Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs

Saro Passaro !

Abstract

Graph neural networks that model 3D data, such
as point clouds or atoms, are typically desired to
be SO(3) equivariant, i.e., equivariant to 3D ro-
tations. Unfortunately equivariant convolutions,
which are a fundamental operation for equivari-
ant networks, increase significantly in compu-
tational complexity as higher-order tensors are
used. In this paper, we address this issue by re-
ducing the SO(3) convolutions or tensor prod-
ucts to mathematically equivalent convolutions
in SO(2) . This is accomplished by aligning the
node embeddings’ primary axis with the edge vec-
tors, which sparsifies the tensor product and re-
duces the computational complexity from O(L®)
to O(L?), where L is the degree of the represen-
tation. We demonstrate the potential implications
of this improvement by proposing the Equivari-
ant Spherical Channel Network (eSCN), a graph
neural network utilizing our novel approach to
equivariant convolutions, which achieves state-
of-the-art results on the large-scale OC-20 and
OC-22 datasets.

1. Introduction

In many domains, it is desired that machine learning models
obey specific constraints imposed by the task. A common
constraint is equivariance to specific operations on the inputs
(Bronstein et al., 2021). That is, if the input is transformed
in a certain manner, such as translated or rotated, the output
should be transformed appropriately. Prominent examples
include equivariance to translations for object detection in
images (Girshick et al., 2014), and equivariance to rotations
of 3D point clouds (Weiler et al., 2018; Satorras et al., 2021).
Machine learning models impose equivariance to a group of
symmetries by constraining the operations that can be per-
formed. Namely, the class of functions that can be learned
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is narrowed to those that are equivariant. The hope is that
equivariance will provide a robust prior that can increase
data efficiency, improve generalization and eliminate the
need for data augmentation (Reisert & Burkhardt, 2009).

SO(3)-Equivariant graph neural networks (GNNs) have
showed great promise in processing geometrical informa-
tion, such as 3D point clouds of objects (Weiler et al., 2018;
Chen et al., 2021) or atoms (Batzner et al., 2022; Thomas
et al., 2018; Brandstetter et al., 2022; Liao & Smidt, 2023;
Musaelian et al., 2023). These networks incorporate the
inherent symmetry in their domains to SO(3), the group of
3D rotations. Specifically, they take advantage of geometric
tensors of irreducible representations, so-called irreps, to act
as node embeddings and utilize directional information. The
building block of these networks is an approach to message
passing that uses equivariant convolutions based on tensor
products of the irreps. Unfortunately, the full tensor product
using irreps up to degree L have a computational complexity
of O(L®), which significantly limits their use with degrees
higher than 2 or 3.

In this paper, we address this issue by proposing an efficient
method to perform equivariant convolutions. Our main ob-
servation is that node irreps exhibit special properties if the
irreps’ primary axis is aligned to the edge’s direction during
message passing. While SCN (Zitnick et al., 2022) observed
that this leads to a subset of the coefficients becoming SO(3)
invariant, we demonstrate the benefits extend even further.
Specifically, the tensor product becomes sparse, which re-
duces its computational complexity from O(LS) to O(L?),
and removes the need to compute the Clebsch-Gordan coef-
ficients. This enables computationally efficient equivariant
models that use irreps of significantly higher degree.

Additionally, we shed light on this novel approach by re-
vealing its relationship with SO(2) convolutions (Worrall
et al., 2017). In fact, while predicting per-atom forces in
atomic systems is a SO(3)-equivariant task, during mes-
sage passing the symmetry of the problem gets reduced to
SO(2). Specifically, by aligning the irreps’ primary axis
with the edge’s direction, only a single degree of rotational
freedom remains. Thus, the SO(3) irreps can be projected
to the analogous irreducible representations of SO(2) and
the much more computationally efficient SO(2) convolu-
tions may be performed. In conclusion, the tensor product
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may be viewed as a set of generalized convolutions in SO(2)
if the irreps are rotated appropriately.

We use these insights to propose the Equivariant Spherical
Channel Network (eSCN), an equivariant GNN utilizing
the efficient implementation of the equivariant convolutions.
Empirically, we evaluate our model to the task of predict-
ing atomic energies and forces, a foundational problem in
chemistry and material science with numerous important
applications; including tackling climate change (Zitnick
et al., 2020; Rolnick et al., 2022). Typically, atomic forces
and energies are estimated using Density Functional The-
ory (Hohenberg & Kohn, 1964; Kohn & Sham, 1965), a
very computationally expensive calculation; thus, the goal
is to approximate DFT through Machine learning models
to significantly reduce this cost. We compare eSCN to
state-of-the-art GNNs on the large-scale OC-20 and OC-22
datasets (Chanussot et al., 2021), which contain over 100
million atomic structure training examples for catalysts to
help address climate change. eSCN achieves state-of-the-art
performance across many tasks, especially those such as
force prediction (9% and 21% improvement for OC-20 and
0OC-22) and relaxed structure prediction (15% improvement)
that require high directional fidelity.

2. Related work

Incorporating symmetries of the data in machine learning
models can improve their data-efficiency and ability to gen-
eralize (Cohen & Welling, 2016). Group theory is a formal-
ism to axiomatically define symmetries (Bronstein et al.,
2021). A group G is a set of elements with an operation
o; : G X G — G. Ttacts on a vector space V (i.e. R™ for
some n) with an operation * : G x V' — V called group
action. We say that F' : V' — W is:

1. G-InvariantifVv e V,ge G F(g*v) = F(v)

2. G-Equivariant if Vv € V, g € G F(g*xv) =
g*F(v)

For our task, we are especially interested in SO(3), the
group of rotations of R3. In fact, 3D symmetries are inter-
twined with the law of physics describing quantum interac-
tions, i.e. the Schrodinger equations (Schrodinger, 1926).
Specifically, if we rotate a system the energy should not
vary, SO(3)-invariance, and forces should rotate accord-
ingly, SO(3)-equivariance.

While equivariance is desired in R®, equivariant models
(Weiler et al., 2018; Goodman & Wallach, 2000; Deng et al.,
2021; Puny et al., 2022) use atom embeddings in spaces of
much higher dimension. In particular, they use irreps corre-
sponding to the coefficients of the real spherical harmonics,
which represent a function on a sphere. Given a set of co-
efficients x, we define a spherical function Fy : S?2 5 R

as:
Fe(®) =Y xPDYD(#) (1)
lm

where I = r/|r| is a unit vector indicating the orientation

and YS,ZL) are the real spherical harmonic basis functions
defined over degrees [ € [0, L] and orders m € [—1,1].

Spherical harmonics have the special property that they are
steerable, i.e., there exists a Wigner D-matrix D(l)(R) of
size (21 4+ 1) x (21 + 1) for 3D rotation R for which:

x0 . YOR-1) = DOR)xD) - YO@&) (@

This is the fundamental property for extending the concept
of SO(3) group action to the spherical harmonics’ coeffi-
cients:

R+ x =DO(R) -x? 3)

2.1. Machine learning potentials

Classically, the prediction of a molecule’s energy and forces
(Behler, 2016) using machine learning relied on hand-
crafted representations (Behler, 2016) like MMFF94 (Hal-
gren, 1996) and sGDML (Chmiela et al., 2018). The re-
search on machine learning potentials has recently moved
towards end-to-end learnable models based on graph neural
networks (Kipf & Welling, 2017; Gori et al., 2005).

