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ABSTRACT

Although audio foundation models have seen great progress on a wide variety of
tasks, their application in real-world acoustic environments with reverberation and
noise has been less successful. Moreover, as audio foundation models are typically
trained on dry, single-channel audio clips, the inherent spatial nature of real-world
sound scenes is overlooked and tasks involving sound localization are ruled out.
To address these limitations, we propose GRAM: a General-purpose Real-world
Audio Model utilizing a multi-channel masked auto-encoder approach to efficiently
learn spatial audio representations from high-quality simulated real-world scenes.
To evaluate the performance of GRAM and other audio foundation models in real-
world sound scenes, we release Nat-HEAR: A naturalistic version of the HEAR
benchmark suite comprising a simulated real-world version, as well as two new
sound localization and RT60 estimation tasks. We show that the performance of
GRAM surpasses all state-of-the-art self-supervised audio foundation models and
speech models on both HEAR and Nat-HEAR, while using only a fraction of the
training data. GRAM also showcases state-of-the-art localization performance,
surpassing even supervised sound localization approaches, and can be flexibly
applied either to a two-channel, binaural sound format or a four-channel, Am-
bisonics format. Validating GRAM’s performance on real-world sound recordings
demonstrates robust transfer to real-world scenes. Taken together, GRAM presents
a significant advancement towards robust, spatial audio foundation models for
real-world applications. 1

1 INTRODUCTION

Despite the complexity and diversity of everyday sound scenes, human listeners effortlessly interact
with their acoustic environment in myriad ways. Audio foundation models that perform a similar,
human-like range of tasks have received widespread attention (Turian et al., 2022; Wang et al., 2022a;
Yang et al., 2021). While these models demonstrate strong performance on audio benchmarks with
minimal fine-tuning (for example, (Chen et al., 2023; Baevski et al., 2020; Yadav et al., 2024),
they overlook inherent aspects of real-world sound scenes: the spatial dimension, reverberation and
background noise. Specifically, audio foundation models are typically trained on large-scale sound
datasets consisting of dry, non-spatial sound clips such as AudioSet (Gemmeke et al., 2017) and
Librispeech (Panayotov et al., 2015). The effectiveness of these approaches in naturalistic, complex
acoustic environments with background noise and reverberation is therefore limited.

Crucially, the lack of spatial information in audio embeddings precludes sound localization tasks
and the use of spatial sound features for improving performance on complex audio tasks such as
audio scene analysis. Audio scene analysis refers to the separation of overlapping sound waves
in complex multi-source sound scenes and the subsequent grouping of the frequency components
into coherent auditory objects (Bregman, 1984; Bizley & Cohen, 2013). In humans, such audio
scene analysis is aided by spatial cues as well (Bizley & Cohen, 2013; van der Heijden et al., 2019).
Similarly, incorporating spatial knowledge into universal audio embedding models is expected to
benefit downstream tasks where ambient intelligence and acoustic awareness are desired, such as
acoustic scene understanding.

1All code and materials are available on TBD
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A major challenge for the development of audio foundation models for real-world sound scenes
is the scarcity of naturalistic sound data for model training. Recording a vast amount of spatial
sound scenes with varying reverberation characteristics is infeasible and requires fine-tuned recording
setups and conditions (Zheng et al., 2024). The simulation of spatial acoustic scenes has therefore
received much attention and progressed from simulating shoebox rooms (Scheibler et al., 2018) to
simulating realistic sound scenes from everyday life (Chen et al., 2020). Yet, no large-scale datasets
of naturalistic sound scenes exist to date, hampering both the development as well as the systematic
evaluation of audio foundation models for real-world sound scenes. For example, benchmark task
suites such as HEAR (Turian et al., 2022), HARES (Wang et al., 2022a) and SUPERB (Yang et al.,
2021) solely contain datasets consisting of dry, non-spatial sound clips without background noise and
do not include spatial reasoning tasks such as sound localization.

To address these limitations of audio foundation models for real-world applications, we present
GRAM (General-purpose, Real-world Audio Model). GRAM is a self-supervised, multi-channel
masked auto-encoder model that efficiently learns spatial general-purpose audio representations
from simulated real-world sound scenes. To train GRAM, we developed a custom pipeline which
makes use of the Soundspace 2.0 platform (Chen et al., 2022a) to simulate high-quality real-world
sound scenes from AudioSet (Gemmeke et al., 2017), and of WHAMR! (Maciejewski et al., 2020)
for adding background noise. Further, to promote the systematic evaluation of audio foundation
models on naturalistic sound scenes, we introduce Nat-HEAR. Nat-HEAR is an extension of the
HEAR benchmark suite which contains simulated real-world versions of the downstream tasks, and
additionally includes two sound localization tasks and two RT60 estimation tasks. We experiment
with two state-of-the-art encoder architectures (Transformer and Mamba) to assess which architecture
is most suitable for spatial general-purpose audio representation learning in our multi-channel masked
auto-encoder approach. We present two versions of GRAM to ensure flexible application across audio
formats: GRAM-Binaural for two-channel audio clips, and GRAM-Ambisonics for four-channel
audio clips in the first-order Ambisonics format. Finally, we perform systematic ablation experiments
on mask type (patch versus time-based), ratio of simulated real-world sound scenes and conventional
dry sound clips in pre-training, mask ratio, and in-batch sampling to elucidate which factors are
critical for successful spatial general-purpose audio representation learning.

Empirical results demonstrate that GRAM efficiently learns robust and generalizable spatial general-
purpose audio representations, outperforming all state-of-the-art audio foundation models and speech
models on HEAR and Nat-HEAR. GRAM excels especially at complex tasks such as audio scene
analysis and exhibits excellent sound localization performance, outperforming even supervised models
trained with auxiliary spatial features. Finally, GRAM demonstrates robust transfer to recordings of
real-world sound scenes, overcoming the need for extensive domain-specific adaptations. Our key
contributions can be summarized as:

General-Purpose Audio Foundation Model (GRAM): We present GRAM, a multi-channel masked
auto-encoder that shows state-of-the-art performance on a human-like range of tasks in naturalistic
sound scenes, including sound localization.GRAM is the first audio foundation model that is available
both for binaural, two-channel audio formats and for four-channel, Ambisonics audio formats.

A large-scale dataset for high-quality simulations of real-world sound scenes: We release the full
set of binaural room impulse responses (BRIRs) and ambisonics room impulse responses (ARIRs)
corresponding to 85,000 naturalistic sound scenes that we used for our naturalistic training pipeline.

Nat-HEAR: To encourage systematic evaluation of audio foundation models on naturalistic scenes,
we present an extended version of the HEAR benchmark suite (Turian et al., 2022) in which we
transform the HEAR datasets in the HEAR downstream tasks to naturalistic versions. Additionally,
we add two novel, naturalistic sound localization tasks in Nat-HEAR.

