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ABSTRACT

We demonstrate the effectiveness of using a categorical distribution as a neural
network output for the task of next event prediction. We find that training set sizes
help explain performance differences between models: when training sets are in-
creased, performance differences largely disappear. We introduce 3 new datasets
which provide informative ways to explore model performance; they demonstrate
cases where larger models and the use of the categorical output are effective.

1 INTRODUCTION

Probabilistic modeling of event data with neural networks is the concern of the field of neural net-
work based temporal point processes (TPPs), reviewed by Shchur et al. (2021), Bosser & Taieb
(2023) and Lin et al. (2025).

Figure 1: Bottom: Histogram of inter-event
times for the NYC taxi dataset (Whong,
2014). Top: Intervals containing 1

64 of
events—these intervals are mappable to a
categorical distribution with 64 outcomes.

A variety of continuous distributions have been used
as neural network outputs for predicting future event
times (Bosser & Taieb, 2023). In this work, we pro-
pose to discretize the output domain, roughly into
equal-quantile intervals, and to use the output of a
neural network to represent a categorical distribu-
tion over these intervals. This approach is motivated
by the observation that many datasets collected by
measuring real-world processes exhibit a mixed dis-
tribution containing continuous and discrete parts.
For example, the times between taxi pickups in New
York City obtained by Whong (2014) have a distri-
bution (see Figure 1) that is relatively smooth but
punctuated by regular peaks. This type of distri-
bution is not uncommon, and it will be shown that
a categorical output interpreted as a piecewise con-
stant distribution is effective at modeling such data.

The categorical output is not universally effective (nor is any output tested). Bosser & Taieb (2023)
cataloged the performance differences of many neural TPP models, but did not find an explanation
for these differences. In Section 4, we show that for many models and datasets, performance differ-
ences diminish when training set sizes are increased, suggesting that factors such as regularization
contribute to performance differences at commonly used (and relatively small) training set sizes. To
facilitate this investigation, we extend several existing datasets to larger sizes (see Figure 2).

We then introduce 3 new datasets which fill gaps in the existing dataset landscape. The synthetic
datasets tested in Section 4 are shown to quickly plateau in terms of model performance gains they
yield as training data is increased. In Section 5, we introduce a synthetic dataset using a modified
Metropolis-Hastings algorithm that continues to yield performance gains for orders of magnitude
larger training set sizes. This is useful for representing processes whose underlying dynamics are
not quickly uncovered. In Section 6, we introduce a neuronal spike prediction task motivated by
retinal prosthetics. For this dataset, not only are events from a real-world process, the task itself
replicates the requirements of a real-world task. This is a feature lacking from the real-world datasets
studied in Section 3 and Section 4. Finally, motivated by the structure of the spike prediction task,
we introduce a family of synthetic datasets with discrete event times in Section 7. These datasets
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Table 1: Two models evaluated in terms of
test set NLL (lower is better) on existing real-
world datasets. The rnn-logmix model
from Shchur et al. (2020) acts as a baseline.
The rnn-cat model uses the same archi-
tecture but with a categorical output struc-
ture. Values are means over 10 trials. Re-
sults for rnn-cat are reported by their dif-
ference to the results for rnn-logmix.

Dataset rnn-logmix rnn-cat

Yelp airport 4.700 +0.057
Yelp Mississuaga 3.890 +0.034
Twitter 3.963 +0.055
Taobao 2.409 -0.553
Wikipedia 5.120 +0.024
Yelp Toronto 4.884 -0.014
PUBG 1.585 -3.781
MOOC 1.862 -2.326
Reddit AskScience 5.643 -0.167
Amazon 5.579 +0.029
Reddit Politics 4.628 -0.721
Last.fm 5.069 -0.014

existing

high distribution 
inequality (> 0.8 
Gini coefficient)

new
extended

16 k
72 k

10 k
6 k

*
**

*

*

*

Figure 2: Dataset training set sizes. Datasets
marked by * have high Gini coefficient (> 0.8),
which may indicate a discrete component in the
distribution (see Appendix B). New and extended
datasets are introduced in Sections 4 to 7.

reflect the discrete nature of many real-world datasets—discrete, for example, on account of the
measurement process. For all of these new datasets, we observe the effectiveness of the categorical
output. Compared to the existing datasets, the new datasets also demonstrate cases where larger
models are effective.

The next section describes how a categorical distribution over intervals can be used for event pre-
diction on the interval (0,∞).

2 CATEGORICAL DISTRIBUTION FOR INTER-EVENT TIMES ON (0,∞)

For many event datasets, there is no maximum inter-event time, and models are expected to output
distributions over the interval (0,∞). In this work, to form a continuous distribution on (0,∞), the
categorical output is interpreted as assigning probability mass to intervals. The resulting distribution
is a piecewise-continuous one, constructed as follows. We follow a similar approach to Kvamme &
Borgan (2021) and choose intervals that equally divide the training set distribution: we fix N , the
number of intervals, and choose interval lengths such that the first interval extends to contain the
first 1/N of the inter-event times, the second until 2/N and so on until the last interval which extends
to infinity. We let the probability density in each non-final interval be constant, determined by the
interval width and the model’s output. The final interval, being infinite in length, cannot have a
constant non-zero density; instead we use an exponential decay weighted by the model’s output. A
subset of the intervals for a model with 64 outputs for the NYC taxi dataset is shown in Figure 1
(top). The intervals are fixed and do not change during training. Zero-width intervals are avoided
by imposing a minimum interval length. See Appendix C for more details.

3 RESULTS ON EXISTING DATASETS

We compare the categorical output to the existing output heads listed in Table 2. Each output head is
paired with the 3 model stems listed in Table 3. An additional model is also tested, the Transformer
Hawkes Process, used in two sizes thp-0 and thp-1, described by (Zuo et al., 2020). We evaluate
the categorical output on the previously studied datasets listed in Figure 2 (excluding those that are
expanded in the next section).
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Table 2: Output heads used in experiments. See Appendix C for implementation details. To compare
to the categorical head, focus is given to the logmix head throughout this work, as it is found to be
the most effective among the existing heads tested.

Label Head description Studied by
cat categorical distribution this work
const exponential hazard Huang et al. (2019), Li et al. (2018)
exp constant hazard Du et al. (2016), Upadhyay et al. (2018)
logmix lognormal mixture (64 components) Shchur et al. (2020)
nn neural net parameterized hazard Omi et al. (2019)

Table 3: Model stems used in experiments. See Appendix C for implementation details. All existing
heads from Table 2 were original studied with a recurrent neural network (RNN) stem.

Label Stem description Input Layers Heads Embed dim. Parameters
rnn gated recurrent unit 32 1 NA 64 13k
gpt-a GPT-2 transformer 128 2 4 16 108k
gpt-b GPT-2 transformer 128 6 4 32 1.20M

A subset of results is shown in Table 1, comparing cat and logmix heads using the rnn stem
in terms of negative log-likelihood (NLL). Full results in terms of both NLL and mean absolute
error (MAE) for all stem and head combinations are reported in Appendix A (Table 5 and Table 6).

The results in Table 1 show that the categorical output is competitive, although not universally more
effective than the logmix output. The results, when viewed next to Figure 2, hint that dataset size
or the presence of discrete components in the event distributions may be factors that help explain the
results. The next section helps to understand the performance differences by evaluating over a range
of training set sizes.

4 TRAINING SET SIZES DIFFERENTIATE TPP MODEL PERFORMANCE

From the existing real-world datasets listed in Figure 2, we identified the New York City taxi dataset
(Whong, 2014; Du et al., 2016) and the Stack Overflow badge dataset (Du et al., 2016) as having
data sources that allow the datasets to be recreated with much larger sizes. The 7 synthetic datasets
from Omi et al. (2019) can also be recreated with larger sizes (arbitrarily large). In this section, the
training sets of these 9 datasets are varied across 16 sizes from 210 to 225 inter-event times (while
validation and test sets are fixed at 217).

4.1 RESULTS AND DISCUSSION

All output heads from Table 2 are tested with the rnn and gpt-a stems from Table 3. Additionally,
the cat and logmix heads are tested with the larger gpt-b stem. Figure 3 reports NLL for 6 of
the 9 datasets. Appendix A contains the complete results (NLL and MAE for all datasets).

The results support three claims.

First, across all datasets, training set size is an important factor explaining model performance. For
most datasets, the larger models take more samples to plateau but eventually catch up to or surpass
their smaller counterparts. The sensitivity to training set size is also dependent on output structure.
The exponential intensity head sees little difference across training set sizes, whereas the categorical
output sees a large variation. This supports the claim that different output structures can be thought
of as conferring different degrees of regularization, preventing performance degradation at smaller
training set sizes. Across all datasets, in the presence of sufficient data, both the use of the categorical
output and the use of larger models are competitive.

Second, the categorical output achieves strong performance on the NYC taxi dataset, irrespective
of model and training set size. This is consistent with the hypothesis that the discrete nature of
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best worstNLL (lower is better) theoretical bestcommon training set length

(a) Stationary Poisson (b) Self-correcting (c) Hawkes1

(d) Stationary renewal (e) NYC taxi (f) Stack Overflow badges

Figure 3: Performance comparison of 13 models in terms of test set NLL across 6 datasets and
16 training set lengths from 210 to 225. The colormap ranges span each sub-figure’s full range of
values, except for the NYC taxi dataset, where the categorical models’ very low NLL scores (all
< 3.4) are separated to preserve the colormap detail for other models. For synthetic datasets where
a theoretical best score is known, it is marked with a red dashed line.

this dataset (see Figure 1 and Appendix B) explains the effectiveness of the categorical output.
The logmix model can, in principle, represent distributions with sharp peaks; however, across all
training set lengths, the logmix models are unable to match the performance of the categorical
models. One hypothesis is that singularities hinder stable training of a lognormal mixture, similar to
the situation encountered when fitting such mixtures with the expectation-maximization algorithm
(Bishop, 2006); supporting evidence for this theory is presented in Appendix C.5.2.