Early work on GNNs focuses on models that extract scalar
representations from the atoms’ positions. They achieve
equivariance to rotations by utilizing only invariant features.
CGCNN (Xie & Grossman, 2018) and SchNet (Schiitt et al.,
2018) use pair-wise distances, DimeNet (Gasteiger et al.,
2020b), SphereNet (Liu et al., 2022) and GemNet (Gasteiger
et al., 2021; 2022) extend this to explicitly capture triplet
and quadruplet angles.

More recently, equivariant models (Batzner et al., 2022)
have surpassed invariant GNNs on small molecular datasets
including MD17 (Chmiela et al., 2017) and QM9 (Ramakr-
ishnan et al., 2014). These models build upon the concepts
of steerability and equivariance introduced by Cohen and
Welling (Cohen & Welling, 2016). They use geometric
tensors as node embeddings and ensure equivariance to
SO(3) by placing constraints on the operations that can be
performed (Kondor et al., 2018; Fuchs et al., 2020). Specif-
ically, they compute linear operations with a generalized
tensor product between the atom embeddings and edges’
directions. In particular, Tensor Field Networks (Thomas
et al., 2018), NequlP (Batzner et al., 2022), SEGNN (Brand-
stetter et al., 2022), MACE (Batatia et al., 2022), Allegro
(Musaelian et al., 2023) and Equiformer (Liao & Smidt,
2023) lie in this category, and they are commonly referred to
as e3nn networks. Most recently, SCN (Zitnick et al., 2022)
have surpassed invariant GNNs on the large-scale OC-20
(Chanussot et al., 2021) dataset. While it represents atoms’
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embeddings by geometric tensors, SCN doesn’t strictly en-
force equivariance and doesn’t compute any tensor product.

2.2. e3nn networks

In e3nn networks (Geiger & Smidt, 2022), an atom ¢’s em-
bedding is encoded using the spherical harmonic coefficients
(%ic)') where 0 < I < L,—l<m <land1<c<Cis
the number of channels. Assuming a fixed number of chan-
nels C' over different degrees of the spherical harmonics,
the size of the embedding for each atom is (L + 1)? x C.
These embeddings are referred to as irreps, since they rotate
following the Wigner D-matrices which are the irreducible
representations of SO(3) (Goodman & Wallach, 2000).

The proper use of the irreps constrains the networks’ oper-
ations to be SO(3)-equivariant. The building block of the
message passing between two neighboring atoms s and ¢
is the result a,; of an equivariant convolution, which are
summed across neighboring atoms M to obtain the updated
embedding x;}:

x| = |Nt| Z (4)

The convolutions are obtained by computing a generalized
tensor product ®§? I between the input embedding x; and

the edge direction (filter), #s; = rs:/|rs¢|. The values of
ag of degree [, are obtained as a sum of irreps:

lo 1) oo
ag )= ng ) @11

Lily

h i, Y (Bg)  (5)

hy, 1,0, = Fi 1,0, (vst], 25, 2¢) is a learnable non-linear
function that takes as input the distance between the atoms
and their atomic numbers z, and z;, and outputs a scalar
coefficient.

For fixed integer values of [;, [ and [,, the generalized
tensor product ®§j I is a bilinear equivariant operation that
takes as input an irrep of degree [; and a filter irrep of degree
Iy and outputs an irrep of degree I,. We can compute the
tensor product of Equation (5) using the Clebsch-Gordan
coefficients Cgmznnf)) (U my) (Griffiths & Schroeter, 2018)
as follows:

)
(Xgm ®§f,zf hli,lf,loY(lf)(rst)) =

3 x),,

mi,my

(6)
C(lo M) hl

1) e
(1 my(Lgang) Bastg o Yoy (Bot)

1,7lf7

The values of I;, 1 and [, of the tensor product in Equation
(5) are specified in the architecture of the model and are
non-zero for |l, — ;] < Iy <l +1,. Retaining all the
non-zero tensor products ®§j}lf up to degree L becomes

o
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Figure 1. We implement two mathematically equivalent equivari-
ant GNNSs. e3nn uses the e3nn PyTorch library, whereas eSCN uses
our novel approach. Left: GPU memory allocated (%) at training
time with resepct to the maximum degree of the spherical harmon-
ics (L). Right: time (h) per epoch by L. We fix the number of
channels to C' = 64 and remove any non-linearity.

computationally unfeasible as we scale L since it requires
O(L? - C) 3D matrix multiplications. Therefore most e3nn
networks are limited to the computation of L = 1 or 2 and
Iy <2or3.

3. Efficient equivariant convolution

The computational complexity of performing a full tensor
product makes it extremely expensive to use degrees higher
than L = 1 or 2. For many applications, such as modeling
systems of atoms, high-fidelity of angular information is
critical for modeling their interactions. Next, we demon-
strate how to dramatically speed up these calculations for
higher degrees.

Let F' be an SO(3)-equivariant function, then the following
holds for any Wigner-D rotation matrix D), rotation matrix
R and xV) irreps of degree I:

F(xW)=DYWR™Y). FIDY(R) - -xV) (7
Combining Equations (2), (7) with (5) we find:

(l e ZX(Z ®l 1, Y (R
lily

To) (8)

where ' = DG(R) - x!") and D—! = D) (RY).

We can now present our key observation. By choosing a
specific R, we can reduce the cost of computing Equation
(8) substantially. Specifically, if we select a rotation matrix
R, so that Ry - £ = (0,1,0), we find Y (R - Tst)
becomes sparse:

1 ifm=0
YO (Ry, - ) o 60 = mm 9)
0 ifm#0

Note that this observation is widely used in computational
electromagnetics; specifically for the fast multipole method,
this is known as the point-and-shoot method for calculating
translation operators (Wala & Klockner, 2020).
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Figure 2. Visual representation of the tensor product x!
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the tensor product can be lowered if the direction r is aligned with the y-axis. The tensor product is then reduced to the multiplication of
the green shaded entries. The orange shaded entries are the non-zero entries in the Clebsch-Gordan matrix.
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Figure 3. Visual representation of the Clebsch-Gordan matrices
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illustrate the sparsity of the Clebsch-Gordan matrices as stated in
Proposition 3.1.
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Substituting Equation (9) into the right-hand side of Equa-
tion (8) results in the following:

aly) =D Y xM @l g, ,000)

Lily

(10)

This reduces significantly the amount of computation for
the tensor product ®§j I since we don’t need to sum over
my in Equation (6):

(lo)

me

(igzi) ®l ), hl“lf,lo(;(zf))

S &),

m;

C(lovmo) (11)

Urmo (1,0

islfilo

However, even further computational efficiency gains may
be achieved. The Clebsch-Gordan matrix of Equation (11)
is sparse and follows a particular pattern; see Appendix A.1
for the proof.

