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ABSTRACT

This study addresses the challenge of efficient human activity recognition (HAR)
with limited training data. We propose GEAR-FEN (Generalized Activity
Recognition Feature Extraction Network), a novel transfer learning (TL) method
that transforms kinematic motion signals into a generalized feature space. GEAR-
FEN potentially outperforms the state-of-the-art in scenarios with limited training
data. This was demonstrated through an evaluation across 11 public HAR datasets
(encompassing number of activities ranging from 6 to 33 and number of samples
per activity ranging from 8628 to 1140258), using a deep learning model based
on convolutional neural networks (CNN), residual bi-directional long short-term
memory (ResBiLSTM), and an attention mechanism. Furthermore, we estab-
lished the generalizability of our method through performance comparisons on
an independent dataset encompassing a distinct population and diverse kinematic
modalities for 8 activities, and 26121 samples per activity. These findings highlight
the potential of our proposed approach in robust feature representation for HAR
tasks with limited data sizes.

1 INTRODUCTION

Human activity recognition (HAR) is fundamental to comprehending and interpreting behavioral
patterns in everyday life, allowing for a deeper insight into the intricacies of human behavior
Arshad et al. (2022). Recent decades have witnessed a significant evolution in HAR technology,
underscored by its growing importance in patient monitoring and rehabilitation, promoting safety
and independence for individuals across various populations (Ariza-Colpas et al., 2022; Meng et al.,
2020). The advent of wearable sensors, such as inertial measurement units (IMUs), has further fueled
this progress, especially for ambulatory and real-life scenarios Qiu et al. (2022).

HAR faces significant challenges due to the inherent variability of motion patterns Chen et al.
(2021). This variability arises from: 1) the specific activity set being classified Trabelsi et al.
(2022); 2) demographic factors influencing movement patterns, necessitating population-specific
models; and 3) variations introduced by the composition of the data collection sensory setup. These
factors collectively contribute to the limited generalizability and data-specificity of HAR models.
While deep learning architectures have revolutionized HAR by automating feature extraction and
superior performance, they have also exacerbated the data dependency challenge due to their inherent
complexity (Jain & Kanhangad, 2018; Presotto et al., 2023; Yuan et al., 2024). State-of-the-art (SOTA)
models relying on Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM)
networks Xia et al. (2020), require vast amounts of labeled data for optimal performance. Bidirectional
LSTM (BiLSTM) models have further refined the encoding of temporal information within activities,
yet have also increased data dependency Luwe et al. (2022). Recent advancements, such as the
incorporation of deep reverse transformer-based attention mechanisms, address the challenge of
extracting both global temporal and local spatial features through enhanced feature fusion Pramanik
et al. (2023). The ConvTransformer model, which merges CNNs with Transformers, exemplifies
this trend by focusing on key features to achieve improved HAR performance Zhang et al. (2023b).
Consequently, these advancements have intensified the data dependency issue, presenting a significant
bottleneck, as collecting large datasets is resource-intensive and time-consuming, particularly for
novel activity sets or populations.
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A prevalent approach to addressing data scarcity in HAR is transfer learning (TL), defined as a set of
methodologies leveraging knowledge acquired from a related task and domain to enhance performance
on the target task Dhekane & Ploetz (2024). In this study, we address the data dependency and
scarcity challenge by leveraging a novel generalized TL approach. To summarize, our contributions
are as follows:

• We introduce the generalized activity recognition feature extraction network (GEAR-FEN).
Trained on a collection of diverse HAR datasets, GEAR-FEN is designed to extract repre-
sentative features from the kinematic time series inherent to human motion.

• We evaluate our proposed method, which combines GEAR-FEN for feature extraction with
dataset-specific feature learning networks (FLNs) for classification learning. This approach
demonstrably improves classification performance, especially for datasets with limited
samples, compared to baseline methods and SOTA.

• We assess our method using an independent, unseen dataset from a novel population with
a novel set of activities. This analysis confirms that the features learned by GEAR-FEN
effectively represent the underlying human motions and activities.

