

CATEGORICAL DISTRIBUTIONS ARE EFFECTIVE NEURAL NETWORK OUTPUTS FOR EVENT PREDICTION

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

We demonstrate the effectiveness of using a categorical distribution as a neural network output for the task of next event prediction. We find that training set sizes help explain performance differences between models: when training sets are increased, performance differences largely disappear. We introduce 3 new datasets which provide informative ways to explore model performance; they demonstrate cases where larger models and the use of the categorical output are effective.

1 INTRODUCTION

Probabilistic modeling of event data with neural networks is the concern of the field of neural network based temporal point processes (TPPs), reviewed by Shchur et al. (2021), Bosser & Taieb (2023) and Lin et al. (2025).

A variety of continuous distributions have been used as neural network outputs for predicting future event times (Bosser & Taieb, 2023). In this work, we propose to discretize the output domain, roughly into equal-quantile intervals, and to use the output of a neural network to represent a categorical distribution over these intervals. This approach is motivated by the observation that many datasets collected by measuring real-world processes exhibit a mixed distribution containing continuous and discrete parts. For example, the times between taxi pickups in New York City obtained by Whong (2014) have a distribution (see Figure 1) that is relatively smooth but punctuated by regular peaks. This type of distribution is not uncommon, and it will be shown that a categorical output interpreted as a piecewise constant distribution is effective at modeling such data.

The categorical output is not universally effective (nor is any output tested). Bosser & Taieb (2023) cataloged the performance differences of many neural TPP models, but did not find an explanation for these differences. In Section 4, we show that for many models and datasets, performance differences diminish when training set sizes are increased, suggesting that factors such as regularization contribute to performance differences at commonly used (and relatively small) training set sizes. To facilitate this investigation, we extend several existing datasets to larger sizes (see Figure 2).

We then introduce 3 new datasets which fill gaps in the existing dataset landscape. The synthetic datasets tested in Section 4 are shown to quickly plateau in terms of model performance gains they yield as training data is increased. In Section 5, we introduce a synthetic dataset using a modified Metropolis-Hastings algorithm that continues to yield performance gains for orders of magnitude larger training set sizes. This is useful for representing processes whose underlying dynamics are not quickly uncovered. In Section 6, we introduce a neuronal spike prediction task motivated by retinal prosthetics. For this dataset, not only are events from a real-world process, the task itself replicates the requirements of a real-world task. This is a feature lacking from the real-world datasets studied in Section 3 and Section 4. Finally, motivated by the structure of the spike prediction task, we introduce a family of synthetic datasets with discrete event times in Section 7. These datasets

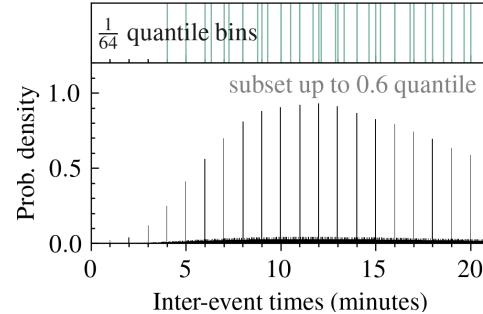
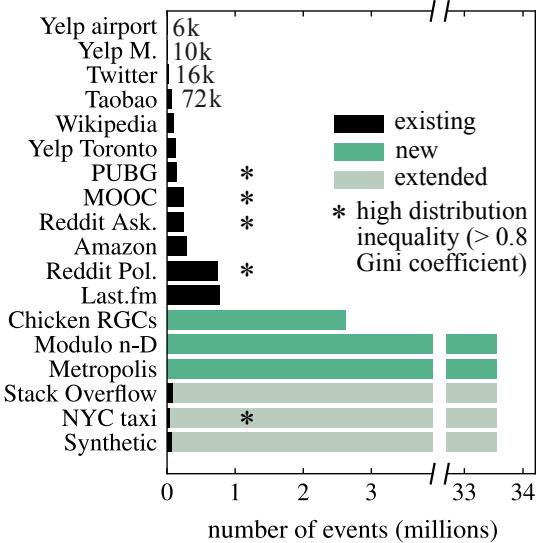


Figure 1: **Bottom:** Histogram of inter-event times for the NYC taxi dataset (Whong, 2014). **Top:** Intervals containing $\frac{1}{64}$ of events—these intervals are mappable to a categorical distribution with 64 outcomes.

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 Table 1: Two models evaluated in terms of
 test set NLL (lower is better) on existing real-
 world datasets. The `rnn-logmix` model
 from Shchur et al. (2020) acts as a baseline.
 The `rnn-cat` model uses the same archi-
 tecture but with a categorical output struc-
 ture. Values are means over 10 trials. Re-
 sults for `rnn-cat` are reported by their dif-
 ference to the results for `rnn-logmix`.

Dataset	rnn-logmix	rnn-cat
Yelp airport	4.700	+0.057
Yelp Mississauga	3.890	+0.034
Twitter	3.963	+0.055
Taobao	2.409	-0.553
Wikipedia	5.120	+0.024
Yelp Toronto	4.884	-0.014
PUBG	1.585	-3.781
MOOC	1.862	-2.326
Reddit AskScience	5.643	-0.167
Amazon	5.579	+0.029
Reddit Politics	4.628	-0.721
Last.fm	5.069	-0.014



077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 Figure 2: Dataset training set sizes. Datasets marked by * have high Gini coefficient (> 0.8), which may indicate a discrete component in the distribution (see Appendix B). New and extended datasets are introduced in Sections 4 to 7.

reflect the discrete nature of many real-world datasets—discrete, for example, on account of the measurement process. For all of these new datasets, we observe the effectiveness of the categorical output. Compared to the existing datasets, the new datasets also demonstrate cases where larger models are effective.

The next section describes how a categorical distribution over intervals can be used for event prediction on the interval $(0, \infty)$.

2 CATEGORICAL DISTRIBUTION FOR INTER-EVENT TIMES ON $(0, \infty)$

For many event datasets, there is no maximum inter-event time, and models are expected to output distributions over the interval $(0, \infty)$. In this work, to form a continuous distribution on $(0, \infty)$, the categorical output is interpreted as assigning probability mass to intervals. The resulting distribution is a piecewise-continuous one, constructed as follows. We follow a similar approach to Kvamme & Borgan (2021) and choose intervals that equally divide the training set distribution: we fix N , the number of intervals, and choose interval lengths such that the first interval extends to contain the first $1/N$ of the inter-event times, the second until $2/N$ and so on until the last interval which extends to infinity. We let the probability *density* in each non-final interval be constant, determined by the interval width and the model’s output. The final interval, being infinite in length, cannot have a constant non-zero density; instead we use an exponential decay weighted by the model’s output. A subset of the intervals for a model with 64 outputs for the NYC taxi dataset is shown in Figure 1 (top). The intervals are fixed and do not change during training. Zero-width intervals are avoided by imposing a minimum interval length. See Appendix C for more details.

3 RESULTS ON EXISTING DATASETS

We compare the categorical output to the existing output heads listed in Table 2. Each output head is paired with the 3 model stems listed in Table 3. An additional model is also tested, the Transformer Hawkes Process, used in two sizes thp-0 and thp-1 , described by (Zuo et al., 2020). We evaluate the categorical output on the previously studied datasets listed in Figure 2 (excluding those that are expanded in the next section).

108
 109
 110
 111
 112 Table 2: Output heads used in experiments. See Appendix C for implementation details. To compare
 113 to the categorical head, focus is given to the `logmix` head throughout this work, as it is found to be
 114 the most effective among the existing heads tested.
 115
 116
 117

Label	Head description	Studied by
<code>cat</code>	categorical distribution	this work
<code>const</code>	exponential hazard	Huang et al. (2019), Li et al. (2018)
<code>exp</code>	constant hazard	Du et al. (2016), Upadhyay et al. (2018)
<code>logmix</code>	lognormal mixture (64 components)	Shchur et al. (2020)
<code>nn</code>	neural net parameterized hazard	Omi et al. (2019)

118
 119 Table 3: Model stems used in experiments. See Appendix C for implementation details. All existing
 120 heads from Table 2 were original studied with a recurrent neural network (RNN) stem.
 121
 122

Label	Stem description	Input	Layers	Heads	Embed dim.	Parameters
<code>rnn</code>	gated recurrent unit	32	1	NA	64	13k
<code>gpt-a</code>	GPT-2 transformer	128	2	4	16	108k
<code>gpt-b</code>	GPT-2 transformer	128	6	4	32	1.20M

123
 124 A subset of results is shown in Table 1, comparing `cat` and `logmix` heads using the `rnn` stem
 125 in terms of negative log-likelihood (NLL). Full results in terms of both NLL and mean absolute
 126 error (MAE) for all stem and head combinations are reported in Appendix A (Table 5 and Table 6).
 127
 128

129 The results in Table 1 show that the categorical output is competitive, although not universally more
 130 effective than the `logmix` output. The results, when viewed next to Figure 2, hint that dataset size
 131 or the presence of discrete components in the event distributions may be factors that help explain the
 132 results. The next section helps to understand the performance differences by evaluating over a range
 133 of training set sizes.
 134
 135

4 TRAINING SET SIZES DIFFERENTIATE TPP MODEL PERFORMANCE

136 From the existing real-world datasets listed in Figure 2, we identified the New York City taxi dataset
 137 (Whong, 2014; Du et al., 2016) and the Stack Overflow badge dataset (Du et al., 2016) as having
 138 data sources that allow the datasets to be recreated with much larger sizes. The 7 synthetic datasets
 139 from Omi et al. (2019) can also be recreated with larger sizes (arbitrarily large). In this section, the
 140 training sets of these 9 datasets are varied across 16 sizes from 2^{10} to 2^{25} inter-event times (while
 141 validation and test sets are fixed at 2^{17}).
 142
 143