(lmm0)

(Li,mai),(1p,0) 1S 1o

Proposition 3.1. The coefficient C

. lo,m
Ze:’lo onl)y if m; = ?:mo Moreover (?Elwr;)),(lf,o)
0ty 9 €0 10 = ~Clm 15,00

Therefore the Clebsch-Gordan coefficients can be compactly
described using the following notation:

(lmm)
(Ls,m),(15,0)

(1:,0),(Ls,0)
(lov_”L)

(l’i 7m) 7(lf 70)

ifm >0
ifm=0
ifm <0

(Clq,,zf,zo)m = (12)

We further simplify the right-hand side of Equation (10) us-
ing the result in Proposition 3.1 and the notations introduced
above obtaining:

(13)

st: st EW

(lo)

where w;’; is defined by the following Equations:

form, >0:

Iy =, ’ (L
(W;t,l),-)mo _ f}%,” —p®D (Xlgz N
(Wito,l)i)_mu hg’l‘;‘il h(l ol) (i(g 1))—1’710

form,=0:
(wii) o = By (%)
(14
and h(+:lo) satisfies:
hlile) — Z (hu, ;0. (€070 )m) (15)

Ly

We prove in Appendix A.2 that the scalar coefficients h(ll o)
are related to hy, ;. ;, with a linear bijection. Therefore the

model can directly parametrize h( ilo)

adding any information.

without loosing or

The new formulation of the equivariant convolution pro-
vided in Equation (14) doesn’t pre-compute the Clebsch-
Gordan coefficients and is drastically more efficient since
we no longer sum over my, m; and [¢.

In Appendix C, we provide a theoretical analysis on the
computational complexity of the equivariant convolutions;
specifically, we show that the computational cost of per-
forming a full tensor product scales with O(LS), whereas
our efficient approach is O(L?). Moreover we show how
the new formulation of the equivariant convolutions can be
efficiently parallelized on a GPU by reshaping the irreps
to group coefficients of the same order m together. This
allows to perform a separate convolution for each order
+m by parametrizing only two dense linear transformations.
Note that for higher m close to L, the GPU may not be
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Figure 4. Illustration of how the spherical harmonics (top) are re-
duced to a set of circular harmonics (bottom) when 6 is held
constant.

fully utilized as the number of coefficients decreases, but
this doesn’t happen in practice since we typically restrict to
|m| <2or3.

4. SO(2) formulation

In the previous section, we described how the computation
of the generalized tensor product can be greatly simpli-
fied. Here we propose an alternative explanation of the
same operation as a reduction from SO(3)-equivariance to
SO(2)-equivariance. Previously, we simplified the general-
ized tensor product by first rotating the spherical harmonic
coefficients so that the primary axis (y-axis) was aligned
with the direction of messages’s source atom s to the tar-
get atom ¢, Tg. Intuitively, once this axis is fixed, only
a single rotational degree of freedom remains; the roll ro-
tation over Iy;. Thus, if the message passing function is
SO(2)-equivariant to the roll rotation about I, it will also
be SO(3)-equivariant.

To see this mathematically, let us define the circular har-
monics, which are the SO(2) representation analogous to
spherical harmonics in SO(3). A circular harmonic of de-

gree k and order j is ng) : S — R defined as:
waﬁzsm®@ =1
d cos(kg) if j=-1

The real spherical harmonics basis functions used in Equa-
tion (1) can be written as:

(16)

PO @) sin(me) ifm >0

1
P (6) cos(mep) ifm <0 an

where Pr(,p is the Legendre polynomial which depends only
on the colatitude angle # € [0,7] and ¢ € [0, 27] is the
longitude angle, i.e., the rotation about the y-axis. Note
that § and ¢ may be computed directly from r. Combining

Equations (1), (16) and (17) we find the spherical function
Fx can be rewritten as:

F(0,9) =Y xWPO@OB)  (#),  (18)
lm

where sgn(m) = —1if m < 0 and 1 otherwise. Using
our proposed approach, if atoms are rotated in 3D, only the
angle ¢ will change since 0 is fixed by aligning I's; to the
y-axis. As a result, Equation (18) is equivalent to a sum
of 2D circular harmonics and xS,l) becomes a coefficient of
Bgrgnrz (m)* Additionally, the circular harmonics themselves
are a Fourier series; as such, a convolution about ¢, which is
SO(2) equivariant (Worrall et al., 2017), may be performed
using a simple point-wise product in the spectral domain

(Bocher, 1906):
@)
- —-m X
ﬁg)'@$> (19

)%\ (Yl,m
=), Yi-m
Furthermore, we can generalize the convolution about ¢
adding self-interactions between different circular channels

as follows:
(X/)grll) — Z Yiml —Yi-ml X%)
(X/)(_l)m ’ % Yi,—m,l Yim, X(—l'r?’b

(20)
We finally note that the above Equation coincides with tensor
product of Equation (14) when we let y; ,,, v = fl%’l).
In conclusion, the generalized tensor product of Equation
(4) may be viewed as a set of generalized convolutions in
SO(2) if the spherical harmonic coefficients are rotated

appropriately.

5. Architecture

Given an atomic structure with n atoms, our goal is to
predict the structure’s energy F and the per-atom forces f;
for each atom ¢. These values are estimated using a Graph
Neural Network (GNN) where each node represents an atom
and edges represent nearby atoms. As input, the network
is given the vector distance r;; between atom ¢ and atom j,
and each atom’s atomic number z;. The neighbors N; for
an atom ¢ are determined using a fixed distance threshold
with a maximum number of neighbors set to 20.

Each node i’s embedding is a set of irreps x;, where x; is

@

indexed by [, m and c. x;,/, . is the m-th component (order)

of the c-th channel of an irrep of degree .

xz(-o) is initialized with an embedding based on the atomic

number z; and xl(.l) are set to 0 for [ # 0. The nodes’ embed-
dings x; are updated by the GNN through message passing
for k£ € K layers to obtain the final node embeddings. The
nodes’ embeddings are updated by first calculating a set of
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Figure 5. Block diagram of the message passing architecture con-
taining the edge embedding block (yellow), the SO(2) blocks
(green) and the point-wise non-linearity (red).

messages ag; for each edge, which are then aggregated at
each node. Finally, the energy and forces are estimated from
the nodes’ final embeddings.

Our model follows the architecture of SCN (Zitnick et al.,
2022), except we replace the message passing operation
with our equivariant approach. The message aggregation
and output blocks remain the same as SCN. While not novel,
we describe for completeness the message aggregation and
output blocks in Sections 5.2 and 5.3.

5.1. Message passing

Given a target node ¢ and its neighbors s € N;, we want
to update the embeddings x; at each layer k. The message
passing architecture can be divided into three different parts:
1) An edge embedding block that computes an embedding
from invariant edge information, 2) a block that performs the
generalized convolution in SO(2), 3) a point-wise spherical
non-linearity performed on the sphere. In Figure 5 and 6
we illustrate the message passing architecture and a tensor
representation of the SO(2) block.

Edge embedding block. It takes as input the distance |rg|
and the atomic numbers z; and z;, and outputs two invariant
embeddings per order m of size H = 256. The atomic
numbers z; and z; are used to look up two independent
embeddings of size 128, and a set of 1D basis functions are
used to represent | | using equally spaced Gaussians every
0.02A from 0 to the 12A with o = 0.04 followed by a linear
layer. Their values are added together and passed through
a two-layer neural network with non-linearities to produce
the embeddings. They are fed into the SO(2) block.