2 RELATED WORK

Within wearable HAR, TL plays a crucial role in adapting predictive models to diverse and dynamic
conditions. Strategic approaches, such as heterogeneous transfer, personalized TL, multi-source
TL, and task-specific methods, effectively address challenges like sensor position variability, user-
specific data adaptation, and the integration of heterogeneous datasets Dhekane & Ploetz (2024).
Heterogeneous transfer enhances model reliability across various sensor modalities and positions,
while personalized TL focuses on tailoring models to individual characteristics by fine-tuning based
on personal activity patterns and physiological data. Multi-source TL exploits the diversity of multiple
datasets to build robust models that generalize across novel environments and tasks. Additionally,
adapting models to handle varying definitions and labels of activities helps accommodate significant
discrepancies across datasets, ensuring the models’ applicability in real-world scenarios.

Recent advancements in HAR using wearable data have explored various methodologies to address
challenges like data scarcity, sensor diversity, and robust feature representation. One notable recent
study implemented multi-task self-supervised learning with a deep convolutional neural network
(ResNet-V2, 18 layers) on an extensive unlabeled dataset from the UK Biobank, encompassing
700,000 person-days of accelerometer data, to recognize human activities Yuan et al. (2024). This
network was pre-trained and subsequently evaluated via TL across eight public datasets to assess
representation quality. However, the study encountered limitations such as the dataset’s demographic
homogeneity—predominantly Caucasian data from the UK—which could hinder the generalizability
of the findings. Additionally, the reliance solely on accelerometer data pointed to the necessity of
integrating multimodal sensor data to improve the model’s robustness and applicability. Concerns
were also raised about the self-supervised learning methods not achieving high-quality representations
with free-living activity data, indicating a need for further methodological refinement and exploration
of more sophisticated techniques.

Another study addressed the issue of labeled data scarcity in HAR by proposing a novel approach to
combine multiple public datasets to create a generalized model that required less labeled data for
effective fine-tuning on unseen domains Presotto et al. (2023). This model was trained specifically on
data from waist-mounted devices and evaluated for its generalization ability across various datasets.
The study revealed that focusing solely on waist-mounted data may not fully capture the variability
of real-world scenarios, where devices may be placed at different body locations. Additionally, the
performance variability across different datasets suggested that dataset-specific characteristics could
significantly impact the effectiveness of the generalized model, and the advantage of pre-training
might be limited when the target dataset diverges substantially from the other combined datasets.

An additional concern in the current literature is the prevalent use of multi-channel data for training
models. While this approach benefits from rich, multi-dimensional inputs, it inherently limits the
models’ applicability to general kinematic signals that might be captured using simpler or different
sensor configurations. This limitation raises questions about the scalability and flexibility of current
HAR systems when deployed in real-world scenarios where sensor setups are not standardized and
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A1 & A2

B

C

D

E

Figure 1: Composition of the sensory setup for the independent dataset. A1 & A2: Sensomative
Wheelchair (pressure mats for backrest and bottom, respectively), B: mbientLab MMS+ (IMU),
C: Cosinuss cmed°alpha (accelerometer), D: Vivalink Wearable ECG Monitor (accelerometer), E:
Corsano CardioWatch 287-2 (accelerometer).

may vary greatly from one application to another (Gong et al., 2022; Suh et al., 2022; Sanabria et al.,
2021; Al Hafiz Khan & Roy, 2022; Zhu et al., 2023; Alajaji et al., 2023; Qian et al., 2021; Varshney
et al., 2022; Alinia et al., 2023; Lu et al., 2022; Faridee et al., 2022; Hu et al., 2023; Pavliuk et al.,
2023; Haresamudram et al., 2022).

Despite the progress in this area, the HAR field yet faces notable limitations. Models frequently
exhibit performance degradation when applied to domains that starkly differ from the training data,
a phenomenon often observed in cross-domain applications Chen et al. (2019). Challenges such
as overfitting and the disappearance of gradients in models trained on small datasets continue to
hinder the reliability of these techniques Soleimani et al. (2022). Furthermore, the generalization of
task-agnostic features often remains inadequate, leading to suboptimal performance when models are
applied to new types of activities or different execution styles of the same activities Presotto et al.
(2023). Another critical issue is the misclassification within activity clusters, where similar activities
are often indistinguishable by the model, undermining its practical utility Kumar & Suresh (2023).
Furthermore, the existing SOTA TL methods depend on a fixed sensor configuration or, at minimum,
the same number of signals across all datasets, which limits their ability to leverage the diversity of
available HAR datasets (Zhu et al., 2023; Alajaji et al., 2023).

