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Abstract

Training modern neural networks on large datasets is computationally and energy
intensive. We present SAGE, a streaming data—subset selection method that
maintains a compact Frequent Directions (FD) sketch of gradient geometry in
O(¢D) memory and prioritizes examples whose sketched gradients align with
a consensus direction. The approach eliminates N x N pairwise similarities
and explicit N x ¢ gradient stores, yielding a simple two-pass, GPU-friendly
pipeline. Leveraging FD’s deterministic approximation guarantees, we analyze
how agreement scoring preserves gradient energy within the principal sketched
subspace. Across multiple benchmarks, SAGE trains with small kept-rate budgets
while retaining competitive accuracy relative to full-data training and recent subset-
selection baselines, and reduces end-to-end compute and peak memory. Overall,
SAGE offers a practical, constant-memory alternative that complements pruning
and model compression for efficient training.

1 Introduction

The cost of training with all available data has grown sharply with the scale of modern benchmarks
and models, motivating methods that reduce the number of examples processed without degrading
generalization []1, |2, |3]. While pruning architectures, improving optimizers, and compressing models
address complementary aspects of efficiency, the question of which examples most effectively drive
learning remains central [4} |5]]. Prior subset selection techniques either rely on heuristic uncertainty
measures that ignore correlations between examples [6], or else approximate gradient matching using
dense similarity computations that scale poorly with dataset size [7, (3, [9]. Recent advances such as
gradient matching, submodular coverage, and influence- or value-based selection show that carefully
chosen subsets can approach full-data performance [[7,(9, |10} 11} |12], but they often require either
©(N?) pairwise computations or an explicit N x D gradient matrix limitations that hinder use at
larger dataset scales [[13,[7, 8]

We introduce SAGE, a method that sidesteps these scaling barriers by summarizing the evolving
gradient rowspace with a deterministic Frequent Directions (FD) sketch [[14} |15/ |16]]. The sketch
provides a low-rank surrogate that preserves dominant gradient directions up to a quantified error,
enabling one-pass, streaming operation with a memory footprint that scales only with the model
dimension and the sketch size, not the number of training points [[15} [16]. Within the sketched
subspace, SAGE scores each example by the cosine agreement between its projected (normalized)
gradient and the average projected direction. Selecting high-agreement examples yields subsets
whose aggregate update tracks the full-data gradient while down-weighting inconsistent or noisy
samples, echoing ideas from gradient-alignment literature [17]. This combination of streaming
sketching and agreement-based ranking distinguishes SAGE from methods that rely on norms alone
or expensive pairwise comparisons [18] 7, |8,|13]. We target regimes where per-example gradients are
available or can be computed efficiently during training.
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Algorithm 1 SAGE: Streaming Agreement-Driven Subset Selection

1: Input: dataset D, model fy, loss L, sketch size ¢, target subset size k (or per-class k)

2: Initialize S < Oy« p, row counter 7 < 0

3: for batches B C D do > Phase I: streaming FD sketch
4: for (xz,y) € Bdo

5: g VoL(fo(x),y); Slrmod{,: ]+ g; r+r+1

6: if  mod ¢ = 0 then

7 [U, %, V] <= svd(S); § = 03 B,  (/max(a? —§,0)

8: S« xvT

9: end if

10: end for

11: end for

12: (Freeze S for scoring)

13: Phase II: For each example ¢, compute z; < S ¢;; set 2; < z; /|| 2|2 if ||z:||2 > Oelse 2; < 0
14: Compute Z < & >, ;3 if [|Z]|2 > 0, setu «— Z/||Z||2, else u < 0

15: Scores a; « (Z;, u)

16: if class balance required then

17: For each class ¢: Z. ITll Ziezc 23 ue < Zc/||Zc]|2 (if nonzero)
18: Select top-k.. per class by (2;, uc) (O, ke = k)

19: else

20: Select top-k by «;

21: end if

22: return selected index set T°

2 Method

Let {(z;, ;) }}, denote the training set, fp a model with parameters § € R”, and £ < N the sketch
size. Denote by g; = Vg L(fo(x;), y;) the per-example gradient [[19,[20]. SAGE maintains a Frequent-
Directions (FD) sketch S € R**P updated in streaming fashion as gradients are observed [[14}|15} 16].

When the sketch fills, compute a thin SVD S = ULV T, set § = af, shrink Z;j =, /max(of- —6,0),

and reconstruct S < X'V T [14,|15]. This contracts low-energy directions and retains dominant ones;
letting G € RY*PD stack the g, and G, be the best rank-k approximation of G, FD guarantees

0=<G'G-8TS < 2|G—Gi|%:1 [15[16).