SO(2) block. The model computes two independent equiv-
ariant convolutions for x; and x;. As described previously

for enabling efficient calculations, the atoms’ embeddings
are rotated to align the direction rg; to the y-axis. The ro-
tations are performed using the Wigner D-matrices D(Rs;)
so that Rg; - 5: = (0, 1, 0). The generalized SO(2) convo-
lutions are performed on all coefficients up to order M < L.
For each m € M, there are L + 1 — m coefficients with
C channels. Instead of doing a large dense linear layer to
perform the generalized convolution, we linearly project the
coefficients down to a H = 256 hidden layer. The hidden
layer values are multiplied by the invariant edge embed-
dings to incorporate the edge information and then linearly
expanded back to the original layer size of (L+1—m) x C.
The implementation of the SO(2) convolutions inherently
calculates two linear layers, used to update the values of the
the m and —m coefficients as described in Equation (14).
Note that as we demonstrate later, M may be less than L
with minimal loss in accuracy while improving efficiency.
The ability to use smaller M/ may be due to a couple of rea-
sons. First, larger m have fewer coefficients, i.e., the number
of coefficients for a specific m is L. — m + 1. Second, after
the coefficients are rotated to align with an edge, larger m
encode the higher frequency information perpendicular to
the edge’s direction, which may be less informative than
information parallel to the edge’s direction.

Point-wise spherical non-linearity. The result of the two
SO(2) blocks are added together and a point-wise spherical
non-linearity is performed:

X — / Y (£)SiLU(Fy (#)) di @1

A point-wise function is an equivariant operation since it per-
forms the same function at all points on the sphere (Cohen
& Welling, 2017; Cohen et al., 2018; Poulenard & Guibas,
2021). For this operation we use the SiLU activation func-
tion (Elfwing et al., 2018) (R — R). In practice a discrete
approximation of the integral is performed. See the ap-
pendix for a discussion on the sampling strategy. The mes-
sage ag; is finally obtained by performing a rotation back
to the (iriginal coordinate frame using the Wigner D-matrix
D(R,).

5.2. Message aggregation

For each atom ¢, the messages are aggregated together by
taking their sum, a, = > | as. Another point-wise spheri-
cal non-linear function is then performed using both a; and
x; as introduced by SCN (Zitnick et al., 2022) to enable
more complex non-linear interactions of the messages. The
result is added to the original embedding x; to obtain our
final updated embedding x;:

X =it [ Y@)Pagy (B (0). P (@) (22)
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Figure 6. The SO(2) block for L = 4, C' = 4 and M = 2. The orange, red, blue and green shaded entries are the coefficients of the

spherical harmonics of m = 0, 1, 2 and 3 respectively.

For the point-wise function P4, we use a three layer neural
network (R?¢ — R®) with SiLU activation functions. As
for Equation (21), the integral in Equation (22) is performed
on a discrete grid as discussed in (Zitnick et al., 2022).

5.3. Output blocks

Finally, the architecture predicts the per-atom forces f; and
the total energy E from the final atoms’ embeddings x;
using the same approach as SCN (Zitnick et al., 2022). For
the energy, we take the integral of a function over the sphere:

E =3 [ Puneray(Fe ) .

where Pepergy is a three layer neural network (RC — R).

(23)

For forces we use a similar equation weighted by the unit
vector T to compute the 3D forces for each atom i:

£ = / #Pporee (F, (7)) df, 24)
where Pyorce s also a three layer neural network (RC —
R). For both Equations (23) and (24) we use a discrete
approximation of the integral by sampling 128 points on

the sphere using weighted spherical Fibonacci point sets
(Zitnick et al., 2022; Gonzalez, 2010).

6. Experiments

Following recent approaches (Gasteiger et al., 2021; Shuaibi
et al., 2021; Zitnick et al., 2022), we evaluate our model
on the large scale Open Catalyst 2020 (OC20) and Open
Catalyst 2022 (0OC22) datasets (Chanussot et al., 2021) con-
taining 130M and 8M training examples respectively. Most
training examples are obtained from relaxation trajectories
of catalysts with adsorbate molecules. That is, a molecule is

placed near the catalyst’s surface, and the atom positions are
relaxed until a local energy minimum is found. Some OC22
examples do not contain an adsorbate. The datasets were
specifically designed to aid in the discovery of new catalysts
for helping address climate change (Zitnick et al., 2020)
and is released under a Creative Commons Attribution 4.0
License. We evaluate our model on all test tasks, and report
ablation studies on the smaller OC20 2M dataset.

6.1. Implementation details

Unless otherwise stated, all models are trained with 12
layers, C' = 128 channels, H = 256 hidden units, L = 6
degrees, and M = 2 orders. Neighbors were determined
by selecting the 20 closest atoms with a distance less than
12A. The AdamW optimizer with a fixed learning rate
schedule was used for all training runs. For the OC20 2M
training dataset, the learning rate was 0.0008 and dropped
by 0.3 at 7, 9, 11 epochs. Training was stopped at 12
epochs. For the All and All+MD runs, the same initial
learning rate was used with drops after 41M, 52M and 62M
training examples. Training was stopped before a complete
epoch was completed. The force loss had a coefficient
of 100, and the energy loss a coefficient of 2 (2M) or 4
(All, All+MD). All training runs used data parallelism and
PyTorch’s Automatic Mixed Precision (AMP). The model
source code and checkpoints are publicly available in the
Open Catalyst Github repo under an MIT license.

6.2. Results

We compare our eSCN model against state-of-the-art ap-
proaches in Table 1 on the OC20 All and OC20 All+MD
datasets and in Table 2 on the OC22 dataset. The All dataset
contains 130M training examples, the MD dataset contains
38M examples and OC22 contains 8M examples. Results
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OC20 Test
S2EF IS2RS IS2RE

Train | Energy MAE Force MAE Force Cos EFwT | AFbT ADWT | Energy MAE EwT

Model #Params  time meV | [meV/A] | T [%] 1| [%] 1T [%]1 meV | [%] T
Train OC20 All
SchNet (Schiitt et al., 2018; Chanussot et al., 2021) 9.IM  194d 540 54.7 0.302 0.00 - 14.4 749 33
PaiNN (Schiitt et al., 2021) 20.IM 67d 341 33.1 0.491 046 | 11.7 485 471 -
DimeNet++-L-F+E (Gasteiger et al., 2020a; Chanussot et al., 2021) 10.7M  1600d 480 313 0.544 0.00 | 21.7 51.7 559 5.0
SpinConv (direct-forces) (Shuaibi et al., 2021) 8.5M  275d 336 29.7 0.539 0.45 16.7 53.6 437 7.8
GemNet-dT (Gasteiger et al., 2021) 32M  492d 292 24.2 0.616 1.20 27.6 58.7 400 9.9
GemNet-OC (Gasteiger et al., 2022) 39M  336d 233 20.7 0.666 250 | 353 60.3 355 -
SCN L=8 K=20 (Zitnick et al., 2022) 271IM  645d 244 17.7 0.687 2.59 | 403 67.1 330 12.6
eSCN L=6 K=20 200M  600d 242 17.1 0.716 328 | 485 657 341 14.3
Train OC20 All + MD

GemNet-OC-L-E (Gasteiger et al., 2022) 56M  640d 230 21.0 0.665 2.80 - - - -
GemNet-OC-L-F (Gasteiger et al., 2022) 216M  765d 241 19.0 0.691 297 | 406  60.4 - -
GemNet-OC-L-F+E (Gasteiger et al., 2022) - - - - - - - - 348 15.0
SCN L=6 K=16 4-tap 2-band (Zitnick et al., 2022) 168M  414d 228 17.8 0.696 295 | 433 64.9 328 14.2
SCN L=8 K=20 (Zitnick et al., 2022) 271IM  1280d 237 17.2 0.698 2.89 | 43.6 675 321 14.8
eSCN L=6 K=20 200M  568d ‘ 228 15.6 0.728 4.11 ‘ 503  66.7 ‘ 323 15.6

Table 1. Comparison of eSCN to existing GNN models on the S2EF, IS2RS and IS2RE tasks when trained on the All or All+MD datasets.
Average results across all four test splits are reported. We mark as bold the best performance and those within a small threshold, e.g.,
within 0.5 meV /A MAE, which we found to empirically provide a meaningful performance difference. Training time is in GPU days.