4.1 RESULTS AND DISCUSSION

144 All output heads from Table 2 are tested with the `rnn` and `gpt-a` stems from Table 3. Additionally,
 145 the `cat` and `logmix` heads are tested with the larger `gpt-b` stem. Figure 3 reports NLL for 6 of
 146 the 9 datasets. Appendix A contains the complete results (NLL and MAE for all datasets).
 147
 148

149 The results support three claims.
 150
 151

152 First, across all datasets, training set size is an important factor explaining model performance. For
 153 most datasets, the larger models take more samples to plateau but eventually catch up to or surpass
 154 their smaller counterparts. The sensitivity to training set size is also dependent on output structure.
 155 The exponential intensity head sees little difference across training set sizes, whereas the categorical
 156 output sees a large variation. This supports the claim that different output structures can be thought
 157 of as conferring different degrees of regularization, preventing performance degradation at smaller
 158 training set sizes. Across all datasets, in the presence of sufficient data, both the use of the categorical
 159 output and the use of larger models are competitive.
 160

161 Second, the categorical output achieves strong performance on the NYC taxi dataset, irrespective
 162 of model and training set size. This is consistent with the hypothesis that the discrete nature of

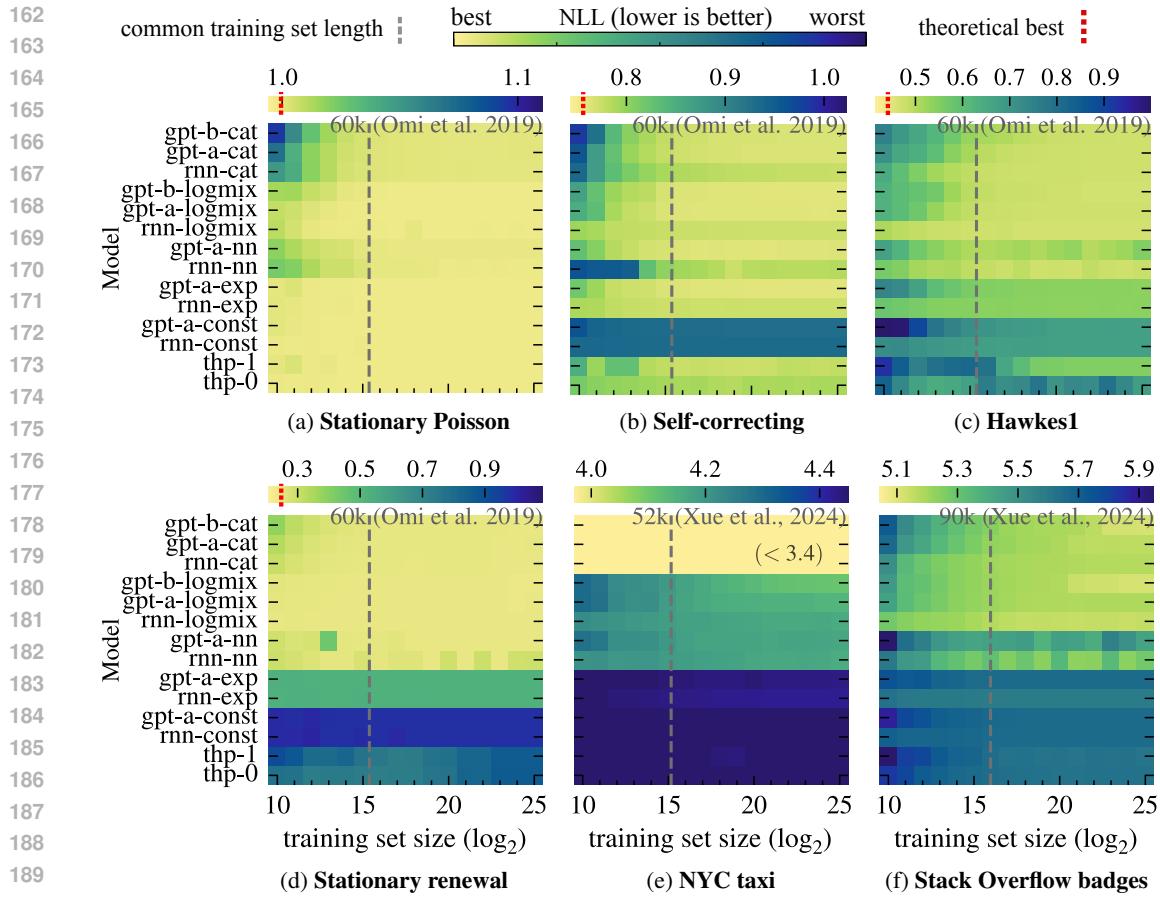


Figure 3: Performance comparison of 13 models in terms of test set NLL across 6 datasets and 16 training set lengths from 2^{10} to 2^{25} . The colormap ranges span each sub-figure’s full range of values, except for the NYC taxi dataset, where the categorical models’ very low NLL scores (all < 3.4) are separated to preserve the colormap detail for other models. For synthetic datasets where a theoretical best score is known, it is marked with a red dashed line.

this dataset (see Figure 1 and Appendix B) explains the effectiveness of the categorical output. The `logmix` model can, in principle, represent distributions with sharp peaks; however, across all training set lengths, the `logmix` models are unable to match the performance of the categorical models. One hypothesis is that singularities hinder stable training of a lognormal mixture, similar to the situation encountered when fitting such mixtures with the expectation-maximization algorithm (Bishop, 2006); supporting evidence for this theory is presented in Appendix C.5.2.

Finally, a striking observation is that for all *synthetic* datasets there is a model that requires very little data to be a top-scoring model. We argue that this is evidence that the event sequences do not have complex dynamics needing significant training sets to learn. Take for example the stationary Poisson process where, after a few thousand samples, most of the models reach close to the theoretical best NLL score, and further improvement would effectively require inferring the state of the underlying pseudo-random number generator. In the next section, we introduce a new synthetic dataset that continues to yield performance gains over longer training lengths.

5 METROPOLIS LOGNORMAL EVENT DATASET

The previous section showed how the synthetic datasets from Omi et al. (2019) quickly plateau in terms of the performance gains they yield, explaining how small models can reach competitive

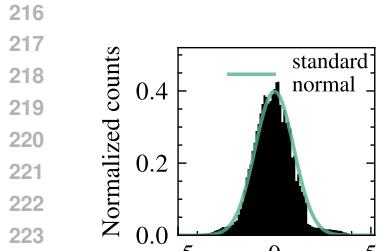


Figure 4: Histogram of 200k samples from the modified Metropolis-Hastings algorithm.

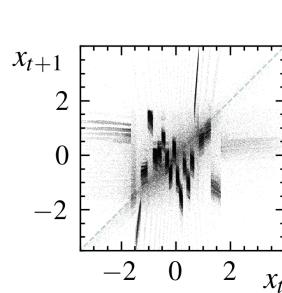


Figure 5: 200k pairs of samples rasterized: x_{t+1} and previous sample x_t .

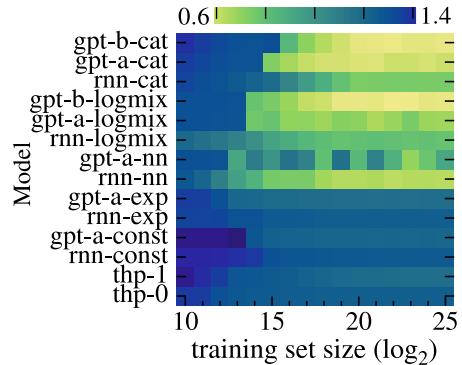
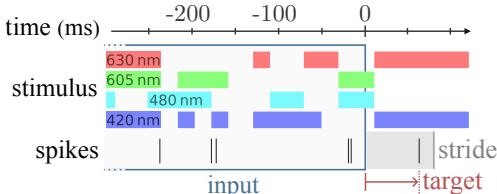
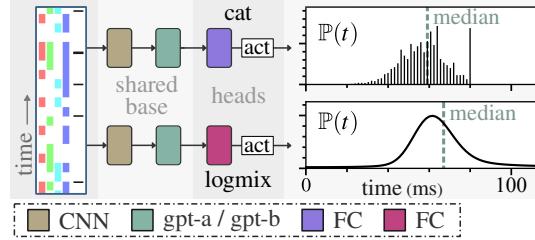


Figure 6: Test set NLL scores on the Metropolis lognormal dataset.



(a) Spike prediction task



(b) Categorical and logmix heads

Figure 7: (a) Spike prediction task: given a 1-second snippet of stimulus and spike history, predict the time of the next spike. Predictions beyond a stride of 80 ms are not used. Information after $t = 0$ is not available to a model, matching the task faced by retinal prosthetic devices. (b) The inputs, architecture and outputs of the models tested. Figure adapted from Doran et al. (2024).

246 performance on small training sets. Here, we use a Markov process to create a synthetic dataset that
247 continues to yield performance gains for orders of magnitude larger training set sizes.

