

GRAM: SPATIAL GENERAL-PURPOSE AUDIO REPRESENTATION MODELS FOR REAL-WORLD APPLICATIONS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Although audio foundation models have seen great progress on a wide variety of tasks, their application in real-world acoustic environments with reverberation and noise has been less successful. Moreover, as audio foundation models are typically trained on dry, single-channel audio clips, the inherent spatial nature of real-world sound scenes is overlooked and tasks involving sound localization are ruled out. To address these limitations, we propose GRAM: a General-purpose Real-world Audio Model utilizing a multi-channel masked auto-encoder approach to efficiently learn spatial audio representations from high-quality simulated real-world scenes. To evaluate the performance of GRAM and other audio foundation models in real-world sound scenes, we release Nat-HEAR: A naturalistic version of the HEAR benchmark suite comprising a simulated real-world version, as well as two new sound localization and RT60 estimation tasks. We show that the performance of GRAM surpasses all state-of-the-art self-supervised audio foundation models and speech models on both HEAR and Nat-HEAR, while using only a fraction of the training data. GRAM also showcases state-of-the-art localization performance, surpassing even supervised sound localization approaches, and can be flexibly applied either to a two-channel, binaural sound format or a four-channel, Ambisonics format. Validating GRAM’s performance on real-world sound recordings demonstrates robust transfer to real-world scenes. Taken together, GRAM presents a significant advancement towards robust, spatial audio foundation models for real-world applications.¹

1 INTRODUCTION

Despite the complexity and diversity of everyday sound scenes, human listeners effortlessly interact with their acoustic environment in myriad ways. Audio foundation models that perform a similar, human-like range of tasks have received widespread attention (Turian et al., 2022; Wang et al., 2022a; Yang et al., 2021). While these models demonstrate strong performance on audio benchmarks with minimal fine-tuning (for example, (Chen et al., 2023; Baevski et al., 2020; Yadav et al., 2024)), they overlook inherent aspects of real-world sound scenes: the spatial dimension, reverberation and background noise. Specifically, audio foundation models are typically trained on large-scale sound datasets consisting of dry, non-spatial sound clips such as AudioSet (Gemmeke et al., 2017) and LibriSpeech (Panayotov et al., 2015). The effectiveness of these approaches in naturalistic, complex acoustic environments with background noise and reverberation is therefore limited.

Crucially, the lack of spatial information in audio embeddings precludes sound localization tasks and the use of spatial sound features for improving performance on complex audio tasks such as audio scene analysis. Audio scene analysis refers to the separation of overlapping sound waves in complex multi-source sound scenes and the subsequent grouping of the frequency components into coherent auditory objects (Bregman, 1984; Bizley & Cohen, 2013). In humans, such audio scene analysis is aided by spatial cues as well (Bizley & Cohen, 2013; van der Heijden et al., 2019). Similarly, incorporating spatial knowledge into universal audio embedding models is expected to benefit downstream tasks where ambient intelligence and acoustic awareness are desired, such as acoustic scene understanding.

¹All code and materials are available on TBD

054 A major challenge for the development of audio foundation models for real-world sound scenes
 055 is the scarcity of naturalistic sound data for model training. Recording a vast amount of spatial
 056 sound scenes with varying reverberation characteristics is infeasible and requires fine-tuned recording
 057 setups and conditions (Zheng et al., 2024). The simulation of spatial acoustic scenes has therefore
 058 received much attention and progressed from simulating shoebox rooms (Scheibler et al., 2018) to
 059 simulating realistic sound scenes from everyday life (Chen et al., 2020). Yet, no large-scale datasets
 060 of naturalistic sound scenes exist to date, hampering both the development as well as the systematic
 061 evaluation of audio foundation models for real-world sound scenes. For example, benchmark task
 062 suites such as HEAR (Turian et al., 2022), HARES (Wang et al., 2022a) and SUPERB (Yang et al.,
 063 2021) solely contain datasets consisting of dry, non-spatial sound clips without background noise and
 064 do not include spatial reasoning tasks such as sound localization.

065 To address these limitations of audio foundation models for real-world applications, we present
 066 GRAM (General-purpose, Real-world Audio Model). GRAM is a self-supervised, multi-channel
 067 masked auto-encoder model that efficiently learns spatial general-purpose audio representations
 068 from simulated real-world sound scenes. To train GRAM, we developed a custom pipeline which
 069 makes use of the Soundspace 2.0 platform (Chen et al., 2022a) to simulate high-quality real-world
 070 sound scenes from AudioSet (Gemmeke et al., 2017), and of WHAMR! (Maciejewski et al., 2020)
 071 for adding background noise. Further, to promote the systematic evaluation of audio foundation
 072 models on naturalistic sound scenes, we introduce Nat-HEAR. Nat-HEAR is an extension of the
 073 HEAR benchmark suite which contains simulated real-world versions of the downstream tasks, and
 074 additionally includes two sound localization tasks and two RT60 estimation tasks. We experiment
 075 with two state-of-the-art encoder architectures (Transformer and Mamba) to assess which architecture
 076 is most suitable for spatial general-purpose audio representation learning in our multi-channel masked
 077 auto-encoder approach. We present two versions of GRAM to ensure flexible application across audio
 078 formats: GRAM-Binaural for two-channel audio clips, and GRAM-Ambisonics for four-channel
 079 audio clips in the first-order Ambisonics format. Finally, we perform systematic ablation experiments
 080 on mask type (patch versus time-based), ratio of simulated real-world sound scenes and conventional
 081 dry sound clips in pre-training, mask ratio, and in-batch sampling to elucidate which factors are
 082 critical for successful spatial general-purpose audio representation learning.

083 Empirical results demonstrate that GRAM efficiently learns robust and generalizable spatial general-
 084 purpose audio representations, outperforming all state-of-the-art audio foundation models and speech
 085 models on HEAR and Nat-HEAR. GRAM excels especially at complex tasks such as audio scene
 086 analysis and exhibits excellent sound localization performance, outperforming even supervised models
 087 trained with auxiliary spatial features. Finally, GRAM demonstrates robust transfer to recordings of
 088 real-world sound scenes, overcoming the need for extensive domain-specific adaptations. Our key
 089 contributions can be summarized as:

090 **General-Purpose Audio Foundation Model (GRAM):** We present GRAM, a multi-channel masked
 091 auto-encoder that shows state-of-the-art performance on a human-like range of tasks in naturalistic
 092 sound scenes, including sound localization. GRAM is the first audio foundation model that is available
 093 both for binaural, two-channel audio formats and for four-channel, Ambisonics audio formats.

094 **A large-scale dataset for high-quality simulations of real-world sound scenes:** We release the full
 095 set of binaural room impulse responses (BRIRs) and ambisonics room impulse responses (ARIRs)
 096 corresponding to 85,000 naturalistic sound scenes that we used for our naturalistic training pipeline.

097 **Nat-HEAR:** To encourage systematic evaluation of audio foundation models on naturalistic scenes,
 098 we present an extended version of the HEAR benchmark suite (Turian et al., 2022) in which we
 099 transform the HEAR datasets in the HEAR downstream tasks to naturalistic versions. Additionally,
 100 we add two novel, naturalistic sound localization tasks in Nat-HEAR.

101 2 RELATED WORK

102 **Supervised audio representation learning:** Supervised methods for audio representation learning
 103 have achieved notable success in recent years. Approaches such as AST (Gong et al., 2021a),
 104 PaSST (Koutini et al., 2022) and HTS-AT (Chen et al., 2022b) have Transformer-based architectures
 105 as a backbone, for example ViT (Dosovitskiy et al., 2021) and Swin Transformer (Liu et al., 2021).
 106 To mitigate the need for large annotated datasets, some of these approaches are based on models pre-

108 trained on image data (for example, AST (Gong et al., 2021a), PSLA (Gong et al., 2021b)). Question
 109 and answer models constitute a more recent category of supervised approaches that integrate audio
 110 representation learning with large language models (for example, Spatial-AST (Zheng et al., 2024)
 111 and Qwen-Audio (Chu et al., 2023)). However, supervised training requires large-scale annotated
 112 datasets and is sub-optimal for learning general-purpose audio representations that generalize across
 113 tasks.

114 **Self-supervised audio representation learning:** Self-supervised audio representation learning
 115 approaches aim to learn robust audio representations that generalize to a wide variety of tasks (Wang
 116 et al., 2022a; Turian et al., 2022). Masking-based approaches utilizing transformer backbones
 117 to reconstruct masked patches of input spectrograms currently constitute predominant approach,
 118 including (SSAST (Gong et al., 2022)), MSM-MAE (Niizumi et al., 2022), MaskSpec (Chong
 119 et al., 2023), MAE-AST (Baade et al., 2022) and Audio-MAE (Huang et al., 2022). Of the masked
 120 auto-encoder approaches, MW-MAE (Yadav et al., 2024) achieves state-of-the-art performance
 121 on the HEAR benchmark by using multi-window local-global attention in the decoder. Recently,
 122 SSAM (Yadav & Tan, 2024) utilized a Mamba (Gu & Dao, 2023) architecture in their encoder and
 123 achieved similar performance as MW-MAE. In contrast to the masked auto-encoders, BEATS (Chen
 124 et al., 2023) utilizes masking-based approach based on latent embeddings extracted by an acoustic
 125 tokenizer. Finally, successful self-supervised approaches that do not rely on masking at all include
 126 contrastive learning frameworks such as COLA (Saeed et al., 2021).