2 RELATED WORK

Supervised audio representation learning: Supervised methods for audio representation learning
have achieved notable success in recent years. Approaches such as AST (Gong et al., 2021a),
PaSST (Koutini et al., 2022) and HTS-AT (Chen et al., 2022b) have Transformer-based architectures
as a backbone, for example ViT (Dosovitskiy et al., 2021) and Swin Transformer (Liu et al., 2021).
To mitigate the need for large annotated datasets, some of these approaches are based on models pre-
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trained on image data (for example, AST (Gong et al., 2021a), PSLA (Gong et al., 2021b)). Question
and answer models constitute a more recent category of supervised approaches that integrate audio
representation learning with large language models (for example, Spatial-AST (Zheng et al., 2024)
and Qwen-Audio (Chu et al., 2023). However, supervised training requires large-scale annotated
datasets and is sub-optimal for learning general-purpose audio representations that generalize across
tasks.

Self-supervised audio representation learning: Self-supervised audio representation learning
approaches aim to learn robust audio representations that generalize to a wide variety of tasks (Wang
et al., 2022a; Turian et al., 2022). Masking-based approaches utilizing transformer backbones
to reconstruct masked patches of input spectrograms currently constitute predominant approach,
including (SSAST (Gong et al., 2022)), MSM-MAE (Niizumi et al., 2022), MaskSpec (Chong
et al., 2023), MAE-AST (Baade et al., 2022) and Audio-MAE (Huang et al., 2022). Of the masked
auto-encoder approaches, MW-MAE (Yadav et al., 2024) achieves state-of-the-art performance
on the HEAR benchmark by using multi-window local-global attention in the decoder. Recently,
SSAM (Yadav & Tan, 2024) utilized a Mamba (Gu & Dao, 2023) architecture in their encoder and
achieved similar performance as MW-MAE. In contrast to the masked auto-encoders, BEATS (Chen
et al., 2023) utilizes masking-based approach based on latent embeddings extracted by an acoustic
tokenizer. Finally, successful self-supervised approaches that do not rely on masking at all include
contrastive learning frameworks such as COLA (Saeed et al., 2021).

Another category of self-supervised audio representation models focuses on speech representations
specifically, making use of generative, predictive or contrastive learning (Mohamed et al., 2022).
These speech models are typically trained on datasets such as Librispeech (Panayotov et al., 2015)
or LibriLight (Kahn et al., 2020) and include state-of-the-art models such as Wav2Vec2 (Baevski
et al., 2020), HuBERT (Hsu et al., 2021) and WavLM (Chen et al., 2021). However, while these
models excel at speech-based tasks, they do not necessarily generalize well to non-speech sounds and
non-speech tasks (Turian et al., 2022). Crucially, none of the existing self-supervised approaches for
audio or speech representation learning optimize for performance in real-world sound scenes that are
spatial, reverberant, and noisy.

3 MATERIALS AND METHODS

3.1 SIMULATING REAL-WORLD ACOUSTIC SCENES

Pipeline overview: A room impulse response (RIR) captures room specific acoustic properties such
as reverberation. We utilized high-resolution, detailed 3D meshes of houses with various architectural
characteristics from Matterport3D (Chang et al., 2017) in order to simulate RIRs for many different
rooms in each house with the Monte Carlo ray tracing RIR simulator provided by SoundSpaces
2.0 Chen et al. (2022a). SoundSpaces 2.0 combines the simulated RIRs with a head-related transfer
function (HRTF) (Algazi et al., 2001) to generate a binaural RIR (BRIR) or with an ambisonics
microphone configuration to generate an ambisonics RIR (ARIR). BRIRs capture both room acoustic
properties and human spatial hearing characteristics introduced by the shape of the ears, head and
torso, while ARIRs capture room acoustic properties as well as the spatial cues encoded in first-order
Ambisonics.

Components of simulated real-world scenes: Matterport3D contains scans of 90 houses. We
discarded five houses for which meshes were not of sufficient quality. For each of the remaining
85 houses, we simulated 1,000 real-world scenes. Each scene consisted of a randomly sampled
listener location (microphone location for ambisonics), sound source location and noise source
location in the room. For BRIRs (binaural), we randomly sampled head orientation from a range
[0°, 360°]). We placed the sound source location at a randomly sampled location with respect to
the listener or microphone (distance range [1.5 m, 5 m]; azimuth range [0°, 360°]; elevation range
[-90°, +90°]). Noise was either localized (50% of the scenes) or diffuse (50% of the scenes). For
localized noise, we randomly sampled one location in the room. For diffuse noise, we randomly
sampled three, four or five locations in the room. We then rendered a set of RIRs to describe all
components in the naturalistic scene. Given sound source location s, listener (microphone) location
r, and receiver head orientation θ, we rendered RIRs describing the sound path from the source to the
listener (microphone) as BRIR(s, r, θ) and as ARIR(s, r, θ). Given a number of noise sources ni at
noise source location ϕi, listener location r, and receiver head orientation θ, we rendered the RIR
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Figure 1: Proposed self-supervised approach for training GRAMs on naturalistic binaural scenes. (A)
We generate binaural and ambisonics naturalistic scenes using SoundSpaces2.0 simulator (Chen et al.,
2022a) in MatterPort3D houses. These scenes contain realistic reverberations, and diffused/localized
noise interference. (B) The self-supervised approach for learning audio representation with spatial
attributes. The Patch Extraction layer patches and embeds the input spectrogram using 2D convolution.
A random subset of patches is masked (ratio = 0.8). Unmasked patches are fed to the encoder. The
decoder takes the encoder outputs padded with the masked patches and reconstructs the original
spectrogram. For the ambisonics spectrograms, the methodology stays the same except that inputs
now contains 4 channel mel spectrograms, and intensity vectors (IVs).

describing the path from the noise source(s) to the listener as BRIRi(ϕi, r, θ) and as ARIR(ϕi, r, θ).
This procedure resulted in a total of 85,000 sets of BRIRs as well as 85,000 sets of ARIRs (see
Appendix A for all parameters).

3.2 GRAM FRAMEWORK

The GRAM learns spatial audio representation by reconstructing multi-channel masked spectrogram
patches. First, a patch extractor consisting of a single convolutional layer with 2D convolutional
filters divides each multi-channel spectrogram into n non-overlapping patches P1, . . . , Pn with
Pi ∈ RC×T×F , and embeds each patch into a linear patch embedding Ei ∈ R768 (Figure 1). Non-
masked patch embeddings are input to the encoder, for which we selected the 12-layer ViT-Base
(ViT-B) Transformer (Dosovitskiy et al., 2021) similar to Huang et al. (2022); Yadav et al. (2024).
The encoder outputs patch representations Oi ∈ R768 for i = 1, . . . , n, where n is the number of
unmasked patches. Finally, a Transformer decoder with local-global attention (Yadav et al., 2024)
followed by a linear head takes all patch representations O1, . . . , On as well as all masked patches
M1, . . . ,Mn to reconstruct the multi-channel spectrogram from last layer embeddings.