249 We generate an event sequence from a nested set of state transition matrices. The matrices parameterize
250 a modified Metropolis-Hastings sampling algorithm. This process exploits what is typically
251 considered a weakness of Metropolis-Hastings sampling—that samples are dependent—in order to
252 gradually leak information about the state transition matrices. The generation procedure is described
253 in Appendix B.5. Figure 4 plots samples from the sequence before applying the logarithm, revealing
254 the roughly Gaussian shape of the distribution. For the same samples, Figure 5 plots next vs.
255 previous samples, highlighting that with enough samples, a highly structured distribution emerges.

256 Figure 6 shows how models perform across a range of training set lengths. Here, all heads (except
257 nn) benefit from having a larger base model, and smaller models do not quickly approach a competitive
258 score. This dataset is important for being a *synthetic* event dataset where there is a clear benefit
259 of using larger models, and those models gradually improve with more data. Regarding gpt-a-nn:
260 we observed this model to be more prone to training instability compared to rnn-nn, a possible
261 explanation for its poorer performance.

6 A CATEGORICAL OUTPUT IS EFFECTIVE FOR SPIKE PREDICTION

265 The real-world datasets studied in previous sections are event sequences recorded from real pro-
266 cesses; however, predicting the next event in these sequences is not grounded in a realistic task.
267 This section introduces a task motivated by retinal prosthetic devices. We demonstrate how the
268 demands of a real-world task can lead to a discrete output structure being suitable for predicting events
269 of an otherwise continuous process. In this setting, we again see the usefulness of the categorical
distribution.

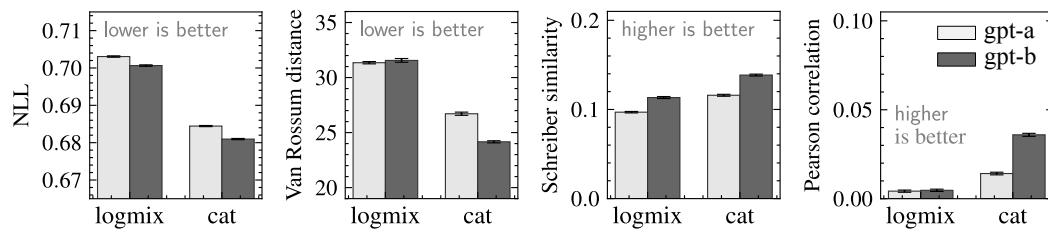


Figure 8: Performance comparison between *logmix* (a 64-component lognormal mixture) and *cat* (an 81-bin categorical distribution) for the task of spike prediction. NLL is reported on the left. The next 3 metrics are spike train similarity/distance metrics, evaluated autoregressively; they share a smoothing parameter of 60 ms. The model stem is tested in two sizes: *gpt-a* and the larger *gpt-b*. We follow Agarwal et al. (2021) and report metrics as interquartile means over the 1611 chicken RGCs over 10 training repeats, with 95% bootstrap confidence intervals as error bars.

Retinal prosthetic devices must mimic the activity patterns of cells by considering impinging light and previous spike activity. Gogliettino et al. (2023) describes such a device for electrically stimulating the primate retina. We design a task that captures some of the requirements of such a device.

We create a dataset of snippets from multi-electrode array recordings of chicken retinal ganglion cells (RGCs) responding to visual stimuli (Seifert et al., 2023). An input is a 1024-length snippet of a recording (~1 second), containing the stimulus and spike history of a single cell. The target is the time until the cell’s next spike (see Figure 7a). There are 1611 cells across 16 recordings. Further details on the dataset are contained in Appendix D. To gauge how well models might operate in a retinal prosthetic device, we roll out the models autoregressively and compare the generated spike trains to the ground truth spike trains using common spike train similarity metrics.

6.1 SAMPLING AND PREDICTION RATES MOTIVATE A CATEGORICAL OUTPUT

Two temporal scales are associated with the task: the sampling period and the prediction period. The *sampling period* of the spikes and stimulus is ~1 ms (1.008 ms). The autoregressive regime introduces the *prediction period*—the maximum duration to wait before making a new prediction. A shorter prediction period allows for faster integration of new stimulus information, but carries a computational cost. We fix 80 samples (~80 ms) as the prediction period. There are diminishing returns to reducing this period, as 80 ms is close to the mean response delay of the RGCs recorded by Seifert et al. (2023).

The two temporal scales make the categorical distribution a natural choice for a model output. With 80 ms prediction period and 1 ms sampling period, a categorical distribution with 81 outcomes is the minimal neural network output that remains fully descriptive: 80 classes for the 80 intervals in the prediction period and one class for the interval [80 ms, ∞). The sampling frequency implies that no finer resolution than 1 ms is needed, and the prediction frequency ensures that no granularity at all is needed beyond 80 ms. Figure 7b shows the categorical output being used for the spike prediction task above the output head it is compared against, the mixture of lognormals.

6.2 MODELS: HEAD(CNN + TRANSFORMER)

We train 4 models. The *logmix* and *cat* heads are attached to the same architecture: a convolutional neural network (CNN) followed by *gpt-a* or *gpt-b*. A straightforward ResNet (He et al., 2016) based CNN stem encodes a 1024-length frame of stimulus and spike history into a 64-length sequence of vectors of length 64. This sequence is passed to *gpt-a* (or *gpt-b*) from Table 3. An embedding of the cell number is added to the input sequence. The output of the transformer is either an 81 length vector in the case of the categorical output, or a $64 \times 3 = 192$ length vector in the case of the mixture of 64 lognormals. Appendix C describes the models in more detail.

324 6.3 EXPERIMENT AND RESULTS
325

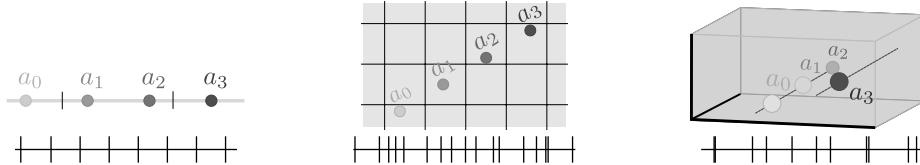
326 The models are trained at next spike prediction with a NLL loss (see Appendix D for training de-
327 tails). Point estimates are made using the median of the output distribution. We evaluate model
328 performance with 4 metrics: NLL, Schreiber Similarity, Van Rossum distance and smoothed Pear-
329 son correlation. The latter 3 metrics are calculated using the spike trains generated by rolling out the
330 models autoregressively; the metrics share a smoothing parameter set to 60 ms, a duration shown to
331 be appropriate by Doran et al. (2024). Schreiber similarity introduced by Schreiber et al. (2003) and
332 Van Rossum distance introduced by Van Rossum (2001) are common metrics used to compare spike
333 trains. See (Paiva et al., 2010) for a review of spike train comparison metrics. The NLL calculation
334 uses probability mass, and for the logmix model, this involves integrating the continuous distribution
335 over a 1 ms interval.

336 All 4 metrics are reported in Figure 8. The categorical output consistently outperforms the mixture
337 of lognormals, highlighting the effectiveness of the simple output structure. The benefit of using the
338 larger model stem (`gpt-b`) is also clear.

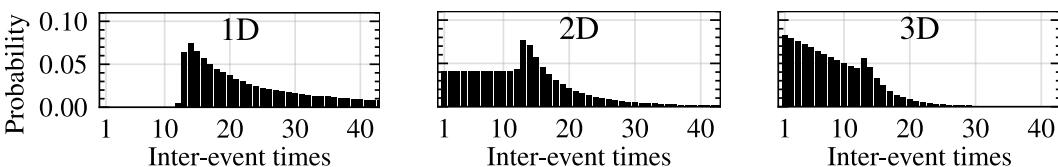
339
340 7 EVENT SEQUENCES FROM MODULO ADDITION
341

342 The spike prediction task justified the use of a discrete representation for events of a continuous
343 process. This section introduces a family of synthetic processes that generate events in discrete in-
344 tervals. The aim is for these synthetic processes to be a useful tool to investigate model performance
345 in the same way that synthetic processes such as Hawkes processes are useful in the continuous
346 setting. Modulo addition will be used to create the event sequences. The sequences can be related
347 to real-world processes that involve wrap-around events, such as timer or frame counter overflows.

348 Using modulo addition, an increasing sequence defined over a grid can be used to generate event
349 sequences with varying degrees of complexity. Consider tracking a particle along a 1D track and
350 recording when the particle passes 10 meters, 20 meters, 30 meters and so on. Over a 2D plane,
351 we could record the times when a particle moves from one quadrant to another. As the number
352 of dimensions increases, the number of faces a particle can exit through to enter another division
353 increases. Figure 10 shows a particle moving in 1D, 2D and 3D space and generating events with
354 respect to a grid. To predict when a particle will move to the next quadrant, the previous events can
355 be observed to narrow down the particle’s position and velocity. This becomes more challenging
356 and requires more data points as the number of dimensions increases. By varying the number of
357 dimensions, a family of event sequences can be created with various decoding difficulties.



358
359
360
361
362
363
364
365 Figure 9: Four snapshots of a particle moving in 1, 2 and 3-dimensional space. When the particle
366 passes a boundary, an event is generated. An example event sequence is shown. The 3-dimensional
367 case is visualized by the particle wrapping around in a single voxel.



368
369
370
371
372
373
374
375
376
377 Figure 10: Inter-event time distributions for 1, 2 and 3-d modulo sequences where the starting
378 position, a_0 , is sampled uniformly from $[0, 1021]^d$ and the velocity, v , uniformly from $[10, 80]^d$.