Finally, a striking observation is that for all synthetic datasets there is a model that requires very little
data to be a top-scoring model. We argue that this is evidence that the event sequences do not have
complex dynamics needing significant training sets to learn. Take for example the stationary Poisson
process where, after a few thousand samples, most of the models reach close to the theoretical best
NLL score, and further improvement would effectively require inferring the state of the underlying
pseudo-random number generator. In the next section, we introduce a new synthetic dataset that
continues to yield performance gains over longer training lengths.

5 METROPOLIS LOGNORMAL EVENT DATASET

The previous section showed how the synthetic datasets from Omi et al. (2019) quickly plateau
in terms of the performance gains they yield, explaining how small models can reach competitive
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Figure 4: Histogram of
200k samples from the
modified Metropolis-
Hastings algorithm.

Figure 5: 200k pairs of
samples rasterized: xt+1

and previous sample xt. Figure 6: Test set NLL scores on the
Metropolis lognormal dataset.

time (ms)

stimulus

spikes
targetinput

-100-200 0

stride

(a) Spike prediction task

shared
base heads

gpt-a / gpt-bCNN FC FC

ti
m

e

cat

logmix time (ms) 100

median

median

act

act

(b) Categorical and logmix heads

Figure 7: (a) Spike prediction task: given a 1-second snippet of stimulus and spike history, predict
the time of the next spike. Predictions beyond a stride of 80ms are not used. Information after t = 0
is not available to a model, matching the task faced by retinal prosthetic devices. (b) The inputs,
architecture and outputs of the models tested. Figure adapted from Doran et al. (2024).

performance on small training sets. Here, we use a Markov process to create a synthetic dataset that
continues to yield performance gains for orders of magnitude larger training set sizes.

We generate an event sequence from a nested set of state transition matrices. The matrices param-
eterize a modified Metropolis-Hastings sampling algorithm. This process exploits what is typically
considered a weakness of Metropolis-Hastings sampling—that samples are dependent—in order to
gradually leak information about the state transition matrices. The generation procedure is described
in Appendix B.5. Figure 4 plots samples from the sequence before applying the logarithm, reveal-
ing the roughly Gaussian shape of the distribution. For the same samples, Figure 5 plots next vs.
previous samples, highlighting that with enough samples, a highly structured distribution emerges.

Figure 6 shows how models perform across a range of training set lengths. Here, all heads (except
nn) benefit from having a larger base model, and smaller models do not quickly approach a compet-
itive score. This dataset is important for being a synthetic event dataset where there is a clear benefit
of using larger models, and those models gradually improve with more data. Regarding gpt-a-nn:
we observed this model to be more prone to training instability compared to rnn-nn, a possible
explanation for its poorer performance.

6 A CATEGORICAL OUTPUT IS EFFECTIVE FOR SPIKE PREDICTION

The real-world datasets studied in previous sections are event sequences recorded from real pro-
cesses; however, predicting the next event in these sequences is not grounded in a realistic task.
This section introduces a task motivated by retinal prosthetic devices. We demonstrate how the de-
mands of a real-world task can lead to a discrete output structure being suitable for predicting events
of an otherwise continuous process. In this setting, we again see the usefulness of the categorical
distribution.
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gpt-a
gpt-b

Figure 8: Performance comparison between logmix (a 64-component lognormal mixture) and cat
(an 81-bin categorical distribution) for the task of spike prediction. NLL is reported on the left.
The next 3 metrics are spike train similarity/distance metrics, evaluated autoregressively; they share
a smoothing parameter of 60ms. The model stem is tested in two sizes: gpt-a and the larger
gpt-b. We follow Agarwal et al. (2021) and report metrics as interquartile means over the 1611
chicken RGCs over 10 training repeats, with 95% bootstrap confidence intervals as error bars.

Retinal prosthetic devices must mimic the activity patterns of cells by considering impinging light
and previous spike activity. Gogliettino et al. (2023) describes such a device for electrically stimu-
lating the primate retina. We design a task that captures some of the requirements of such a device.

We create a dataset of snippets from multi-electrode array recordings of chicken retinal ganglion
cells (RGCs) responding to visual stimuli (Seifert et al., 2023). An input is a 1024-length snippet of
a recording ( ~1 second), containing the stimulus and spike history of a single cell. The target is the
time until the cell’s next spike (see Figure 7a). There are 1611 cells across 16 recordings. Further
details on the dataset are contained in Appendix D. To gauge how well models might operate in a
retinal prosthetic device, we roll out the models autoregressively and compare the generated spike
trains to the ground truth spike trains using common spike train similarity metrics.

6.1 SAMPLING AND PREDICTION RATES MOTIVATE A CATEGORICAL OUTPUT

Two temporal scales are associated with the task: the sampling period and the prediction period.
The sampling period of the spikes and stimulus is ~1ms (1.008ms). The autoregressive regime
introduces the prediction period—the maximum duration to wait before making a new prediction.
A shorter prediction period allows for faster integration of new stimulus information, but carries a
computational cost. We fix 80 samples (~80ms) as the prediction period. There are diminishing
returns to reducing this period, as 80ms is close to the mean response delay of the RGCs recorded
by Seifert et al. (2023).

The two temporal scales make the categorical distribution a natural choice for a model output. With
80ms prediction period and 1ms sampling period, a categorical distribution with 81 outcomes is the
minimal neural network output that remains fully descriptive: 80 classes for the 80 intervals in the
prediction period and one class for the interval [80ms,∞). The sampling frequency implies that no
finer resolution than 1ms is needed, and the prediction frequency ensures that no granularity at all
is needed beyond 80ms. Figure 7b shows the categorical output being used for the spike prediction
task above the output head it is compared against, the mixture of lognormals.

6.2 MODELS: HEAD(CNN + TRANSFORMER)

We train 4 models. The logmix and cat heads are attached to the same architecture: a convolu-
tional neural network (CNN) followed by gpt-a or gpt-b. A straightforward ResNet (He et al.,
2016) based CNN stem encodes a 1024-length frame of stimulus and spike history into a 64-length
sequence of vectors of length 64. This sequence is passed to gpt-a (or gpt-b) from Table 3. An
embedding of the cell number is added to the input sequence. The output of the transformer is either
an 81 length vector in the case of the categorical output, or a 64× 3 = 192 length vector in the case
of the mixture of 64 lognormals. Appendix C describes the models in more detail.
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6.3 EXPERIMENT AND RESULTS

The models are trained at next spike prediction with a NLL loss (see Appendix D for training de-
tails). Point estimates are made using the median of the output distribution. We evaluate model
performance with 4 metrics: NLL, Schreiber Similarity, Van Rossum distance and smoothed Pear-
son correlation. The latter 3 metrics are calculated using the spike trains generated by rolling out the
models autoregressively; the metrics share a smoothing parameter set to 60ms, a duration shown to
be appropriate by Doran et al. (2024). Schreiber similarity introduced by Schreiber et al. (2003) and
Van Rossum distance introduced by Van Rossum (2001) are common metrics used to compare spike
trains. See (Paiva et al., 2010) for a review of spike train comparison metrics. The NLL calculation
uses probability mass, and for the logmix model, this involves integrating the continuous distribution
over a 1ms interval.

All 4 metrics are reported in Figure 8. The categorical output consistently outperforms the mixture
of lognormals, highlighting the effectiveness of the simple output structure. The benefit of using the
larger model stem (gpt-b) is also clear.

7 EVENT SEQUENCES FROM MODULO ADDITION

The spike prediction task justified the use of a discrete representation for events of a continuous
process. This section introduces a family of synthetic processes that generate events in discrete in-
tervals. The aim is for these synthetic processes to be a useful tool to investigate model performance
in the same way that synthetic processes such as Hawkes processes are useful in the continuous
setting. Modulo addition will be used to create the event sequences. The sequences can be related
to real-world processes that involve wrap-around events, such as timer or frame counter overflows.

Using modulo addition, an increasing sequence defined over a grid can be used to generate event
sequences with varying degrees of complexity. Consider tracking a particle along a 1D track and
recording when the particle passes 10 meters, 20 meters, 30 meters and so on. Over a 2D plane,
we could record the times when a particle moves from one quadrant to another. As the number
of dimensions increases, the number of faces a particle can exit through to enter another division
increases. Figure 10 shows a particle moving in 1D, 2D and 3D space and generating events with
respect to a grid. To predict when a particle will move to the next quadrant, the previous events can
be observed to narrow down the particle’s position and velocity. This becomes more challenging
and requires more data points as the number of dimensions increases. By varying the number of
dimensions, a family of event sequences can be created with various decoding difficulties.

Figure 9: Four snapshots of a particle moving in 1, 2 and 3-dimensional space. When the particle
passes a boundary, an event is generated. An example event sequence is shown. The 3-dimensional
case is visualized by the particle wrapping around in a single voxel.

Figure 10: Inter-event time distributions for 1, 2 and 3-d modulo sequences where the starting
position, a0, is sampled uniformly from [0, 1021)d and the velocity, v, uniformly from [10, 80]d.