3 MATERIALS AND METHOD

3.1 DATA

Eleven public HAR datasets were used to assess the generalization and classification efficacy of our
proposed model: WISDM Kwapisz et al. (2011), MotionSense Malekzadeh et al. (2018), HHAR
Stisen et al. (2015), REALWORLD Sztyler & Stuckenschmidt (2016), UniMiB SHAR Micucci et al.
(2017), USC-HAD Zhang & Sawchuk (2012), MHEALTH Banos et al. (2014), PAMAP2 Reiss &
Stricker (2012), WARD Yang et al. (2009), DSADS Barshan & Yüksek (2014), and RealDISP Baños
et al. (2012). These datasets ensured a wide spectrum of human activities, signal modalities, and
age ranges. The employed modalities included linear acceleration and angular velocity. Further, we
validated the generalization of our model using our independent dataset (Our Previous Work, 2023).
The sensory setup for the independent data shown in Figure 1 was designed to monitor activities of
daily living in wheelchair users via modalities from accelerometers, gyroscopes, and pressure mat
sensors.

Table 1, gives an overview of the datasets included in this study. The time series from all datasets
were resampled to a sampling rate of 20Hz, adequate for monitoring daily human activities Ejtehadi
et al. (2023). Our experiments utilized 20s sliding windows with a 50% overlap. A 20-s time frame is

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Overview of the open-source and the independent HAR datasets utilized in this study,
detailing the number of activities, signals, subjects, and samples per activity for each dataset.

Dataset Num. of Activities Num. of Signals Num. of Subjects Samples/Activity

DSADS (Barshan & Yüksek, 2014) 19 30 8 48000

HHAR (Stisen et al., 2015) 6 6 9 557644

Mhealth (Banos et al., 2014) 12 15 10 11439

Motionsense (Malekzadeh et al., 2018) 6 6 24 94192

PAMAP2 (Reiss & Stricker, 2012) 12 18 9 32382

REALDISP (Baños et al., 2012) 33 54 17 8628

REALWORLD (Sztyler & Stuckenschmidt, 2016) 8 6 15 1140258

UniMiB SHAR (Micucci et al., 2017) 9 3 30 20923

USCHAD (Zhang & Sawchuk, 2012) 12 6 14 46861

WARD (Yang et al., 2009) 13 25 20 44169

WISDM (Kwapisz et al., 2011) 6 3 36 312579

Independent Dataset 8 39 20 26121

sufficient for most HAR applications. For convenience, we refer to the collective set of all eleven
processed open-source datasets as datapool.

3.2 FRAMEWORK OVERVIEW

Figures 2, 3, and 4 provides a detailed depiction of the proposed framework for the study. To evaluate
the generalizability and efficacy of our proposed method, we conducted a comparative analysis
including 2 other baseline methods. Baseline method 1 (detailed in Figure 2), the standard practice,
trained each dataset independently using a multi-channel FEN to process all signals concurrently,

11 Pre-processed Public HAR Datasets

+ Independent Dataset

Dataset 1 Dataset 12

FeaturesAll Signals

FEN 

(Multi-Channel)
FLN d

Fold 1

Dataset d

Experiment with Baseline Method 1:

A Single Multi-channel FEN (w/o TL)

Data Setup

Train (65%) + Validation (15%)

Test (20%)

 Each dataset is split using 5-fold CV.

 Each fold contains 20% test data.

 The remaining 80% contain random splits of 

the train (65%) and validation (15%) data.

5-Fold Cross Validation

Fold f

f=1:5 Evaluation of the pipeline for each fold of the data

Train Data

Test Data

Validation Data

Early Stopping Epochs

(+ Hyper-parameter Tuning)

Dataset d = 1:12

Data Partitions for Dataset d

Fold 2

Fold 3

Fold 4

Fold 5

Test Results 

for Fold f

of Dataset d

Training Process

Model Evaluation

Run for each dataset separately

Dataset d=1:12, Fold f

 Validation error is calculated for different hyper-parameter settings and the best performing setting is then used for evaluation on test data.

Figure 2: Flowchart of the experimental setup for baseline method 1, illustrating the feature learning
process for human motion kinematic signals, with training performed independently for each dataset.
This method utilizes a multi-channel FEN to learn features from all signals collectively. Indices d
and f refer to the active dataset and fold respectively. Subscript L indicates the number of available
signals in the respective datasetd
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11 Pre-processed Public HAR Datasets

+ Independent Dataset

Dataset 1 Dataset 12

Fold 1

Dataset d

Experiment with Baseline Method 2:

Multiple Single-channel FENs (w/o TL)

Data Setup

Train (65%) + Validation (15%)

Test (20%)

 Each dataset is split using 5-fold CV.