0OC22 Test

S2EF ID S2EF OOD |

Energy MAE Force MAE Force Cos EFwT | Energy MAE Force MAE Force Cos EFwT

Model #Params| meV | [eV/A] | 1 [%] 1 meV | [eV/A] | 1 [%] T
Median - 163.4 75 0.002 0.00 ‘ 160.4 73 0.002 0.00

Train OC22 only

SchNet (Schiitt et al., 2018; Chanussot et al., 2021) 9.1M 7,924 60.1 0.363 0.00 7,925 823 0.220 0.00
PaiNN (Schiitt et al., 2021) 20.1M 951 44.9 0.485 0.00 2,630 583 0.345 0.00
DimeNet++ (Gasteiger et al., 2020a; Chanussot et al., 2021) 10.7M 2,095 42.6 0.606 0.00 2,475 58.5 0.436 0.00
SpinConv (direct-forces) (Shuaibi et al., 2021) 8.5M 836 37.7 0.591 0.00 1,944 63.1 0.412 0.00
GemNet-dT (Gasteiger et al., 2021) 32M 939 31.6 0.665 0.00 1,271 40.5 0.530 0.00
GemNet-OC (Gasteiger et al., 2022) 39M 374 29.4 0.691 0.02 829 39.6 0.550 0.00
GemNet-OC (Gasteiger et al., 2022) with linear referencing (Tran et al., 2023) 39M 357 30.0 0.692 0.02 1,057 40.0 0.552 0.00
eSCN L=6 =20 with linear referencing (Tran et al., 2023) 200M ‘ 350 23.8 0.788 0.23 ‘ 789 357 0.637 0.00

Table 2. Comparison of eSCN to existing GNN models on the S2EF task when trained on OC22 (Tran et al., 2023). We mark as bold the
best performance and those within a small threshold, e.g., within 0.5 meV /A MAE, which we found to empirically provide a meaningful

performance difference.

are shown for the structure to energy and forces (S2EF),
initial structure to relaxed structure (IS2RS) and initial struc-
ture to relaxed energy (IS2RE) tasks. For IS2RS and IS2RE
tasks we use the relaxation approach which uses the model
to estimate the atom forces to iteratively update the atom po-
sitions until a local energy minimum is found (the forces are
close to zero). Relaxations are performed for 200 time steps
using an LBFGS implementation from the Open Catalyst
repository.

The results show eSCN outperforming other models in tasks
that require high-fidelity directional information that the
higher degrees L provide, such as force MAE and force
cosine. The force MAE improves by 9% for OC20 All+MD
and 21% for OC22 ID. Notably, the AFbT metric for IS2RS
on OC20 measures how often relaxed structures are found,
as verified by DFT, using the ML model’s force estimates.
This is a critical capability for ML models used to replace
DFT (Lan et al., 2022). On this metric, eSCN achieves
over a 15% increase in accuracy. Energy prediction, which
benefits from longer range reasoning between nodes, is

on par with SCN and GemNet-OC on OC20 MD+All and
0C22.

6.3. Ablation studies

In Section 3, we showed our novel approach drastically
reduces the cost of computing the tensor product. Here,
we validate this claim by implementing two mathematically
identical equivariat GNNs; one using e3nn PyTorch library
(Geiger & Smidt, 2022) and the other one our efficient
implementation. In Figure 1 we compare the GPU memory
allocated at training time and the Time / Epoch over the
maximal degree of the irreps. We conclude that our method
can reduce the computational cost by an order of magnitude
as we scale L.

Additionally, we perform ablation studies across three vari-
ants of our model; varying the degree L, the order M, and
the number of layers K in Table 3. We see that energy MAE
is more sensitive to the number of layers K, while force
MAE is more sensitive to the degree L. We hypothesize
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0OC20 2M Validation
S2EF IS2RE

Samples / | Energy MAE Force MAE Force Cos EFWT | Energy MAE EwT
Model GPU sec. [meV] | [meV/A] | 1 [%] T [meV] | [%] 1
SchNet (Schiitt et al., 2018) 1400 78.3 0.109 0.00 - -
DimeNet++ (Gasteiger et al., 2020a) 805 65.7 0.217 0.01 - -
SpinConv (Shuaibi et al., 2021) 406 36.2 0.479 0.13 - -
GemNet-dT (Gasteiger et al., 2021) 25.8 358 29.5 0.557 0.61 438 -
GemNet-OC (Gasteiger et al., 2022) 18.3 286 25.7 0.598 1.06 407 -

L #layers # batch

SCN 1-tap 1-band (Zitnick et al., 2022) 6 12 64 7.7 299 243 0.605 0.98 - -
SCN 4-tap 2-band (Zitnick et al., 2022) 6 12 64 35 279 222 0.643 1.41 371 11.0
SCN 4-tap 2-band (Zitnick et al., 2022) 6 16 64 2.3 279 219 0.650 1.46 373 11.0
eSCN linear 6 12 96 6.8 301 21.9 0.646 1.28 - -
eSCN 2 12 96 9.7 307 26.7 0.577 0.94 - -
eSCN 4 12 96 7.8 291 222 0.637 1.39 - -
eSCN 6 12 96 6.8 294 21.3 0.653 1.45 376 10.9
eSCN 8 12 96 44 296 21.3 0.654 1.47 - -
eSCN m=0 6 12 96 13.8 316 26.5 0.584 0.88 - -
eSCN m=1 6 12 96 8.7 309 234 0.626 1.13 - -
eSCN m=2 6 12 96 6.8 294 21.3 0.653 1.45 376 10.9
eSCN m=3 6 12 96 4.8 295 21.2 0.656 1.38 - -
eSCN m=4 6 12 96 3.8 298 21.2 0.657 1.41 - -
eSCN 6 4 96 14.3 338 25.6 0.591 0.76 - -
eSCN 6 8 96 8.7 306 224 0.634 1.16 - -
eSCN 6 12 96 6.8 294 21.3 0.653 1.45 376 10.9
eSCN 6 16 64 4.2 283 20.5 0.662 1.67 371 11.2

Table 3. Results on the OC20 2M training dataset and ablation studies for eSCN model variations. The validation results are averaged
across the four OC20 Validation set splits. All eSCN models are trained on 16 GPUs for 12 epochs with the learning rate reduced by 0.3
at7,9, and 11 epochs. Batch sizes vary based on the number of instances that can be fit in 32GB RAM.

this is due to the energy being more dependent on the entire
structure’s configuration so more layers are helpful, while
forces are more directionally dependent so high degrees of
L (higher directional resolution) are beneficial. Increasing
M improves results up to M = 2. Higher values may not
increase accuracy since M controls the resolution of the
node representations perpendicular to the edges’ directions,
which may be less useful to the network. Finally, we show
results when the non-linear point-wise activation function,
Equation (21), is removed from message passing (eSCN lin-
ear). We see accuracies decrease, but are still comparable to
models with lower degrees or fewer layers.