7
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(a) zero input (b) gpt-a-exp (c) gpt-a-logmix (d) gpt-a-cat

(e) gpt-a-const (f) gpt-a-nn (g) gpt-b-logmix (h) gpt-b-cat

Figure 11: Performance comparison of 8 models in terms of test set mean absolute error (MAE).
Each model is trained and evaluated over a landscape of 16 training set sizes for 10 modulo datasets.
Model (a) takes no input and just outputs the empirical training set distribution; it acts as a baseline.

7.1 10 DATASETS, FROM 1D TO 10D

We create 10 datasets of discrete time event sequences, one for each dimension from 1 to 10.

A 1-dimensional sequence is generated as follows. A grid size n is fixed. In this work, we use
n = 1021. A velocity v and starting position a0 are chosen. A sequence of positions a0, a1, a2, . . .
is generated by ai+1 = ai+ v. Whenever ai+1 < ai mod n, an event is generated at time t = i+1.

A d-dimensional sequence is generated from vector addition in the same way. A vector n of length
d is fixed. We fix n to be n = (1021, 1021, . . . , 1021). A velocity v and starting position a0 are
chosen. A sequence of positions a0,a1,a2, . . . is generated by ai+1 = ai + v. Whenever any of
the components of ai overflow with respect to n when transitioning to ai+1, an event is generated
at time t = i+ 1.

The 1D dataset is formed of many separate event sequences of length 1024 generated for different a0
and v. To create a sequence, we sample a0 uniformly from [0, 1021) and v uniformly from [10, 80]
and generate 1024 events per sequence. The other 9 datasets are generated in the same way. Having
many short sequences rather than a single long sequence makes the dataset more representative of
datasets like the NYC taxi dataset, the Stack Overflow dataset and the chicken RGC dataset, all
of which contain numerous separate sequences. More details on the generation process, including
motivations for the bounds of v and an analogous continuous process, are described in Appendix B.7.
For each dataset, we generate 217 sequences, for a total of 227 events per dataset. This is then split
into training, validation and test sets in an 8:1:1 ratio. As before, we consider 16 subsets of the
training set, containing 20, 21, ..., 215 sequences (210, 211, ..., 225 events).

7.2 RESULTS AND DISCUSSION

Seven gpt-a and gpt-b based models are trained on the modulo datasets. Figure 11 shows MAE
for the models across the landscape of modulo datasets. NLL scores appear in Appendix A. The first
figure, Figure 11a, is the result of predicting using only the training set’s empirical distribution (no
event history input is used) and acts as a baseline for comparison.

The first observation is that for all dimensions, there is a training set size above which gpt-a-cat
is equal to or better than the other gpt-a models. This result is another example demonstrating
the competitiveness of the categorical head when there is sufficient data. We also see the benefit
of using larger models when training set sizes are large, demonstrated by a reduction in MAE for
logmix and categorical heads when switching from gpt-a to gpt-b. There are also differences

8
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between models when using small training sets; for example, the logmix head is more effective than
the categorical head. This effect is relatively insensitive to model size, which is evidence that the
output structures themselves affect generalization when data is limited.

By comparing to the zero input baseline, we see that the usefulness of the contextual information
decreases with increasing dimension—by 10D, even with 225 samples, no model markedly outper-
forms the zero input baseline. From this perspective, the modulo datasets form a spectrum between
easy (1D) and difficult (10D) in terms of inferring the next event from event histories. In Ap-
pendix B.7, the concept of dataset difficult is analysed in terms of V-information introduced by
Ethayarajh et al. (2022).

8 DISCUSSION

An argument of this work is that the task and dataset should drive model choice. In the spike predic-
tion task, the task itself characterized a categorical output structure. The NYC taxi dataset, whether
due to the discrete nature of the recording process or the presence of periodicity in the underlying
system, has a distribution of inter-event times with many narrow peaks and is conducive to being
represented with a categorical distribution. This situation is not uncommon—the histograms of all
real-world datasets used in this work are listed in Appendix B, and many have shapes with narrow
peaks capturing the majority of events. In addition to the inescapable discrete nature of many event
sequences recorded from real-world processes, realistic tasks associated with these sequences may
also define a resolution of interest. The spike prediction task is one such example. It is reasonable
to expect that use cases for predicting the next taxi request or the next visit to a location would
also describe a resolution at which predictions are relevant, such as seconds or minutes. Evaluating
probability mass within intervals would call into question the density-based loss signals typically
used for training TPP models. It would be interesting for future works to consider what other output
representations may be effective if mass rather than density based evaluations are used.

A second theme of this work is explaining performance differences between models. Section 4
showed how the training set sizes used in existing benchmarks snapshot the performance at a point
where reducing model size can be beneficial, presumably on account of the regularization effect of
model capacity. It was also shown that the synthetic datasets from Omi et al. (2019) are such that
small models achieve competitive performance at short training set sizes. This was argued to be
on account of how quickly these datasets plateau in terms of the performance gains they afford as
training data is increased. Both of these points suggest that existing benchmarks may be of limited
use to practitioners interested in using large models to exploit large amounts of data.

9 LIMITATIONS

Several limitations reduce the strength of the conclusions. The work does not consider the prediction
of additional spatial or categorical information. The exposition of both discrete and continuous
settings makes the treatment more comprehensive, but makes it more difficult to compare results
across sections. This work broadly ascribes model capacity and output structure as being important
for explaining performance across datasets; however, specific mechanisms are not isolated, such as
data memorization or the alignment of the output distribution family to a dataset’s distribution.

10 CONCLUSION

This work demonstrates that the categorical distribution is an effective representation for spike pre-
diction across a range of datasets. On existing TPP datasets, we show that many performance differ-
ences between models reduce as training set sizes are increased. We show that for existing synthetic
datasets, model size has very little effect on performance. We introduce a synthetic dataset where
larger models can make use of larger training set sizes. We describe a case study (neuronal spike
prediction) where the categorical distribution is a natural fit given the structure of the task. This task
is additionally valuable as it is accompanied by application-relevant performance metrics. Inspired
by the spike prediction task, we introduce a family of synthetic datasets where events are recorded
in finite intervals.

9
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REPRODUCIBILITY

Supplementary code (including datasets) permits all experiments to be reproduced. The Stack Over-
flow dataset is not included, as the usage agreement prevents distribution; for this case, instructions
for obtaining the data are provided in Appendix B.3. To accompany the code, the appendix also
includes descriptions of models (Appendix C), datasets (Appendix B) and training procedures (Ap-
pendix E).
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A SUPPLEMENTARY RESULTS

This appendix presents results supplementary to Sections 3 to 7.

Table 1 from Section 3 (Results on existing datasets) showed results for rnn-logmix and
rnn-cat evaluated on 12 real-world datasets. These results are extended by Table 4 to include
information on the variability over the 10 runs. Many of these datasets have fixed training, valida-
tion and test sets, so training runs do not differ in terms of data used, only in terms of initialization
and training stochasticity.

In Table 5, the same 12 datasets are used to test all model combinations of rnn, gpt-a and gpt-b
stems with heads const, exp, nn, logmix and cat, along with the Transformer Hawkes models,
thp-0 and thp-1. Table 6 shows the corresponding MAE scores.

In Section 4 (Training set sizes differentiate TPP model performance), Figure 3 showed NLL scores
on a subset of the synthetic datasets used in this work. Figure 12 and Figure 13 below show the
complete set of NLL and MAE scores for the synthetic datasets, and Figure 14 and Figure 15 show
the NLL and MAE scores for the real-world datasets.

In Section 7 (Event sequences from modulo addition), results were reported in terms of MAE. The
corresponding NLL scores are shown in Figure 16.

Table 4: Extension of Table 1 from Section 3 (Results on existing datasets). Two models
(rnn-logmix and rnn-cat) evaluated in terms of test set NLL (lower is better) on existing
real-world datasets. Point estimates are the mean over 10 trials. Variability is expressed as 95%
confidence intervals calculated assuming a normal distribution of the mean: ±1.96 s√

10
, where s is

the sample standard deviation.

Dataset rnn-logmix rnn-cat

Yelp airport 4.700 ± 5.43e-03 4.756 ± 2.63e-03
Yelp Mississuaga 3.890 ± 1.41e-03 3.925 ± 1.68e-03
Twitter 3.963 ± 1.60e-03 4.017 ± 1.42e-03
Taobao 2.409 ± 8.53e-04 1.856 ± 3.12e-04
Wikipedia 5.120 ± 1.07e-03 5.144 ± 7.58e-04
Yelp Toronto 4.884 ± 1.05e-02 4.870 ± 3.81e-04
PUBG 1.585 ± 7.33e-02 -2.195 ± 5.43e-04
MOOC 1.862 ± 9.01e-02 -0.464 ± 1.19e-03
Reddit AskScience 5.643 ± 1.49e-02 5.476 ± 3.54e-04
Amazon 5.579 ± 9.28e-03 5.608 ± 2.48e-04
Reddit Politics 4.628 ± 4.01e-02 3.906 ± 4.84e-04
Last.fm 5.069 ± 1.56e-02 5.055 ± 4.94e-03

A.1 DISCUSSION

The supplementary results motivate the discussion of two points: the contrast between MAE and
NLL metrics, and the presence of infinite NLL scores.

