04 42.02 46.88 | 36.32 26.34 4243 54.51
Improvement (%) |4.21% 5.02% 2.15% 3.02% |4.25% 4.95% 3.52% 2.46% |3.35% 4.12% 3.20% 3.00%

Table 4: Link prediction results of four models across three datasets. “D” represents entity descriptions, “I”” denotes
image embeddings, “G(0)” refers to textual descriptions generated from original images, and “G(n)” corresponds
to textual descriptions from newly downloaded images. “H@n” stands for “Hits at n.” The “Improvement (1%)”
indicates the performance gain of the best-performing model (highlighted in bold) over the Baseline model.

Tail entity’s rank: correct tail entity’s rank im-
proved from 11,435 to 4,628.

F.2 Example 2

All images are shown in Figure 6. Triple: (Her
Harem, cast member, Carroll Baker). Images (a) -
(c) correspond to the head entity Her Harem, while
images (d) - (m) represent the tail entity Carroll
Baker.

Triple:
Baker)

QID: (Q3819142, P161, Q233891)

Head entity’s rank: correct head entity’s rank
improved from 10,177 to 8,611.

Tail entity’s rank: correct tail entity’s rank im-
proved from 571 to 72.

(Her Harem, cast member, Carroll

F.3 Example 3

All images are shown in Figure 7. Triple: (World
(The Price of Love), performer, New Order). Im-
ages (a) correspond to the head entity World (The
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Price of Love), while images (b) - (f) represent the
tail entity New Order.

Triple: (World (The Price of Love), performer,
New Order)

QID: (Q8035321, P175, Q214990)

Head entity’s rank: correct head entity’s rank
improved from 12,528 to 2,622.

Tail entity’s rank: correct tail entity’s rank im-
proved from 10,185 to 2,591.



et S

(a) Q1933719_1: “The cover of beastboys (b) Q1933719_2: “The scene shows a
hot sauce committee part two”. group of men walking on a bridge”.

i )

(c) Q214039_1: “three men are leaning on (d) Q214039_2: “The logo for beastie boys
a stair railing”. is shown in black and white”.

A
A

(e) Q214039_3: “two men are standing on (f) Q214039_4: “two men in black jackets
stage with a microphone”. are on stage singing”.

(g2) Q214039_5: “a man in a red suit and (h) Q214039_6: “a man in a suit and tie
hat is singing on stage”. singing”.

Figure 5: Triple: (Hot Sauce Committee Part Two, performer, Beastie Boys). Images (a) and (b) correspond to the
head entity Hot Sauce Committee Part Two, while images (c) - (h) represent the tail entity Beastie Boys.
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v [EROVER e BERGER Mﬂﬁfﬂ FERRERI
(a) Q3819142_1: “the (b) Q3819142_2: “the (c) Q3819142_3: “two (d) Q233891_1: “a(e) Q233891_2: “a
poster for the movie italian flag is shown on masks and a clapper black and white photo black background with a
harem”. a clapperboard”. board on a black back-of a woman with long white tv screen”.
ground”. blonde hair”.

4
() Q233891_3: “mari-(g) Q233891_4: “a man (h) Q233891_5: “a (i) Q233891_6: “a
lyn monroe in a black and woman in western at-woman in a striped top woman in a fur coat sits

and white photo”. tire sit on a horse”. sits on a bench”. on a white fur rug”.

G) Q233891_7: “a woman (k) Q233891_8: “the (I) Q233891_9: “a(m) Q233891_10: “a

is standing in a shower”.  scene shows a man and woman in a white dress star on the hollywood
woman talking to each is standing on a stage in walk of fame for carroll
other”. front of a large ship”.  baker”.

Figure 6: Triple: (Her Harem, cast member, Carroll Baker). Images (a) - (c) correspond to the head entity Her
Harem, while images (d) - (m) represent the tail entity Carroll Baker.
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i

THE PRICE DF Love,

- WorLD.

(a) Q8035321_1: “the cover of the world (b) Q214990_1: “four black and white pho-
album”. tos of four men”.

(c) Q214990_2: “a group of men are on (d) Q214990_3: “a band is performing on
stage with guitars and drums”. stage with a large screen behind them”.

)@

(e) Q214990_4: “a blue and white wave (f) Q214990_5: “a blue and red logo with
symbol”. arrows pointing in different directions”.

Figure 7: Triple: (World (The Price of Love), performer, New Order). Images (a) correspond to the head entity
World (The Price of Love), while images (b) - (f) represent the tail entity New Order.
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