The run times of the different model variations are also
shown. Faster runtimes than those shown are possible for
smaller models, if the batch sizes had been increased. Over-
all runtimes are similar to those of the SCN model.

7. Discussion

Research in atomic modeling is critical for addressing many
of the world’s problems, especially with respect to our chal-
lenges with climate change. However, advances in chem-
istry can have both positive and negative impact as has been
demonstrated in other chemistry breakthroughs. One cau-
tionary example is the Haber-Bosch process (Hager, 2009)
for ammonia production that enabled the world to feed itself,

but has led to over fertilization and ocean dead zones. We
hope to inspire positive uses by demonstrating our results
on datasets such as OC20 (Chanussot et al., 2021).

The constraints imposed by the SO(3)-equivariance not
only limit the use of linear functions but also non-linearities.
We utilize the point-wise spherical non-linearity since it
is very expressive, as it processes the full spectrum of the
spherical harmonics. Most other equivariant non-linear func-
tions are applied to the norm of irreps and scalar coefficients.
For point-wise spherical non-linearities the discrete trans-
formation of the irreps to the sphere makes the operation
quasi-equivariant and can be computationally expensive if
equivariance to numerical precision is desired, Section D.

In conclusion, we unveil the relationship between SO(3)
and SO(2) convolutions and how this can led to dramatic
improvements in computational efficiency. We demonstrate
the approach using our eSCN model that achieves state-of-
the-art performance on atomic modeling tasks such as force
prediction.
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A. Proofs
A.1. Proof of Proposition 3.1
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Figure 7. Visual representation of the Clebsch-Gordan matrices Cg::f)),(l,mf) € R>*3%3 and CE;:Z;’;’(L"L” € R?*3%5 The computa-

tional cost of the tensor product is reduced by aligning the direction 7 to the y-axis as we retain only the coefficients with my = 0 during
the multiplication. We illustrate the sparsity of the Clebsch-Gordan matrices as stated in Proposition 3.1.

We start the proof noting that the Clebsch-Gordan coefficients used in the paper differ from the standard coefficients used
in physics. The Clebsch-Gordan matrix used in quantum mechanics is the change-of-basis which decomposes the SU (2)
tensor product between irreducible representations. However, the SO(3) irreps are related to the SU(2) irreps as follows:

n (zgg — (—1)ma® ) ifm <0

\/§ m
xﬁf = zg) ifm=20 (25)
% (z,(qll) + (—1)mz(,lzn> ifm >0

where z is an SU (2) irrep of degree | and x an SO(3) irrep of degree [.

Additionally, we denote the SU(2) Clebsch-Gordan coefficients by C?l(_l(;ﬁ)”z Lpmy) A well-known property (Weisstein,

2003) of C?l(l°mn3°g Lpmy) is that they are non-zero only if m, = m; + my and the following holds:
*(lo,mo) — (1t ve(lo,—mo)
(Liyma),(Lg,my) (=1) C(liw—mt)v(lfv_mf) (26)
Therefore by substituting m ¢ = 0 we obtain that Czﬁl(f‘;n%"z 17,0) is non-zero only if m, = m,; and the the following holds for
any m:
*(loxm) _ Li+le+1, *(lm_m)
Cliimy.ay.0 = G CE 0 1y 0) @7

Now, we can relate the SU(2) Clebsh-Gordan coefficients to the SO(3) ones using a change-of-basis directly derived from
Equation (25). We fix m,, = 0 and note that the components {—m, m} of an SU(2) irrep get rearranged to the components

13
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{—=m,m} of an SO(3) irrep as follows; for m # 0:

(lo,—m) (lo,m) i —i(=1)™ #(lo,—m) #(lo,m) i —i(=n™\ !
Cumya0 Culma0) _( v 7z Co.”myar0 Culma0)( v N _
(lo,—m) (lo,m) (=™ 1 *(lo,—m) *(lo,m) (=)™ 1
(li,m),(15,0) (li,m),(15,0) V2 V2 (li,m),(l5,0) (li,m),(15,0) V2 V2
C*(lo,m) 0
< (e r0) if 1; + L + 1, is even
_ 0 Catiim. (15,0 o
0 2(-1)mCc;
w(lom) CU"Calmarn) li + 1 + 1, is odd
=2(-1)™C,; 0
(li,—m),(ly,0)
(28)
form = O:
(10,0) — *(50)
(100,050 = Cu0).07.0) 29
*(16,0) o P o< (10,0) (15,0) o
Moreover C ;G ) = (—1)bstls+ Cl 001500 30 Cloy 1.0y = O for li + 15 + I, odd.
Additionally, we note that C?l(ilﬂ?)fz Lympy = Oif |mo| # |m;| implies that the same is true for CEEZ,’Z,S),( L)
We finally conclude that Cg;,’x:)),(lf,o) is non-zero only for m, = #+m,, and CEZ’:::))’(”’O) = Cg:::z)),(lf,o) and
lo,m lo,—m lo,m
CEl,;,m)),(lf,O) = —Cglh_m))’(lf’()) for any m. Moreover, for any m # 0, ngi,m)),(lf,o) = 0 when [; + Iy + [, odd
and ngi)n),(lf,o) = 0 when l; +ly + [, even; for m = 0, CEEE,’S))’(”’O) =0whenl; + ¢ + [, odd.

This concludes the proof of the Proposition.

. . ee  gs (il
A.2. Proof that there exists a linear bijection between (hli7lf7lo)|l1‘,*lo‘glfgli+lo and (hgn ))fmin(li,ln)ﬁmgmin(li,lo)
(1,m,)
Clam,1.0
~ (2,1
OO * % hy, OEEEE = x B
D(z)(R) .x® D?(R)-x®
(1,m,)
Clam),20)
Rearrange 1
~(2,1
[OITrO = %y, ) CODDE x x b))
D“)(R) .x® D(z)(R) .x® |
(1,m,)
Clam.(20)
~(2,1
O * hyg, D = *x b
DO (R).x® D?(R)-x®

Figure 8. Visual representation of the reparametrization of the tensor products ®§,0, ®%71, ®§’2 between D(® (R)x(z) € R® and the
directions Y (0,1,0), Y (0,1,0), Y®(0, 1,0). The coefficients ha 1 1, h 21, ha 31 get rearranged to fl(fil), fl(()Q’l), B?’”‘

We start by noting that the SO(3) Clebsch-Gordan coefficients are related to the SU(2) ones with a linear invertible

transformation. Therefore without loss of generality we can assume that Cgﬁ‘f’z_")) (1;.my) aT€ the ones used in quantum
mechanics.