The MAE scores on the synthetic and real-world datasets (Figure 13 and Figure 15) show a simi-
lar pattern to the NLL scores (Figure 12 and Figure 14). Quick plateauing of performance on the
synthetic datasets from Omi et al. (2019) is even more apparent in terms of MAE. The ability to con-
centrate probability mass allows the models with a categorical output to achieve a low NLL score
on the NYC taxi dataset does not correspond to a similarly low MAE score. This is further evidence
to support the claim that NLL should be evaluated in terms of probability mass by specifying an
interval of interest, such as hours, rather than evaluating in terms of probability density. Indeed, a
theoretically best scoring model in terms of NLL simply outputs arbitrarily large probability densi-
ties at the countable rationals, yet such a model would not score well in terms of other metrics such
as MAE.
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best worstNLL (lower is better) theoretical bestcommon training set length

(a) Stationary Poisson (b) Stationary renewal (c) Hawkes1

(d) Nonstationary Poisson (e) Nonstationary renewal (f) Hawkes2

(g) Self-correcting (h) Metropolis lognorm

Figure 12: Performance comparison of 14 models in terms of test set NLL across 8 synthetic
datasets. There are 16 training set lengths from 210 to 225. The colormap ranges span each sub-
figure’s full range of values. Where a theoretical best score is known, it is marked with a red dashed
line.
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best worstMAE (lower is better)

(a) Stationary Poisson (b) Stationary renewal (c) Hawkes1

(d) Nonstationary Poisson (e) Nonstationary renewal (f) Hawkes2

(g) Self-correcting (h) Metropolis lognorm

Figure 13: Performance comparison of 14 models in terms of test set MAE across 8 synthetic
datasets. There are 16 training set lengths from 210 to 225. The colormap ranges span each sub-
figure’s full range of values.
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best worstNLL (lower is better) theoretical bestcommon training set length

(a) NYC taxi pickup times
(unit: minutes)

(b) Stack Overflow badges
(unit: days)

Figure 14: Performance comparison of 14 models in terms of test set NLL across 2 real-world
datasets. There are 16 training set lengths from 210 to 225. The colormap ranges span each sub-
figure’s full range of values.

best worstMAE (lower is better)

(a) NYC taxi pickup times
(unit: minutes)

(b) Stack Overflow badges
(unit: days)

Figure 15: Performance comparison of 14 models in terms of test set MAE across 2 real-world
datasets. There are 16 training set lengths from 210 to 225. The colormap ranges span each sub-
figure’s full range of values. The inter-event times for the NYC taxi dataset are scaled to minutes,
and the Stack Overflow badges dataset is scaled to days.
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(a) zero input (b) gpt-a-exp (c) gpt-a-logmix (d) gpt-a-cat

(e) gpt-a-const (f) gpt-a-nn (g) gpt-b-logmix (h) gpt-b-cat

Figure 16: Performance comparison of 8 models in terms of test set NLL. Each model is trained
and evaluated over a landscape of 16 training set sizes for 10 modulo datasets. Model (a) takes
no input and just outputs the empirical training set distribution; it acts as a baseline. Likelihood
is probability mass based and involves integrating over a 1-unit interval for models that output a
continuous distribution. White (□) represents a likelihood of 0 (∞ negative log-likelihood) and
includes the case where a model assigns a likelihood low enough to encounter numerical issues.

Another observation from the comparison between MAE and NLL is that thp-0 and thp-1 score
far lower in terms of MAE compared to NLL. These models have two output heads, one for specify-
ing a probability distribution, and another for making point predictions, and the models are trained
with a sum of negative log-likelihood and mean-squared error (MSE) loss terms using these heads
(Zuo et al., 2020). One possible explanation for the poor MAE scores is that, according to statistical
decision theory, the median of a distribution minimizes the expected cost under an MAE cost model,
whereas the mean of a distribution minimizes the expected cost under an MSE cost model. That is
to say, it is possible that the MSE loss term is suboptimal for the task of point predictions evaluated
with MAE.

Infinite negative log-likelihood (zero likelihood) scores on the modulo datasets raise questions of
numerical precision, overfitting and test set lengths. The NLL scores for the cyclic datasets (Fig-
ure 16) contain zero likelihood scores: the logmix head concentrates sufficiently little probability
mass to the interval containing the ground truth event that calculating the log probability produces
the floating-point representation of negative infinity (when using float32 precision). Although
this occurs rarely, the relatively large test sets used in this work magnify the chance that this leads to
an infinite NLL score. In part, this is a reflection of the issues of NLL as a metric; when viewing the
performance of the logmix head in terms of MAE (Figure 11), there is no indication of this issue.
A poor way to address this issue is to clamp the output probabilities above a minimum value—this
causes the output distribution to no longer be a valid probability distribution by having infinite prob-
ability mass on the interval [0,∞). If the cause is a result of gpt-a-logmix or gpt-b-logmix
being overconfident in certain values, a suitable solution could be to design a loss term that encour-
ages at least one of the mixture components to have a relatively large variance (and non-zero mixture
weight).
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Figure 17: Histograms for the Chicken RGC spike dataset. The histogram extend until the 0.95
quantile (left) and 0.6 quantile (right). The histograms have 128 bins. The y-axis shows normalized
counts.

B DATASETS

This appendix describes the datasets used in Sections 3 to 7. Appendix B.4 and Appendix B.3
explain the extension of existing datasets to accommodate larger training set lengths. Appendix B.5
describes the algorithm behind the Metropolis lognormal dataset and Appendix B.7 gives further
details on the modulo datasets.

B.1 DISTRIBUTION PROPERTIES

Histograms for all real-world datasets are shown in Figure 17, Figure 18 and Figure 19.

B.1.1 GINI COEFFICIENT

The Gini coefficients for these datasets are listed in Table 7. The Gini coefficient is a measure
of distribution inequality, which is useful in this context for indicating distributions which might
have a mix of continuous and discrete parts. A distribution where probability is concentrated in a
few isolated points in an otherwise large support will have a high Gini coefficient. The NYC Taxi
dataset has such a distribution (see Figure 19g). The Gini coefficient is calculated without binning
and operates on the resolution of the data type, float32.

Table 7: Gini coefficients for the distribution of inter-event times of the real-world datasets.

Dataset Gini coefficient

Amazon 0.000
Yelp airport 0.148
Yelp Toronto 0.192
Yelp Mississuaga 0.361
Twitter 0.438
Stack Overflow 0.461
Taobao 0.587
Last.fm 0.705
Wikipedia 0.722
Chicken RGCs 0.745
PUBG 0.871
Reddit AskScience 0.877
MOOC 0.885
Reddit Politics 0.906
NYC taxi 0.974

B.2 SOURCES FOR THE REAL-WORLD DATASETS

The Last.fm, MOOC, Wikipedia and Yelp Toronto datasets used in this work were those made
available alongside Shchur et al. (2020). The PUBG, Twitter, Yelp Airport, Yelp Mississauga and
two Reddit datasets were those made available alongside Lüdke et al. (2023). The Taobao and
Amazon datasets are from Xue et al. (2023). The Taobao and Amazon datasets define fixed train,
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(a) Yelp airport

(b) Yelp Mississauga

(c) Twitter

(d) Taobao

(e) Wikipedia

(f) Yelp Toronto

(g) PUBG

Figure 18: Histograms for 7 real-world datasets. Histograms extend until the 0.95 quantile (left) and
0.6 quantile (right). All histograms have 128 bins. The y-axis shows normalized counts.
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(a) MOOC

(b) Reddit AskScience

(c) Amazon

(d) Reddit Politics

(e) Last.fm

(f) Stack Overflow badges

(g) NYC taxi pickup times

Figure 19: Histograms for 7 real-world datasets. Histograms extend until the 0.95 quantile (left) and
0.6 quantile (right). All histograms have 128 bins. The y-axis shows normalized counts.
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low highdata point density

(a) MOOC (b) PUBG

(c) Reddit AskScience (d) Reddit Politics

(e) NYC Taxi (f) Last.fm

Figure 20: Distribution of pairs of inter-event times, xi and xi+1 for 6 real-world datasets. The first
4 datasets (MOOC–Reddit Politics) appear to have a grid structure on account of the resolution
at which the data was recorded. The last 2 datasets (NYC Taxi and Last.fm) have a grid structure
embedded within a smoother distribution, suggestive of a periodic component to the underlying
process. Each figure has a quantile threshold chosen so that the structure is visible. Each figure is a
rasterization of event counts into a 256× 256 pixel grid.
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Figure 21: Distribution of pairs of inter-event times, xi and xi+1 for the Stack Overflow dataset.
The right figure is a clipped version of the left figure. The peak at ~365 days is small relative to
the overall density, but is visible in the right figure when the maximum colormap value is reduced.
This peak presumably corresponds to a badge typically awarded yearly.

validation and test splits, whereas for the other datasets, a random split into train, validation and test
sets was carried out with a ratio of 6:2:2.

B.3 EXTENSION OF NYC TAXI PICKUP TIMES AND STACK OVERFLOW BADGES

While there are many “real-world” datasets used in literature on TPPs, most are relatively small with
less than 1 million events. New York City taxi pickup times and Stack Overflow badges were chosen
for this work as the source data contains tens of millions of events, allowing a wide range of training
set sizes to be investigated.

Data on taxi pickup times in various cities has been used in numerous works on TPPs. We use the
data collected by Whong (2014). This data is used in works such as (Du et al., 2016). The data
was obtained by Whong (2014) through filing a Freedom of Information Law Request (FOIL) to the
New York City Taxi and Limousine Commission. The data comprises of millions of rows where
each row contains (among other information): medallion ID, pickup datetime and dropoff datetime.
For example: ["89D227B655E5C82AECF13C3F540D4C", "2013-01-01 15:11:48",
"2013-01-01 15:18:10"]. The pickup and dropoff datetimes are recorded with a resolution
of seconds. We process this data by grouping all entries by medallion, sorting by pickup time to
create a list of event sequences, and then subtracting adjacent event times to form sequences of
inter-event times. Subsets of this list of lists are used to form the training, validation and test sets.
The training set is formed by taking the first n sequences such that the n sequences contain at
least 225 inter-event times. The validation set is taken next followed by the test set such that each
has at least 217 inter-event times. The remaining events are not used. While data is recorded at a
resolution of seconds, we rescale the data to units of minutes. We do no further processing of the
data. This is in contrast to Du et al. (2016) who split sequences at gaps larger than 12 hours. We
hypothesize that splitting at large gaps would benefit models which are less capable of expressing
distributions with peaks far from zero; for example, a model outputting a constant hazard (equivalent
to a parameterized Poisson distribution), cannot concentrate probability far from zero without also
increasing the distribution’s second moment. We argue that there is no fundamental reason why
models should not be expected to model these gaps, and so we do not split any sequences.