3.3 PRE-TRAINING

Online mixing of naturalistic sound scenes: The 85,000 naturalistic scenes were split into a train
set of 70,000 scenes (corresponding to 70 Matterport3D houses), and a test set of 15,000 scenes (15
Matterport3D houses) for down-stream evaluation (see Section 3.4). We used the 70,000 naturalistic
scenes in the train set to generate naturalistic scenes for all audio clips in the unbalanced training
set of AudioSet (10-second sound tracks of 1.74 million YouTube videos (Gemmeke et al., 2017)).
Specifically, during training we randomly paired an AudioSet clip with a noise sound clip from the
WHAMR! background noise database (Maciejewski et al., 2020). WHAMR! noise clips longer than
10 s were trimmed to 10 s duration and a linear fade-in/fade-out of 200 ms was applied to every noise
clip prior to mixing of the sound scene.

To create a naturalistic sound scene, we then convolved the AudioSet clip either with BRIR(s, r, θ)
for GRAM-Binaural, or with a ARIR(s, r, θ) for GRAM-Ambisonics, to obtain T . Similarly, we
convolved the WHAMR! noise clip with the BRIR(ϕi, r, θ) to obtain Ni. In naturalistic scenes
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with diffuse background noise, the diffuse noise field D was generated by summing the noise clips
D =

∑M
i=1 Ni where Ni are individual noise clips and M is the total number of noise clips. The

naturalistic sound scene S was then calculated as S = T + bN for scenes with localized noise and as
S = T + bD for scenes with a diffuse noise field. Here, b is a scaling parameter introduced to mix
target and noise sound clips at a given signal-to-noise ratio (SNR) ranging between +5 dB and +40
dB.

Input features: We transformed the channels of each sound scene (i.e., the waveforms) into log-scale
mel spectrograms using 128 mel filters in the frequency range of 50-16000 Hz with a 25 ms Hanning
window and 10 ms hop length, resulting in spectrograms of dimension 1001× 128, later we added
zero padding to achieve dimension of 1024× 128. For GRAM-Ambisonic, we extracted normalized
active Intensity Vectors (IVs) from the spectrograms as additional input features encoding spatial
information (see Appendix B). We concatenated mel spectrograms and intensity vectors, resulting in
input x = [xmel, IV s] for each naturalistic scene generated from an AudioSet clip.

In-batch sampling: As the online mixing of naturalistic acoustic scenes is computationally expensive
due to multiple long convolutions, we used a random in-batch sampling procedure to increase the
effective batch size in a computationally efficient manner. We randomly sampled 16 partially
overlapping segments of 2 seconds to create 16 samples of dimension 200 × 128. This increases the
original batch size of 96 to an effective batch size of 1536.

Patch extraction and masking: For pre-training, we divided the binaural spectrogram into Pi ∈
R2×8×16, and ambisonics spectrograms into Pi ∈ R7×8×16 patches. We used an adapted version
of the mask-based framework of MW-MAE (Yadav et al., 2024), randomly selecting a subset of
n patches M1, . . . ,Mn for i = 1, . . . , n for masking (masking ratio = 0.8) and replacing their
embedding with a learnable mask token. Finally, we added fixed sinusoidal positional embeddings to
all embedded patches.

Decoder with local-global attention: The decoder takes as input both the unmasked patches
O1, . . . , On with Oi ∈ R768, and the masked patches M1, . . . ,Mn with Mi ∈ R768 as well as fixed
sinusoidal positional embeddings for each patch (Figure 1). To implement local-global attention (Ya-
dav et al., 2024), we selected window sizes of [2, 5, 10, 25, 50, 100, 0, 0]. Here, 0 signifies global
plain attention.

Pre-training specification: We trained all GRAMs for 500 K steps on an H100 92 GB GPU machine
with 16 CPU cores. We used the AdamW optimizer (Loshchilov & Hutter, 2017) with weight decay
rate of 0.01, gradient clipping, and a cosine learning rate scheduler with 10 K steps warm-up. The
initial learning rate was set to 0.0002, and decayed to 0. We optimize the mean squared error (MSE)
loss function between the predicted masked patches and their corresponding input spectrogram
patches.

3.4 EXPERIMENTS

Model comparison: We compare the performance and efficiency of GRAM-Binaural, GRAM-
Ambisonics on downstream tasks with state-of-the-art self-supervised audio representation models
with a similar number of parameters as GRAM (90 M): MAE-16x16 (Huang et al., 2022), SSAST-
patch (Gong et al., 2022), BEATs-iter3 (Chen et al., 2023), MW-MAE-B-200-4x16 (Yadav et al.,
2024), SSAM (Yadav & Tan, 2024); self-supervised speech representation models Wav2Vec 2.0
Base (Baevski et al., 2020), HuBERT Base (Hsu et al., 2021), WavLM Base (Chen et al., 2021). To
quantify the impact of pre-training with naturalistic sound scenes, we further train GRAM-Clean.
GRAM-Clean follows the same experimental setup as the GRAM-Binaural and GRAM-Ambisonics
with the distinction of only consuming dry audioset audio clips.

Downstream tasks: We evaluate GRAM and other state-of-the-art models on the HEAR benchmark
task suite, which presents a wide range of tasks to evaluate the downstream performance of audio
representation models (Turian et al., 2022). To avoid redundancy we selected the same subset of
HEAR tasks as previously used in (Yadav et al., 2024). To enable in-depth evaluation of audio scene
analysis capabilities, we added the time-stamp based sound event detection task DCASE-2016 Task
2 (Mesaros et al., 2018) from the HEAR benchmark suite.

We additionally evaluated performance on simulated real-world sound scenes using Nat-HEAR,
which provides a naturalistic version of all selected datasets in the HEAR benchmark suite in
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Figure 2: Downstream model performance on naturalistic sound scenes. (A) Nat-HEAR and
HEAR downstream performance as a function of training data quantity. (B) Box plots of the difference
in performance on HEAR and Nat-HEAR, excluding the DCASE-2016 task. Box limits reflect the
first and third quartile, center line the median (see also Table 7).

two audio formats: a two-channel, binaural format and a four-channel, first-order Ambisonics
format. We included sound localization tasks for two different domains which we generated using
HEAR benchmark datasets: A speech localization task based on SC-5, and an environmental sound
localization task based on ESC-50. The localization tasks are modeled as a multi-output regression
task in which model outputs represent the estimated 3D Cartesian coordinates [x, y, z] on the unit
sphere (Adavanne et al., 2018). Finally, to assess the transferability of GRAM to real-world sound
scenes, we evaluate also on the sound event detection and localization tasks in TUT Sound Events
2018 REAL (Adavanne et al., 2019), and STARSS23 (Shimada et al., 2023).

Downstream evaluation: To evaluate the single-channel SOTA audio representation models on
Nat-HEAR, we utilized the omnidirectional channel W of the first-order Ambisonics (Zotter & Frank,
2019) version of Nat-HEAR as model input. The outputs of MAE, SSAST and BEATs were not
suitable for the time-stamp based DCASE-2016 sound event detection task. Hence, these models
were not evaluated on the DCASE-2016 task. Further, we included Spatial-AST (Zheng et al., 2024)
as this is the only model trained on spatial sound scenes and therefore the sole model evaluated on
the Nat-HEAR localization tasks besides GRAM-Binaural and GRAM-Ambisonics. To evaluate two-
channel models such as GRAM-Binaural on HEAR, we duplicated the single-channel spectrograms
of the original HEAR to generate model compatible input. Following the HEAR protocol (Turian
et al., 2022) for downstream task evaluation, we extracted embeddings from the frozen pretrained
models and trained a shallow downstream classifier on these embeddings to assess how well the
learned representations generalize to a broad range of tasks. The embedding extraction for GRAM is
described in Appendix E.