127 Another category of self-supervised audio representation models focuses on speech representations
 128 specifically, making use of generative, predictive or contrastive learning (Mohamed et al., 2022).
 129 These speech models are typically trained on datasets such as LibriSpeech (Panayotov et al., 2015)
 130 or LibriLight (Kahn et al., 2020) and include state-of-the-art models such as Wav2Vec2 (Baevski
 131 et al., 2020), HuBERT (Hsu et al., 2021) and WavLM (Chen et al., 2021). However, while these
 132 models excel at speech-based tasks, they do not necessarily generalize well to non-speech sounds and
 133 non-speech tasks (Turian et al., 2022). Crucially, none of the existing self-supervised approaches for
 134 audio or speech representation learning optimize for performance in real-world sound scenes that are
 135 spatial, reverberant, and noisy.

136 3 MATERIALS AND METHODS

137 3.1 SIMULATING REAL-WORLD ACOUSTIC SCENES

140 **Pipeline overview:** A room impulse response (RIR) captures room specific acoustic properties such
 141 as reverberation. We utilized high-resolution, detailed 3D meshes of houses with various architectural
 142 characteristics from Matterport3D (Chang et al., 2017) in order to simulate RIRs for many different
 143 rooms in each house with the Monte Carlo ray tracing RIR simulator provided by SoundSpaces
 144 2.0 Chen et al. (2022a). SoundSpaces 2.0 combines the simulated RIRs with a head-related transfer
 145 function (HRTF) (Algazi et al., 2001) to generate a binaural RIR (BRIR) or with an ambisonics
 146 microphone configuration to generate an ambisonics RIR (ARIR). BRIRs capture both room acoustic
 147 properties and human spatial hearing characteristics introduced by the shape of the ears, head and
 148 torso, while ARIRs capture room acoustic properties as well as the spatial cues encoded in first-order
 149 Ambisonics.

150 **Components of simulated real-world scenes:** Matterport3D contains scans of 90 houses. We
 151 discarded five houses for which meshes were not of sufficient quality. For each of the remaining
 152 85 houses, we simulated 1,000 real-world scenes. Each scene consisted of a randomly sampled
 153 listener location (microphone location for ambisonics), sound source location and noise source
 154 location in the room. For BRIRs (binaural), we randomly sampled head orientation from a range
 155 $[0^\circ, 360^\circ]$. We placed the sound source location at a randomly sampled location with respect to
 156 the listener or microphone (distance range $[1.5 \text{ m}, 5 \text{ m}]$; azimuth range $[0^\circ, 360^\circ]$; elevation range
 157 $[-90^\circ, +90^\circ]$). Noise was either localized (50% of the scenes) or diffuse (50% of the scenes). For
 158 localized noise, we randomly sampled one location in the room. For diffuse noise, we randomly
 159 sampled three, four or five locations in the room. We then rendered a set of RIRs to describe all
 160 components in the naturalistic scene. Given sound source location s , listener (microphone) location
 161 r , and receiver head orientation θ , we rendered RIRs describing the sound path from the source to the
 162 listener (microphone) as $\text{BRIR}(s, r, \theta)$ and as $\text{ARIR}(s, r, \theta)$. Given a number of noise sources n_i at
 163 noise source location ϕ_i , listener location r , and receiver head orientation θ , we rendered the RIR

Figure 1: Proposed self-supervised approach for training GRAMs on naturalistic binaural scenes. (A) We generate binaural and ambisonics naturalistic scenes using SoundSpaces2.0 simulator (Chen et al., 2022a) in MatterPort3D houses. These scenes contain realistic reverberations, and diffused/localized noise interference. (B) The self-supervised approach for learning audio representation with spatial attributes. The Patch Extraction layer patches and embeds the input spectrogram using 2D convolution. A random subset of patches is masked (ratio = 0.8). Unmasked patches are fed to the encoder. The decoder takes the encoder outputs padded with the masked patches and reconstructs the original spectrogram. For the ambisonics spectrograms, the methodology stays the same except that inputs now contains 4 channel mel spectrograms, and intensity vectors (IVs).

describing the path from the noise source(s) to the listener as $BRIR_i(\phi_i, r, \theta)$ and as $ARIR(\phi_i, r, \theta)$. This procedure resulted in a total of 85,000 sets of BRIRs as well as 85,000 sets of ARIRs (see Appendix A for all parameters).

3.2 GRAM FRAMEWORK

The GRAM learns spatial audio representation by reconstructing multi-channel masked spectrogram patches. First, a patch extractor consisting of a single convolutional layer with 2D convolutional filters divides each multi-channel spectrogram into n non-overlapping patches P_1, \dots, P_n with $P_i \in \mathbb{R}^{C \times T \times F}$, and embeds each patch into a linear patch embedding $E_i \in \mathbb{R}^{768}$ (Figure 1). Non-masked patch embeddings are input to the encoder, for which we selected the 12-layer ViT-Base (ViT-B) Transformer (Dosovitskiy et al., 2021) similar to Huang et al. (2022); Yadav et al. (2024). The encoder outputs patch representations $O_i \in \mathbb{R}^{768}$ for $i = 1, \dots, n$, where n is the number of unmasked patches. Finally, a Transformer decoder with local-global attention (Yadav et al., 2024) followed by a linear head takes all patch representations O_1, \dots, O_n as well as all masked patches M_1, \dots, M_n to reconstruct the multi-channel spectrogram from last layer embeddings.

3.3 PRE-TRAINING

Online mixing of naturalistic sound scenes: The 85,000 naturalistic scenes were split into a train set of 70,000 scenes (corresponding to 70 Matterport3D houses), and a test set of 15,000 scenes (15 Matterport3D houses) for down-stream evaluation (see Section 3.4). We used the 70,000 naturalistic scenes in the train set to generate naturalistic scenes for all audio clips in the unbalanced training set of AudioSet (10-second sound tracks of 1.74 million YouTube videos (Gemmeke et al., 2017)). Specifically, during training we randomly paired an AudioSet clip with a noise sound clip from the WHAMR! background noise database (Maciejewski et al., 2020). WHAMR! noise clips longer than 10 s were trimmed to 10 s duration and a linear fade-in/fade-out of 200 ms was applied to every noise clip prior to mixing of the sound scene.

To create a naturalistic sound scene, we then convolved the AudioSet clip either with $BRIR(s, r, \theta)$ for GRAM-Binaural, or with a $ARIR(s, r, \theta)$ for GRAM-Ambisonics, to obtain T . Similarly, we convolved the WHAMR! noise clip with the $BRIR(\phi_i, r, \theta)$ to obtain N_i . In naturalistic scenes

216 with diffuse background noise, the diffuse noise field D was generated by summing the noise clips
 217 $D = \sum_{i=1}^M N_i$ where N_i are individual noise clips and M is the total number of noise clips. The
 218 naturalistic sound scene S was then calculated as $S = T + bN$ for scenes with localized noise and as
 219 $S = T + bD$ for scenes with a diffuse noise field. Here, b is a scaling parameter introduced to mix
 220 target and noise sound clips at a given signal-to-noise ratio (SNR) ranging between +5 dB and +40
 221 dB.

222 **Input features:** We transformed the channels of each sound scene (i.e., the waveforms) into log-scale
 223 mel spectrograms using 128 mel filters in the frequency range of 50-16000 Hz with a 25 ms Hanning
 224 window and 10 ms hop length, resulting in spectrograms of dimension 1001×128 , later we added
 225 zero padding to achieve dimension of 1024×128 . For GRAM-Ambisonic, we extracted normalized
 226 active Intensity Vectors (IVs) from the spectrograms as additional input features encoding spatial
 227 information (see Appendix B). We concatenated mel spectrograms and intensity vectors, resulting in
 228 input $x = [x_{mel}, IVs]$ for each naturalistic scene generated from an AudioSet clip.

229 **In-batch sampling:** As the online mixing of naturalistic acoustic scenes is computationally expensive
 230 due to multiple long convolutions, we used a random in-batch sampling procedure to increase the
 231 effective batch size in a computationally efficient manner. We randomly sampled 16 partially
 232 overlapping segments of 2 seconds to create 16 samples of dimension 200×128 . This increases the
 233 original batch size of 96 to an effective batch size of 1536.

234 **Patch extraction and masking:** For pre-training, we divided the binaural spectrogram into $P_i \in$
 235 $\mathbb{R}^{2 \times 8 \times 16}$, and ambisonics spectrograms into $P_i \in \mathbb{R}^{7 \times 8 \times 16}$ patches. We used an adapted version
 236 of the mask-based framework of MW-MAE (Yadav et al., 2024), randomly selecting a subset of
 237 n patches M_1, \dots, M_n for $i = 1, \dots, n$ for masking (masking ratio = 0.8) and replacing their
 238 embedding with a learnable mask token. Finally, we added fixed sinusoidal positional embeddings to
 239 all embedded patches.

240 **Decoder with local-global attention:** The decoder takes as input both the unmasked patches
 241 O_1, \dots, O_n with $O_i \in \mathbb{R}^{768}$, and the masked patches M_1, \dots, M_n with $M_i \in \mathbb{R}^{768}$ as well as fixed
 242 sinusoidal positional embeddings for each patch (Figure 1). To implement local-global attention (Ya-
 243 dav et al., 2024), we selected window sizes of $[2, 5, 10, 25, 50, 100, 0, 0]$. Here, 0 signifies global
 244 plain attention.

245 **Pre-training specification:** We trained all GRAMs for 500 K steps on an H100 92 GB GPU machine
 246 with 16 CPU cores. We used the AdamW optimizer (Loshchilov & Hutter, 2017) with weight decay
 247 rate of 0.01, gradient clipping, and a cosine learning rate scheduler with 10 K steps warm-up. The
 248 initial learning rate was set to 0.0002, and decayed to 0. We optimize the mean squared error (MSE)
 249 loss function between the predicted masked patches and their corresponding input spectrogram
 250 patches.