By definition, Bﬁj’“’) = Zlf (hli,lf,lo (Clt,lf,lo)m)’ which specifies a linear surjection from (hy, i, ;,)i, to (ﬁﬁf;"“))m for a
fixed value of [; and [,,.

lilo)

We now prove that the aforementioned map from hy, ;, ;, to flgn is injective. Let’s suppose exists a set of (hy, ; f,lo)l s

14
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such that BS#’“’) = 0 for any [;, l,, m. From Equation (14) we conclude that:

-, S() _
ZX()®l lflé(f)—o — Z(hl lflC )(lf0)> Xg)—O
ly

where Zlf (hl Liido CE I )) . 0)) is a 2D matrix which multiplies the vector s&). The above expression is 0 for any value

of ) which implies that the matrix sz (hli,lf,locgj’;)) 9 0)) is zero, therefore for any value of m; and m,:

(l07 O) J—
>~ (bt GG, ) =0 (30)

ly

Additionally, the Clebsch-Gordan coefficients satisfy the following properties (Weisstein, 2003); the first one is an orthogo-
nality identity, the second one a permutation identity:

(lo,mo) (l,oam/o) o
Z (C(li’mi)»(lf=mf)C(li7mz‘),(lf,mf)) - 5’"0”‘@51013 (€20)
mi, Mg
(lo,mo) _ ~(p,—my) ylitma 2[0 +1
Urmtomg) = Ctlims).(o,—ma) (71) 2+ 1 (32)

By taking the sum of Equation (30) over m;, m,, for a fixed value of l} we obtain:

_ (loamO) (loamO) _ (lo,mo) (loymo)
0= Cumiw ,O)Z (hlulfl <z1,mi>,<zf,o>) = i Y (Cui,mi),(z' 0 Ciim. s, o>)

mi,Mo Iy mi,Mo
(lormo) (lormo) 2l +1 (15,0 (17.0)
Z hli7l_f7lo Z (C(l“ml) 1,0 )C(li,mi),(lf 0 ) Zhl“lp Z QZf +1 ( (lumi),(lm*mu)c(lumf) (lo,— mo))
Ly mi,mo mi,me

20, +1 20, +1
2 bt Gy sty = Pty [y
Iy f f

where we substitute Equations (31) and (31) in the 5th and 4th equality. Therefore we conclude that hli,l’f 1, = 0 for any
value of l}, which implies that the linear map is injective.

(33)

We conclude the proof noting that a linear map between finite dimensional vector spaces which is both surjective and
injective is bijective.

A.3. Proof of Theorem B.2

We first prove that there exists a projection map satisfying wo = (x)o and wp = (X)(_px) for each
k # 0. We note that, if we define w in terms of x as above, and we let Wy,..., W; to be the spaces
(%)0), ((x)1, (x)=1), ((x)2, (x)—2); ..., {((X)1, (x)—;) then @, W), = V. We are left to prove that the representations
7; + SO(2) — GL(W;) are irreducible. A sufficient condition to prove it is to show that wy, transforms like a circular
harmonic of degree & under the action p|¢,, (g). We note that this has already been proved in the main paper, which concludes
the proof.

Lastly, we note that the projection map is invertible since, by definition, the linear change-of-basis map relating wy, ..., w;
and x is invertible.

B. Mathematical foundations of SO(3) and SO(2) irreps
B.1. General introduction to equivariance

Group theory is a formalism to axiomatically define symmetries. A group G is a set of elements with an operation
o : G X G — G which satisfies the following properties:
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1. There exists e € G suchthatVg € Ggege=cegg=g

2. Forall g1, g2, 93 € G we have g1 o¢ (92 o¢ g3) = (g1 0 92) ®c g3

3. Forall g € G there exists g~ € G suchthatgeg g ! =g legg=c¢

We can define infinitely many groups but the ones we are interested in are T, the translation group, and most importantly
SO(3), the rotation group of R3. The elements of SO(3) should be regarded as rotations in R* and the group operation
®50(3) as the composition of 2 rotations. In our context the symmetries transform a surrounding space: for SO(3) this
space is R?. Group action is a way to axiomatically define this operation. A group action on a vector space V' is an operation
% : G x V — V which satisfies:

1. Existse € GsuchthatVve Vexv=v

2. Vg1,92 € G we have (g1 o¢ g2) * v = (g1 * (g2 * V))

3.Vvv,weV,AeR geGwehavegx (Av+w) =Ag*xv+gxw

The canonical action of SO(3) takes the symmetry (i.e. the rotation), an element of R3 and rotates it accordingly.

Given two vector spaces V, W (i.e. R”, R™ for some n and m) and a group G, we say that F' : V' — W is:

1. G-Invariantif Vv e Vge G F(gxv)=F(v)

2. G-Equivariantif Vv e Vge G F(g*Vv)=gx* F(v)
In the OC-20 task the energy is invariant for both T and SO(3), per-atom forces are invariant to T and equivariant to SO(3).

B.2. Irreducible representations of SO(3) and SO(2)

We limit our study of symmetries to SO(3) and SO(2), the group of 3D and 2D rotations, which are canonically acting on
R? and R2. In this section, we classify how to extend the SO(3) and SO(2) action to other vector spaces V' = R" for some
integer n.

We define the concept of group homomorphism to rephrase the the problem from another point of view. Given two groups
G, H we say p : G — H is a group homomorphism if it satisfies Vg1, 92 € G p(g1 ®c 92) = p(g1) err p(g2).

We note that an action of a group G on a vector space V is mathematically equivalent to the existence of a group
homomorphism p : G — GL(V) where GL(V) is the general linear group, the group of invertible matrices on V. We
define p to be a representation of SO(3) which acts as matrix multiplication on the vector space V' = R" as follows:

gxv=p(g)v Vge SO(3) (34)

Additionally, we define the concept of irreducible representations. Specifically, a representaion p : SO(3) — GL(V) is
reducible if there exists a non-trivial subspace W < V such that Vg € SO(3), w € W we have that p(g)w € W, otherwise
we say the representation is irreducible.

We finally state the classification of the SO(3) and SO(2) irreducible representations.

For SO(3), only for n = 2] + 1 odd there exists an irreducible representation p : SO(3) — V = R™. Moreover p
is unique up to a change of basis; we decide to remove the degeneracy arising from the possible change-of-basis by
aligning the rotations’ generator to the y axis (as in the e3nn library). We define the Wigner-D matrix of degree [ to be
D® : SO(3) — R#+1:

DU(g) :=plg) Vg€ SO(3) (35)

Therefore we let V; = R?*! to be a 21 + 1 dimensional vector space equipped with the SO(3) action: the multiplication
by a Wigner-D matrix. The elements of V; are called SO(3)-irreps of degree .
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Analogously, there exists a unique p : SO(2) — W = R" irreducible representation for n = 1, infinitely many for n = 2
and none for n > 2. We enumerate the possible representations with an index £ € R, where W = R for k¥ = 0 and
W = R? for k > 0 and we define C*) : SO(2) — W to be the irreducible representation indexed by k. It satisfies

C®(g) == plg) =g* Vg€ SO(2) (36)

R ifk=0
R? ifk >0
multiplication by the matrix of Equation 36.

We define W, = to be the vector space of the SO(2)-irreps equipped with the SO(2) action: the

B.3. Spherical and Circular Harmonics

The irreps have been intuitively defined starting from the first principles of symmetries. Nonetheless it can be hard to have
intuition on the resulting space since we have added a few layers of abstraction. In this Section we introduce a way to build
geometrical intuition by linking them to the spherical and circular harmonics.