Quantifying overall performance: We calculate for each model m, the score s(m) to give an
impression of the overall performance, similar to (Yang et al., 2021). This score reflects a model’s
improvement with respect to the maximum improvement over the baseline obtained by the current
state-of-the-art model, averaged across all tasks included in the benchmark. This metric effectively
ranks the improvement of models over the baseline as a function of the current maximum improvement
(see Appendix E). We use the HEAR-Naive baseline based on mel-spectrograms (Turian et al., 2022).
Furthermore, we calculated the average score over all tasks.

Evaluating sound localization performance: We evaluate the sound localization performance on
the newly generated sound localization tasks in Nat-HEAR by calculating the Direction of Arrival
(DoA) error θ between the [x, y, z] coordinates of the target sound source on the unit sphere using
the arc cosine of the dot product of the unit vectors: θ = arccos(v · v̂). Note that we included a
third GRAM framework for the localization tasks besides GRAM-Binaural and GRAM-Ambisonics,
which is GRAM-Binaural with time-based masking instead of patch-based masking. In particular,
as explained in Section 3.3 we carry out ablations on masking type. Here, for localization, we
hypothesized that time-based masking may lead to better localization results for GRAM-Binaural
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than patch-based masking as it enables the model to learn representations along the entire frequency
axis, similar to human spatial hearing (van der Heijden et al., 2019; Carlile et al., 1999).

3.5 GENERALIZATION TO REAL WORLD SCENES

To evaluate GRAM-Ambisonics on real world scenes, we conduct experiments on two datasets:
TUT Sound Events 2018 (Adavanne et al., 2019) and STARSS23 (Shimada et al., 2023). TUT
Sound Events 2018 consists of simulated spatial audio generated by convolving dry audio clips with
measured RIRs. In contrast, STARSS23 contains real-world ambisonics recordings captured with
spatial microphone arrays, enabling assessment of model transferability to in-the-wild conditions.
Notably, STARSS23 features polyphonic scenes with moving sources and environmental noise,
presenting a substantially more challenging downstream task.

TUT Sound Events 2018: We resample all audio to 32kHz and extract segments with corresponding
localization annotations. We formulate localization as a polar coordinate regression task, predicting
azimuth and elevation angles [θ, ϕ] ∈ [0, 360)× [−90, 90]. We follow the HEAR protocol to evaluate
our representations.

STARSS23: We utilized the audio-only subset of STARSS23, as our model does not incorporate
visual modalities. Following standard preprocessing, we resample waveforms to 32kHz and adopt
the Activity-Coupled Cartesian Direction of Arrival (ACCDOA) framework (Shimada et al., 2021).
This framework jointly models sound event detection and localization across 13 sound classes. A
class is considered active at frame t when the predicted Cartesian coordinate magnitude ∥ct∥ > 0.5,
where ct ∈ R3 represents the unit direction vector. We extracted frame-level embeddings from
GRAM-Ambisonics (Appendix E) yielding representations at 80ms intervals. To match STARSS23’s
100ms label resolution, we apply adaptive 1D temporal pooling over embeddings. A linear projection
head then maps pooled representations to per-frame predictions for both sound event detection (SED)
and direction of arrival (DOA) estimation.

Training Protocols: To assess the pre-trained capabilities of GRAM-Ambisonics, we evaluated three
training regimes: (1) full fine-tuning of all model parameters, (2) linear probing with frozen encoder
weights, and (3) training from scratch. All protocols shared the batch size 512, and 100 training
epochs. All other experimental settings follow the SELD baseline model (Shimada et al., 2023). For
training from scratch protocol, we assesed four learning rates [1e-3, 1e-4, 2e-4, 5e-4], other protocols
had a learning rate of 1e-4.

3.6 ABLATIONS

To establish crucial factors for successful spatial general-purpose audio representations learning,
we carried out a series of ablation experiments. For GRAM-Binaural, we trained also an encoder
with a state-of-the-art 8-layer Mamba architecture (Gu & Dao, 2023; Yadav & Tan, 2024) to assess
the optimal architecture choice for spatial general-purpose audio representation learning. To ensure
that computational overhead and model capacity were comparable between the Transformer and
Mamba encoder, we used similar parameter counts. We also tested the impact of mask type for
GRAM-Binaural, comparing patch-based masking as described above to time-based masking. For
time-based masking, patches were defined as Pi ∈ R2×2×128 such that they spanned the entire
frequency range. For time-based masking, we used window sizes and [2, 5, 10, 25, 50, 0, 0, 0] to
implement local-global attention in the decoder. For both GRAM-Binaural and GRAM-Ambisonics,
we assessed the optimal ratio (λ) between simulated real-world sound scenes and clean, dry sound
clips in pretraining data for λ = 0.0, 0.25, 0.5, 0.75, 1.0. Finally, we examined various masking
ratios [0.4, 0.6, 0.8, 0.9] and in-batch sampling factors [4, 8, 16] for GRAM-Binaural. For all
ablations, GRAM-Binaural and - if applicable - GRAM-Ambisonics were trained with the exact same
parameters specified above, except the masking ratio ablation, where we reduced the effective batch
size from 1536 to 384.

4 RESULTS

Performance on simulated real-world sound scenes (Nat-HEAR): Table 1 demonstrates that
GRAM-Binaural (s = 74.8, Avg. = 73.9) and GRAM-Ambisonics (s = 70.5, Avg. = 71.1) learn robust
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Table 1: Performance on Nat-HEAR. Reported values reflect the average performance ± standard
deviation, calculated using n-fold cross-validation as specified by the HEAR. Bold numbers indicate
the best performing model on the specific task. SSAST* is trained on both AudioSet and Librispeech.
Tasks are specified in Appendix C.

Acoustic Events and Scene Analysis Speech Music
Model DCASE FSD50K LC ESC-50 CD VL SC-5 NS BO Mri-S Mri-T s(m) Avg.