251

252 3.4 EXPERIMENTS

253

254 **Model comparison:** We compare the performance and efficiency of GRAM-Binaural, GRAM-
 255 Ambisonics on downstream tasks with state-of-the-art self-supervised audio representation models
 256 with a similar number of parameters as GRAM (90 M): MAE-16x16 (Huang et al., 2022), SSAST-
 257 patch (Gong et al., 2022), BEATs-iter3 (Chen et al., 2023), MW-MAE-B-200-4x16 (Yadav et al.,
 258 2024), SSAM (Yadav & Tan, 2024); self-supervised speech representation models Wav2Vec 2.0
 259 Base (Baevski et al., 2020), HuBERT Base (Hsu et al., 2021), WavLM Base (Chen et al., 2021). To
 260 quantify the impact of pre-training with naturalistic sound scenes, we further train GRAM-Clean.
 261 GRAM-Clean follows the same experimental setup as the GRAM-Binaural and GRAM-Ambisonics
 262 with the distinction of only consuming dry audioset audio clips.

263

264 **Downstream tasks:** We evaluate GRAM and other state-of-the-art models on the HEAR benchmark
 265 task suite, which presents a wide range of tasks to evaluate the downstream performance of audio
 266 representation models (Turian et al., 2022). To avoid redundancy we selected the same subset of
 267 HEAR tasks as previously used in (Yadav et al., 2024). To enable in-depth evaluation of audio scene
 268 analysis capabilities, we added the time-stamp based sound event detection task DCASE-2016 Task
 269 2 (Mesaros et al., 2018) from the HEAR benchmark suite.

270 We additionally evaluated performance on simulated real-world sound scenes using Nat-HEAR,
 271 which provides a naturalistic version of all selected datasets in the HEAR benchmark suite in

Figure 2: **Downstream model performance on naturalistic sound scenes.** (A) Nat-HEAR and HEAR downstream performance as a function of training data quantity. (B) Box plots of the difference in performance on HEAR and Nat-HEAR, excluding the DCASE-2016 task. Box limits reflect the first and third quartile, center line the median (see also Table 7).

two audio formats: a two-channel, binaural format and a four-channel, first-order Ambisonics format. We included sound localization tasks for two different domains which we generated using HEAR benchmark datasets: A speech localization task based on SC-5, and an environmental sound localization task based on ESC-50. The localization tasks are modeled as a multi-output regression task in which model outputs represent the estimated 3D Cartesian coordinates $[x, y, z]$ on the unit sphere (Adavanne et al., 2018). Finally, to assess the transferability of GRAM to real-world sound scenes, we evaluate also on the sound event detection and localization tasks in TUT Sound Events 2018 REAL (Adavanne et al., 2019), and STARSS23 (Shimada et al., 2023).

Downstream evaluation: To evaluate the single-channel SOTA audio representation models on Nat-HEAR, we utilized the omnidirectional channel W of the first-order Ambisonics (Zotter & Frank, 2019) version of Nat-HEAR as model input. The outputs of MAE, SSAST and BEATs were not suitable for the time-stamp based DCASE-2016 sound event detection task. Hence, these models were not evaluated on the DCASE-2016 task. Further, we included Spatial-AST (Zheng et al., 2024) as this is the only model trained on spatial sound scenes and therefore the sole model evaluated on the Nat-HEAR localization tasks besides GRAM-Binaural and GRAM-Ambisonics. To evaluate two-channel models such as GRAM-Binaural on HEAR, we duplicated the single-channel spectrograms of the original HEAR to generate model compatible input. Following the HEAR protocol (Turian et al., 2022) for downstream task evaluation, we extracted embeddings from the frozen pretrained models and trained a shallow downstream classifier on these embeddings to assess how well the learned representations generalize to a broad range of tasks. The embedding extraction for GRAM is described in Appendix E.

Quantifying overall performance: We calculate for each model m , the score $s(m)$ to give an impression of the overall performance, similar to (Yang et al., 2021). This score reflects a model's improvement with respect to the maximum improvement over the baseline obtained by the current state-of-the-art model, averaged across all tasks included in the benchmark. This metric effectively ranks the improvement of models over the baseline as a function of the current maximum improvement (see Appendix E). We use the HEAR-Naive baseline based on mel-spectrograms (Turian et al., 2022). Furthermore, we calculated the average score over all tasks.

Evaluating sound localization performance: We evaluate the sound localization performance on the newly generated sound localization tasks in Nat-HEAR by calculating the Direction of Arrival (DoA) error θ between the $[x, y, z]$ coordinates of the target sound source on the unit sphere using the arc cosine of the dot product of the unit vectors: $\theta = \arccos(v \cdot \hat{v})$. Note that we included a third GRAM framework for the localization tasks besides GRAM-Binaural and GRAM-Ambisonics, which is GRAM-Binaural with time-based masking instead of patch-based masking. In particular, as explained in Section 3.3 we carry out ablations on masking type. Here, for localization, we hypothesized that time-based masking may lead to better localization results for GRAM-Binaural

324 than patch-based masking as it enables the model to learn representations along the entire frequency
 325 axis, similar to human spatial hearing (van der Heijden et al., 2019; Carlile et al., 1999).
 326

327 3.5 GENERALIZATION TO REAL WORLD SCENES 328

329 To evaluate GRAM-Ambisonics on real world scenes, we conduct experiments on two datasets:
 330 TUT Sound Events 2018 (Adavanne et al., 2019) and STARSS23 (Shimada et al., 2023). TUT
 331 Sound Events 2018 consists of simulated spatial audio generated by convolving dry audio clips with
 332 measured RIRs. In contrast, STARSS23 contains real-world ambisonics recordings captured with
 333 spatial microphone arrays, enabling assessment of model transferability to in-the-wild conditions.
 334 Notably, STARSS23 features polyphonic scenes with moving sources and environmental noise,
 335 presenting a substantially more challenging downstream task.

336 **TUT Sound Events 2018:** We resample all audio to 32kHz and extract segments with corresponding
 337 localization annotations. We formulate localization as a polar coordinate regression task, predicting
 338 azimuth and elevation angles $[\theta, \phi] \in [0, 360) \times [-90, 90]$. We follow the HEAR protocol to evaluate
 339 our representations.

340 **STARSS23:** We utilized the audio-only subset of STARSS23, as our model does not incorporate
 341 visual modalities. Following standard preprocessing, we resample waveforms to 32kHz and adopt
 342 the Activity-Coupled Cartesian Direction of Arrival (ACCDOA) framework (Shimada et al., 2021).
 343 This framework jointly models sound event detection and localization across 13 sound classes. A
 344 class is considered active at frame t when the predicted Cartesian coordinate magnitude $\|\mathbf{c}_t\| > 0.5$,
 345 where $\mathbf{c}_t \in \mathbb{R}^3$ represents the unit direction vector. We extracted frame-level embeddings from
 346 GRAM-Ambisonics (Appendix E) yielding representations at 80ms intervals. To match STARSS23's
 347 100ms label resolution, we apply adaptive 1D temporal pooling over embeddings. A linear projection
 348 head then maps pooled representations to per-frame predictions for both sound event detection (SED)
 349 and direction of arrival (DOA) estimation.

350 **Training Protocols:** To assess the pre-trained capabilities of GRAM-Ambisonics, we evaluated three
 351 training regimes: (1) full fine-tuning of all model parameters, (2) linear probing with frozen encoder
 352 weights, and (3) training from scratch. All protocols shared the batch size 512, and 100 training
 353 epochs. All other experimental settings follow the SELD baseline model (Shimada et al., 2023). For
 354 training from scratch protocol, we assesed four learning rates [1e-3, 1e-4, 2e-4, 5e-4], other protocols
 355 had a learning rate of 1e-4.

356 3.6 ABLATIONS 357

358 To establish crucial factors for successful spatial general-purpose audio representations learning,
 359 we carried out a series of ablation experiments. For GRAM-Binaural, we trained also an encoder
 360 with a state-of-the-art 8-layer Mamba architecture (Gu & Dao, 2023; Yadav & Tan, 2024) to assess
 361 the optimal architecture choice for spatial general-purpose audio representation learning. To ensure
 362 that computational overhead and model capacity were comparable between the Transformer and
 363 Mamba encoder, we used similar parameter counts. We also tested the impact of mask type for
 364 GRAM-Binaural, comparing patch-based masking as described above to time-based masking. For
 365 time-based masking, patches were defined as $P_i \in \mathbb{R}^{2 \times 2 \times 128}$ such that they spanned the entire
 366 frequency range. For time-based masking, we used window sizes and [2, 5, 10, 25, 50, 0, 0, 0] to
 367 implement local-global attention in the decoder. For both GRAM-Binaural and GRAM-Ambisonics,
 368 we assessed the optimal ratio (λ) between simulated real-world sound scenes and clean, dry sound
 369 clips in pretraining data for $\lambda = 0.0, 0.25, 0.5, 0.75, 1.0$. Finally, we examined various masking
 370 ratios [0.4, 0.6, 0.8, 0.9] and in-batch sampling factors [4, 8, 16] for GRAM-Binaural. For all
 371 ablations, GRAM-Binaural and - if applicable - GRAM-Ambisonics were trained with the exact same
 372 parameters specified above, except the masking ratio ablation, where we reduced the effective batch
 373 size from 1536 to 384.