Two-pass scoring. After one streaming pass constructs S, SAGE performs a single additional
backward pass to compute z; = Sg; € R’ [20]. For z; # 0, define 2; = z;/||2i||2; let 2 =

+ Zjvzl z; and (if ||Z||2 > 0) the unit consensus v = Z/||Z||2. The agreement score is

Q; = <7:’z, U> S [*1, 1]7
which favors gradients aligned with the consensus direction and prevents high-magnitude outliers

from dominating [17} 21]]. SAGE selects the top-k indices by «y, or a class-balanced variant (below).
The entire procedure uses O(¢D) memory, independent of N [14,|15].

2.1 Agreement Scoring and Selection

The projected gradients z; := S g; define an agreement score «; = (Z;, u) that measures each
sample’s contribution to the consensus direction of the sketched gradient distribution. Selection by
top-k «; balances representativeness and diversity within the FD subspace; the class-balanced variant
(CB-SAGE) replaces u with per-class unit centroids u, and selects top-k. per class.

Energy preservation.
Lemma 1 (Consensus-direction energy). Let 7' C [N] with |T'| = k and assume «; > £ > 0 for all
i € T and ||Z]|2 > 0. Then

(ou)? = Y llzlfal > €3 |l
2

€T €T ISV



Proof. Since u is unit and a; = (2;, u), we have (z;, u) = ||2;||2 a;; square and sum.

Corollary (mean-alignment bound). If a subset T' C [N] satisfies o; > £ > 0 forall ¢ € T and

[IZ]l2 > 0, then
1 1
|23 = & 23 laile.
€T €T

Proof. Project the mean onto the unit consensus u: (1 > ,cp 2, u) = 1 > ;e 2ill2cs > €+
+ 3 er llzill2, and [[v]| > (v, u) for unit u.

Complexity. (Excl. backprop) Two-pass epoch over N: O(N ¢D + N log k) time, O(¢D) memory;
per-sample update & scoring are each O(¢D).

3 Experiments

We conduct experiments on five benchmark datasets spanning a range of computer vision tasks
and data complexities - CIFAR-10, CIFAR-100, Fashion-MNIST, TinyImageNet, and Caltech-256.
CIFAR-10 and CIFAR-100 are well-established datasets of 32 x 32 natural images with 10 and 100
classes respectively, providing a standard setting for controlled data selection analysis. Fashion-
MNIST consists of grayscale images of clothing items across 10 categories, serving as a drop-in
replacement for MNIST but with increased task difficulty. TinyImageNet is a subset of ImageNet
with 200 classes and reduced image size, posing a more challenging scenario for both memory and
accuracy. Caltech-256 contains 256 object categories with significant class imbalance and is used to
demonstrate the robustness of subset selection methods in long-tailed data regimes.
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Figure 1: Figure 1: Relative test accuracy vs. training speed-up across CIFAR-10, CIFAR-100,
Fashion-MNIST, TinyImageNet, and Caltech-256 at subset fractions of 5%, 15%, 25%, and 100%.
SAGE achieves superior accuracy retention at aggressive subset fractions, matching or exceeding full-
data accuracy at 25% data usage while delivering 3-6x training speed-ups. Curves show exponential
fits with R? quality indicators, and shaded regions indicate variability across three independent seeds.



We compare SAGE against a comprehensive suite of baseline methods representative of the state of
the art in data subset selection. These include GLISTER, which employs influence-based submodular
optimization; CRAIG, which greedily maximizes gradient diversity using a submodular coverage
function; GradMatch, a gradient matching-based selection method; and DROP, a scalable technique
using a proxy for data importance. We also include GRAFT and GRAFT-Warm, which leverage
gradient-aware fast maximum volume selection, to benchmark recent advances in the field. All
methods are evaluated using open-source implementations and, where applicable, recommended
hyperparameters. For each method—dataset pair, we evaluate performance by training a standard
ResNet-18 using only the selected data subset. Subset fractions are set to f € {0.05,0.15,0.25,1.0},
corresponding to 5%, 15%, 25%, and 100% of the training set. We report top-1 test accuracy and
wall-clock training time, measured on a single NVIDIA A100-80GB GPU. Each experiment is
repeated three times with independent random seeds, and the mean and variance of performance are
reported. All results are normalized relative to full-data training.