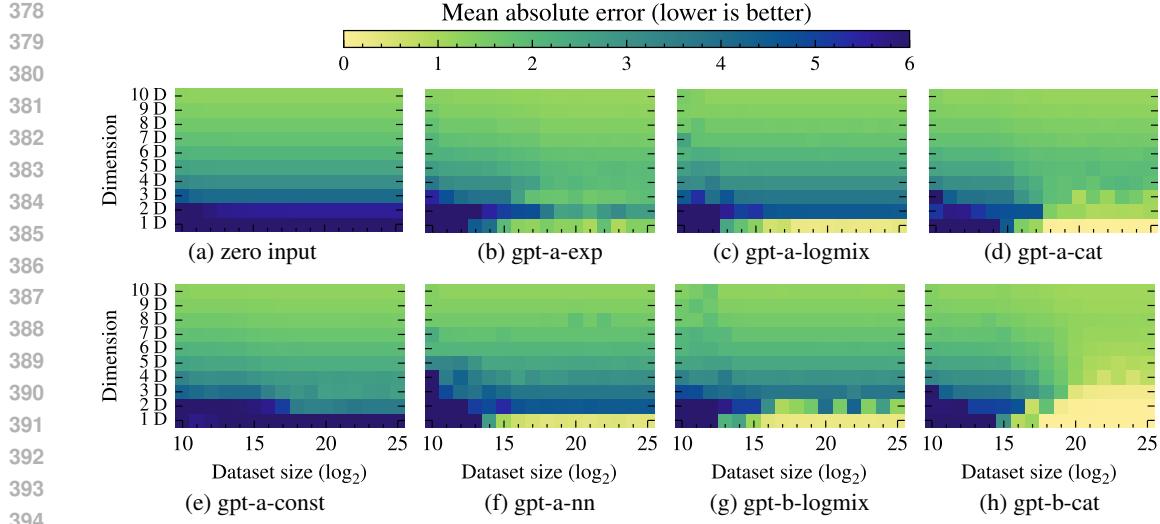


Figure 11: Performance comparison of 8 models in terms of test set mean absolute error (MAE). Each model is trained and evaluated over a landscape of 16 training set sizes for 10 modulo datasets. Model (a) takes no input and just outputs the empirical training set distribution; it acts as a baseline.

7.1 10 DATASETS, FROM 1D TO 10D

We create 10 datasets of *discrete time* event sequences, one for each dimension from 1 to 10.

A 1-dimensional sequence is generated as follows. A grid size n is fixed. In this work, we use $n = 1021$. A velocity v and starting position a_0 are chosen. A sequence of positions a_0, a_1, a_2, \dots is generated by $a_{i+1} = a_i + v$. Whenever $a_{i+1} < a_i \bmod n$, an event is generated at time $t = i + 1$.

A d-dimensional sequence is generated from *vector* addition in the same way. A vector \mathbf{n} of length d is fixed. We fix \mathbf{n} to be $\mathbf{n} = (1021, 1021, \dots, 1021)$. A velocity \mathbf{v} and starting position \mathbf{a}_0 are chosen. A sequence of positions $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2, \dots$ is generated by $\mathbf{a}_{i+1} = \mathbf{a}_i + \mathbf{v}$. Whenever any of the components of \mathbf{a}_i overflow with respect to \mathbf{n} when transitioning to \mathbf{a}_{i+1} , an event is generated at time $t = i + 1$.

The 1D dataset is formed of many separate event sequences of length 1024 generated for different a_0 and v . To create a sequence, we sample a_0 uniformly from $[0, 1021]$ and v uniformly from $[10, 80]$ and generate 1024 events per sequence. The other 9 datasets are generated in the same way. Having many short sequences rather than a single long sequence makes the dataset more representative of datasets like the NYC taxi dataset, the Stack Overflow dataset and the chicken RGC dataset, all of which contain numerous separate sequences. More details on the generation process, including motivations for the bounds of v and an analogous continuous process, are described in Appendix B.7. For each dataset, we generate 2^{17} sequences, for a total of 2^{27} events per dataset. This is then split into training, validation and test sets in an 8:1:1 ratio. As before, we consider 16 subsets of the training set, containing $2^0, 2^1, \dots, 2^{15}$ sequences ($2^{10}, 2^{11}, \dots, 2^{25}$ events).

7.2 RESULTS AND DISCUSSION

Seven gpt-a and gpt-b based models are trained on the modulo datasets. Figure 11 shows MAE for the models across the landscape of modulo datasets. NLL scores appear in Appendix A. The first figure, Figure 11a, is the result of predicting using only the training set’s empirical distribution (no event history input is used) and acts as a baseline for comparison.

The first observation is that for all dimensions, there is a training set size above which gpt-a-cat is equal to or better than the other gpt-a models. This result is another example demonstrating the competitiveness of the categorical head when there is sufficient data. We also see the benefit of using larger models when training set sizes are large, demonstrated by a reduction in MAE for logmix and categorical heads when switching from gpt-a to gpt-b. There are also differences

432 between models when using small training sets; for example, the logmix head is more effective than
 433 the categorical head. This effect is relatively insensitive to model size, which is evidence that the
 434 output structures themselves affect generalization when data is limited.

435 By comparing to the zero input baseline, we see that the usefulness of the contextual information
 436 decreases with increasing dimension—by 10D, even with 2^{25} samples, no model markedly outper-
 437 forms the zero input baseline. From this perspective, the modulo datasets form a spectrum between
 438 easy (1D) and difficult (10D) in terms of inferring the next event from event histories. In Ap-
 439 pendix B.7, the concept of dataset difficult is analysed in terms of \mathcal{V} -information introduced by
 440 Ethayarajh et al. (2022).

442 8 DISCUSSION

443 An argument of this work is that the task and dataset should drive model choice. In the spike predic-
 444 tion task, the task itself characterized a categorical output structure. The NYC taxi dataset, whether
 445 due to the discrete nature of the recording process or the presence of periodicity in the underlying
 446 system, has a distribution of inter-event times with many narrow peaks and is conducive to being
 447 represented with a categorical distribution. This situation is not uncommon—the histograms of all
 448 real-world datasets used in this work are listed in Appendix B, and many have shapes with narrow
 449 peaks capturing the majority of events. In addition to the inescapable discrete nature of many event
 450 sequences recorded from real-world processes, realistic tasks associated with these sequences may
 451 also define a resolution of interest. The spike prediction task is one such example. It is reasonable
 452 to expect that use cases for predicting the next taxi request or the next visit to a location would
 453 also describe a resolution at which predictions are relevant, such as seconds or minutes. Evaluating
 454 probability mass within intervals would call into question the density-based loss signals typically
 455 used for training TPP models. It would be interesting for future works to consider what other output
 456 representations may be effective if mass rather than density based evaluations are used.

457 A second theme of this work is explaining performance differences between models. Section 4
 458 showed how the training set sizes used in existing benchmarks snapshot the performance at a point
 459 where reducing model size can be beneficial, presumably on account of the regularization effect of
 460 model capacity. It was also shown that the synthetic datasets from Omi et al. (2019) are such that
 461 small models achieve competitive performance at short training set sizes. This was argued to be
 462 on account of how quickly these datasets plateau in terms of the performance gains they afford as
 463 training data is increased. Both of these points suggest that existing benchmarks may be of limited
 464 use to practitioners interested in using large models to exploit large amounts of data.

466 9 LIMITATIONS

467 Several limitations reduce the strength of the conclusions. The work does not consider the prediction
 468 of additional spatial or categorical information. The exposition of both discrete and continuous
 469 settings makes the treatment more comprehensive, but makes it more difficult to compare results
 470 across sections. This work broadly ascribes model capacity and output structure as being important
 471 for explaining performance across datasets; however, specific mechanisms are not isolated, such as
 472 data memorization or the alignment of the output distribution family to a dataset’s distribution.

475 10 CONCLUSION

476 This work demonstrates that the categorical distribution is an effective representation for spike pre-
 477 diction across a range of datasets. On existing TPP datasets, we show that many performance differ-
 478 ences between models reduce as training set sizes are increased. We show that for existing synthetic
 479 datasets, model size has very little effect on performance. We introduce a synthetic dataset where
 480 larger models can make use of larger training set sizes. We describe a case study (neuronal spike
 481 prediction) where the categorical distribution is a natural fit given the structure of the task. This task
 482 is additionally valuable as it is accompanied by application-relevant performance metrics. Inspired
 483 by the spike prediction task, we introduce a family of synthetic datasets where events are recorded
 484 in finite intervals.

486 REPRODUCIBILITY
487

488 Supplementary code (including datasets) permits all experiments to be reproduced. The Stack Over-
489 flow dataset is not included, as the usage agreement prevents distribution; for this case, instructions
490 for obtaining the data are provided in Appendix B.3. To accompany the code, the appendix also
491 includes descriptions of models (Appendix C), datasets (Appendix B) and training procedures (Ap-
492 pendix E).

494 REFERENCES
495

496 Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
497 Deep Reinforcement Learning at the Edge of the Statistical Precipice. In *Advances in Neural*
498 *Information Processing Systems*, volume 34, pp. 29304–29320. Curran Associates, Inc., 2021.

499 Christopher M. Bishop. *Pattern Recognition and Machine Learning (Information Science and Statis-*
500 *tics)*. Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0-387-31073-8.

502 Tanguy Bosser and Souhaib Ben Taieb. On the Predictive Accuracy of Neural Temporal Point
503 Process Models for Continuous-time Event Data. *Transactions on Machine Learning Research*,
504 March 2023. ISSN 2835-8856.

505 Kevin Doran, Marvin Seifert, Carola A. M. Yovanovich, and Tom Baden. Spike Distance Function
506 as a Learning Objective for Spike Prediction. In *Proceedings of the 41st International Conference*
507 *on Machine Learning*, pp. 11474–11500. PMLR, July 2024.