374 4 RESULTS 375

376 **Performance on simulated real-world sound scenes (Nat-HEAR):** Table 1 demonstrates that
 377 GRAM-Binaural ($s = 74.8$, Avg. = 73.9) and GRAM-Ambisonics ($s = 70.5$, Avg. = 71.1) learn robust

378
 379
 380
 381
 382
 383 Table 1: Performance on Nat-HEAR. Reported values reflect the average performance \pm standard
 384 deviation, calculated using n -fold cross-validation as specified by the HEAR. Bold numbers indicate
 385 the best performing model on the specific task. SSAST* is trained on both AudioSet and LibriSpeech.
 386 Tasks are specified in Appendix C.

Model	Acoustic Events and Scene Analysis				Speech				Music			s(m)	Avg.
	DCASE	FSD50K	LC	ESC-50	CD	VL	SC-5	NS	BO	Mri-S	Mri-T		
Baseline													
HEAR-Naive	26.5	8.7	27.4 ± 1.6	17.2 ± 2.2	32.3 ± 2.2	11.7 ± 2.2	12.0	75.6	84.3 ± 4.5	68.6 ± 1.3	60.5 ± 1.3	0.0	38.6
Speech SSL													
Wav2Vec2	32.0	23.0	54.6 ± 1.9	36.4 ± 2.9	48.6 ± 0.6	27.2 ± 1.6	78.9	15.2	71.2 ± 6.4	75.7 ± 0.5	45.9 ± 0.6	32.5	46.2
HuBERT	57.6	26.6	52.5 ± 2.2	49.5 ± 2.2	57.4 ± 1.1	46.8 ± 3.4	89.2	16.0	77.1 ± 6.0	78.2 ± 0.7	52.4 ± 1.6	45.2	54.8
WavLM	25.3	20.5	52.1 ± 0.6	41.4 ± 2.1	52.3 ± 1.5	47.9 ± 4.6	89.9	11.2	61.4 ± 7.2	69.3 ± 0.9	39.0 ± 2.0	37.8	46.4
AudioSet SSL													
MAE	–	27.9	53.2 ± 1.0	65.7 ± 1.2	48.5 ± 1.3	19.0 ± 1.5	57.4	53.4	79.2 ± 7.8	81.0 ± 4.9	56.5 ± 12.3	34.5	54.2
SSAST*	–	15.6	41.6 ± 2.4	44.8 ± 1.0	39.7 ± 2.9	12.7 ± 1.3	19.9	52.0	81.8 ± 3.6	76.5 ± 3.6	64.6 ± 1.5	17.5	44.9
BEATs	–	46.5	63.7 ± 1.2	72.6 ± 3.9	54.8 ± 1.6	27.5 ± 4.3	83.5	54.2	70.3 ± 6.2	83.2 ± 1.0	71.0 ± 1.4	55.7	62.7
MW-MAE	83.8	44.3	64.8 ± 1.1	69.7 ± 5.6	59.3 ± 1.0	31.8 ± 1.8	86.7	59.2	77.1 ± 3.6	90.1 ± 0.8	73.9 ± 0.6	62.5	67.3
SSAM	70.0	46.0	63.2 ± 1.1	73.1 ± 2.4	62.3 ± 1.0	38.8 ± 2.6	86.2	65.4	84.3 ± 7.0	92.6 ± 0.4	76.8 ± 1.0	68.4	68.9
GRAM-Binaural	93.0	52.8	72.3 ± 0.7	82.6 ± 3.2	63.3 ± 1.3	35.1 ± 3.8	91.0	67.6	85.6 ± 5.1	91.7 ± 0.9	78.3 ± 1.3	74.8	73.9
GRAM-Ambisonics	90.2	49.5	68.8 ± 0.9	79.4 ± 2.7	61.4 ± 0.9	36.4 ± 4.2	87.2	64.6	83.4 ± 4.7	91.3 ± 0.6	78.1 ± 1.4	70.5	71.8
GRAM-Clean	90.9	50.5	66.4 ± 0.8	80.0 ± 2.4	62.0 ± 1.3	32.2 ± 2.3	87.3	65.2	82.2 ± 5.6	90.2 ± 0.8	75.1 ± 0.7	67.3	71.1
Supervised													
PASST	–	56.9	52.1 ± 1.9	89.7 ± 2.1	49.9 ± 1.0	18.4 ± 2.3	61.1	16.0	93.6 ± 4.0	85.5 ± 1.7	55.6 ± 3.0	56.2	57.9
Spatial-AST	–	40.0	49.9 ± 1.5	70.1 ± 3.3	41.6 ± 0.5	11.7 ± 2.7	54.8	50.2	77.1 ± 2.8	77.7 ± 0.9	55.0 ± 1.6	30.9	52.8

408
 409 Figure 3: Localizing sound sources in simulated real-world sound scenes, and estimating RT60s. (A)
 410 (B) Boxplots of direction of arrival (DoA) error. (B) Boxplots of RT60 estimation error (absolute error).
 411 All box limits: first and third quartile; center line: median; whiskers: 1.5 times the interquartile range.

412
 413 general-purpose audio representations, outperforming all other self-supervised audio representation
 414 models on Nat-HEAR. Moreover, GRAMs requires substantially less training data to achieve state-
 415 of-the-art performance (Figure 2).

416
 417 Comparing the performance on Nat-HEAR to the performance on HEAR (that is, clean and dry
 418 sounds) highlights the degradation in performance that audio representation models experience in
 419 naturalistic sound scenes (Figure 2A). However, GRAM-Binaural and GRAM-Ambisonics exhibit
 420 a relatively small drop in performance, highlighting that the model performs the tasks in simulated
 421 real-world sound scenes almost as well as the same tasks on clean sounds. Further, the success of
 422 our naturalistic training pipeline is highlighted by the difference in degradation between the multi-
 423 channel GRAMs (GRAM-Binaural and GRAM-Ambisonics) and GRAM-Clean: GRAM-Binaural
 424 and GRAM-Ambisonics drop less in performance than GRAM-Clean (Figure 2B).

425
 426 **Performance on dry, non-spatial and clean sound scenes (HEAR):** We find that all GRAMs
 427 surpasses all other self-supervised audio representation models on HEAR (Table 7). GRAM-Clean
 428 achieved state-of-the art performance ($s = 73.8$, Avg. = 83.1), followed by GRAM-Binaural ($s =$
 429 72.3, Avg. = 82.5) and GRAM-Ambisonics ($s = 71.3$, Avg. = 81.1). The superior performance on
 430 HEAR of GRAM-Binaural and GRAM-Ambisonics over other audio representation models indicates
 431 that training on simulated real-world scenes does not reduce downstream task performance on clean,
 432 dry sound scenes.

433
 434 **Sound localization and RT60 estimation in simulated real-world sound scenes:** GRAMs exhibit
 435 excellent localization capabilities in simulated real-world sound scenes, despite the presence of

Figure 4: **Fine-tuning dynamics on STARSS23.** Validation metrics across training epochs for three protocols: full fine-tuning, linear probing, and training from scratch. The naturalistic pre-training helps GRAM-Ambisonics train faster and better. Using different learning rates, or increasing training epochs does not improve the GRAM-Ambisonics-scratch performance.

Table 2: TUT Sound Events 2018 Real dataset (DoA error). SeldNET (Adavanne et al., 2019), PILOT (Schymura et al., 2021), Spatial Libri (Sarabia et al., 2023), ELSA (Devnani et al., 2024)

MODEL	REAL ↓
Supervised	
SeldNET	26.6°
PILOT	4.2°
Self-Supervised	
Spatial Libri.	12.4°
ELSA	15.0°
GRAM-Amb.	11.3°

Table 3: Comparison of SELD scores for STARSS23 dataset. Native sampling rate is 24kHz, whereas upsampled is 32kHz. SOTA (Wang et al., 2023), Baseline (Shimada et al., 2023)

MODEL	$ER_{20^\circ} \downarrow$	$F_{20^\circ} \uparrow$	$LE_{CD} \downarrow$	$LR_{CD} \uparrow$
Native sampling rate				
SOTA	0.42	59.0 %	13.7°	72.0%
Baseline	0.57	29.9%	22.0°	47.7%
Upsampled				
GRAM-Amb. (Fine-tune)	0.51	41.4%	18.6°	60.5%
Baseline (Reprod.)	0.62	28.3%	23.7°	45.7%

reverberation and background noise in the scenes (Figure 3). We find that time-based masking is indeed more successful for sound localization with GRAM-Binaural than patch-based masking. Crucially, the localization acuity of GRAM-Ambisonics is substantially higher than that of Spatial-AST for both the speech dataset (SC-5) and the sound scene dataset (ESC-50), even though Spatial-AST is a supervised model trained with location labels. Furthermore, GRAMs with spatial attributes estimated RT60s statistically significantly better to GRAM-Clean and Spatial-AST.

Generalization to localization in recorded real-world sound scenes: Table 2 shows that GRAM-Ambisonics generalizes successfully to the real-world sound scenes in the TUT Sound Events 2018 dataset (Adavanne et al., 2019), obtaining a lower DoA error than other self-supervised models. GRAM-Ambisonics even outperforms supervised models such as SeldNET (Adavanne et al., 2018) (note that PILOT (Schymura et al., 2021) is sound localization model trained directly on TUT Sound Events 2018). Furthermore, GRAM-Ambisonics demonstrate the transferability of our pre-trained weights for on STARSS23 dataset. Specifically, comparing the validation curves of pre-trained GRAMs in Figure 4 reveal that pre-trained weights carry substantial information regarding sound event detection and sound localization on challenging environments. Furthermore, Table 3 reveals that GRAM-Ambisonics achieves competitive results on STARSS23 dataset even with non-native sampling rate, additional data augmentations, and domain specific architecture.