Baseline
HEAR-Naive 26.5 8.7 27.4± 1.6 17.2± 2.2 32.3± 2.2 11.7± 2.2 12.0 75.6 84.3± 4.5 68.6± 1.3 60.5± 1.3 0.0 38.6

Speech SSL
Wav2Vec2 32.0 23.0 54.6± 1.9 36.4± 2.9 48.6± 0.6 27.2± 1.6 78.9 15.2 71.2± 6.4 75.7± 0.5 45.9± 0.6 32.5 46.2
HuBERT 57.6 26.6 52.5± 2.2 49.5± 2.2 57.4± 1.1 46.8± 3.4 89.2 16.0 77.1± 6.0 78.2± 0.7 52.4± 1.6 45.2 54.8
WavLM 25.3 20.5 52.1± 0.6 41.4± 2.1 52.3± 1.5 47.9 ± 4.6 89.9 11.2 61.4± 7.2 69.3± 0.9 39.0± 2.0 37.8 46.4
AudioSet SSL
MAE – 27.9 53.2± 1.0 65.7± 1.2 48.5± 1.3 19.0± 1.5 57.4 53.4 79.2± 7.8 81.0± 4.9 56.5± 12.3 34.5 54.2
SSAST* – 15.6 41.6± 2.4 44.8± 1.0 39.7± 2.9 12.7± 1.3 19.9 52.0 81.8± 3.6 76.5± 3.6 64.6± 1.5 17.5 44.9
BEATs – 46.5 63.7± 1.2 72.6± 3.9 54.8± 1.6 27.5± 4.3 83.5 54.2 70.3± 6.2 83.2± 1.0 71.0± 1.4 55.7 62.7
MW-MAE 83.8 44.3 64.8± 1.1 69.7± 5.6 59.3± 1.0 31.8± 1.8 86.7 59.2 77.1± 3.6 90.1± 0.8 73.9± 0.6 62.5 67.3
SSAM 70.0 46.0 63.2± 1.1 73.1± 2.4 62.3± 1.0 38.8± 2.6 86.2 65.4 84.3± 7.0 92.6± 0.4 76.8± 1.0 68.4 68.9
GRAM-Binaural 93.0 52.8 72.3 ±0.7 82.6 ± 3.2 63.3 ± 1.3 35.1± 3.8 91.0 67.6 85.6 ± 5.1 91.7 ± 0.9 78.3 ± 1.3 74.8 73.9
GRAM-Ambisonics 90.2 49.5 68.8± 0.9 79.4± 2.7 61.4± 0.9 36.4± 4.2 87.2 64.6 83.4± 4.7 91.3± 0.6 78.1± 1.4 70.5 71.8
GRAM-Clean 90.9 50.5 66.4± 0.8 80.0± 2.4 62.0± 1.3 32.2± 2.3 87.3 65.2 82.2± 5.6 90.2± 0.8 75.1± 0.7 67.3 71.1

Supervised
PASST – 56.9 52.1± 1.9 89.7 ± 2.1 49.9± 1.0 18.4± 2.3 61.1 16.0 93.6 ± 4.0 85.5± 1.7 55.6± 3.0 56.2 57.9
Spatial-AST – 40.0 49.9± 1.5 70.1± 3.3 41.6± 0.5 11.7± 2.7 54.8 50.2 77.1± 2.8 77.7± 0.9 55.0± 1.6 30.9 52.8
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Figure 3: Localizing sound sources in simulated real-world sound scenes, and estimating RT60s. (A)
Boxplots of direction of arrival (DoA) error. (B) Boxplots of RT60 estimation error (absolute error).
All box limits: first and third quartile; center line: median; whiskers: 1.5 times the interquartile range.

general-purpose audio representations, outperforming all other self-supervised audio representation
models on Nat-HEAR. Moreover, GRAMs requires substantially less training data to achieve state-
of-the-art performance (Figure 2).

Comparing the performance on Nat-HEAR to the performance on HEAR (that is, clean and dry
sounds) highlights the degradation in performance that audio representation models experience in
naturalistic sound scenes (Figure 2A). However, GRAM-Binaural and GRAM-Ambisonics exhibit
a relatively small drop in performance, highlighting that the model performs the tasks in simulated
real-world sound scenes almost as well as the same tasks on clean sounds. Further, the success of
our naturalistic training pipeline is highlighted by the difference in degradation between the multi-
channel GRAMs (GRAM-Binaural and GRAM-Ambisonics) and GRAM-Clean: GRAM-Binaural
and GRAM-Ambisonics drop less in performance than GRAM-Clean (Figure 2B).

Performance on dry, non-spatial and clean sound scenes (HEAR): We find that all GRAMs
surpasses all other self-supervised audio representation models on HEAR (Table 7). GRAM-Clean
achieved state-of-the art performance (s = 73.8, Avg. = 83.1), followed by GRAM-Binaural (s =
72.3, Avg. = 82.5) and GRAM-Ambisonics (s = 71.3, Avg. = 81.1). The superior performance on
HEAR of GRAM-Binaural and GRAM-Ambisonics over other audio representation models indicates
that training on simulated real-world scenes does not reduce downstream task performance on clean,
dry sound scenes.

Sound localization and RT60 estimation in simulated real-world sound scenes: GRAMs exhibit
excellent localization capabilities in simulated real-world sound scenes, despite the presence of
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Figure 4: Fine-tuning dynamics on STARSS23. Validation metrics across training epochs for three
protocols: full fine-tuning, linear probing, and training from scratch. The naturalistic pre-training
helps GRAM-Ambisonics train faster and better. Using different learning rates, or increasing training
epochs does not improve the GRAM-Ambisonics-scratch performance.

Table 2: TUT Sound Events 2018 Real
dataset (DoA error). SeldNET (Ada-
vanne et al., 2019), PILOT (Schymura
et al., 2021), Spatial Libri (Sarabia et al.,
2023), ELSA (Devnani et al., 2024)

MODEL REAL ↓

Supervised
SeldNET 26.6◦

PILOT 4.2◦

Self-Supervised
Spatial Libri. 12.4◦

ELSA 15.0◦

GRAM-Amb. 11.3◦

Table 3: Comparison of SELD scores for STARSS23
dataset. Native sampling rate is 24kHz, whereas up-
sampled is 32kHz. SOTA (Wang et al., 2023), Base-
line (Shimada et al., 2023)

MODEL ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑

Native sampling rate
SOTA 0.42 59.0 % 13.7◦ 72.0%
Baseline 0.57 29.9% 22.0◦ 47.7%

Upsampled
GRAM-Amb. (Fine-tune) 0.51 41.4% 18.6◦ 60.5%
Baseline (Reprod.) 0.62 28.3% 23.7◦ 45.7%

reverberation and background noise in the scenes (Figure 3). We find that time-based masking
is indeed more successful for sound localization with GRAM-Binaural than patch-based masking.
Crucially, the localization acuity of GRAM-Ambisonics is substantially higher than that of Spatial-
AST for both the speech dataset (SC-5) and the sound scene dataset (ESC-50), even though Spatial-
AST is a supervised model trained with location labels. Furthermore, GRAMs with spatial attributes
estimated RT60s statistically significantly better to GRAM-Clean and Spatial-AST.

Generalization to localization in recorded real-world sound scenes: Table 2 shows that GRAM-
Ambisonics generalizes successully to the real-world sound scenes in the TUT Sound Events 2018
dataset (Adavanne et al., 2019), obtaining a lower DoA error than other self-supervised models.
GRAM-Ambisonics even outperforms supervised models such as SeldNET (Adavanne et al., 2018)
(note that PILOT (Schymura et al., 2021) is sound localization model trained directly on TUT Sound
Events 2018). Furthermore, GRAM-Ambisonics demonstrate the transferability of our pre-trained
weights for on STARSS23 dataset. Specifically, comparing the validation curves of pre-trained
GRAMs in Figure 4 reveal that pre-trained weights carry substantial information regarding sound
event detection and sound localization on challenging environments. Furthermore, Table 3 reveals
that GRAM-Ambisonics achieves competetive results on STARSS23 dataset even with non-native
sampling rate, additional data augmentations, and domain specific architecture.