509 Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
510 Recurrent Marked Temporal Point Processes: Embedding Event History to Vector. In *Proceedings*
511 *of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*,
512 KDD '16, pp. 1555–1564, New York, NY, USA, August 2016. Association for Computing Ma-
513 chinery. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939875.

514 Kawin Ethayarajh, Yejin Choi, and Swabha Swamyamdipta. Understanding dataset difficulty with \mathcal{V} -
515 usable information. In *Proceedings of the 39th International Conference on Machine Learning*,
516 pp. 5988–6008. PMLR, June 2022.

518 Alex R. Gogliettino, Sasidhar S. Madugula, Lauren E. Grosberg, Ramandeep S. Vilkhu, Jeff
519 Brown, Huy Nguyen, Alexandra Kling, Paweł Hottowy, Włodysław Dąbrowski, Alexander Sher,
520 Alan M. Litke, and E. J. Chichilnisky. High-Fidelity Reproduction of Visual Signals by Elec-
521 trical Stimulation in the Central Primate Retina. *The Journal of Neuroscience: The Official*
522 *Journal of the Society for Neuroscience*, 43(25):4625–4641, June 2023. ISSN 1529-2401. doi:
523 10.1523/JNEUROSCI.1091-22.2023.

524 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
525 Recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
526 pp. 770–778, Las Vegas, NV, USA, June 2016. IEEE. ISBN 978-1-4673-8851-1. doi: 10.1109/
527 CVPR.2016.90.

529 Jeremy Howard, Sylvain Gugger, and Soumith Chintala. *Deep Learning for Coders with Fastai*
530 *and PyTorch: AI Applications without a PhD*. O'Reilly Media, Inc, Sebastopol, California, first
531 edition edition, 2020. ISBN 978-1-4920-4552-6.

532 Jie Hu, Li Shen, and Gang Sun. Squeeze-and-Excitation Networks. In *Proceedings of the IEEE*
533 *Conference on Computer Vision and Pattern Recognition*, pp. 7132–7141, 2018.

535 Hengguan Huang, Hao Wang, and Brian Mak. Recurrent Poisson Process Unit for Speech Recog-
536 nition. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):6538–6545, July
537 2019. ISSN 2374-3468. doi: 10.1609/aaai.v33i01.33016538.

538 539 Rob J. Hyndman and Yanan Fan. Sample Quantiles in Statistical Packages. *The American Statisti-
cian*, 50(4):361–365, 1996. ISSN 0003-1305. doi: 10.2307/2684934.

540 Håvard Kvamme and Ørnulf Borgan. Continuous and discrete-time survival prediction with neural
 541 networks. *Lifetime Data Analysis*, 27(4):710–736, October 2021. ISSN 1572-9249. doi: 10.1007/
 542 s10985-021-09532-6.

543

544 Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning Temporal Point
 545 Processes via Reinforcement Learning. In *Advances in Neural Information Processing Systems*,
 546 volume 31. Curran Associates, Inc., 2018.

547 Haitao Lin, Cheng Tan, Lirong Wu, Zicheng Liu, Zhangyang Gao, and Stan Z. Li. An Ex-
 548 tensive Survey With Empirical Studies on Deep Temporal Point Process. *IEEE Transactions*
 549 on *Knowledge and Data Engineering*, 37(4):1599–1619, April 2025. ISSN 1558-2191. doi:
 550 10.1109/TKDE.2024.3522114.

551

552 Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, January 2019.

553

554 David Lüdke, Marin Biloš, Oleksandr Shchur, Marten Lienen, and Stephan Günnemann. Add and
 555 Thin: Diffusion for Temporal Point Processes. *Advances in Neural Information Processing Sys-
 556 tems*, 36:56784–56801, December 2023.

557

558 Takahiro Omi, naonori ueda, and Kazuyuki Aihara. Fully Neural Network based Model for General
 559 Temporal Point Processes. In *Advances in Neural Information Processing Systems*, volume 32.
 Curran Associates, Inc., 2019.

560

561 Stack Overflow. Stack Exchange Data Dump. <https://stackoverflow.com/help/data-dumps>, August
 2024.

562

563 Antonio R. C. Paiva, Il Memming Park, and Jose C. Principe. A comparison of binless spike
 564 train measures. *Neural Computing and Applications*, 19(3):405–419, April 2010. doi: 10.1007/
 565 s00521-009-0307-6.

566

567 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 568 Models are Unsupervised Multitask Learners. *Technical report, OpenAI*, February 2019.

569

570 Susanne Schreiber, Susanne Schreiber, Jean Marc Fellous, Diane Whitmer, Paul H. E. Tiesinga, and
 571 Terrence J. Sejnowski. A new correlation-based measure of spike timing reliability. *Neurocom-
 572 puting*, 52:925–931, June 2003. doi: 10.1016/s0925-2312(02)00838-x.

573

574 Marvin Seifert, Paul A. Roberts, George Kafetzis, Daniel Osorio, and Tom Baden. Birds multiplex
 575 spectral and temporal visual information via retinal On- and Off-channels. *Nature Communica-
 576 tions*, 14(1):5308, August 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-41032-z.

577

578 Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-Free Learning of Temporal
 579 Point Processes, January 2020.

580

581 Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural Tem-
 582 poral Point Processes: A Review. In *Proceedings of the Thirtieth International Joint Con-
 583 ference on Artificial Intelligence*, pp. 4585–4593, Montreal, Canada, August 2021. Interna-
 584 tional Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-9-6. doi:
 585 10.24963/ijcai.2021/623.

586

587 Leslie N. Smith. Cyclical Learning Rates for Training Neural Networks. *2017 IEEE Win-
 588 ter Conference on Applications of Computer Vision (WACV)*, pp. 464–472, March 2017. doi:
 589 10.1109/WACV.2017.58.

590

591 Leslie N. Smith and Nicholay Topin. Super-Convergence: Very Fast Training of Neural Networks
 592 Using Large Learning Rates. <https://arxiv.org/abs/1708.07120v3>, August 2017.

593

594 Utkarsh Upadhyay, Abir De, and Manuel Gomez Rodriguez. Deep Reinforcement Learning of
 595 Marked Temporal Point Processes. In *Advances in Neural Information Processing Systems*, vol-
 596 ume 31. Curran Associates, Inc., 2018.

597

598 M. C. W. Van Rossum. A Novel Spike Distance. *Neural Computation*, 13(4):751–763, April 2001.
 599 doi: 10.1162/089976601300014321.

594 Chris Whong. NYC's Taxi Trip Data. https://chriswhong.com/open-data/foil_nyc_taxi/, March
595 2014.

596

597 Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A Theory of Usable
598 Information under Computational Constraints. In *Eighth International Conference on Learning
599 Representations*, April 2020.

600 Siqiao Xue, Xiaoming Shi, Zhixuan Chu, Yan Wang, Hongyan Hao, Fan Zhou, Caigao Jiang, Chen
601 Pan, James Y. Zhang, Qingsong Wen, Jun Zhou, and Hongyuan Mei. EasyTPP: Towards Open
602 Benchmarking Temporal Point Processes. <https://arxiv.org/abs/2307.08097v3>, July 2023.

603

604 Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer Hawkes
605 Process. In *Proceedings of the 37th International Conference on Machine Learning*, pp. 11692–
606 11702. PMLR, November 2020.

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A SUPPLEMENTARY RESULTS**
649650 This appendix presents results supplementary to Sections 3 to 7.
651652 Table 1 from Section 3 (*Results on existing datasets*) showed results for `rnn-logmix` and
653 `rnn-cat` evaluated on 12 real-world datasets. These results are extended by Table 4 to include
654 information on the variability over the 10 runs. Many of these datasets have fixed training, valida-
655 tion and test sets, so training runs do not differ in terms of data used, only in terms of initialization
656 and training stochasticity.657 In Table 5, the same 12 datasets are used to test all model combinations of `rnn`, `gpt-a` and `gpt-b`
658 stems with heads `const`, `exp`, `nn`, `logmix` and `cat`, along with the Transformer Hawkes models,
659 `thp-0` and `thp-1`. Table 6 shows the corresponding MAE scores.660 In Section 4 (*Training set sizes differentiate TPP model performance*), Figure 3 showed NLL scores
661 on a subset of the synthetic datasets used in this work. Figure 12 and Figure 13 below show the
662 complete set of NLL and MAE scores for the synthetic datasets, and Figure 14 and Figure 15 show
663 the NLL and MAE scores for the real-world datasets.664 In Section 7 (*Event sequences from modulo addition*), results were reported in terms of MAE. The
665 corresponding NLL scores are shown in Figure 16.
666667 **Table 4: Extension of Table 1 from Section 3 (*Results on existing datasets*).** Two models
668 (`rnn-logmix` and `rnn-cat`) evaluated in terms of test set NLL (lower is better) on existing
669 real-world datasets. Point estimates are the mean over 10 trials. Variability is expressed as 95%
670 confidence intervals calculated assuming a normal distribution of the mean: $\pm 1.96 \frac{s}{\sqrt{10}}$, where s is
671 the sample standard deviation.
672