Our results demonstrate that SAGE consistently achieves higher accuracy retention at aggressive
subset fractions and offers statistically significant acceleration in convergence compared to all
baselines. On CIFAR-10 and TinyImageNet, SAGE matches or exceeds full-data accuracy using only
25% of the data, reducing training time by over 3x. On Caltech-256, which exhibits severe class
imbalance, SAGE’s class-balanced scoring improves subset representativeness and ensures uniform
label coverage. Empirical response curves are modeled using a generalized exponential fit, and all
results include R? fit quality and confidence bands for statistical rigor.

4 Related Work

Coreset selection and data pruning for efficient training have been explored via submodular coverage,
gradient matching, and influence functions, among other ideas [12} 9, |7, |8, |10}, [I1]. CRAIG and
GLISTER exemplify selection by coverage and generalization proxies, respectively, while GRAD-
MATCH formulates an explicit gradient-matching objective that scales quadratically in the number of
examples [9} |8, 7]]. More recent directions examine distributionally robust pruning and stepped greedy
strategies aimed at favorable empirical trade-offs [22} 23| [24]. Complementary to these, GRAFT
employs Fast MaxVol sampling on low-rank feature projections with dynamic gradient-alignment
adjustments to perform in-training subset selection [25]], while SAGE uses a Frequent Directions
sketch with gradient-agreement scoring to perform streaming selection in constant memory and two
passes, avoiding explicit N2 similarities [25]]. In parallel, Market-Based Data Subset Selection casts
multi-criteria example utility into a convex cost/pricing framework, enabling principled aggregation
of heterogeneous signals and tunable trade-offs [26]. However, many existing approaches either incur
©(N?) pairwise computations or require storing/operating on an explicit N x D gradient matrix,
and several rely on bilevel or proxy objectives whose stability can vary across datasets.

SAGE differs by avoiding pairwise similarities [13} 7] and by using a deterministic sketch with
worst-case guarantees [ 14, |15, [16], enabling a streaming implementation with memory constant in
N and only two sequential passes (sketch, then scoring) [15]]. Within the sketched subspace, the
agreement score operationalizes the intuition that directional consistency of gradients matters for
optimization; unlike pure norm-based heuristics and early-prediction signals [18} [27]], it explicitly
aligns the subset’s aggregate update with a consensus formed in the principal gradient subspace [[17,
21]]. A class-balanced variant further enforces label coverage without changing the constant-memory
profile, making the method practical across both balanced and long-tailed regimes.

5 Limitations

SAGE assumes per-example (or microbatched) gradients and a second scoring pass, adding overhead
vs. one-pass heuristics. FD incurs an additive O(||G — Gj||%/¢) sketch error, so small £ can miss
rare but important directions; agreement is directional (magnitude-agnostic) and may underweight
hard examples.



6 Conclusion

We proposed SAGE, a streaming subset selection algorithm that couples Frequent Directions sketching
with agreement-based ranking to identify representative training examples. The method offers
theoretical control of sketch error, aligns selected gradients with a data-driven consensus, and scales
to ImageNet-sized datasets on a single GPU. Experiments on multiple benchmarks show that SAGE
preserves accuracy at aggressive pruning rates while delivering substantial speedups and memory
savings, making it a practical tool for efficient model training.
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Supplementary Material

Table 1: Test accuracy (%) at subset fraction f. Best non-full entry in each column is bold; “Full
data” is the 100% column.

CIFAR-100 TinyImageNet

Method 5% 15% 25% 100% 5% 15% 25% 100%
Full data - - - 76.8 - - - 59.2
Random 45.1 593 657 - 284 421 495 -
DROP 489 632 68.1 - 3.7 46.8 523 -
GLISTER  52.1 66.7 70.5 - 352 49.1 546 -
CRAIG 53.8 679 718 - 36.8 50.5 559 -
GradMatch 553 69.1 72.6 - 384 517 56.8 -
GRAFT 569 702 735 - 39.6 529 574 -
SAGE 59.2 721 751 - 4277 553 58.7

Experimental Details

Backbone: ResNet-18 trained from scratch; optimizer: SGD+momentum 0.9, weight decay
5 x 10~%, cosine LR; label smoothing 0.1, EMA 0.999; mixed precision enabled. Budgets
f € {0.05,0.15,0.25,1.00}; selection frozen before training. Augmentations: random crop/flip
(color jitter for TinyImageNet). Seeds: 3 per (dataset, budget, method); we report mean and 95% CI.
Hardware: single NVIDIA A100-80GB; wall-clock measured end-to-end including selection. For
class-imbalanced data we use CB-SAGE (per-class centroids). No code is released at submission;
configs and exact commands will be provided post-review.
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