4.1 ABLATION STUDIES

Ratio of clean and naturalistic data in pretraining: Prior work on learning spatially aware audio representations from spectrograms demonstrated that pretraining on a mixture of clean and naturalistic sound scenes rather than on naturalistic sound scenes only, benefits the quality of learned representation (Devnani et al., 2024). We therefore investigated to what extent pretraining on a mixture of clean and naturalistic sound scenes affected the performance of GRAM-Binaural and

Figure 5: **Ablation Studies**. Effect of hyperparameters on HEAR and Nat-HEAR Performance. From left to right; (1) GRAM-Binaural downstream performance as a function of the ratio λ between clean and naturalistic scenes in the pre-training data. (2) GRAM-Ambisonics downstream performance as a function of the ratio λ between clean and naturalistic scenes in the pre-training data. (3) effect of masking strategy to downstream performance for GRAM-Binaural (4) comparison of Mamba and Transformer architectures on binaural training data. Important to note that architectures depicted in (4) was trained on reduced batch size (96 \rightarrow 32).

GRAM-Ambisonics on HEAR and Nat-HEAR. The panels on the left in Figure 5 show that the performance of GRAM-Binaural on Nat-HEAR increases with lower λ , while performance on HEAR is optimal with a mixture of clean and naturalistic scenes ($\lambda = 0.5$). GRAM-Ambisonics performed best on Nat-HEAR using a mixture of clean and naturalistic scenes ($\lambda = 0.5$) in line with Devnani et al. (2024). In contrast, GRAM-Ambisonics performed better on HEAR with more clean data during pretraining (high λ).

Masking strategy: Figure 5 illustrates that patch-based masking results in better downstream performance on both HEAR and Nat-HEAR. However, as shown in Figure 4, time-based masking leads to more accurate localization for GRAM-Binaural and may therefore still be considered as masking strategy depending on the purpose of the model.

Encoder architecture: As shown in Figure 5, an encoder with a Transformer backbone consistently performed better than an encoder with a Mamba backbone both on clean downstream tasks (HEAR) and on naturalistic downstream tasks (Nat-HEAR).

5 DISCUSSION AND CONCLUSION

We present a General-purpose, Real-world Audio representation Model (GRAM), which learns spatial audio representations using a multi-channel masked auto-encoder approach. GRAM demonstrates remarkable performance in naturalistic sound scenes as well as clean sound scenes, surpassing all state-of-the-art self-supervised spectrogram-based audio foundation models while requiring only a fraction of the training data. Moreover, GRAM is the first audio foundation model that is available in both a two-channel, binaural format and a four-channel, first-order ambisonics format. GRAM successfully encoded spatial information into the learned audio representations, outperforming both self-supervised and supervised approaches on sound localization and RT60 estimation tasks. We furthermore release Nat-HEAR: a naturalistic version of the HEAR benchmark suite including also localization tasks. In sum, GRAM is a new state-of-the-art audio representation model that incorporates high-quality spatial learning and exhibits robust performance in real-world sound scenes, representing a crucial step towards successful real-world applications of audio foundation models.

Limitations and future work: Although GRAM performs well on HEAR speech tasks in comparison to other self-supervised models trained on AudioSet, we plan to train GRAM on a mixture of speech and general audio data (e.g., AudioSet) in order to assess GRAMs capability for speech learning in more detail. Furthermore, GRAM opens a path towards multi-modal spatial learning and can serve as a basis for downstream applications such as audio-visual scene representation learning (Mahmud & Marculescu, 2023), robotics Ledder et al. (2025), and audio-language representation learning (Zheng et al., 2024; Chu et al., 2023).

540 REFERENCES
541

- 542 Sharath Adavanne, Archontis Politis, Joonas Nikunen, and Tuomas Virtanen. Sound event localization
543 and detection of overlapping sources using convolutional recurrent neural networks. *IEEE Journal*
544 *of Selected Topics in Signal Processing*, 13(1):34–48, 2018.
- 545 Sharath Adavanne, Archontis Politis, Joonas Nikunen, and Tuomas Virtanen. Sound event localization
546 and detection of overlapping sources using convolutional recurrent neural networks. *IEEE Journal*
547 *of Selected Topics in Signal Processing*, 13(1):34–48, 2019. doi: 10.1109/JSTSP.2018.2885636.
- 548 V.R. Algazi, R.O. Duda, D.M. Thompson, and C. Avendano. The cipic hrtf database. In *Proceedings*
549 *of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat.*
550 *No. 01TH8575)*, pp. 99–102, 2001. doi: 10.1109/ASPA.2001.969552.
- 552 Akshay Anantapadmanabhan, Ashwin Bellur, and Hema A Murthy. Modal analysis and transcription
553 of strokes of the mridangam using non-negative matrix factorization. In *2013 IEEE International*
554 *Conference on Acoustics, Speech and Signal Processing*, pp. 181–185, 2013. doi: 10.1109/ICASSP.
555 2013.6637633.
- 556 Alan Baade, Puyuan Peng, and David Harwath. Mae-ast: Masked autoencoding audio spectrogram
557 transformer. In *Interspeech 2022*, pp. 2438–2442, 2022. doi: 10.21437/Interspeech.2022-10961.
- 559 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: a framework
560 for self-supervised learning of speech representations. In *Proceedings of the 34th International*
561 *Conference on Neural Information Processing Systems, NIPS '20*, Red Hook, NY, USA, 2020.
562 Curran Associates Inc. ISBN 9781713829546.
- 563 Jennifer K Bizley and Yale E Cohen. The what, where and how of auditory-object perception. *Nature*
564 *Reviews Neuroscience*, 14(10):693–707, 2013.
- 566 Albert S Bregman. Auditory scene analysis. In *Proceedings of the 7th International Conference on*
567 *Pattern Recognition*, pp. 168–175. Citeseer, 1984.
- 569 Huawei Cao, David G Cooper, Michael K Keutmann, Ruben C Gur, Ani Nenkova, and Ragini Verma.
570 CREMA-D: Crowd-sourced emotional multimodal actors dataset. *IEEE Trans Affect Comput*, 5
571 (4):377–390, October 2014.
- 572 Simon Carlile, Skye Delaney, and Anna Corderoy. The localisation of spectrally restricted sounds by
573 human listeners. *Hearing research*, 128(1-2):175–189, 1999.
- 575 Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva,
576 Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
577 environments. *International Conference on 3D Vision (3DV)*, 2017.
- 578 Changan Chen, Unnat Jain, Carl Schissler, Sebastia Vicenc Amengual Gari, Ziad Al-Halah, Vamsi Kr-
579 ishna Ithapu, Philip Robinson, and Kristen Grauman. Soundspace: Audio-visual navigaton in 3d
580 environments. In *ECCV*, 2020.
- 582 Changan Chen, Carl Schissler, Sanchit Garg, Philip Kobernik, Alexander Clegg, Paul Calamia, Dhruv
583 Batra, Philip W Robinson, and Kristen Grauman. Soundspace 2.0: A simulation platform for
584 visual-acoustic learning. In *NeurIPS 2022 Datasets and Benchmarks Track*, 2022a.
- 585 Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, and Shlomo Dubnov. Hts-at:
586 A hierarchical token-semantic audio transformer for sound classification and detection. In *ICASSP*
587 *2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*,
588 pp. 646–650, 2022b. doi: 10.1109/ICASSP43922.2022.9746312.
- 590 Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
591 Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian,
592 Jian Wu, Michael Zeng, and Furu Wei. Wavlm: Large-scale self-supervised pre-training for full
593 stack speech processing. *CoRR*, abs/2110.13900, 2021. URL <http://dblp.uni-trier.de/db/journals/corr/corr2110.html#abs-2110-13900>.

- 594 Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo Chen, Wanxiang Che,
 595 Xiangzhan Yu, and Furu Wei. BEATs: Audio pre-training with acoustic tokenizers. In Andreas
 596 Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
 597 Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume
 598 202 of *Proceedings of Machine Learning Research*, pp. 5178–5193. PMLR, 23–29 Jul 2023. URL
 599 <https://proceedings.mlr.press/v202/chen23ag.html>.
- 600 Dading Chong, Helin Wang, Peilin Zhou, and Qingcheng Zeng. Masked spectrogram prediction for
 601 self-supervised audio pre-training. In *ICASSP 2023 - 2023 IEEE International Conference on*
 602 *Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2023. doi: 10.1109/ICASSP49357.
 603 2023.10095691.
- 604 Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
 605 Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
 606 audio-language models. *arXiv preprint arXiv:2311.07919*, 2023.
- 607 Bhavika Devnani, Skyler Seto, Zakaria Aldeneh, Alessandro Toso, Elena Menyaylenko, Barry-John
 608 Theobald, Jonathan Sheaffer, and Miguel Sarabia. Learning spatially-aware language and audio
 609 embeddings, 2024. URL <https://arxiv.org/abs/2409.11369>.
- 610 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 611 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 612 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 613 *ICLR*, 2021.
- 614 Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and
 615 Mohammad Norouzi. Neural audio synthesis of musical notes with wavenet autoencoders, 2017.
- 616 Eduardo Fonseca, Xavier Favory, Jordi Pons, Frederic Font, and Xavier Serra. Fsd50k: An open
 617 dataset of human-labeled sound events. *IEEE/ACM Transactions on Audio, Speech, and Language*
 618 *Processing*, 30:829–852, 2022. doi: 10.1109/TASLP.2021.3133208.
- 619 Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing
 620 Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
 621 audio events. In *2017 IEEE International Conference on Acoustics, Speech and Signal Processing*
 622 (*ICASSP*), pp. 776–780, 2017. doi: 10.1109/ICASSP.2017.7952261.
- 623 Yuan Gong, Yu-An Chung, and James Glass. AST: Audio Spectrogram Transformer. In *Proc.*
 624 *Interspeech 2021*, pp. 571–575, 2021a. doi: 10.21437/Interspeech.2021-698.
- 625 Yuan Gong, Yu-An Chung, and James Glass. Psia: Improving audio tagging with pretraining,
 626 sampling, labeling, and aggregation. *IEEE/ACM Trans. Audio, Speech and Lang. Proc.*, 29:
 627 3292–3306, October 2021b. ISSN 2329-9290. doi: 10.1109/TASLP.2021.3120633. URL <https://doi.org/10.1109/TASLP.2021.3120633>.
- 628 Yuan Gong, Cheng-I Lai, Yu-An Chung, and James Glass. Ssast: Self-supervised audio spectrogram
 629 transformer. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp.
 630 10699–10709, 2022.
- 631 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
 632 *preprint arXiv:2312.00752*, 2023.
- 633 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
 634 and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
 635 prediction of hidden units. *IEEE/ACM Trans. Audio, Speech and Lang. Proc.*, 29:3451–3460,
 636 October 2021. ISSN 2329-9290. doi: 10.1109/TASLP.2021.3122291. URL <https://doi.org/10.1109/TASLP.2021.3122291>.
- 637 Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian Metze,
 638 and Christoph Feichtenhofer. Masked autoencoders that listen. In *NeurIPS*, 2022.