4.1 ABLATION STUDIES

Ratio of clean and naturalistic data in pretraining: Prior work on learning spatially aware
audio representations from spectrograms demonstrated that pretraining on a mixture of clean and
naturalistic sound scenes rather than on naturalistic sound scenes only, benefits the quality of learned
representation (Devnani et al., 2024). We therefore investigated to what extent pretraining on a
mixture of clean and naturalistic sound scenes affected the performance of GRAM-Binaural and
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Figure 5: Ablation Studies. Effect of hyperparameters on HEAR and Nat-HEAR Performance. From
left to right; (1) GRAM-Binaural downstream performance as a function of the ratio λ between clean
and naturalistic scenes in the pre-training data. (2) GRAM-Ambisonics downstream performance as
a function of the ratio λ between clean and naturalistic scenes in the pre-training data. (3) effect of
masking strategy to downstream performance for GRAM-Binaural (4) comparison of Mamba and
Transformer architectures on binaural training data. Important to note that architectures depicted in
(4) was trained on reduced batch size (96 → 32).

GRAM-Ambisonics on HEAR and Nat-HEAR. The panels on the left in Figure 5 show that the
performance of GRAM-Binaural on Nat-HEAR increases with lower λ, while performance on HEAR
is optimal with a mixture of clean and naturalistic scenes (λ = 0.5). GRAM-Ambisonics performed
best on Nat-HEAR using a mixture of clean and naturalistic scenes (λ = 0.5) in line with Devnani
et al. (2024). In contrast, GRAM-Ambisonics performed better on HEAR with more clean data
during pretraining (high λ).

Masking strategy: Figure 5 illustrates that patch-based masking results in better downstream
performance on both HEAR and Nat-HEAR. However, as shown in Figure 4, time-based masking
leads to more accurate localization for GRAM-Binaural and may therefore still be considered as
masking strategy depending on the purpose of the model.

Encoder architecture: As shown in Figure 5, an encoder with a Transformer backbone consistently
performed better than an encoder with a Mamba backbone both on clean downstream tasks (HEAR)
and on naturalistic downstream tasks (Nat-HEAR).

5 DISCUSSION AND CONCLUSION

We present a General-purpose, Real-world Audio representation Model (GRAM), which learns spatial
audio representations using a multi-channel masked auto-encoder approach. GRAM demonstrates
remarkable performance in naturalistic sound scenes as well as clean sound scenes, surpassing all
state-of-the-art self-supervised spectrogram-based audio foundation models while requiring only a
fraction of the training data. Moreover, GRAM is the first audio foundation model that is available
in both a two-channel, binaural format and a four-channel, first-order ambisonics format. GRAM
successfully encoded spatial information into the learned audio representations, outperforming both
self-supervised and supervised approaches on sound localization and RT60 estimation tasks. We
furthermore release Nat-HEAR: a naturalistic version of the HEAR benchmark suite including
also localization tasks. In sum, GRAM is a new state-of-the-art audio representation model that
incorporates high-quality spatial learning and exhibits robust performance in real-world sound scenes,
representing a crucial step towards successful real-world applications of audio foundation models.

Limitations and future work: Although GRAM performs well on HEAR speech tasks in comparison
to other self-supervised models trained on AudioSet, we plan to train GRAM on a mixture of speech
and general audio data (e.g., AudioSet) in order to assess GRAMs capability for speech learning in
more detail. Furthermore, GRAM opens a path towards multi-modal spatial learning and can serve as
a basis for downstream applications such as audio-visual scene representation learning (Mahmud &
Marculescu, 2023), robotics Ledder et al. (2025), and audio-language representation learning (Zheng
et al., 2024; Chu et al., 2023).
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Jörgen Valk and Tanel Alumäe. Voxlingua107: A dataset for spoken language recognition. In 2021
IEEE Spoken Language Technology Workshop (SLT), pp. 652–658, 2021. doi: 10.1109/SLT48900.
2021.9383459.

Kiki van der Heijden, Josef P Rauschecker, Beatrice de Gelder, and Elia Formisano. Cortical
mechanisms of spatial hearing. Nature Reviews Neuroscience, 20(10):609–623, 2019.
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learning universal audio representations. In ICASSP 2022 - 2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 4593–4597, 2022a. doi: 10.1109/
ICASSP43922.2022.9746790.

14

https://doi.org/10.1121/1.1939454
https://arxiv.org/abs/2010.15306
https://doi.org/10.5281/zenodo.1216072
https://doi.org/10.5281/zenodo.1216072
https://proceedings.mlr.press/v176/turian22a.html


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Qing Wang, Ya Jiang, Shi Cheng, Maocheng Hu, Zhaoxu Nian, Pengfei Hu, Zeyan Liu, Yuxuan
Dong, Mingqi Cai, Jun Du, and Chin-Hui Lee. The nerc-slip system for sound event localization
and detection of dcase2023 challenge. Technical report, DCASE2023 Challenge, June 2023.

Shanshan Wang, Archontis Politis, Annamaria Mesaros, and Tuomas Virtanen. Self-supervised
learning of audio representations from audio-visual data using spatial alignment. IEEE Journal of
Selected Topics in Signal Processing, 16(6):1467–1479, 2022b. doi: 10.1109/JSTSP.2022.3180592.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition, 2018. URL
https://arxiv.org/abs/1804.03209.

Sarthak Yadav and Zheng-Hua Tan. Audio mamba: Selective state spaces for self-supervised audio
representations. In Interspeech 2024, pp. 552–556, 2024. doi: 10.21437/Interspeech.2024-1274.

Sarthak Yadav, Sergios Theodoridis, Lars Kai Hansen, and Zheng-Hua Tan. Masked autoencoders
with multi-window local-global attention are better audio learners. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=Q53QLftNkA.

Shuwen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y. Lin,
Andy T. Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, Tzu-Hsien Huang, Wei-Cheng Tseng,
Ko tik Lee, Da-Rong Liu, Zili Huang, Shuyan Dong, Shang-Wen Li, Shinji Watanabe, Abdelrahman
Mohamed, and Hung yi Lee. Superb: Speech processing universal performance benchmark. In
Interspeech 2021, pp. 1194–1198, 2021. doi: 10.21437/Interspeech.2021-1775.

Zhisheng Zheng, Puyuan Peng, Ziyang Ma, Xie Chen, Eunsol Choi, and David Harwath. Bat:
learning to reason about spatial sounds with large language models. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Franz Zotter and Matthias Frank. XY, MS, and First-Order Ambisonics, pp. 1–22. Springer Interna-
tional Publishing, Cham, 2019. ISBN 978-3-030-17207-7. doi: 10.1007/978-3-030-17207-7 1.
URL https://doi.org/10.1007/978-3-030-17207-7_1.

15

https://arxiv.org/abs/1804.03209
https://openreview.net/forum?id=Q53QLftNkA
https://openreview.net/forum?id=Q53QLftNkA
https://doi.org/10.1007/978-3-030-17207-7_1


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

A SOUNDSPACES 2.0 SPECIFICATIONS

We generate our BRIRs using the simulator provided by SoundSpaces 2.0 (Chen et al., 2022a). Our
hyperparameters for the simulator is depicted in Table 4.