The real spherical harmonic of degree [ is a function Y : §2 — V. The set of components of Y V) produces a basis for
the homogeneous polynomial of degree [ on the sphere.

Analogously, the real circular harmonic of degree k is a function B(*) : S — W, whose components produce a basis for
the homogeneous polynomial of degree & on the circle.

Most importantly they satisfy the following expressions:

YO (gh) =DW(g)- YV () heS? geSO®)

37
B® (gn) = CH(g)B®(n) nes geSO?2) &7

We can make sense of a set of spherical harmonics &;x; € €, V; by defining a function on the sphere Fy : S* — R such
thatVh € S2  Fy(d) := >, x;- YW (R). In this setting, acting on @;x; with a rotation matrix R € SO(3) corresponds to
rotating the frame of reference of the sphere. This shows that the SO(3)-irreps can be treated as coefficients of the spherical
harmonics. Analogously this is true for the SO(2)-irreps and the circular harmonics on a circle.

B.4. Projection to SO(2)

Given an irreducible representation p : SO(3) — GL(V,) and a direction i € R3 we define a projection as follows.

Definition B.1. The projection of p along 11 is ps : Ga — GL(V;) where G} is the subgroup of rotations around n and
Pi = p|q, is obtained by restricting the domain of the representation.

We reckon that pj, is a representation of SO(2) since Gy, is isomorphic to SO(2) but it is not necessarily irreducible.
Nonetheless, we can apply a change of basis and reduce it to

70 : SO(2) = GL(Wy)

(38)
T - 50(2) — GL(W[)
such that @, W; = V; and 7; is an irreducible representation of SO(2) for any 7. This induces a projection map
l
Hﬁ : Vl — @Wz (39)

=0

We note that the projection map is unique up to the change of basis of W,. We provide in Theorem B.2 an explicit way to
compute a projection map for i = (0, 1,0) and we prove that such a map is invertible.

Theorem B.2. Let x € V; and n = (0, 1,0) then there exists a projection map 1 (x) = @ézowi such that w; € W,
wo = (X)o and Wi, = (X)(—p,x) foreach 1 < k <1

Moreover if ®;w; € @i:o W, then Hgl(@iwi) =x € Vysothat: (x)o = Wo and X = (W|g|)sign(r) foreach 1 < k <1
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C. Computational comparison with e3nn tensor product
We study the computational advantage of our method from a theoretical point of view and we empirically validate our study.

We fix L and study the computational complexity of a network with C' channels for each 0 < [ < L. The naive
implementation calculates a tensor product ®z 1, for0<1l; <L,0<Il, <Land |l — | <1y <l +1, followed by
a linear self-interaction expanding the number of channels of each degree [, back to C. The number of tensor product
operations scale with O(C - L?), each of which requires the computation of a 3D matrix multiplication; this accounts for
O(C - L%) operations. The tensor products are followed by linear self-interactions; they require the computation of O(L)
matrices of dimension O(C - L?) x O(C') which accounts for O(C? - L?) operations. This becomes prohibitively expensive
even with GPUs when we scale L.

Our SO(2) generalized convolutions can be efficiently parallelized in GPU by computing the matrix multiplications between
h,, € RE—mot)x(L=mot1) and (Dyy - X,)m, € RE"™et1 for —L < m, < L. That is, we need O(L) 2D matrix
multiplications to compute the full tensor product. This accounts for O(C? - L?) operations. Moreover we need an additional
O(C - L3) operations to rotate the various irreps to align the edge’s direction to the y-axis. A similar analysis shows
that the GPU memory allocated at training time scales with O(C? - L3) for the SO(2) formulation, whereas the naive
implementation is O(C - L® + C?% - L3).

In Figure 1, we empirically validate these results by comparing the training time per epoch and the GPU memory allocated
at training time over L. We fix the number of hidden channels to 64, remove any non-linearity in the network and train a
pair of mathematically equivalent GNNs for 1 < L < 5.

D. Analysis on the quasi-equivariance of the spherical activation function

* ReLUAMP = ReLU == SiLUAMP = SiLU

4.00%

5 |
= 3.00% ™
L
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o
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—
©
=
= 1.00%
o
L

0.00%

14 16 18 20 22
Grid Size

Figure 9. Plot of the percentage error between the calculation of two rotated messages as the grid size of the point-wise non-linear
activation function (SiLU or ReLU) is increased. Plots are shown with and without the use of AMP. The model has 12 layers and L = 6.
A grid size of 14 with SiLU and AMP was used in the paper which results in a 1.5% relative error. However, larger grid sizes may be used
to reduce the error to a value close to zero if AMP is not used. Since AMP uses lower precision, the best percentage error is limited to
0.2% achieved at a grid size of 18, i.e., the error due to AMP overwhelms any error due to equivariance errors. If a grid size of 18 is used
instead of 14, no improvement in energy or force MAE was observed.

eSCN introduces non-linearities through a point-wise non-linearity described in Equations (21) and (22). (Cohen & Welling,
2016) proves that point-wise non-linearities are equivariant. However, the numerical approximation of the integration with a
discrete number of samples results in a small loss of equivariance per-layer. Equation (21) is approximated by sampling
points on a uniformly spaced grid along the directions (6, ¢) with dimension (2 - M + 1) x (2- L + 1). Equation (22) is
sampled with resolution (2 - L + 1) x (2- L + 1). If the activation function was linear, these resolutions would result in
perfect equivariance. However, the higher frequencies introduced by a non-linear activation function can result in aliasing.

While not being perfectly equivariant, point-wise non-linearities have been adopted in many quasi-equivariant models,
i.e., models with an equivariance error close to zero (Cohen et al., 2018). We study the equivariance error of the spherical
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Force MAE [meV / A]

GemNet-OC
SCN L=6, 12 layers

SCN L=6, 12 layers,
4-tap, 2-bands

eSCN L=2, 12 layers
eSCN L=4, 12 layers
eSCN L=6, 12 layers
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Figure 10. Training curves for several model variants on the OC20 2M dataset. Force Mean Absolute Errors (MAEs) are computed on a
30k subset of the Validation ID set in OC20. Note that eSCN has high sample efficiency, similar to SCN.

activation of Equation (21) by varying the longitudinal and latitudinal grid size and the non-linear function employed. We
measure the average percentage error between two rotated messages by:

eq. err(as) = E H/Y(f)P(Fast (#))di —D(R™Y) /Y(f*)P(FD(R)ast (r)) dri

] (40)

where P is a non-linear function chosen between ReLU and SiLU and the expectation is taken over uniformly sampled
R € SO(3). For the settings used in this paper with a grid size of 14 with SiLU and AMP, only a small equivariance error
(1.5%) is observed. This error may be reduced below the level observable with AMP using a grid size of 18. Note that other
activation functions that introduce more higher frequencies, such as ReLU, may require higher resolutions if numerically
perfect equivariance is desired.

E. Sample efficiency of eSCN

We provide an additional study on the sample efficiency of eSCN by empirically comparing it to state-of-the-art GemNet-OC
(Gasteiger et al., 2022) and SCN (Zitnick et al., 2022). In Figure 10 we plot the Force MAE by training Epochs on the
0OC-20 2M (Chanussot et al., 2021) dataset. We conclude that eSCN preserves the same sample efficiency of SCN.
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