 Each fold contains 20% test data.

 The remaining 80% contain random splits of 

the train (65%) and validation (15%) data.

5-Fold Cross Validation

Fold f

f=1:5 Evaluation of the pipeline for each fold of the data

Train Data

Test Data

Validation Data

Early Stopping Epochs

(+ Hyper-parameter Tuning)

Dataset d = 1:12

Data Partitions for Dataset d

Fold 2

Fold 3

Fold 4

Fold 5

Test Results 

for Fold f

of Dataset d

Training Process

Model Evaluation

Run for each dataset separately

Dataset d=1:12, Fold f

 Validation error is calculated for different hyper-parameter settings and the best performing setting is then used for evaluation on test data.

FEN L

(Single-Channel)

Features 1

Features L

Signal 1

Signal L

FLN d

 Each signal is input to a single-channel FEN separately.

Feature Fusion

Figure 3: Flowchart of the experimental setup for baseline method 2, illustrating the feature learning
process for human motion kinematic signals, with training performed independently for each dataset.
This method utilizes a single-channel signal-specific FEN to learn features from the input signal.
Indices d and f refer to the active dataset and fold respectively. Subscript L indicates the number of
available signals in the respective datasetd

followed by the FLN for classification and feature learning. Baseline method 2 (detailed in 3), also a
standard practice, utilized a distinct single-channel FEN for each signal, followed by the FLN for
classification of the concatenated feature representation of the signals. Lastly, the GEAR-FEN method
(detailed in Figure 4), structurally similar to method 2, employed one shared, single-channel FEN
(GEAR-FEN) across all datasets and signals, aimed to achieve transferable feature representations
from human motion signals. While the GEAR-FEN weights were continuously updated across all
datasets and iterations, the FLN weights were only updated when training on the corresponding
dataset within each iteration. The one-dimensional structure of GEAR-FEN would ensure its efficacy
despite data heterogeneity, such as variations in the number of sensors and signals. This is despite
the standard SOTA TL pipelines where a multi-channel FEN with fixed number of input signals is
pre-trained and fine-tuned, which limits the pipeline to using the datasets with identical sensor and
signal settings.

As discussed in section 3.1, all data underwent pre-processing for consistency. A 5-fold cross-
validation (50-65% training, 15-30% validation, 20% test) ensured unbiased experimental results. To
maintain the inter-subject variability and to avoid data leakage in the evaluation, we split the data
by subjects. The performance was evaluated on the held-out test data of each fold without and with
fine-tuning. In the former approach, the model from the final iteration was directly evaluated on each
dataset. In the latter, the final model was further fine-tuned on the respective dataset before evaluation.
The detail description of method 3 is provided in Algorithm 1.

3.3 NETWORK STRUCTURE & HYPER-PARAMETER TUNING

Inspired by Zhang et al. (2023a), the network architecture for all the baseline and GEAR-FEN
methods incorporated CNN, ResBiLSTM, and an attention mechanism, effectively capturing the
intrinsic patterns of human activity. For a detailed overview of the network structure, refer to Figure
5. The FEN architectures consisted of a 1-D CNN layer responsible for capturing low-level temporal
dependencies, followed by ReLU activation and then max-pooling for dimensionality reduction.
The FLN architectures consisted of a ResBiLSTM layer for learning long-term dependencies and
temporal relationships from the dataset-specific features, followed by an attention mechanism and
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Datapool:

11 Pre-processed Public HAR 

Datasets

Dataset 1 Dataset 11

Iteration 1

Iteration M

Next Dataset

Save the best FEN and FLN weights for the next 

dataset and iteration respectively

Fold 1

Experiment with GEAR-FEN

(w/ TL)

Datapool Setup

Train (65%) + Validation (15%)

Test (20%)

 Each dataset is split using 5-fold CV.

 Each fold contains 20% test data.

 The remaining 80% contain random splits of 

the train (65%) and validation data 1 (15%).

5-Fold Cross Validation

Fold f

f=1:5

Evaluation of the pipelines for each fold of the data

Dataset d = 1:11

Data Partitions for Dataset d

Fold 2

Fold 3

Fold 4

Fold 5

Dataset d=1:11

GEAR-FEN

(Single-Channel)

Features 1

Features L

Signal 1

Signal L

FLN d

 Each signal is input to the single-channel FEN separately.