Table 4: Acoustic configuration parameters utilized in SoundSpaces 2.0 to generate our BRIRs.

Parameter Value Parameter Value

directSHOrder 3 indirectSHOrder 3
sampleRate 32000 frequencyBands 8
maxDiffractionOrder 10 transmission True
indirect True indirectRayCount 15000
indirectRayDepth 400 sourceRayCount 200
sourceRayDepth 20 threadCount 16
agentHeigth 1.5m

B INTENSITY VECTORS

Following Devnani et al. (2024); Wang et al. (2022b), we extracted intensity vectors utilizing the
equation below:

Iactive(t, f) = ℜ

[
A∗

0,0(t, f)

(
A1,-1(t, f)
A1,0(t, f)
A1,1(t, f)

)]
, (1)

where An,m are the nth and mth order and mode of the ambisonics signal corresponding to its
omnidirectional (W ) and three dipole (Z, Y,X) components, and (·)∗ denotes complex conjugation.
IVs are scaled to unit-norm.

C HEAR AND NAT-HEAR TASKS

Table 5 illustrates the abbreviations, task description, and the type that we have utilized to benchmark
our models.

Table 5: Overview of the HEAR and Nat-HEAR tasks.

Abbreviation Task Name Description Type

DCASE DCASE-2016 Task 2 (Mesaros et al., 2018) Event detection of overlapping office sounds in synthetic mixtures Scene Analysis
FS50K FSD50k (Fonseca et al., 2022) Multilabel, large scale audio tagging Scene Analysis
LC LibriCount (Stöter et al., 2018) Speaker Count Identification, Simulated Cocktail Party Scene Analysis
ESC-50 ESC-50 (Piczak) Environmental Sound Classification Environmental Sound Classification
CD Crema-D (Cao et al., 2014) Emotion Recognition Speech Analysis
VL VoxLingua107 Top10 (Valk & Alumäe, 2021) Spoken language identification Speech Analysis
SC-5 Speech Command 5h (Warden, 2018) Keyword Spotting, reduced training subset Speech Analysis
NS NSynth Pitch 5h (Engel et al., 2017) Pitch Classification, reduced training subset Pitch Classification
BO Beijing Opera (Tian et al., 2014) Classifying percussion instruments Percussion
Mri-S Mridangam Stroke (Anantapadmanabhan et al., 2013) Stroke classification in pitched percussion instruments Percussion
Mri-T Mridangam Tonic (Anantapadmanabhan et al., 2013) Tonic classification in pitched percussion instruments Percussion

D RT60 ESTIMATION TASKS

Nat-HEAR includes two RT60 estimation tasks (ESC-50 and SC-5) in addition to the direction-of-
arrival estimation tasks. For synthesizing these tasks, we did not add additional localized/diffused
noise. Specifically, we convolved ESC-50 and SC-5 clips with BRIR(s, r, θ) for Nat-HEAR Binaural,
or with ARIR(s, r, θ) for Nat-HEAR Ambisonics. We estimated the ground truth RT60s using the
first channel of the ARIR. To estimate the RT60s, we utilized the Schroeder method (Schroeder,
1965) from Pyroomacoustics package (Scheibler et al., 2018). Explicitly, we measure the RT30 and
extrapolate to RT60 using the decay curve.
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ESC-50 SC-5

Figure 6: Distribution of the estimated RT60s for ESC-50 and SC-5 datasets.

Figure 6 depicts the RT60 distributions of ESC-50 and SC-5 datasets. Furthermore Table 6 presents
the median absolue errors that we got with GRAMs on ESC-50 and SC-5 tasks.

Table 6: Absolute median error comparison on RT60 estimation tasks.

(a) SC-5

Model Median Error
GRAM-T-Clean 0.0225
GRAM-T-Ambisonics 0.0169
GRAM-T-Binaural (Patch) 0.0146
GRAM-T-Binaural (Time) 0.0179
Spatial-AST 0.0299

(b) ESC-50

Model Median Error
GRAM-T-Clean 0.0461
GRAM-T-Ambisonics 0.0421
GRAM-T-Binaural (Patch) 0.0397
GRAM-T-Binaural (Time) 0.0418
Spatial-AST 0.0468

E EXTRACTING GRAM EMBEDDINGS FOR DOWNSTREAM TASKS

We extracted GRAM embeddings for downstream evaluations by encoding embeddings for all patches
P1, . . . , Pn using the GRAM encoder. We used the exact patch aggregation process as in (Niizumi
et al., 2022). Audio clips were split into non-overlapping 2-second chunks and the embedded patches
concatenated over time. Later, we took the mean over the time axis to generate scene embeddings
independent of the input audio duration. Finally, to evaluate GRAMs on the localization tasks, we
used [CLS] embeddings of the 2-second samples, and averaged them to create scene embeddings for
localization tasks.

F DOWNSTREAM PERFORMANCE METRIC

Similar to the procedure in SUPERB (Yang et al., 2021), let st be the metric for task t. We then
calculate the generalizability metric HEARs(m), and Nat-HEARs(m) for model m as:

s(m) =
100

T

T∑
t

st(m)− st(baseline)

st(SOTA)− st(baseline)

Intuitively, this metric ranks the improvement of models over the baseline as a function of the
maximum improvement over the baseline obtained by the current state-of-the-art. Note that we
replace st(m) for task t of model m with 0 when the model scores below baseline performance for
task t. Similarly, when st(SOTA) is lower than baseline for task t, we set for all models st for this
task to 0. In this way, all values are restricted to a range of improvement between 0% and 100%.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 7: Additional ablation studies. Effect of hyperparameters on HEAR and Nat-HEAR Perfor-
mance. From left to right; (1) GRAM-Binaural downstream performance as a function of the number
of in batch samples. (2) The effect of masking ratio for GRAM-Binaural. Important to note that
GRAM-Binaural depicted in (2) was trained on reduced number of samples (16 → 4).

CD ESC-50 LC VL

CD ESC-50 LC VL

Training steps 1e4 Training steps 1e4 Training steps 1e4 Training steps 1e4

Training steps 1e4 Training steps 1e4 Training steps 1e4 Training steps 1e4

Sc
or
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Sc
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e
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Figure 8: Additional ablation studies. Effect of in batch sampling on HEAR and Nat-HEAR
performance when the effective batch size is kept the same. From top to bottom; (1) GRAM-Binaural
downstream performance on HEAR as a function of the in-batch sampling (2) GRAM-Binaural
downstream performance on Nat-HEAR as a function of the in-batch sampling

G ADDITIONAL ABLATION STUDIES

Firstly, we further investigated the masking ratio, and in batch sampling as a function of HEAR
and Nat-HEAR performance. Secondly, we investigated the localization performance in terms of
mixture of naturalistic and clean audio λ. Thirdly, we investigated the localization performance in
terms of noise levels in the NatHEAR benchmark, which is low [20-40dB], medium [10-20dB] and
high [5-10]dB. Lastly, we looked at the effect of in batch sampling when effective batch size is kept
constant. For this experiment, we used gradient accumulation over 16 batches. Consequently number
of in batch samples were set to 16, yielding effective batch size of 512 for both models.