674 Dataset	675 <code>rnn-logmix</code>	676 <code>rnn-cat</code>
677 Yelp airport	4.700 \pm 5.43e-03	4.756 \pm 2.63e-03
678 Yelp Mississauga	3.890 \pm 1.41e-03	3.925 \pm 1.68e-03
679 Twitter	3.963 \pm 1.60e-03	4.017 \pm 1.42e-03
680 Taobao	2.409 \pm 8.53e-04	1.856 \pm 3.12e-04
681 Wikipedia	5.120 \pm 1.07e-03	5.144 \pm 7.58e-04
682 Yelp Toronto	4.884 \pm 1.05e-02	4.870 \pm 3.81e-04
683 PUBG	1.585 \pm 7.33e-02	-2.195 \pm 5.43e-04
684 MOOC	1.862 \pm 9.01e-02	-0.464 \pm 1.19e-03
685 Reddit AskScience	5.643 \pm 1.49e-02	5.476 \pm 3.54e-04
686 Amazon	5.579 \pm 9.28e-03	5.608 \pm 2.48e-04
687 Reddit Politics	4.628 \pm 4.01e-02	3.906 \pm 4.84e-04
688 Last.fm	5.069 \pm 1.56e-02	5.055 \pm 4.94e-03

689 **A.1 DISCUSSION**
690691 The supplementary results motivate the discussion of two points: the contrast between MAE and
692 NLL metrics, and the presence of infinite NLL scores.693 The MAE scores on the synthetic and real-world datasets (Figure 13 and Figure 15) show a simi-
694 lar pattern to the NLL scores (Figure 12 and Figure 14). Quick plateauing of performance on the
695 synthetic datasets from Omi et al. (2019) is even more apparent in terms of MAE. The ability to
696 concentrate probability mass allows the models with a categorical output to achieve a low NLL score
697 on the NYC taxi dataset does not correspond to a similarly low MAE score. This is further evidence
698 to support the claim that NLL should be evaluated in terms of probability mass by specifying an
699 interval of interest, such as hours, rather than evaluating in terms of probability density. Indeed, a
700 theoretically best scoring model in terms of NLL simply outputs arbitrarily large probability densi-
701 ties at the countable rationals, yet such a model would not score well in terms of other metrics such
as MAE.

702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

Table 5: Extension of Table 1 from Section 3 (*Results on existing datasets*). Test set NLL scores (lower is better) for various models on real-world datasets. 5 output heads (1_{ogmix}, cat, mn, const and exp) are paired with 3 model stems (rnn, gpt-a and gpt-b). Additionally, t_{hp-0} and t_{hp-1} from Zuo et al. (2020) are included. Columns are ordered in terms of training set length, from largest (left) to smallest (right). The rnn-1_{ogmix} is taken as the baseline (first column), and all other results are reported as differences from these results. For the 1_{ogmix} and cat output heads, results are the mean over 10 runs, while all other results are from a single run.

Model	Last.fin	Reddit Pol.	Amazon	Reddit Ask.	MOOC	PUBG	Yelp Tor.	Wikipedia	Taobao	Twitter	Yelp M.	Yelp airport
rnn-logmix	5.069	4.628	5.579	5.643	1.862	1.585	4.884	5.120	2.409	3.963	3.890	4.700
gpt-b-cat	-0.045	-0.744	+0.045	-0.161	-2.267	-3.797	-0.263	+0.104	-0.528	+0.141	+0.057	+0.081
gpt-a-cat	-0.101	-0.746	+0.038	-0.166	-2.291	-3.801	-0.004	+0.082	-0.536	+0.122	+0.035	+0.061
rn1-cat	-0.013	-0.721	+0.029	-0.167	-2.326	-3.780	-0.014	+0.024	-0.553	+0.054	+0.034	+0.057
gpt-b-logmix	-0.068	-0.829	+0.125	-0.705	-0.122	+0.344	-0.264	+0.079	+0.019	+0.076	+0.001	+0.005
gpt-a-logmix	-0.115	-0.959	+0.078	-0.941	-0.608	+0.459	-0.210	+0.065	+0.012	+0.075	-0.003	+0.001
gpt-b-nn	+0.028	+0.468	+0.079	+0.184	+1.768	+2.323	+0.092	+0.163	+0.026	+0.147	+0.078	+0.068
gpt-a-nn	+0.035	+0.466	+0.048	+0.167	+1.647	+1.807	+0.163	+0.088	+0.017	+0.084	+0.017	+0.028
rnn-nn	+0.227	+0.479	+0.097	+0.163	+1.632	+2.225	+0.105	+0.055	+0.002	+0.030	+0.048	+0.022
gpt-b-exp	+1.109	+0.482	+2.704	+0.173	+4.158	+2.400	+0.340	+1.008	+0.301	+0.374	+0.045	+0.025
gpt-a-exp	+1.173	+0.492	+2.713	+0.173	+4.165	+2.398	+0.340	+0.973	+0.299	+0.376	+0.039	+0.016
rnn-exp	+1.299	+0.488	+2.702	+0.166	+4.159	+2.402	+0.336	+0.919	+0.290	+0.325	+0.046	+0.008
gpt-b-const	+1.517	+0.483	+2.935	+0.189	+5.601	+2.410	+0.356	+1.605	+0.663	+0.612	+0.063	+0.045
gpt-a-const	+1.505	+0.483	+2.935	+0.186	+5.600	+2.410	+0.355	+1.600	+0.671	+0.606	+0.062	+0.039
rn1-const	+1.541	+0.486	+2.933	+0.180	+5.679	+2.413	+0.351	+1.496	+0.648	+0.574	+0.069	+0.026
thp-1	+1.338	+0.484	+2.717	+0.201	+5.120	+2.401	+0.364	+1.461	+0.317	+0.480	+0.046	+0.019
thp-0	+1.456	+0.491	+2.713	+0.192	+4.224	+2.401	+0.370	+1.094	+0.309	+0.377	+0.039	+0.018

756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

Table 6: MAE version of Table 1 from Section 3 (*Results on existing datasets*). Test set MAE scores (lower is better) for various models on real-world datasets.⁵ output heads (`1ogmix`, `cat`, `nn`, `const` and `exp`) are paired with 3 model stems (`rnn`, `gpt-a` and `gpt-b`). Additionally, `thp-0` and `thp-1` from Zuo et al. (2020) are included. Columns are ordered in terms of training set length, from largest (left) to smallest (right). The `rnn-1ogmix` is taken as the baseline (first column), and all other results are reported as differences from these results. For the `1ogmix` and `cat` output heads, results are the mean over 10 runs, while all other results are from a single run.

Model	Last.fm	Reddit Pol.	Amazon	Reddit Ask.	MOOC	PUBG	Yelp Tor.	Wikipedia	Taobao	Twitter	Yelp M.	Yelp airport
<code>rnn-1ogmix</code>	1325	51.79	861.9	194.5	731.6	18.33	64.97	412.2	7.502	36.57	20.17	34.46
<code>gpt-b-cat</code>	+0.06	-0.27	-5.9	+1.9	+0.0	-0.97	+0.06	+4.6	+0.051	+1.06	+0.46	+1.16
<code>gpt-a-cat</code>	+0.04	-0.33	-6.2	+1.7	-0.1	-0.96	+0.70	+4.3	+0.048	+0.95	+0.29	+0.92
<code>rnn-cat</code>	+0.02	-0.23	-11.0	-0.6	-0.4	-0.91	-0.04	+0.7	+0.012	+0.33	+0.38	+0.35
<code>gpt-b-1ogmix</code>	+0.06	-0.20	-6.1	+0.6	+0.0	-0.93	+0.03	+4.4	+0.039	+0.85	+0.30	+1.00
<code>gpt-a-1ogmix</code>	+0.03	+0.11	-4.9	+2.5	+0.0	-0.93	-0.28	+4.1	+0.029	+0.89	+0.20	+0.89
<code>gpt-b-nn</code>	+0.18	-0.37	+20.8	+4.2	+0.3	-0.94	+0.29	+3.5	+0.021	+0.54	+0.62	+0.61
<code>gpt-a-nn</code>	+0.24	-0.23	+20.7	+3.8	+0.3	-0.89	+0.93	+4.5	+0.024	+0.50	+0.43	+0.81
<code>rnn-nn</code>	+0.05	-0.21	+21.1	-0.4	+2.0	-0.87	+0.27	+0.7	-0.004	+0.06	+0.49	+0.43
<code>gpt-b-exp</code>	+0.65	-0.35	+185.8	+11.3	+27.6	-0.96	+0.30	+24.4	+0.185	+1.34	+0.42	+0.62
<code>gpt-a-exp</code>	+0.57	+0.04	+202.9	+1.1	+26.8	-0.99	+0.38	+21.3	+0.145	+1.59	+0.29	+0.29
<code>rnn-exp</code>	+0.78	-0.22	+190.4	+0.0	+32.3	-0.89	+0.08	+19.9	+0.152	+1.17	+0.30	+0.24
<code>gpt-b-const</code>	+243	-0.35	+435.2	+3.1	+349.0	-0.81	+0.63	+136.7	+1.323	+6.70	+0.79	+1.64
<code>gpt-a-const</code>	+219	-0.35	+444.5	+3.5	+376.2	-0.80	+0.37	+143.0	+1.539	+6.32	+1.03	+0.94
<code>rnn-const</code>	+234	-0.18	+424.8	+1.8	+362.5	-0.77	+0.32	+108.8	+1.251	+5.19	+0.42	+0.57
<code>thp-1</code>	+0.77	+21.03	+1002.7	+57.5	+0.2	+4.52	+18.11	+10.5	+0.431	+3.74	+5.22	+10.17
<code>thp-0</code>	+0.77	+20.98	+1002.8	+57.5	+0.2	+4.53	+18.11	+10.5	+0.448	+3.69	+5.18	+10.26