- 648 Jacob Kahn, Morgane Riviere, Weiyi Zheng, Evgeny Kharitonov, Qiantong Xu, Pierre-Emmanuel
 649 Mazaré, Julien Karadayi, Vitaliy Liptchinsky, Ronan Collobert, Christian Fuegen, et al. Libri-light:
 650 A benchmark for asr with limited or no supervision. In *ICASSP 2020-2020 IEEE International
 651 Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 7669–7673. IEEE, 2020.
 652
- 653 Khaled Koutini, Jan Schlüter, Hamid Eghbal-zadeh, and Gerhard Widmer. Efficient training of audio
 654 transformers with patchout. In *Interspeech 2022, 23rd Annual Conference of the International
 655 Speech Communication Association, Incheon, Korea, 18-22 September 2022*, pp. 2753–2757.
 656 ISCA, 2022. doi: 10.21437/Interspeech.2022-227. URL <https://doi.org/10.21437/Interspeech.2022-227>.
 657
- 658 Wessel Ledder, Yuzhen Qin, and Kiki van der Heijden. Audio-driven reinforcement learning for head-
 659 orientation in naturalistic environments. In *ICASSP 2025-2025 IEEE International Conference on
 660 Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2025.
 661
- 662 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 663 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
 664 IEEE/CVF International Conference on Computer Vision (ICCV)*, 2021.
 665
- 666 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 arXiv:1711.05101*, 2017.
 667
- 668 Matthew Maciejewski, Gordon Wichern, and Jonathan Le Roux. Whamr!: Noisy and reverberant
 669 single-channel speech separation. In *Proc. IEEE International Conference on Acoustics, Speech
 670 and Signal Processing (ICASSP)*, May 2020.
 671
- 672 Tanvir Mahmud and Diana Marculescu. AVE-CLIP: AudioCLIP-based Multi-window Temporal
 673 Transformer for Audio Visual Event Localization . In *2023 IEEE/CVF Winter Conference on
 674 Applications of Computer Vision (WACV)*, pp. 5147–5156, Los Alamitos, CA, USA, January
 2023. IEEE Computer Society. doi: 10.1109/WACV56688.2023.00513. URL <https://doi.ieee.org/10.1109/WACV56688.2023.00513>.
 675
- 676 A. Mesaros, T. Heittola, E. Benetos, P. Foster, M. Lagrange, T. Virtanen, and M. D. Plumley.
 677 Detection and classification of acoustic scenes and events: Outcome of the DCASE 2016 challenge.
 678 *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 26(2):379–393, Feb 2018.
 679 ISSN 2329-9290. doi: 10.1109/TASLP.2017.2778423.
 680
- 681 Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt, Jakob D Havtorn, Joakim Edin, Christian
 682 Igel, Katrin Kirchhoff, Shang-Wen Li, Karen Livescu, Lars Maaløe, et al. Self-supervised speech
 683 representation learning: A review. *IEEE Journal of Selected Topics in Signal Processing*, 16(6):
 684 1179–1210, 2022.
 685
- 686 Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and Kunio Kashino. Masked
 687 spectrogram modeling using masked autoencoders for learning general-purpose audio representa-
 688 tion. In Joseph Turian, Björn W. Schuller, Dorien Herremans, Katrin Kirchoff, Paola Garcia Perera,
 689 and Philippe Esling (eds.), *HEAR: Holistic Evaluation of Audio Representations (NeurIPS 2021
 690 Competition)*, volume 166 of *Proceedings of Machine Learning Research*, pp. 1–24. PMLR, 13–14
 691 Dec 2022. URL <https://proceedings.mlr.press/v166/niizumi22a.html>.
 692
- 693 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An asr corpus
 694 based on public domain audio books. In *2015 IEEE International Conference on Acoustics, Speech
 695 and Signal Processing (ICASSP)*, pp. 5206–5210, 2015. doi: 10.1109/ICASSP.2015.7178964.
 696
- 697 Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. In *Proceedings of the 23rd
 698 Annual ACM Conference on Multimedia*, pp. 1015–1018. ACM Press. ISBN 978-1-4503-3459-
 699 4. doi: 10.1145/2733373.2806390. URL <http://dl.acm.org/citation.cfm?doid=2733373.2806390>.
 700
- 701 Aaqib Saeed, David Grangier, and Neil Zeghidour. Contrastive learning of general-purpose audio
 702 representations. In *ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and
 703 Signal Processing (ICASSP)*, pp. 3875–3879, 2021. doi: 10.1109/ICASSP39728.2021.9413528.

- 702 Miguel Sarabia, Elena Menyaylenko, Alessandro Toso, Skyler Seto, Zakaria Aldeneh, Shadi Pirhos-
 703 seinloo, Luca Zappella, Barry-John Theobald, Nicholas Apostoloff, and Jonathan Sheaffer. Spatial
 704 LibriSpeech: An Augmented Dataset for Spatial Audio Learning. In *Proc. Interspeech*, pp.
 705 3724–3728, 2023. doi: 10.21437/Interspeech.2023-2117.
- 706
- 707 Robin Scheibler, Eric Bezzam, and Ivan Dokmanić. Pyroomacoustics: A python package for audio
 708 room simulation and array processing algorithms. In *2018 IEEE International Conference on
 709 Acoustics, Speech and Signal Processing (ICASSP)*, pp. 351–355, 2018. doi: 10.1109/ICASSP.
 710 2018.8461310.
- 711
- 712 M. R. Schroeder. New method of measuring reverberation time. *The Journal of the Acoustical Society
 713 of America*, 37(6_Supplement):1187–1188, 06 1965. ISSN 0001-4966. doi: 10.1121/1.1939454.
 714 URL <https://doi.org/10.1121/1.1939454>.
- 715
- 716 Christopher Schymura, Benedikt Bönnighoff, Tsubasa Ochiai, Marc Delcroix, Keisuke Kinoshita,
 717 Tomohiro Nakatani, Shoko Araki, and Dorothea Kolossa. Pilot: Introducing transformers for
 718 probabilistic sound event localization. In *Interspeech 2021*, pp. 2117–2121, 2021. doi: 10.21437/
 719 Interspeech.2021-124.
- 720
- 721 Kazuki Shimada, Yuichiro Koyama, Naoya Takahashi, Shusuke Takahashi, and Yuki Mitsufuji.
 722 Accdoa: Activity-coupled cartesian direction of arrival representation for sound event localization
 723 and detection, 2021. URL <https://arxiv.org/abs/2010.15306>.
- 724
- 725 Kazuki Shimada, Archontis Politis, Parthasarathy Sudarsanam, Daniel Krause, Kengo Uchida,
 726 Sharath Adavanne, Aapo Hakala, Yuichiro Koyama, Naoya Takahashi, Shusuke Takahashi, Tuomas
 727 Virtanen, and Yuki Mitsufuji. Starss23: an audio-visual dataset of spatial recordings of real
 728 scenes with spatiotemporal annotations of sound events. In *Proceedings of the 37th International
 729 Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023.
 730 Curran Associates Inc.
- 731
- 732 Fabian-Robert Stöter, Soumitro Chakrabarty, Emanuël Habets, and Bernd Edler. Libricon, a dataset
 733 for speaker count estimation, April 2018. URL [https://doi.org/10.5281/zenodo.
 734 1216072](https://doi.org/10.5281/zenodo.1216072).
- 735
- 736 Mi Tian, Ajay Srinivasamurthy, Mark Sandler, and Xavier Serra. A study of instrument-wise onset
 737 detection in beijing opera percussion ensembles. In *2014 IEEE International Conference on
 738 Acoustics, Speech and Signal Processing (ICASSP)*, pp. 2159–2163, 2014. doi: 10.1109/ICASSP.
 739 2014.6853981.
- 740
- 741 Joseph Turian, Jordie Shier, Humair Raj Khan, Bhiksha Raj, Björn W. Schuller, Christian J. Stein-
 742 metz, Colin Malloy, George Tzanetakis, Gissel Velarde, Kirk McNally, Max Henry, Nicolas
 743 Pinto, Camille Noufi, Christian Clough, Dorien Herremans, Eduardo Fonseca, Jesse Engel, Justin
 744 Salamon, Philippe Esling, Pranay Manocha, Shinji Watanabe, Zeyu Jin, and Yonatan Bisk. HEAR:
 745 Holistic Evaluation of Audio Representations. In Douwe Kiela, Marco Ciccone, and Barbara
 746 Caputo (eds.), *Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track*, volume
 747 176 of *Proceedings of Machine Learning Research*, pp. 125–145. PMLR, 06–14 Dec 2022. URL
 748 <https://proceedings.mlr.press/v176/turian22a.html>.
- 749
- 750 Jörgen Valk and Tanel Alumäe. Voxlingua107: A dataset for spoken language recognition. In *2021
 751 IEEE Spoken Language Technology Workshop (SLT)*, pp. 652–658, 2021. doi: 10.1109/SLT48900.
 752 2021.9383459.
- 753
- 754 Kiki van der Heijden, Josef P Rauschecker, Beatrice de Gelder, and Elia Formisano. Cortical
 755 mechanisms of spatial hearing. *Nature Reviews Neuroscience*, 20(10):609–623, 2019.
- 756
- 757 Luyu Wang, Pauline Luc, Yan Wu, Adrià Recasens, Lucas Smaira, Andrew Brock, Andrew Jaegle,
 758 Jean-Baptiste Alayrac, Sander Dieleman, Joao Carreira, and Aäron van den Oord. Towards
 759 learning universal audio representations. In *ICASSP 2022 - 2022 IEEE International Conference
 760 on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 4593–4597, 2022a. doi: 10.1109/
 761 ICASSP43922.2022.9746790.