Timestamps of users receiving badges on the website Stack Overflow were also used by Du et al.
(2016). In order to complete training, validation and test sets of size 225, 217 and 217, we obtained a
more recent data export (last updated 29th August 2024) of the data from the Stack Overflow website
(Overflow, 2024). Timestamps for this dataset are recorded with a resolution of milliseconds. Pro-
cessing was carried out in the same manner as for the NYC taxi dataset described above, this time
grouping by the column UserId, and rescaling to units of days. At the time of download, Stack
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Overflow stipulated that the data was provided under the condition that the data is for the users’ own
use; and so we do not distribute a copy.

B.4 SYNTHETIC DATASETS FROM (OMI ET AL., 2019)

We generate the 7 synthetic datasets from (Omi et al., 2019) following the released code that accom-
panied that work. We extended the length of the generated sequences to fill training, validation and
test sets of size 225, 217 and 217 respectively.

B.5 METROPOLIS LOGNORMAL PROCESS

The Metropolis lognormal process is an intentionally poor sampler of lognormal distribution, im-
plemented with a modified Metropolis-Hastings algorithm, described in Appendix B.6 and Algo-
rithm 1. The sampler’s target distribution is a standard normal distribution, and the events of the
process are obtained by taking the log of outputs of the sampler. A sampler uses a stochastic transi-
tion matrix like that shown in Figure 23. The proposed samples are generated with another modified
Metropolis-Hastings sampler. In total, there is a stack of 3 such samplers.

B.5.1 MOTIVATION

The Metropolis lognormal process was designed to be decodable to a high degree given sufficient
event history and compute. It was also designed so that unconditional inter-event times follow a
relatively simple distribution—this is intended to match real-world processes which can be fully de-
terministic given enough information yet have aggregate properties that follow simple distributions.
The Metropolis lognormal process achieves both of these properties by being a poor sampler of a
lognormal distribution. The inter-event times are approximate draws from a lognormal distribution,
achieving one of the goals above, but the sampling is determined by fixed transition matrices, which
can be decoded given a sufficiently long sequence.

B.6 SEQUENCE GENERATION

The sequence generation algorithm is shown in Algorithm 1. This section gives an overview of the
algorithm.

A sequence is generated as follows. First, a transition matrix defining a cycle between states is fixed.
We use 20 states. The domain, (−∞,∞), is split into 22 intervals; 2 outer intervals, (−∞, 4.3) and
(4.3,∞), which each contain a small amount (10−5) of the probability mass of a normal distribution,
and 20 intervals that share the remaining (>99%) probability mass evenly. The 20 states correspond
to the 20 inner intervals, while the 2 outer intervals are not used. The Metropolis-Hastings sampling
process uses a proposal distribution located at the previous sample. We modify this process to first
follow the transition matrix to a new state before sampling with a proposal distribution from the
corresponding location in the new interval. We nest this process by having the proposal distribution
also be a pseudo-normal distribution generated by the same process but with a separate transition
matrix. The log of the generated values become a sequence of inter-event times.
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Figure 22: The interval (−4.26, 4.26), which contains all but 2×10−5 of the probability mass of the
standard normal distribution, is divided into 20 subintervals, each containing equal probability mass
with respect to the standard normal. The outer intervals, (−∞,−4.26) and (4.26,∞), are not used.
The intervals are labelled s0, s1, ..., s19 corresponding to the states used in the Metropolis-Hastings
sampler. Here, the figure zooms in to (−2, 2) to see the shorter intervals more clearly.

Figure 23: The stochastic state transition matrix used by the outermost sampler. The preponderance
of probability is assigned to the next state of a random cycle, with a small amount of probability
assigned down the diagonal. Reducing the probability assigned to the diagonal increases the deter-
minism of the sampler, but reduces how well the sampler approximates the target distribution.
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Algorithm 1 Modified Metropolis-Hastings sampler. A subset of the real line (tmin, tmax) is sub-
divided into S intervals of equal probability mass according to the target distribution π; these S
intervals are the states. Before querying the proposal distribution, the algorithm transitions accord-
ing to a stochastic transition matrix between these states. To calculate the forward and reversal
probability, an approximating distribution, innerPdf, is used. The sampler calls the step function
in a loop, and, unlike standard Metropolis-Hastings, repeated samples are discarded. The samplers
can be stacked; in this work, we stack 3 such samplers, and for the base distribution q0, a deter-
ministic cycle between 30 quantile points of a normal distribution is used. This makes the sequence
deterministic up to the randomness implied by the transition matrices, T1, T2 and T3 and the uniform
sampling, U .

1: function mapPos(x, sfrom, sto)
2: Compute the relative position of x within the interval of state sfrom and map it to the corre-

sponding position in the interval of state sto.
3: return mapped position
4: function posToState(x)
5: Determine the state the given position x is in.
6: return state
7: function Sampler.init(x0, π, T, innerSampler, innerPdf)
8: The innerSampler is called to generate new proposals, and innerPdf is called to approximate

the distribution of the innerSampler for the purpose of calculating the reversal probability.
9: State: xt ← x0

10: State: π, q, T , innerSampler, innerPdf
11: function Sampler.step
12: st ← posToState(xt) ▷ Determine current state
13: s′ ← Sample from T (s′ | st) ▷ Transition to next state
14: x′ ← mapPos(xt, st, s

′)
15: xt+1 ← innerSampler(xt+1 | x′) ▷ Propose new sample
16: pforward ← T (s′ | st) innerPdf(xt+1 | x′)
17: preverse ←

∑
i∈S innerPdf(xt | mapPos(xt+1, s

′, si)) T (s′ | si)
18: Compute acceptance ratio:

α← π(xt+1) preverse

π(xt) pforward

19: u← Sample from U(0, 1)
20: if u < α then
21: return xt+1 ▷ Accept proposal
22: else
23: return xt ▷ Reject, keep current state
24: function Sampler.sample
25: xt+1 ← Sampler.step
26: while xt+1 = xt do ▷ Ignore repeated samples
27: xt+1 ← Sampler.step
28: xt ← xt+1 ▷ Update state
29: return xt+1

30: function nestedSampler(q0)
31: π1 ← N (0, 1)
32: π2 ← N (0, 1

3 ) ▷ Inner samplers are narrower
33: x0 ← 0
34: T1, T2, T3 ← sample transition matrices
35: q1 ← Sampler.init(x0, π1, T1, q0, π2)
36: q2 ← Sampler.init(x0, π2, T2, q1, π2)
37: q3 ← Sampler.init(x0, π2, T3, q2, π2)
38: return q3
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Figure 24: Training sets. Distribution of inter-
event times for overflow datasets of dimension
1, 4, 7 and 10 (from top to bottom). The dis-
tribution is the count distribution of inter-event
times over the 0.8× 217 sequences in the train-
ing set.

Figure 25: Entropy of the count distribution of
inter-event times for the 10 training sets.

subset size

Figure 26: Mean cross-entropy between the
distribution of inter-event times in the whole
training set and in subsets of the training set.
For 10 subset sizes ranging from 20 to 29,
the mean cross-entropy is calculated using 100
random subsets of that size. Subset sizes 29

and above are indistinguishable on the figure.

B.7 MODULO SEQUENCES

This section describes further details of the modulo “overflow” sequences. Appendix B.7.1 de-
scribes the properties of the inter-event time distributions of the modulo sequences. Appendix B.7.2
rephrases the sequences in terms of cyclic groups, which allows the easy deduction of the period
of the sequences. Appendix B.7.3 describes analogous continuous-time sequences. Appendix B.7.4
explains the motivation behind the bounds on the velocity v used to generate the sequences in this
work.

B.7.1 PROPERTIES OF THE MODULO DATASETS

This section builds some intuition on the modulo datasets. Figure 24 shows the distribution of inter-
event times for the 1, 4, 7 and 10-dimension datasets. With increasing dimension, the distribution of
inter-event times shifts to concentrate near 1, with a roughly exponential shape. The entropy of all 10
datasets is shown in Figure 25. The decreasing entropy with increasing dimension explains how the
NLL scores for the zero input model (Figure 16a) decrease (improve) with increasing dimension.
This is also demonstrated in Figure 26, where the cross-entropy between the full training set and
smaller training sets predicts the NLL scores of the zero input model; the distributions of subsets
with more than 29 sequences ( 219 events) can be seen to be very similar to the overall distribution.
Finally, Figure 27 uses V-information (Xu et al., 2020) as applied by Ethayarajh et al. (2022) to
gauge how difficult the datasets are for the gpt-b-cat model to learn beyond what the zero input
model can learn. Interestingly, for some of the dimensions, there is a U-shaped relationship where
at both small and large dataset sizes, the gpt-b-cat model can outperform the zero input model
to a greater degree compared to intermediate dataset sizes.
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Figure 27: V-information calculated following Ethayarajh et al. (2022) as HV(Y ) − HV(Y |X),
where HV(Y ) is estimated from the cross-entropy from Figure 26 and the gpt-b-cat model
results in Figure 16 are used for HV(Y |X). The set V is the set of all possible mappings describ-
able by the gpt-b-cat architecture. Estimating HV(Y ) from the cross-entropy is possible as a
gpt-b-cat model trained with no input will match the empirical distribution of the inter-event
times in the provided training set.

