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Abstract

The rapid development of auto-regressive (AR) models in multi-modal generation
has brought promising advancements, enabling coherent text, image, and video
generation within a single framework. However, AR models still face significant
challenges in practical application, especially in image generation where classifier-
free guidance (CFG) is commonly used to enhance output quality. CFG, while
effective, introduces substantial computational overhead and deviates from the
simplicity of end-to-end auto-regressive generation. In this proposal, we aim to
explore the potential of Condition Contrastive Alignment (CCA) within Emu3,
a state-of-the-art multi-modal AR model, to address the reliance on CFG in im-
age generation. By applying CCA, a recently proposed method for aligning AR
models with target distributions through contrastive learning, we hypothesize that
Emu3 can achieve comparable or superior output quality without CFG, reducing
computational cost and improving generation efficiency. Our approach involves
fine-tuning Emu3 with CCA on multi-modal data and conducting comprehensive
evaluations across image and video generation benchmarks. This research will
validate CCA’s applicability to large AR models, potentially advancing the field
towards more efficient, unified multi-modal generation frameworks.

1 Background and Related Works

Multi-modal Models. Multi-modal models [10, 13, 18, 21] have advanced rapidly in recent years,
driven by the latest breakthroughs in language and vision models, particularly auto-regressive (AR)
language models [1, 14] and diffusion-based visual generative models [2, 8, 12]. This line of research
aims to develop models capable of handling multi-modal generation (e.g. text-to-image generation,
text-to-video generation) and perception (e.g. vision-language understanding) tasks within a single
framework. In this project, we focus on AR multi-modal models [19, 20], which are considered to
have considerable potential due to the simplicity and scalability of auto-regressive methods. These
models unify text, image and video data into discrete tokens, training and inference with the next-token
prediction approach.

Guided Sampling. Although the training and inference of language and vision data can be unified
through next-token prediction with auto-regressive models, there is still a gap in the sampling pro-
cess of auto-regressive language and vision models. To enhance sample quality, visual generative
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auto-regressive models rely on guided sampling methods [3, 6, 10, 12], which adjust the sampling
distribution by modifying the sampling algorithm without fine-tuning the pre-trained model. Specifi-
cally, classifier-free guidance (CFG) masks the condition with a relatively low rate (e.g. 10%) during
training, enabling the model to predict unconditional logits. Then, a combination of conditional and
unconditional logits is used when sampling [9, 11]. CFG complicates the original training method
of auto-regressive models (i.e. next-token prediction), and double the computational overhead of
sampling. In contrast, auto-regressive language models leverage alignment fine-tuning based on
Reinforcement Learning from Human Feedback (RLHF) to improve instruction-following abilities
by adjusting the model distribution and keeping the sampling algorithm unchanged [1, 15]. Recently,
Condition Contrastive Alignment (CCA) has been proposed to guide the sampling of visual gen-
erative auto-regressive models through a fine-tuning algorithm [4] derived from Noise Contrastive
Estimation (NCE), providing an approach to unifying the sampling of auto-regressive language and
vision models.

2 Proposed Method

Problem Formulation. Consider a sample (e.g. an image) x represented by a sequence of N
discrete tokens x = {x1, x2, ..., xN}. The probability of sample x given condition c (e.g. the
description of the image) can be decomposed as:

p(x|c) =
N∏

n=1

p(xn|x<n, c) (1)

Each token xn is conditioned only on c, which can also be represented as discrete tokens, and its pre-
vious input x<n. An auto-regressive (AR) model θ learns the conditional probability pθ(xn|x<n, c)
and samples tokens one by one in generation.

Review of CCA Method. To enhance the sample quality under condition c, CCA [4] derives a
fine-tuning method from guided sampling method and Noise Contrastive Estimation (NCE), where
the loss is defined as

LCCA
θ = −Ep(x,c) log σ

[1
s
log

pθ(x|c)
pϕ(x|c)

]
− Ep(x)p(c) log σ

[
− 1

s
log

pθ(x|c)
pϕ(x|c)

]
. (2)

pϕ is a pre-trained AR model and is frozen during training. pθ is the target model and is initialized
from pϕ. s is the guidance scale. Intuitively, LCCA

θ maximizes the relative likelihood where the
condition c and the sample x matches, and minimize the the relative likelihood where the condition c
and the sample x are independent and most likely mismatch.

Review of practical CCA Method. To tractably sample from the joint distribution p(x, c) and the
product of two independent marginals p(x)p(c), CCA [4] propose a practical training loss. Consider
a training batch with K samples B = {(xk, ck)

1:K}. A random permutation of ck in B is used
as samples from p(x)p(c) and the original batch B as samples from p(x, c). Then the loss for
fine-tuning is defined as

LCCA
θ = − log σ

[
β log

pθ(xk|ck)
pϕ(xk|ck)

]
− λ log σ

[
− β log

pθ(xk|cρ(k))
pϕ(xk|cρ(k))

]
(3)

where ρ is a random permutation, β and λ are two hyper-parameters.

Research Plan. We plan to fine-tune Emu3 [20] with CCA method on multi-modal data and
conduct comprehensive evaluations across visual generation benchmarks. Our preliminary proposal
is to use JourneyDB [17], a dataset with over 4 million high-resolution images and corresponding
annotations, as the fine-tuning dataset and to evaluate the generation performance with Fréchet
Inception Distance [7] (FID) and Inception Score [16] (IS) on ImageNet [5] dataset. Considering
the image resolution, fine-tuning iterations and model size, we estimate the fine-tuning process
will require approximately one week on 8 NVIDIA A100 GPUs. This research will explore CCA’s
applicability to large AR models and more complex tasks, potentially advancing the field towards
more efficient, unified multi-modal generation frameworks.
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