- 756 Qing Wang, Ya Jiang, Shi Cheng, Maocheng Hu, Zhaoxu Nian, Pengfei Hu, Zeyan Liu, Yuxuan
 757 Dong, Mingqi Cai, Jun Du, and Chin-Hui Lee. The nerc-slip system for sound event localization
 758 and detection of dcase2023 challenge. Technical report, DCASE2023 Challenge, June 2023.
 759
- 760 Shanshan Wang, Archontis Politis, Annamaria Mesaros, and Tuomas Virtanen. Self-supervised
 761 learning of audio representations from audio-visual data using spatial alignment. *IEEE Journal of
 762 Selected Topics in Signal Processing*, 16(6):1467–1479, 2022b. doi: 10.1109/JSTSP.2022.3180592.
- 763 Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition, 2018. URL
 764 <https://arxiv.org/abs/1804.03209>.
- 765 Sarthak Yadav and Zheng-Hua Tan. Audio mamba: Selective state spaces for self-supervised audio
 766 representations. In *Interspeech 2024*, pp. 552–556, 2024. doi: 10.21437/Interspeech.2024-1274.
- 767 Sarthak Yadav, Sergios Theodoridis, Lars Kai Hansen, and Zheng-Hua Tan. Masked autoencoders
 768 with multi-window local-global attention are better audio learners. In *The Twelfth International
 769 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Q53QLftNkA>.
- 770 Shuwen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhota, Yist Y. Lin,
 771 Andy T. Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, Tzu-Hsien Huang, Wei-Cheng Tseng,
 772 Ko tik Lee, Da-Rong Liu, Zili Huang, Shuyan Dong, Shang-Wen Li, Shinji Watanabe, Abdelrahman
 773 Mohamed, and Hung yi Lee. Superb: Speech processing universal performance benchmark. In
 774 *Interspeech 2021*, pp. 1194–1198, 2021. doi: 10.21437/Interspeech.2021-1775.
- 775 Zhisheng Zheng, Puyuan Peng, Ziyang Ma, Xie Chen, Eunsol Choi, and David Harwath. Bat:
 776 learning to reason about spatial sounds with large language models. In *Proceedings of the 41st
 777 International Conference on Machine Learning*, ICML’24. JMLR.org, 2024.
- 778 Franz Zotter and Matthias Frank. *XY, MS, and First-Order Ambisonics*, pp. 1–22. Springer Interna-
 779 tional Publishing, Cham, 2019. ISBN 978-3-030-17207-7. doi: 10.1007/978-3-030-17207-7_1.
 780 URL https://doi.org/10.1007/978-3-030-17207-7_1.
- 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

APPENDIX

A SOUNDSPACES 2.0 SPECIFICATIONS

We generate our BRIRs using the simulator provided by SoundSpaces 2.0 (Chen et al., 2022a). Our hyperparameters for the simulator is depicted in Table 4.

Table 4: Acoustic configuration parameters utilized in SoundSpaces 2.0 to generate our BRIRs.

Parameter	Value	Parameter	Value
directSHOrder	3	indirectSHOrder	3
sampleRate	32000	frequencyBands	8
maxDiffractionOrder	10	transmission	True
indirect	True	indirectRayCount	15000
indirectRayDepth	400	sourceRayCount	200
sourceRayDepth	20	threadCount	16
agentHeight	1.5m		

B INTENSITY VECTORS

Following Devnani et al. (2024); Wang et al. (2022b), we extracted intensity vectors utilizing the equation below:

$$\mathbf{I}_{\text{active}}(t, f) = \Re \left[A_{0,0}^*(t, f) \begin{pmatrix} A_{1,1}(t, f) \\ A_{1,0}(t, f) \\ A_{1,1}(t, f) \end{pmatrix} \right], \quad (1)$$

where $A_{n,m}$ are the n^{th} and m^{th} order and mode of the ambisonics signal corresponding to its omnidirectional (W) and three dipole (Z, Y, X) components, and $(\cdot)^*$ denotes complex conjugation. IVs are scaled to unit-norm.

C HEAR AND NAT-HEAR TASKS

Table 5 illustrates the abbreviations, task description, and the type that we have utilized to benchmark our models.

Table 5: Overview of the HEAR and Nat-HEAR tasks.

Abbreviation	Task Name	Description	Type
DCASE	DCASE-2016 Task 2 (Mesaros et al., 2018)	Event detection of overlapping office sounds in synthetic mixtures	Scene Analysis
FS50K	FSD50k (Fonseca et al., 2022)	Multilabel, large scale audio tagging	Scene Analysis
LC	LibriCount (Stöter et al., 2018)	Speaker Count Identification, Simulated Cocktail Party	Scene Analysis
ESC-50	ESC-50 (Piczak)	Environmental Sound Classification	Environmental Sound Classification
CD	Crema-D (Cao et al., 2014)	Emotion Recognition	Speech Analysis
VL	VoxLingua107 Top10 (Valk & Alumäe, 2021)	Spoken language identification	Speech Analysis
SC-5	Speech Command 5h (Warden, 2018)	Keyword Spotting, reduced training subset	Speech Analysis
NS	NSynth Pitch 5h (Engel et al., 2017)	Pitch Classification, reduced training subset	Pitch Classification
BO	Beijing Opera (Tian et al., 2014)	Classifying percussion instruments	Percussion
Mri-S	Mridangam Stroke (Anantapadmanabhan et al., 2013)	Stroke classification in pitched percussion instruments	Percussion
Mri-T	Mridangam Tonic (Anantapadmanabhan et al., 2013)	Tonic classification in pitched percussion instruments	Percussion

D RT60 ESTIMATION TASKS

Nat-HEAR includes two RT60 estimation tasks (ESC-50 and SC-5) in addition to the direction-of-arrival estimation tasks. For synthesizing these tasks, we did not add additional localized/diffused noise. Specifically, we convolved ESC-50 and SC-5 clips with $\text{BRIR}(s, r, \theta)$ for Nat-HEAR Binaural, or with $\text{ARIR}(s, r, \theta)$ for Nat-HEAR Ambisonics. We estimated the ground truth RT60s using the first channel of the ARIR. To estimate the RT60s, we utilized the Schroeder method (Schroeder, 1965) from Pyroomacoustics package (Scheibler et al., 2018). Explicitly, we measure the RT30 and extrapolate to RT60 using the decay curve.

Figure 6: Distribution of the estimated RT60s for ESC-50 and SC-5 datasets.

Figure 6 depicts the RT60 distributions of ESC-50 and SC-5 datasets. Furthermore Table 6 presents the median absolute errors that we got with GRAMs on ESC-50 and SC-5 tasks.

Table 6: Absolute median error comparison on RT60 estimation tasks.

(a) SC-5		(b) ESC-50	
Model	Median Error	Model	Median Error
GRAM-T-Clean	0.0225	GRAM-T-Clean	0.0461
GRAM-T-Ambisonics	0.0169	GRAM-T-Ambisonics	0.0421
GRAM-T-Binaural (Patch)	0.0146	GRAM-T-Binaural (Patch)	0.0397
GRAM-T-Binaural (Time)	0.0179	GRAM-T-Binaural (Time)	0.0418
Spatial-AST	0.0299	Spatial-AST	0.0468

E EXTRACTING GRAM EMBEDDINGS FOR DOWNSTREAM TASKS

We extracted GRAM embeddings for downstream evaluations by encoding embeddings for all patches P_1, \dots, P_n using the GRAM encoder. We used the exact patch aggregation process as in (Niizumi et al., 2022). Audio clips were split into non-overlapping 2-second chunks and the embedded patches concatenated over time. Later, we took the mean over the time axis to generate scene embeddings independent of the input audio duration. Finally, to evaluate GRAMs on the localization tasks, we used [CLS] embeddings of the 2-second samples, and averaged them to create scene embeddings for localization tasks.