Feature FusionTrain Data

Validation Data 2

Validation Data 1
Early Stopping Epochs

Training Process

Model Evaluation
Test Data

Early Stopping Iterations
(+ Hyper-parameter Tuning)

 Validation data 2 contains 15% of whole data subtracted from train data and is used for iterations early 

stopping.

 Validation data 2 error is calculated for different hyper-parameter settings and the best performing setting is 

then used for evaluation on test data.

 The Generalized FEN is shared among all signals and datasets and is constantly updated.

 The FLN d is the learning network for dataset d and is updated only when training on dataset d in each iteration.

Datapool, Fold f

Run for all datasets together

Datapool 

Shuffling

Next Iteration

Pre-trained 

GEAR-FEN 

(Single-Channel)

Features 1

Features L

Signal 1

Signal L

Pre-trained 

FLN d

Dataset d

 Each signal is input to the single-channel FEN separately.

Train Data

Test Data

Validation Data
Early Stopping Epochs

Training Process

Model Evaluation

Feature Fusion

Dataset d=1:12, Fold f

(incl. Independent Dataset)

Test Results 

for Fold f

of Dataset d

Evaluation with fine-tuning

 Before evaluation, the trained model from last iteration is fine-tuned using the train and validation data for the respective dataset.

Figure 4: A Flowchart of the experimental setup employing TL through GEAR-FEN, illustrating
the generalized feature learning process for human motion kinematic signals. This method utilizes
a generalized single-channel FEN to learn features from any input signal. Indices d and f refer to
the active dataset and fold respectively. Subscript L indicates the number of available signals in the
respective datasetd

then a fully connected layer. The attention mechanism would allow the network to focus on the most
relevant parts of the input sequence, improving its ability to identify significant patterns and filter
out less important information. The fully connected layer would aggregate the attention-weighted
features and produce the final classification output.

To ensure a fair comparison between the baseline methods and GEAR-FEN, hyper-parameter tuning
was carried out for all three methods with the grid shown in Figure 5. Hyper-parameter tuning
prioritized method 3 due to its access to a large data pool, supporting complex model structures
without overfitting. The optimal hyper-parameters identified for GEAR-FEN method set the initial
search space for baseline methods 1 and 2. Given GEAR-FEN method’s extensive use of data,
baseline methods 1 and 2 required a simplification of the model parameters to avoid overfitting.
Moreover, since the FEN in the first baseline method employs a multi-channel approach, its output
dimensions were the same as those of the single signals in the second baseline and GEAR-FEN
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Algorithm 1 GEAR-FEN Training Process
Input: HAR datasets D1, D2, . . . , DN , split into train, validation 1 (early stopping for epochs),
validation 2 (early stopping for iterations), and test data
Parameters: Learning rate: η, Batch size: n
Output: Model weights W for FEN and Wd for FLNd for Dd

1: Initialize W
2: Initialize Wd for d = 1 to N
3: while true do
4: Shuffle the order of datasets D1 to DN

5: for each dataset Dd in shuffled order do
6: for each signal X in train data do
7: Compute feature representation for each signal: Θ̂ = FEN(X;W )
8: end for
9: Concatenate feature representations from all signals

10: Update W and Wd based on early stopping criteria for epochs
11: end for
12: if Early stopping criteria for iterations then
13: break
14: end if
15: end while
16: for each dataset Dd do
17: Combine validation data 2 with train data for Dd

18: Update W and Wd based on early stopping criteria for epochs
19: end for
20: return W and Wd for d = 1 to N

Table 2: Mean and standard deviation of f1-score performance comparison of the baseline methods,
GEAR-FEN method, and SOTA performance (w/ or w/o TL). For the SOTA performances, the
standard deviations are shown as n/a when not reported.