In-batch sampling: Figure 7 1 depicts that in-batch sampling helped immensely with the downstream
performance on both HEAR and Nat-HEAR downstream. Increasing the number of in-batch samples
leads to higher batch sizes with minimal computational constraints. Furthermore, Figure 8 shows that
in-batch sampling does not result in a drop in downstream performance or model convergence.

Masking ratio: Figure 7 2 depicts that optimal masking ratio is 0.6 for HEAR and Nat-HEAR
performance, and higher masking ratios, such as 0.9 harms the performance.
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Figure 9: Ablation study on noise levels and localization performance of GRAMs, and Spatial-AST.

Binaural

Ambisonics
Ambisonics

Binaural

Figure 10: Detalized localization scores. From left to right, Panel 1 demonstrates the localization
performance of GRAM-Binaural and GRAM-Ambisonics with tested λ parameters on SC-5h. Panel 2
demonstrates the localization performance of GRAM-Binaural and GRAM-Ambisonics with tested
λ parameters on ESC-50. Lastly, Panel 3 demonstrates the localization performance of GRAM-
Ambisonics with tested λ parameters on TUT Sound Events Real compared to other self-supervised
methods.

Localization performance: Figure 10 depicts that GRAM-Ambisonics achieve the highest per-
formance on SC-5h, ESC-50, and TUT Sound Events 2018 REAL compared to other baselines
regardless of the fraction of naturalistic scenes. Importantly, we do not observe a correlation between
λ and localization performance, suggesting that GRAMs learn to exploit spatial attributes with little
data.

Noise Levels: Figure 9 depicts that GRAM-Ambisonics achieves the highest performance on SC-5h,
ESC-50, and TUT Sound Events 2018 REAL compared to other baselines regardless of the fraction
of naturalistic scenes. Importantly, we do not observe a correlation between λ and localization
performance, suggesting that GRAMs learn to exploit spatial attributes with little data.

H RESULTS ON ORIGINAL HEAR BENCHMARK SUITE

We evaluated our models on the dry, non anechoic, and non-spatialized HEAR Benchmark suite.
Table 7 depicts the achieved results on the HEAR sub tasks.
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Table 7: Performance comparison of audio representation models across HEAR tasks. All values
represent the HEAR scores with standard deviation where available. Bold numbers indicate the best
performing model on the specific task. SSAST* is trained on both AudioSet and Librispeech.

Acoustic Events and Scene Analysis Speech Music
Model DCASE FSD50K LC ESC-50 CD VL SC-5 NS BO Mri-S Mri-T s(m) Avg.

Baseline
HEAR-Naive 8.8 13.2 43.5± 1.6 28.6± 3.1 38.0± 2.3 14.8± 3.0 13.3 87.6 98.7 ± 1.9 94.1± 0.5 87.6± 6.4 0.0 48.0

Speech SSL
Wav2Vec 2.0 23.5 29.4 69.9± 2.1 46.4± 1.8 57.3± 1.1 34.9± 2.4 85.3 17.4 81.4± 4.8 90.7± 0.8 77.0± 0.9 30.7 55.7
HuBERT 78.3 32.8 63.3± 1.2 58.6± 2.8 71.2± 1.2 65.2 ± 2.9 94.0 19.8 93.2± 5.9 94.6± 0.4 85.0± 2.5 43.6 68.7
WavLM 27.0 25.7 61.3± 2.3 49.5± 3.8 64.3± 1.3 60.1± 3.2 93.8 18.2 84.3± 6.3 88.8± 1.0 76.8± 0.5 36.1 59.1
AudioSet SSL
MAE – 33.4 62.3± 1.1 72.9± 2.1 60.8± 1.8 21.3± 5.8 66.6 63.6 94.5± 5.6 94.8± 0.6 85.1± 10.4 31.3 65.5
SSAST* – 21.4 57.8± 3.3 58.3± 2.6 48.0± 2.1 15.4± 2.6 22.0 64.2 95.8± 4.3 90.2± 5.9 89.1± 8.0 15 56.2
BEATs – 54.1 77.8± 1.2 85.8± 2.9 66.9± 2.5 39.7± 4.3 86.9 68.6 94.1± 3.5 95.5± 0.4 96.6± 0.5 59.2 76.6
MW-MAE 94.2 51.8 80.3± 1.9 82.2± 3.2 74.4± 1.5 45.5± 1.7 91.6 69.4 95.8± 4.3 97.5± 0.4 97.6± 0.6 68.9 80.8
SSAM 87.3 53.5 75.5± 1.4 82.9± 3.6 70.2± 0.4 56.4± 5.2 89.3 72.6 93.2± 3.5 97.8 ± 0.5 96.9± 0.5 69.0 79.6
GRAM-Binaural 95.6 56.1 81.0± 1.1 86.7± 2.4 75.0± 1.4 53.2± 3.0 92.5 77.0 94.9± 3.2 97.3± 0.3 98.1± 0.2 72.3 82.5
GRAM-Ambisonics 94.3 53.0 79.4± 1.5 85.9± 1.5 71.9± 1.9 53.7± 1.2 89.6 73.8 94.9± 4.9 97.6± 0.5 98.5 ± 0.4 71.3 81.1
GRAM-Clean 95.3 56.8 81.3 ± 1.8 87.5 ± 2.3 75.1 ± 0.6 57.3± 3.4 93.5 75.8 95.8± 3.7 97.4± 0.3 98.0± 0.2 73.8 83.1

Supervised
PASST – 64.1 60.7± 3.7 94.8 ± 0.3 61.8± 1.1 25.9± 2.6 68.7 24.2 96.6 ± 3.2 96.4± 0.7 87.8± 1.2 46.2 68.1
Spatial-AST – 54.7 72.6± 1.5 90.3± 1.7 62.2± 1.3 29.1± 1.9 80.6 69.8 96.2± 5.3 96.2± 0.4 94.6± 0.6 54.6 74.6

Table 8: Training details of the recent audio foundation models. We retrieve the numbers from the
references where possible. Various works utilized various sizes of AudioSet. Therefore, we used the
dataset size reported by the references to calculate the steps per epoch. For MW-MAE and SSAM we
retrieved their dataset size from their corresponding code repository.

Model Batch Size Epochs Steps per Epoch Input Length Total Samples Seen

MW-MAE (Yadav et al., 2024) 1024 100 1985 N/A 2s
GRAMs 96 N/A N/A 180,000 ∼2s
Audio-MAE (Huang et al., 2022) 512 32 3829 N/A 10s
BEATs (Chen et al., 2023) 5600 N/A N/A 1.2M 10s
SSAM (Yadav & Tan, 2024) 1024 100 2003 N/A 2s

I EVALUATING TRAINING EFFICIENCY

For all models trained solely on AudioSet, we calculated the number of seconds seen during the
training as: batch size × steps per epoch × epochs × input length. This comparison accounts for the
number of 10-second AudioSet sound clips processed by each model.
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