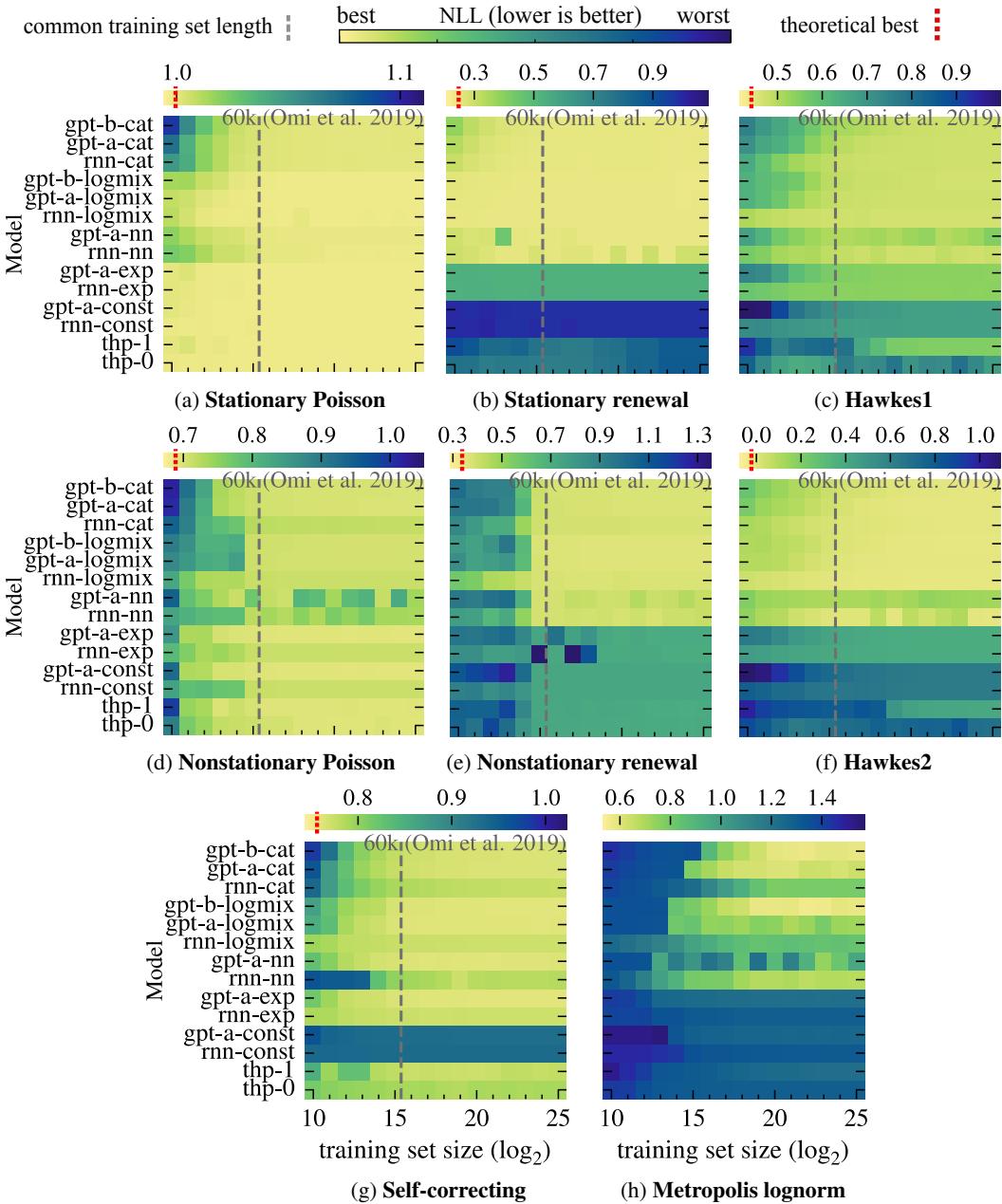


Figure 12: Performance comparison of 14 models in terms of test set NLL across 8 synthetic datasets. There are 16 training set lengths from 2^{10} to 2^{25} . The colormap ranges span each subplot's full range of values. Where a theoretical best score is known, it is marked with a red dashed line.

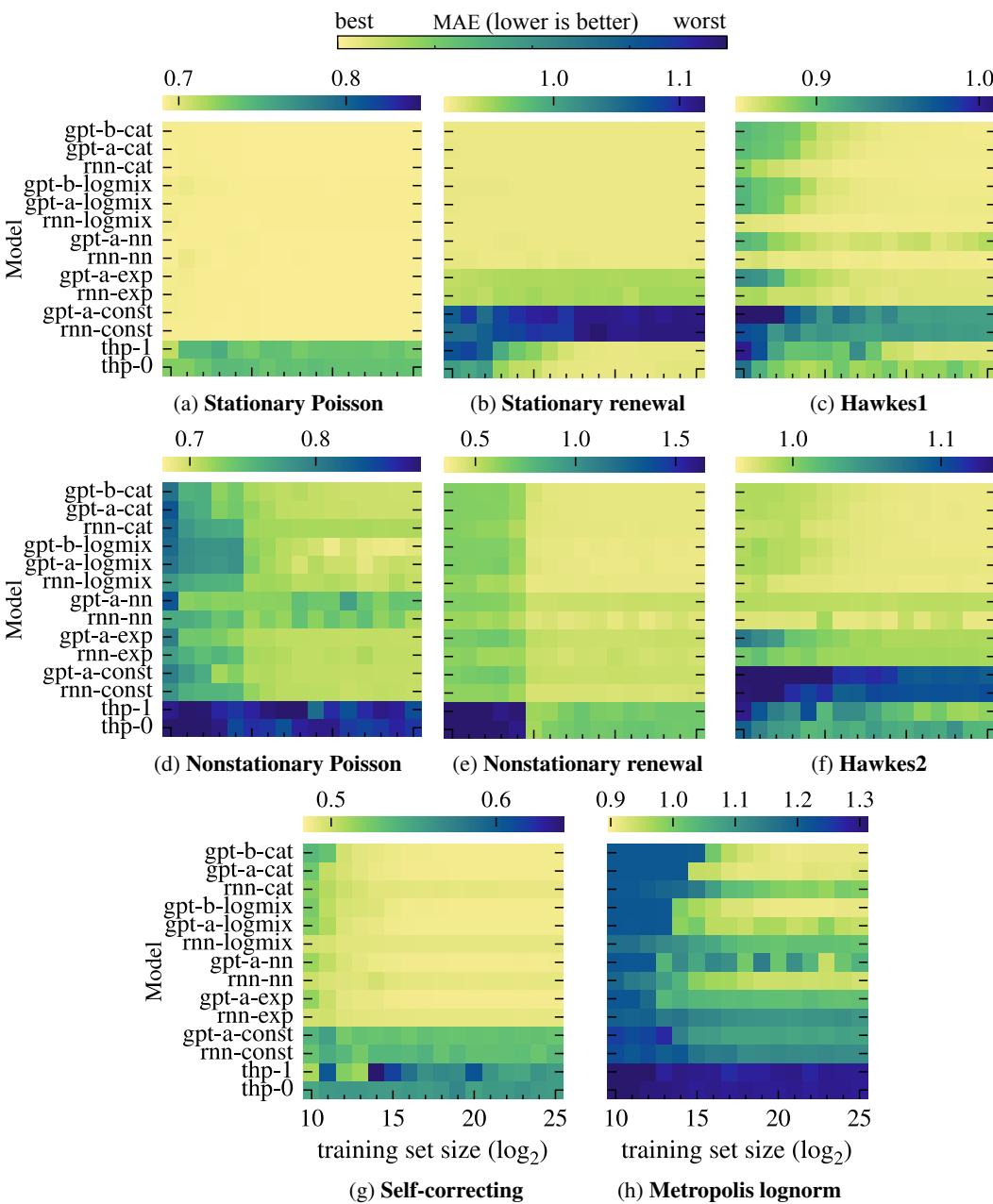
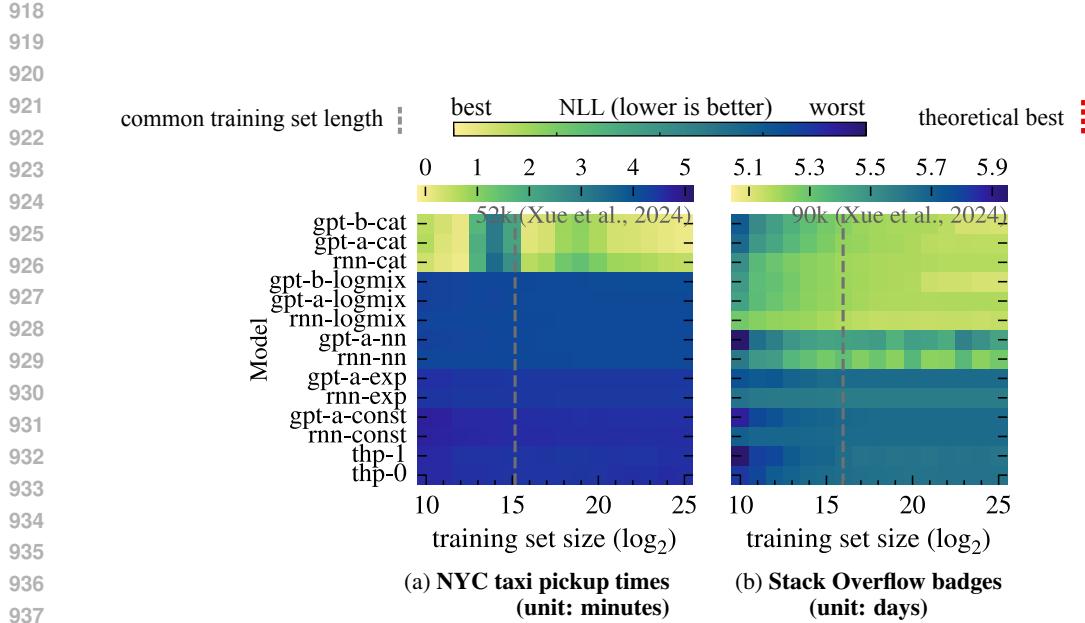
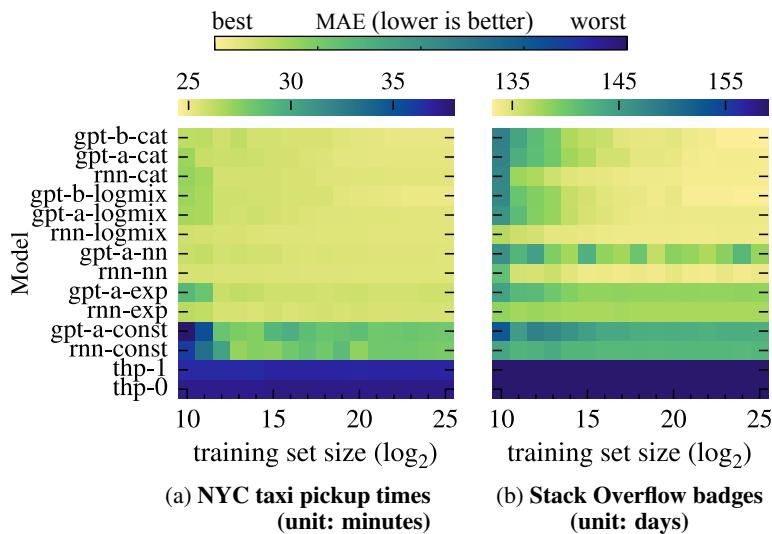