B.7.2 CYCLIC GROUP PERSPECTIVE

The sequence (ak)
∞
k=0 of particle positions in d dimensions can be understood as stepping through

a sub-cycle of a cyclic group. In 1-dimension, for a given n ∈ N, two elements c and g of the cyclic
group Z/nZ define the sequence (ak)∞k=0 as cgk. The overflow sequence contains every k such that
cgk < cgk−1. Moving to higher dimensions, let G be the product of d cyclic groups G1, G1, ...Gd

of order n1, n2, ...nd. Let c and g be elements of G and, as before, define the sequence (gk)
∞
k=0 as

cgk, with the overflows now defined as the ks where any element of cgk is less than the previous
element in cgk−1. If all n1, n2, ..., nd are chosen to be prime, then it is guaranteed that all sequences
will have a period of n1 × n2 × ... × nd. As long as this product is less than the input length of a
model, we can be confident that a model is not simply repeating a loop seen in its input.

B.7.3 CONTINUOUS SEQUENCES

A continuous analogue in 1-dimension is to consider a particle starting from position p0 ∈ R and
moving in a straight line with velocity v ∈ R. An event occurs at every time t > 0 such that
p0 + vt = kn for some k ∈ N and fixed n ∈ R. An event sequence is then defined as the ordered
set of all such t. This extends naturally to higher dimensions by considering vectors p0, v and n,
and having events occur every time one of the components of p0 + vt is an integer multiple of the
corresponding component of n.

More complicated sequences can be generated by adding more particles or making them bounce
rather than pass through faces, or making the task to determine the next collision time of a set of
particles with mass moving in a box.

B.7.4 BOUNDS ON V

An upper bound on v prevents the inter-event time distribution from collapsing to P(∆t = 1) = 1 as
the dimension increases. For example, in 10-dimensions, if components of v are around 500, with
the grid being defined by n = [1021]d, then each component overflows every 2-3 steps, resulting in
almost every step containing an event. In this work, the upper bound on v was set to 80 to limit this
effect.

The reason for the lower bound of 10 is that it sets the maximum inter-event time at around 100
(103). The benefit of this is that it allows the discrete approach to encode all possible event times
with a reasonable array size. This marks a similarity to the spike prediction task, where 81 bins
were sufficient to encode all events of interest. If there is a larger maximum inter-event time, then
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the discrete model can use a larger output array or group events into a single output bin, similar to
how bins were chosen in Section 3.

C MODEL DETAILS

This section covers some details on implementing the models used in this work. More details on how
a categorical distribution can be mapped to a distribution over [0,∞) are covered in Appendix C.1.
Encoding event times to be input to gpt-a and gpt-b is covered in Appendix C.3. Appendix C.4
describes the implementation of the existing models used in this work.

C.1 BIN WIDTHS AND DENSITIES FOR THE CATEGORICAL HEAD WITH CONTINUOUS DATA

When the target distribution is constrained to a small finite number of possibilities, as is the case
for the spike prediction task and the modulo datasets, the categorical head can output an array of
unnormalized probabilities with one element per possible event. This strategy does not work when
the target distribution is closer to being continuous, as is the case for the datasets used in Sections 3
to 4. As described in Section 3, in this work, we follow Kvamme & Borgan (2021) and split the
domain of the target distribution into intervals (as many intervals as we have output elements) that
evenly share the probability mass of the training set’s empirical distribution. In this work, the do-
main is always assumed to be [0,∞), and the categorical models always output 128 elements. The
endpoints of the intervals are determined as follows. The first interval begins at 0 and the last in-
terval extends to∞. The 127 remaining boundaries are assigned to the 1/128, 2/128, ..., 127/128
quantiles of the inter-event times from the training set. The quantiles are calculated using the default
numpy quantile function, which uses the linear interpolation method from (Hyndman & Fan, 1996).
Figure 28 shows an example output from a trained gpt-a-cat model with 128 output elements.
The probability density within each interval is ci

wi
, where ci is the probability mass assigned to the

i-th interval and wi is the width of the i-th interval. Thus, for all bins except the final bin, the output
of the categorical head is interpreted as a piecewise constant density function.

For the final infinite length interval, the probability density is given by: f(t) = c128λe
−λt, where

c128 is the probability mass assigned to the final interval, and λ, the rate parameter, is chosen to be
the length of the 2nd last interval. In practical applications where predictions are updated when new
information becomes available, the final bin may not require a density function, and the probability
mass assigned to it is sufficient. A density for the last bin is used in this work so as to enable
comparison to other models using the density-based NLL metric.

When calculating intervals, if a single inter-event time is frequent enough to represent more than
1
N of the probability mass, then a zero width interval could be encountered, leading to an infinite
probability density. To prevent this singularity, we impose a minimum interval width of 2−17 to
avoid numerical issues. While not explored in this work, the choice of minimum can act as a form
of regularization, with wider minimums providing stronger regularization.

C.2 GPT-A AND GPT-B

The gpt-a and gpt-b transformers follow the standard GPT-2 architecture ((Radford et al., 2019))
with the layer configurations (layers-heads-embedding size) set to 2-4-16 and 6-4-32 respectively.
This gives gpt-a and gpt-b 108k and 1.20M trainable parameters, respectively. The standard
GPT-2 small configuration defined by Radford et al. (2019) uses a 12-12-768 configuration, high-
lighting that both gpt-a and gpt-b are very small in the context of GPTs used as large language
models. Computational limits prevented the investigation of larger models.

C.3 INPUT ENCODING FOR GPT BASED MODELS

When the gpt-a and gpt-b architectures are used for the spike prediction task, the input to these
modules is a sequence outputted by the CNN encoder. When the gpt-a and gpt-b architectures
are used on their own, for example in Section 3, the scalar values representing inter-event times are
converted to a vector representation according to Algorithm 2 before being input into the transform-
ers. This approach is similar to that used by Zuo et al. (2020). We do not hard-code the sinusoidal

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a)

(b)

(c)

Figure 28: An example output of a gpt-a-cat model trained on the 225 length Stack Overflow
badges training set. (a): the probability mass assigned to each of the 128 output intervals. The bar
widths correspond to the interval widths and heights correspond to the probability mass assigned
to the intervals by the model. The final infinite interval starts from 2511 and is assigned only a
small probability (7.5× 10−5), so cannot be seen. (b): the same output as (a), but zoomed in to the
interval (0, 100). (c): zoomed into the interval (0, 0.2), but this time, the bar heights correspond to
the probability density over the intervals (mass/width). In this example, the probability density is
highest for the very narrow intervals near 0.
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frequencies but choose appropriate scales so that both long and short intervals seen in the data are
captured.

Algorithm 2 Encode a scalar value v into a vector of even size n. vepsilon should be chosen near the
smallest inter-event time expected to be encountered and vmax should be chosen to be near the largest
time expected to be spanned by inputs to the model, and will depend on the length of a model’s input.
In this work, we choose vepsilon as the smallest inter-event time observed in the training set, and vmax
as the largest time between events ti and ti+L where L is the input length of the model.

1: function encodeValue(v, vepsilon, vmax, n)
2: scalemin ← 2π/vmax ▷ Or use 3

2π to add a little more range
3: scalemax ← 2π/vepsilon
4: scale← linspace(log(scalemin), log(scalemax), n/2) ▷ A vector of length n/2
5: x1 ← cos(exp(scale) · v)
6: x2 ← sin(exp(scale) · v)
7: x← concat(x1, x2)
8: return x

C.4 IMPLEMENTATION OF EXISTING MODELS

The const, exp and nn heads are implemented following the code accompanying (Omi et al.,
2019). The logmix head is implemented following the code accompanying Shchur et al. (2020).
The thp-0 and thp-1models are implemented partially following (Zuo et al., 2020), but deferring
to the implementation accompanying (Xue et al., 2023) for a number of bug fixes to the original
model.

One deviation from these implementations is in model initialization. In order to improve conver-
gence speed and stability while training, all models were initialized so that their outputs have first
and second moments similar to those of the training set’s empirical distribution.

C.5 LIMITATIONS OF EXISTING MODELS

The existing output structures considered in this work have limitations in terms of distribution flex-
ibility and training stability, both of which contribute to preventing them from representing multi-
modal distributions with very narrow peaks.

C.5.1 DISTRIBUTION FLEXIBILITY

The constant intensity, exponential intensity and the softplus intensity (used by thp-0 and thp-1)
correspond to distributions over [0,∞) with 1 or 2 parameters. With only 1 or 2 parameters, they
do not have the flexibility to represent distributions where there are multiple separated peaks of high
probability density, which is a property of several of the real-world datasets (see Figure 20).

The constant intensity output corresponds to the exponential distribution. The exponential distri-
bution has a single scalar parameter with the distribution’s mode fixed at 0. The distribution cannot
concentrate probability at any non-zero point.

The exponential intensity output corresponds to the Gompertz distribution. The Gompertz distri-
bution has two parameters, a scale and a shape parameter. It is a unimodal distribution so cannot
concentrate probability at two or more separated points.

The softplus intensity function corresponds to a non-standard unimodal probability distribution
with two parameters. Its unimodal shape is inferred from the monotonicity of the softplus function.
Being unimodal, it is restricted in its ability to concentrate probability at multiple separated points.