Dataset Average F1-Score

Method 1 Method 2 Method 3 SOTA

DSADS 0.80 ± 0.08 0.85 ± 0.04 0.89 ± 0.03 0.82 ± n/a (Su et al., 2022)

HHAR 0.70 ± 0.04 0.70 ± 0.05 0.72 ± 0.04 0.52± n/a (Bock et al., 2022)

Mhealth 0.83 ± 0.06 0.88 ± 0.05 0.92 ± 0.03 0.94 ± 0.04 (Suh et al., 2023)

Motionsense 0.93 ± 0.05 0.95 ± 0.01 0.96 ± 0.01 0.92 ± n/a (Tahir et al., 2022)

PAMAP2 0.83 ± 0.10 0.93 ± 0.04 0.95 ± 0.03 0.86 ± n/a (Essa & Abdelmaksoud, 2023)

REALDISP 0.83 ± 0.02 0.90 ± 0.01 0.92 ± 0.01 0.88 ± 0.17 (Suh et al., 2023)

REALWORLD 0.73 ± 0.03 0.74 ± 0.02 0.76 ± 0.01 0.78 ± n/a (Kwon et al., 2020)

UniMiB SHAR 0.67 ± 0.04 0.72 ± 0.04 0.82 ± 0.06 0.77 ± n/a (Al-qaness et al., 2023)

USCHAD 0.80 ± 0.06 0.81 ± 0.04 0.84 ± 0.05 0.83 ± n/a (Essa & Abdelmaksoud, 2023)

WARD 0.89 ± 0.03 0.93 ± 0.02 0.95 ± 0.03 0.91 ± n/a (Yang et al., 2009)

WISDM 0.80 ± 0.04 0.80 ± 0.05 0.82 ± 0.04 0.85 ± n/a (Essa & Abdelmaksoud, 2023)

Independent Dataset 0.56 ± 0.07 0.73 ± 0.07 0.85 ± 0.04 –

methods after the concatenation of features. Further, for a fair comparison between the feature
extraction pipelines, the FLNs for all methods shared the same hyper-parameters. The batch size was
set at 64 to effectively manage computational resources and model performance.
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Hyper-parameter Selection for Baseline Method 1, Baseline Method 2, and GEAR-FEN Method

 Hyperparameter selection prioritized Method 3. Its access to a large data pool allows for complex model structures without overfitting.

 The optimal hyperparameters found for Method 3 were used to define the initial search space for Methods 1 and 2. These methods, reliant solely on the 

target dataset, necessitate simpler model structures to avoid overfitting.

Hyper-parameter Tuning for All Methods

Figure 5: Network architectures and hyper-parameter grids for the methods used in this study. GEAR-
FEN method’s access to ample data allowed for increased complexity without overfitting. The optimal
settings for GEAR-FEN method defined the initial hyper-parameter grid space for baseline methods 1
and 2.
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Baseline-1: Multi-channel FEN (w/o TL)
Baseline-2: Single-channel FENs (w/o TL)
GEAR-FENs (w/ TL)
SOTA (w/ or w/o TL)

Figure 6: Barplot visualization of the mean and standard deviation of f1-score performance compari-
son of the baseline methods, GEAR-FEN method, and SOTA performance (w/ or w/o TL). For the
SOTA performances, the standard deviations are visualized when reported.

4 EXPERIMENTS AND RESULTS

Table 2 presents the mean and standard deviation of f1-scores, averaged across all five experimental
folds, for all methods and datasets in this study. The table also compares the baseline and GEAR-FEN
performances with the SOTA performance for each dataset. Further, Figure 6 the barplot depicts
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the barplot representation for the comparative f1-scores of the baseline and GEAR-FEN methods,
alongside the SOTA performances.

The results suggest that the GEAR-FEN method consistently achieves better or comparable results
in terms of f1-score, always outperforming the other baseline methods and often outperforming the
SOTA. In 9 out of 12 datasets, GEAR-FEN achieves the highest average f1-score. For instance on
DSADS, GEAR-FEN achieves a score of 0.89 ± 0.03, significantly better than baseline method 1
(0.80 ± 0.08), baseline method 2 (0.85 ± 0.04), and SOTA (0.82). On UniMiB SHAR, GEAR-FEN
outperforms the baselines with a score of 0.82 ± 0.06, compared to baseline 1 (0.67 ± 0.04) and
baseline 2 (0.72 ± 0.04), and surpasses SOTA (0.77). Similarly, GEAR-FEN consistently outperforms
on datasets like PAMAP2, REALDISP, and WARD, with higher mean f1-scores and relatively low
standard deviations, indicating robust performance. In some cases, like Mhealth and WISDM, the
GEAR-FEN method’s performance is slightly below SOTA, but it still shows competitive results with
a narrower margin for Mhealth. In the case of the independent dataset, the GEAR-FEN method (0.85
± 0.04) outperforms the baseline methods (0.56 ± 0.07 and 0.73 ± 0.07) by a considerable margin.
Also the standard deviation has a narrower margin which shows the robustness of GEAR-FEN against
the baseline methods.