F DOWNSTREAM PERFORMANCE METRIC

Similar to the procedure in SUPERB (Yang et al., 2021), let s_t be the metric for task t . We then calculate the generalizability metric $\text{HEAR}_s(m)$, and $\text{Nat-HEAR}_s(m)$ for model m as:

$$s(m) = \frac{100}{T} \sum_t^T \frac{s_t(m) - s_t(\text{baseline})}{s_t(\text{SOTA}) - s_t(\text{baseline})}$$

Intuitively, this metric ranks the improvement of models over the baseline as a function of the maximum improvement over the baseline obtained by the current state-of-the-art. Note that we replace $s_t(m)$ for task t of model m with 0 when the model scores below baseline performance for task t . Similarly, when $s_t(\text{SOTA})$ is lower than baseline for task t , we set for all models s_t for this task to 0. In this way, all values are restricted to a range of improvement between 0% and 100%.

Figure 7: Additional ablation studies. Effect of hyperparameters on HEAR and Nat-HEAR Performance. From left to right; (1) GRAM-Binaural downstream performance as a function of the number of in batch samples. (2) The effect of masking ratio for GRAM-Binaural. Important to note that GRAM-Binaural depicted in (2) was trained on reduced number of samples (16 → 4).

Figure 8: Additional ablation studies. Effect of in batch sampling on HEAR and Nat-HEAR performance when the effective batch size is kept the same. From top to bottom; (1) GRAM-Binaural downstream performance on HEAR as a function of the in-batch sampling (2) GRAM-Binaural downstream performance on Nat-HEAR as a function of the in-batch sampling

G ADDITIONAL ABLATION STUDIES

Firstly, we further investigated the masking ratio, and in batch sampling as a function of HEAR and Nat-HEAR performance. Secondly, we investigated the localization performance in terms of mixture of naturalistic and clean audio λ . Thirdly, we investigated the localization performance in terms of noise levels in the NatHEAR benchmark, which is low [20-40dB], medium [10-20dB] and high [5-10]dB. Lastly, we looked at the effect of in batch sampling when effective batch size is kept constant. For this experiment, we used gradient accumulation over 16 batches. Consequently number of in batch samples were set to 16, yielding effective batch size of 512 for both models.

In-batch sampling: Figure 7 1 depicts that in-batch sampling helped immensely with the downstream performance on both HEAR and Nat-HEAR downstream. Increasing the number of in-batch samples leads to higher batch sizes with minimal computational constraints. Furthermore, Figure 8 shows that in-batch sampling does not result in a drop in downstream performance or model convergence.

Masking ratio: Figure 7 2 depicts that optimal masking ratio is 0.6 for HEAR and Nat-HEAR performance, and higher masking ratios, such as 0.9 harms the performance.

Figure 9: Ablation study on noise levels and localization performance of GRAMs, and Spatial-AST.

Figure 10: Detalized localization scores. From left to right, Panel 1 demonstrates the localization performance of GRAM-Binaural and GRAM-Ambisonics with tested λ parameters on SC-5h. Panel 2 demonstrates the localization performance of GRAM-Binaural and GRAM-Ambisonics with tested λ parameters on ESC-50. Lastly, Panel 3 demonstrates the localization performance of GRAM-Ambisonics with tested λ parameters on TUT Sound Events Real compared to other self-supervised methods.

Localization performance: Figure 10 depicts that GRAM-Ambisonics achieve the highest performance on SC-5h, ESC-50, and TUT Sound Events 2018 REAL compared to other baselines regardless of the fraction of naturalistic scenes. Importantly, we do not observe a correlation between λ and localization performance, suggesting that GRAMs learn to exploit spatial attributes with little data.

Noise Levels: Figure 9 depicts that GRAM-Ambisonics achieves the highest performance on SC-5h, ESC-50, and TUT Sound Events 2018 REAL compared to other baselines regardless of the fraction of naturalistic scenes. Importantly, we do not observe a correlation between λ and localization performance, suggesting that GRAMs learn to exploit spatial attributes with little data.

H RESULTS ON ORIGINAL HEAR BENCHMARK SUITE

We evaluated our models on the dry, non anechoic, and non-spatialized HEAR Benchmark suite. Table 7 depicts the achieved results on the HEAR sub tasks.

1026
1027
1028
1029
1030 Table 7: Performance comparison of audio representation models across HEAR tasks. All values
1031 represent the HEAR scores with standard deviation where available. Bold numbers indicate the best
1032 performing model on the specific task. SSAST* is trained on both AudioSet and LibriSpeech.
1033
1034
1035
1036

Model	Acoustic Events and Scene Analysis				Speech			Music			s(m)	Avg.	
	DCASE	FSD50K	LC	ESC-50	CD	VL	SC-5	NS	BO	Mri-S	Mri-T		
Baseline													
HEAR-Naive	8.8	13.2	43.5 ± 1.6	28.6 ± 3.1	38.0 ± 2.3	14.8 ± 3.0	13.3	87.6	98.7 ± 1.9	94.1 ± 0.5	87.6 ± 6.4	0.0	48.0
Speech SSL													
Wav2Vec 2.0	23.5	29.4	69.9 ± 2.1	46.4 ± 1.8	57.3 ± 1.1	34.9 ± 2.4	85.3	17.4	81.4 ± 4.8	90.7 ± 0.8	77.0 ± 0.9	30.7	55.7
HuBERT	78.3	32.8	63.3 ± 1.2	58.6 ± 2.8	71.2 ± 1.2	65.2 ± 2.9	94.0	19.8	93.2 ± 5.9	94.6 ± 0.4	85.0 ± 2.5	43.6	68.7
WavLM	27.0	25.7	61.3 ± 2.3	49.5 ± 3.8	64.3 ± 1.3	60.1 ± 3.2	93.8	18.2	84.3 ± 6.3	88.8 ± 1.0	76.8 ± 0.5	36.1	59.1
AudioSet SSL													
MAE	–	33.4	62.3 ± 1.1	72.9 ± 2.1	60.8 ± 1.8	21.3 ± 5.8	66.6	63.6	94.5 ± 5.6	94.8 ± 0.6	85.1 ± 10.4	31.3	65.5
SSAST*	–	21.4	57.8 ± 3.3	58.3 ± 2.6	48.0 ± 2.1	15.4 ± 2.6	22.0	64.2	95.8 ± 4.3	90.2 ± 5.9	89.1 ± 8.0	15	56.2
BEATs	–	54.1	77.8 ± 1.2	85.8 ± 2.9	66.9 ± 2.5	39.7 ± 4.3	86.9	68.6	94.1 ± 3.5	95.5 ± 0.4	96.6 ± 0.5	59.2	76.6
MW-MAE	94.2	51.8	80.3 ± 1.9	82.2 ± 3.2	74.4 ± 1.5	45.5 ± 1.7	91.6	69.4	95.8 ± 4.3	97.5 ± 0.4	97.6 ± 0.6	68.9	80.8
SSAM	87.3	53.5	75.5 ± 1.4	82.9 ± 3.6	70.2 ± 0.4	56.4 ± 5.2	89.3	72.6	93.2 ± 3.5	97.8 ± 0.5	96.9 ± 0.5	69.0	79.6
GRAM-Binaural	95.6	56.1	81.0 ± 1.1	86.7 ± 2.4	75.0 ± 1.4	53.2 ± 3.0	92.5	77.0	94.9 ± 3.2	97.3 ± 0.3	98.1 ± 0.2	72.3	82.5
GRAM-Ambisonics	94.3	53.0	79.4 ± 1.5	85.9 ± 1.5	71.9 ± 1.9	53.7 ± 1.2	89.6	73.8	94.9 ± 4.9	97.6 ± 0.5	98.5 ± 0.4	71.3	81.1
GRAM-Clean	95.3	56.8	81.3 ± 1.8	87.5 ± 2.3	75.1 ± 0.6	57.3 ± 3.4	93.5	75.8	95.8 ± 3.7	97.4 ± 0.3	98.0 ± 0.2	73.8	83.1
Supervised													
PASST	–	64.1	60.7 ± 3.7	94.8 ± 0.3	61.8 ± 1.1	25.9 ± 2.6	68.7	24.2	96.6 ± 3.2	96.4 ± 0.7	87.8 ± 1.2	46.2	68.1
Spatial-AST	–	54.7	72.6 ± 1.5	90.3 ± 1.7	62.2 ± 1.3	29.1 ± 1.9	80.6	69.8	96.2 ± 5.3	96.2 ± 0.4	94.6 ± 0.6	54.6	74.6

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
Table 8: Training details of the recent audio foundation models. We retrieve the numbers from the
references where possible. Various works utilized various sizes of AudioSet. Therefore, we used the
dataset size reported by the references to calculate the steps per epoch. For MW-MAE and SSAM we
retrieved their dataset size from their corresponding code repository.

Model	Batch Size	Epochs	Steps per Epoch	Input Length	Total Samples Seen
MW-MAE (Yadav et al., 2024)	1024	100	1985	N/A	2s
GRAMs	96	N/A	N/A	180,000	~2s
Audio-MAE (Huang et al., 2022)	512	32	3829	N/A	10s
BEATs (Chen et al., 2023)	5600	N/A	N/A	1.2M	10s
SSAM (Yadav & Tan, 2024)	1024	100	2003	N/A	2s

I EVALUATING TRAINING EFFICIENCY

For all models trained solely on AudioSet, we calculated the number of seconds seen during the training as: batch size \times steps per epoch \times epochs \times input length. This comparison accounts for the number of 10-second AudioSet sound clips processed by each model.