C.5.2 MIXTURE OF LOGNORMALS INSTABILITY

A mixture of lognormals can theoretically represent distributions with multiple sharp peaks. How-
ever, when training models with this output structure on datasets where there is a significant discrete
component to the inter-event distributions, we do not observe the models being able to strongly
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concentrate probability in narrow peaks. We argue that such models struggle to represent such dis-
tributions on account of training instability in the presence of singularities.

A mixture of lognormals on t ∈ (0,∞) is equivalent to a mixture of Gaussians on y ∈ (−∞,∞),
where y = log(t), and so models that output a mixture of lognormals can be thought of as outputting
a mixture of Gaussians on a log scale. A mixture of Gaussians can produce any number of modes,
up to the number of components in the mixture.

The process of fitting these mixtures using the expectation-maximization (EM) algorithm demon-
strates how this flexibility does not necessarily allow the mixture to represent distributions with
sharp peaks. When fitting a mixture of Gaussians using the EM algorithm, a component’s variance
can collapse toward zero at a single point. To avoid this, strategies such as introducing priors on the
parameters or resetting the EM optimization procedure are used Bishop (2006).

When using stochastic gradient descent to train a neural network with a mixture of lognormals
output, we argue that encountering such singularities can manifest as unstable training and prevent
models from expressing distributions with sharp peaks. A simple case study (Figure 29) shows
gpt-a, outputting a 2-component lognormal mixture, trained on a dataset generated from a mixture
of a lognormal distribution and a point mass. As one of the output components narrows around the
single point, sudden spikes in gradient cause the parameters of the component to be perturbed and
its mixing weight to suddenly decrease. "Real-world" datasets such as the NYC taxi dataset have
such point masses, and training stability in the presence of these sharp distributions is a candidate
explanation for why the logmix head is not observed to concentrate probability at such points in
a stable manner. To prevent the instability, regularization could be introduced in the form of a prior
on the variance of each component. Doing so amounts to specifying a resolution of interest for the
task and would be further evidence of the benefit of acknowledging the discrete nature of recorded
event times.
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(a) The probability distribution of a dataset generated
from a mixture of a point mass at t = 2 and a lognor-
mal distribution with parameters µ = 0 and σ = 1.0.

(b) How the NLL (evaluated on a held-out valida-
tion set) and the model’s six parameters change while
training.

Figure 29: The instability of a logmix output head when a dataset has a probability mass at a certain
point. (a): shows the distribution of inter-event times. The dataset is formed from a mixture where
10% of values come from a point source at t = 2, and the remaining values are drawn from a
lognormal distribution with parameters µ = 0 and σ = 1.0. All events are independent. The
model used is a gpt-a stem with a 2-component lognormal mixture output. The model is trained
using stochastic gradient descent with momentum (0.9) and a learning rate of 5× 10−4. (b): shows
the mixture parameters (the model output) and the NLL (calculated on an evaluation set) over the
course of training. The six model parameters are the mixing parameters (τ0, τ1) and the means and
variances ( µ0, µ1, σ0, σ1) of the two underlying Gaussian distributions. Notably, neither µ0 nor µ1

approach 2.0 in a stable manner. Training stopped when evaluating the distribution median produced
NaN values. This instability occurs reliably across runs.
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D SPIKE PREDICTION

This appendix is supplementary to Section 6: A categorical output is effective for spike prediction.

D.1 DATASET

The spike prediction task uses a dataset constructed from 16 recordings of chicken RGC spike ac-
tivity; the recordings were carried out by Seifert et al. (2023) using a multi-electrode array. Each
recording is 15 minutes long and contains activity of multiple RGCs. The processing of the record-
ings to produce a dataset follows the procedure described by Doran et al. (2024), who created a
dataset from 1 of the 16 recordings. In total, across the 16 recordings, 1611 cells are used.

Both the stimulus and spike times are stored at a sample rate of 992Hz. The sample period is very
close to 1ms (1.0081), and when discussing model inputs and outputs we make the simplification
of assuming 1 bin is 1ms. This means that while the 80 × 1.0081ms intervals actually sum to
80.65ms, we refer to the combined 80 bin interval as being 80ms for simplicity.

An input to a model is a 5×1024-shaped array representing just over 1 second of stimulus and spike
history—4 rows record the 4-LED stimulus, and the last row encodes the spike train as a binary
sequence. For any given input, the ground-truth output is 1 of 81 possible events corresponding
to a spike occurring in one of 81 intervals: 80 approximately 1ms length intervals and the final
infinite interval. The recording is broken into intervals along the time axis in order to form training,
validation and test segments with a ratio 7:2:1. From a training, validation or test interval, a sample
is formed from any sub-interval long enough to cover both input and output lengths (1024+80 bins).

D.2 MODEL ARCHITECTURE

The overall model architecture can be summarized as: head(gpt(cnn(input) +
embed(cell_id))), where the head is either the logmix or cat head. The transformer ar-
chitecture was described in Appendix C.2, and the CNN architecture is described below. The em-
bedding is a standard 1-hot vector encoding of the integer cell ID ∈ [0, 1611).

D.3 CNN ENCODER

The CNN encoder shared by all spike prediction models takes a 5×1024-shaped input and produces
a 64 × 64 shaped intermediate representation which is added to the cell ID embedding to form the
input to the gpt-a or gpt-b transformers. The CNN architecture is described in Table 8. ResNet
blocks (He et al., 2016) with an expansion factor of 4 form the core of the encoder. Squeeze and
excite layers (Hu et al., 2018) were applied to the residual connections between ResNet blocks.

D.4 OUTPUT HEADS

For the spike prediction task, the two output heads were implemented as linear functions (fully-
connected layers) taking the last vector of the transformer output as input. The logmix outputs
64× 3 = 192 values used to parameterize a mixture of 64 log-normal distributions. The cat head
outputs 81 values, used to parameterize the categorical distribution over 81 intervals.

D.5 TRAINING

A batch size of 1024 was used for all models. Models were trained over 2 epochs, which was
empirically determined to be long enough to see all models exhibit overfitting. While 2 epochs may
seem low, the 10 1

2 minutes of the training set produces over 1 billion unique timesteps ( 10 1
2 minutes

with 992 samples per second for 1611 cells), and each of these timesteps appear in multiple inputs
per epoch. Cross-entropy loss is used for both output heads. This is a probability density calculation
for the logmix head, and a probability mass calculation for the cat head. The probability mass
calculation for the cat head is equivalent to a density scaled by the interval widths. While training,
evaluations were carried out at regular training step intervals—every 5000 training steps. Other
training settings shared by other experiments are described in Appendix E.
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Table 8: Convolution layers of the stimulus and spike history encoder used for spike prediction,
containing ~603 k trainable parameters.

Layer Input size Kernels (length, channels, stride) Output size

Conv 1 5×1024 [21, 16, 2]× 1 16× 512

Conv 2 16×512 [21, 16, 1]× 1 16× 512

ResNet blocks
(downsampling) 16 × 512

[
1 128 1
7 128 2
1 64 1

]
× 3 64× 64

ResNet block 64× 64

[
1, 128, 1
7, 128, 1
1, 64, 1

]
× 1 64× 64

D.6 EVALUATION

Four metrics are used to describe the performance of models at the spike prediction task: negative
log-likelihood, Van Rossum distance, Schreiber similarity and smoothed Pearson correlation. The
metrics are calculated on a held-out test interval of the RGC recording.

D.7 NEGATIVE LOG-LIKELIHOOD

Negative log-likelihood (NLL) is the mean negative log-likelihood of the ground truth spikes given a
model’s output, calculated for every input-output snippet in the test set. This is a non-autoregressive
metric. It is calculated in terms of probability mass, which involves integrating over the interval for
the logmix head.

=Van Rossum
distance

dist

=Schreiber
similarity

similarity

Figure 30: Calculation of Van Rossum distance (left) and Schreiber similarity (right) from two input
spike trains. Both metrics employ distinct smoothing kernels to produce an intermediate vector. Van
Rossum distance can be thought of as measuring the Euclidean distance between the vectors, while
the Schreiber similarity assesses the angle between them. Figure taken from Doran et al. (2024).

D.7.1 SPIKE TRAIN SIMILARITY/DIFFERENCE METRICS

The remaining 3 metrics are calculated after first producing a predicted spike train. A spike train is
produced by evaluating a model autoregressively, shifting forward until the time of the next predicted

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

spike or the maximum stride of 80 bins. A model is given the first input snippet including the ground
truth spikes. The median of the model’s output distribution is used as the prediction for the next
spike. For example, if there is a spike predicted in the 10th bin, then nine 0s and one 1 will be
appended to the existing spike train. This process repeats until the stimulus is fully consumed.

Once a spike train is generated, Van Rossum distance, Schreiber similarity and smoothed Pearson
correlation can be calculated. The process of calculating Van Rossum distance and Schreiber simi-
larity is shown in Figure 30. Smoothed Pearson correlation is calculated as the well-known Pearson
correlation after first smoothing with a Gaussian kernel. For all metrics, the smoothing parameter is
set to 60ms, which is a length shown to be appropriate by Doran et al. (2024).
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E TRAINING AND EVALUATION DETAILS

This appendix describes hyperparameters and other settings associated with training and evaluation.
Appendix E.1 covers settings shared by all experiments. Settings specific to the spike prediction
task were covered in Appendix D.5. Appendix E.2 covers settings associated with the remaining
experiments.

E.1 SHARED SETTINGS AND HYPERPARAMETERS

The following settings were shared across all training runs across all experiments.