5 DISCUSSION

The results demonstrate that the GEAR-FEN method consistently outperforms the baseline methods
and often exceeds SOTA performance across majority of the investigated HAR datasets. GEAR-FEN
demonstrates strong generalization, particularly in more challenging datasets with limited sample size,
and shows greater robustness, as indicated by lower variance in f1-scores. Even in cases where it does
not surpass SOTA, GEAR-FEN remains competitive, highlighting its effectiveness in feature learning
for human motion signals. The observed improvements in test accuracy across iterations for a variety
of datasets, substantiate the effectiveness of our model and training approach. Importantly, the ability
of our model to generalize across such a wide range of HAR datasets supports the hypothesis that
kinematic signals e.g., linear acceleration and angular velocity and motion-related kinetic modalities
such as those in pressure mats exhibit similar patterns, which GEAR-FEN can capture.

Moreover, the superior performance of the proposed models on an independent dataset indicates that
the feature representation learned by GEAR-FEN is highly transferable for human motion patterns.
This transferability has resulted in significant improvements when applied to datasets with small
sample sizes, and with new populations, sensor modalities, and sensor locations, as demonstrated by
the independent dataset’s performance.

Additionally, the results show that feature learning using multiple single-channel FENs consistently
outperforms feature representation from a multi-channel FEN, highlighting the structural superiority
of GEAR-FEN compared to SOTA transfer learning networks. It’s also important to note that GEAR-
FEN’s generalized single-channel structure addresses issues related to incompatible signal counts
and sensor locations in transfer learning. This design enables highly customizable fine-tuning of the
model, making GEAR-FEN adaptable to diverse datasets and sensor configurations

6 CONCLUSION

In this paper, we demonstrated a pipeline for automated feature representation of the kinematic
signals related to human motion. This pipeline can be used for transferring the signals into a domain
of representative features, capable of distinguishing between human activities. The generalized
feature extraction pipeline, combined with feature fusion models, contributes to HAR research,
outperforming most of the benchmark models in the field.

Further, the proposed activity classification pipeline outperformed most of the SOTA scores for
different HAR datasets. It is recognized that SOTA models in HAR heavily rely on large and diverse
datasets, posing significant challenges in data acquisition. Our research addresses these issues by
focusing on generalizing across all kinematic signals. While aiming for a model that generalizes
across all kinematic signals, we acknowledge that some datasets show lower accuracy compared
to certain SOTA models. This trade-off is acceptable in our goal to create a universally adaptable
system. It is noteworthy that the proposed GEAR-FEN pipeline can be further fine-tuned using
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the HAR datasets with more inherent similarities to the target dataset. The customized fine-tuning
can aid the model in capturing the local and intricate patterns and features specific to a set of
activities or populations. Moreover, validation of the independent dataset confirms the effectiveness
of GEAR-FEN’s generalization capability.

Our research revealed that the feature representation pipeline exhibits superior performance compared
to the benchmark deep learning models when applied to an independent dataset. This dataset
encompassed a diverse population (wheelchair users) and incorporated various sensor modalities,
including pressure distribution. The findings suggest that the feature learning pipeline effectively
captures the essential characteristics of motion from the signals, potentially enhancing classification
performance when integrated with a classification model. The balance between broad applicability
and dataset-specific precision highlights the potential of our models in diverse real-world applications
and sets a direction for future research in HAR technology.

In our study, we acknowledge a limitation of the feature learning pipeline’s applicability to kinematic
signals associated with human motion. Further, we acknowledge that the GEAR-FEN methodology
has been validated only with a specific neural network structure (comprising CNN, ResBiLSTM,
and attention mechanism). The pipeline should be further validated for different neural network
structures. In forthcoming research, we intend to also employ the Local Interpretable Model-Agnostic
Explanations (LIME) technique to elucidate the features extracted by the pipeline. This will help
assess whether the feature representation pipeline accurately captures features relevant to the target
output. Given the pipeline’s capability to transform any signal into the feature domain, conducting an
activity-wise analysis of these features will enable us to delineate the contribution of each input signal
modality to the recognition of various activities. Furthermore, it should be investigated whether the
generalized feature representation pipeline can be extended to physiological signals with repeatable
patterns, such as heart rate and blood pressure.
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