Software. Pytorch 2.6.0 with Cuda 12.4.1 was used for training and evaluation.

Optimizer. All training runs use the AdamW optimizer described by (Loshchilov & Hutter, 2019).
AdamW parameters (β1, β2, eps, weight decay) were set to (0.9, 0.99, 1 × 10−5, 0.02)—chosen
roughly in line with heuristics described by Howard et al. (2020). Weight decay was applied to all
parameters except bias and embedding parameters.

Precision. Pytorch’s automatic mixed precision and gradient scaling were used during training.
In cases where greater numerical precision is needed, such as when calculating probabilities from
hazard outputs, 32-bit floating-point precision was used.

Loss function. Most models were trained to minimize negative log-likelihood. The spike distance
model that appears in Appendix D was trained to minimize the mean-squared error between the
output and target representations. thp-0 and thp-1 used a loss term that is the sum of a negative
log-likelihood term and a mean-squared error term (Zuo et al., 2020).

Model choice. The final models are selected from the checkpoints taken during training with the
lowest validation loss.

Learning rate scheduler. The 1-cycle learning rate policy with 3 phases described by Smith &
Topin (2017) was used.

Maximum learning rate. The maximum learning rate, which parameterizes the learning rate sched-
uler, was chosen by carrying out learning rate range tests as described by Smith (2017). The choice
of learning rate is described in more detail below, in Appendix E.3.

Early stopping. An early-stopping strategy was used to reduce wasted compute. After at least 1/2
of the total training steps have been completed (when the learning rate is decreasing), early stopping
is triggered if the smoothed validation loss (smoothed at 0.8) has not improved over 12 evaluations.
Post-training, training and validation loss curves were inspected to ensure that early stopping was
not triggered prematurely.

E.2 SETTINGS FOR EXPERIMENTS FROM SECTIONS 3 TO 7

The approach to hyperparameter selection described in this section is used for the experiments from
Section 3 onwards. The choice of settings such as batch size, training duration and learning rate
is more involved for these experiments, as the heterogeneous combinations of models and datasets
require a more sophisticated choice of hyperparameters.

Training steps. In order to compare training runs across datasets of different sizes, the number of
epochs is not fixed. We set two upper limits: the number of samples drawn during training is capped
at 227 (~134 million samples), and the number of epochs is capped at 512. These limits are large
enough so that both the larger and smaller datasets are trained for sufficient samples in order for
training to converge (or overfit). The longest training set has 225 events, and so each sample can be
seen 4 times during training. For training set sizes smaller than 219, samples will be seen 512 times
during training. The combination of these caps with the batch size settings described next results in
the training settings shown in Table 9.

Batch size. The wide range of training set sizes means that there isn’t a single batch size suitable
for all training runs. When the training set size is relatively large, a batch size of 1024 is used. This
value was chosen as a batch size any smaller led to the overall training time becoming prohibitively
long. As the size of the training set is reduced, this batch size eventually becomes unsuitably large
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in comparison to the dataset size; for example, a whole epoch of the smallest training set would fit
into a single batch, and we would no longer be performing stochastic gradient descent. To address
this, batch size is reduced for the smaller datasets by limiting it to a maximum of 1

128 of the training
set size.

A limitation of having batch size vary with training set length is that it becomes another potential
explanation for differences in performance. We argue that this does not detract from the results as
the batch sizes that are paired with each training set size are representative of what a practitioner
would use; for example, it would not be representative of common practice to train a model on the
225 length training sets with a batch size of 4.

Steps per evaluation. Models are evaluated every 1024 training steps, or every epoch, whichever
is sooner. Evaluating every epoch is too infrequent for the larger training sets. The effect of these
settings is still to evaluate more frequently for smaller datasets; this is suitable as models quickly
overfit on these datasets, and it is desirable to have more frequent evaluations in order to select the
best-performing model parameters.

Table 9: Relationship between training set size and a number of settings: batch size, number of
epochs, number of steps and number of evaluations. Batch size is capped at 1

128 of the training
set size. The number of epochs is capped at 512. 227 samples are drawn, or until the epoch limit
of 512 is reached. An evaluation is run every epoch or every 1024 steps, whichever is sooner. A
consequence of these settings is that all configurations share the same number of steps.

Train length Batch size Epochs Steps Evals

1024 8 512 65536 512
2048 16 512 65536 512
4096 32 512 65536 512
8192 64 512 65536 512

16384 128 512 65536 512
32768 256 512 65536 512
65536 512 512 65536 512

131072 1024 512 65536 512
262144 2048 512 65536 512
524288 2048 256 65536 256

1048576 2048 128 65536 128
2097152 2048 64 65536 64
4194304 2048 32 65536 64
8388608 2048 16 65536 64

16777216 2048 8 65536 64
33554432 2048 4 65536 64

Learning rate. With multiple datasets, models and batch sizes, fixing a single learning rate would
risk skewing results in favour of configurations that best suit the chosen learning rate. Instead of
fixing a learning rate, we fix a strategy for selecting a learning rate. This is described in the next
section.

E.3 LEARNING RATE SELECTION

For all configurations of models and datasets, an individual maximum learning rate is chosen by
using the learning rate range test introduced by Smith (2017). An issue with this approach is its
sensitivity to noise in the loss curve generated by a sweep over learning rates; this noise makes
it difficult to identify the region of steepest descent. We modify the approach slightly in order
to increase robustness: for each configuration we carry out 8 learning rate sweeps. Averaging 8
sweeps is insufficient to smooth out the noise in the loss curves. Instead, we use Kalman filtering to
estimate the expected change in loss at each learning rate and integrate this curve to obtain the final
smoothed loss curve. This process generates smooth curves from which critical points can be more
easily identified. From the smoothed loss curve, we choose a learning rate that is the geometric
mean between the point of steepest descent and the point where the loss curve ends or begins to
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increase. The selection of the two points—the point of steepest descent and the endpoint—is not
always reliable, and so all selected learning rates were manually inspected, with a small number
being manually overridden.

The results of this learning rate sweep for gpt-a-cat for the synthetic datasets are shown in
Figure 31. The same results but for rnn-nn are shown in Figure 32. Interestingly, these results
show that the learning rate identified by the range test varies very little between batch sizes on these
datasets. To reduce the number of manual overrides, we take the median learning rate across batch
sizes as the final learning rate and manually override this for configurations where it is too high or
low.

Similar to the situation with batch size, having a learning rate vary across models and datasets
introduces an extra factor that may account for differences in performance across configurations.
This may be considered a limitation; however, we argue that to fairly compare models, training
should be best-effort—that is, each model should be trained with the learning rate most appropriate
for it and the dataset it is being trained on. In this sense, while the learning rate varies across models
and datasets, the strategy for choosing the learning rate is held constant.

E.4 COMPUTE RESOURCES

There were three computationally intensive steps for each experiment: learning rate sweeps, training
and evaluation. Learning rate sweeps and model evaluation were carried out on a single workstation,
with GPU, CPU and RAM specifications: Nvidia RTX 4090 GPU, AMD Ryzen Threadripper PRO
5975WX and 256 GiB RAM. Depending on the experiment, training was carried out on either this
workstation or by using 10 Nvidia A40 GPUs from an internal cluster. The wall-clock durations for
each of these three steps are reported below, separated by the sections where the results are used.
The durations are affected by concurrent jobs that may have been sharing resources, and may include
a tapering period where there is not enough remaining work to utilize all GPUs.

For the real-world datasets in Section 3 including the corresponding supplementary results, time
taken for learning rate sweeps, training and evaluation was ~14 hours, ~129 hours and ~14 hours
respectively. The learning rate sweeps and the evaluation were carried out on the workstation, and
training was carried out on the cluster. For Sections 4 to 5, the same triplet of tasks took ~20 hours,
~223 hours and ~11 hours. For the modulo datasets (Section 7), it was ~16 hours, ~167 hours and ~7
hours. For the spike prediction experiment (Section 6), all three steps were run on the workstation.
Time taken for the learning rate sweeps, training and evaluation was ~9 hours, ~122 hours and ~9
hours respectively.

Across all experiments, learning rate sweeps took ~59 hours on the workstation, training took ~122
hours on the workstation and ~519 hours on the cluster, and evaluation took ~41 hours on the work-
station. We estimate that exploratory, failed or unused experiments used approximately 4 times more
compute, combined.

USE OF LARGE LANGUAGE MODEDLS

Tools utilizing large language models were used for spelling and grammar checking.
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Figure 31: Learning rate sweep for gpt-a-cat for the synthetic datasets. The black trace (—)
is the mean loss over 8 runs. The orange trace (—) is the Kalman smoothed loss. The yellow
points (o) mark the geometric mean between the point of steepest descent and the point where
the curve increases or ends—the proposed learning rate. The dashed vertical grey line marks the
median proposed learning rate across batch sizes. As the proposed learning rate varies little between
batch sizes, in this work, we choose the median learning rate across batch sizes to be used for all
batch sizes. We manually select the learning rate for a configuration if the median learning rate is
unsuitably high or low.
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Figure 32: Learning rate sweep for rnn-nn for the synthetic datasets. The black trace (—) is the
mean loss over 8 runs. The orange trace (—) is the Kalman smoothed loss. The yellow points
(o) mark the geometric mean between the point of steepest descent and the point where the curve
increases or ends—the proposed learning rate. The dashed vertical grey line marks the median
proposed learning rate across batch sizes.

Figure 33: Left: mean learning rate used for each model (mean over synthetic datasets). Right:
mean learning rate used for each of the synthetic datasets (mean over all models).
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