Figure 13: Performance comparison of 14 models in terms of test set MAE across 8 synthetic datasets. There are 16 training set lengths from 2^{10} to 2^{25} . The colormap ranges span each sub-figure's full range of values.



939 Figure 14: Performance comparison of 14 models in terms of test set NLL across 2 real-world
940 datasets. There are 16 training set lengths from 2^{10} to 2^{25} . The colormap ranges span each sub-
941 figure’s full range of values.



966 Figure 15: Performance comparison of 14 models in terms of test set MAE across 2 real-world
967 datasets. There are 16 training set lengths from 2^{10} to 2^{25} . The colormap ranges span each sub-
968 figure’s full range of values. The inter-event times for the NYC taxi dataset are scaled to minutes,
969 and the Stack Overflow badges dataset is scaled to days.

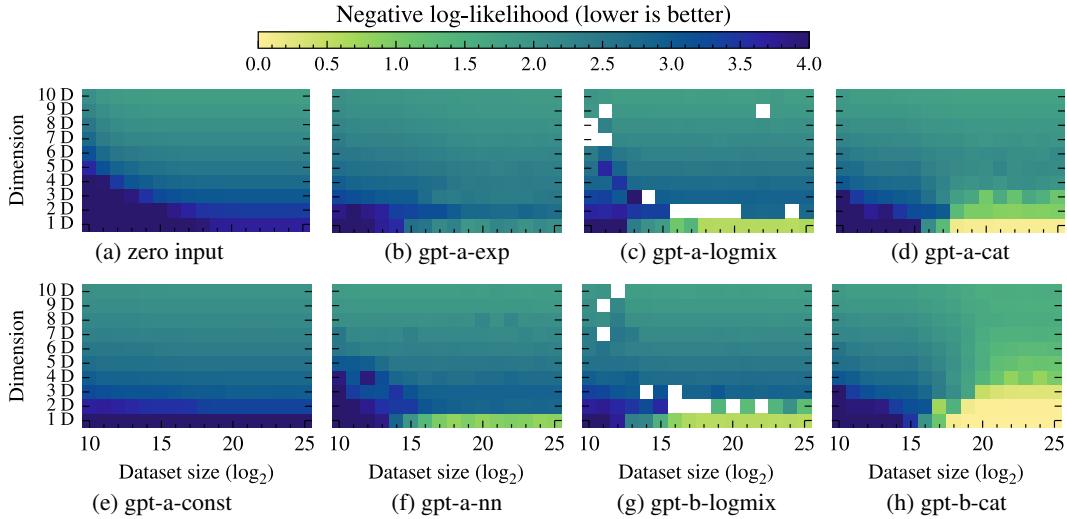


Figure 16: Performance comparison of 8 models in terms of test set NLL. Each model is trained and evaluated over a landscape of 16 training set sizes for 10 modulo datasets. Model (a) takes no input and just outputs the empirical training set distribution; it acts as a baseline. Likelihood is probability mass based and involves integrating over a 1-unit interval for models that output a continuous distribution. White (\square) represents a likelihood of 0 (∞ negative log-likelihood) and includes the case where a model assigns a likelihood low enough to encounter numerical issues.

Another observation from the comparison between MAE and NLL is that `thp-0` and `thp-1` score far lower in terms of MAE compared to NLL. These models have two output heads, one for specifying a probability distribution, and another for making point predictions, and the models are trained with a sum of negative log-likelihood and mean-squared error (MSE) loss terms using these heads (Zuo et al., 2020). One possible explanation for the poor MAE scores is that, according to statistical decision theory, the median of a distribution minimizes the expected cost under an MAE cost model, whereas the mean of a distribution minimizes the expected cost under an MSE cost model. That is to say, it is possible that the MSE loss term is suboptimal for the task of point predictions evaluated with MAE.

Infinite negative log-likelihood (zero likelihood) scores on the modulo datasets raise questions of numerical precision, overfitting and test set lengths. The NLL scores for the cyclic datasets (Figure 16) contain zero likelihood scores: the logmix head concentrates sufficiently little probability mass to the interval containing the ground truth event that calculating the log probability produces the floating-point representation of negative infinity (when using `float32` precision). Although this occurs rarely, the relatively large test sets used in this work magnify the chance that this leads to an infinite NLL score. In part, this is a reflection of the issues of NLL as a metric; when viewing the performance of the logmix head in terms of MAE (Figure 11), there is no indication of this issue. A poor way to address this issue is to clamp the output probabilities above a minimum value—this causes the output distribution to no longer be a valid probability distribution by having infinite probability mass on the interval $[0, \infty)$. If the cause is a result of `gpt-a-logmix` or `gpt-b-logmix` being overconfident in certain values, a suitable solution could be to design a loss term that encourages at least one of the mixture components to have a relatively large variance (and non-zero mixture weight).

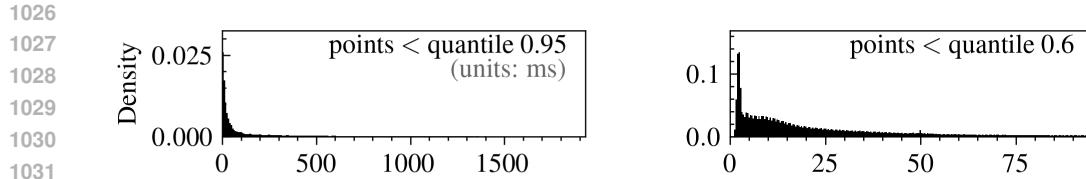


Figure 17: Histograms for the Chicken RGC spike dataset. The histogram extend until the 0.95 quantile (**left**) and 0.6 quantile (**right**). The histograms have 128 bins. The y -axis shows normalized counts.

B DATASETS

This appendix describes the datasets used in Sections 3 to 7. Appendix B.4 and Appendix B.3 explain the extension of existing datasets to accommodate larger training set lengths. Appendix B.5 describes the algorithm behind the Metropolis lognormal dataset and Appendix B.7 gives further details on the modulo datasets.

B.1 DISTRIBUTION PROPERTIES

Histograms for all real-world datasets are shown in Figure 17, Figure 18 and Figure 19.

B.1.1 GINI COEFFICIENT

The Gini coefficients for these datasets are listed in Table 7. The Gini coefficient is a measure of distribution inequality, which is useful in this context for indicating distributions which *might* have a mix of continuous and discrete parts. A distribution where probability is concentrated in a few isolated points in an otherwise large support will have a high Gini coefficient. The NYC Taxi dataset has such a distribution (see Figure 19g). The Gini coefficient is calculated without binning and operates on the resolution of the data type, float32.

Table 7: Gini coefficients for the distribution of inter-event times of the real-world datasets.

Dataset	Gini coefficient
Amazon	0.000
Yelp airport	0.148
Yelp Toronto	0.192
Yelp Mississauga	0.361
Twitter	0.438
Stack Overflow	0.461
Taobao	0.587
Last.fm	0.705
Wikipedia	0.722
Chicken RGCs	0.745
PUBG	0.871
Reddit AskScience	0.877
MOOC	0.885
Reddit Politics	0.906
NYC taxi	0.974

B.2 SOURCES FOR THE REAL-WORLD DATASETS

The Last.fm, MOOC, Wikipedia and Yelp Toronto datasets used in this work were those made available alongside Shchur et al. (2020). The PUBG, Twitter, Yelp Airport, Yelp Mississauga and two Reddit datasets were those made available alongside Lüdke et al. (2023). The Taobao and Amazon datasets are from Xue et al. (2023). The Taobao and Amazon datasets define fixed train,

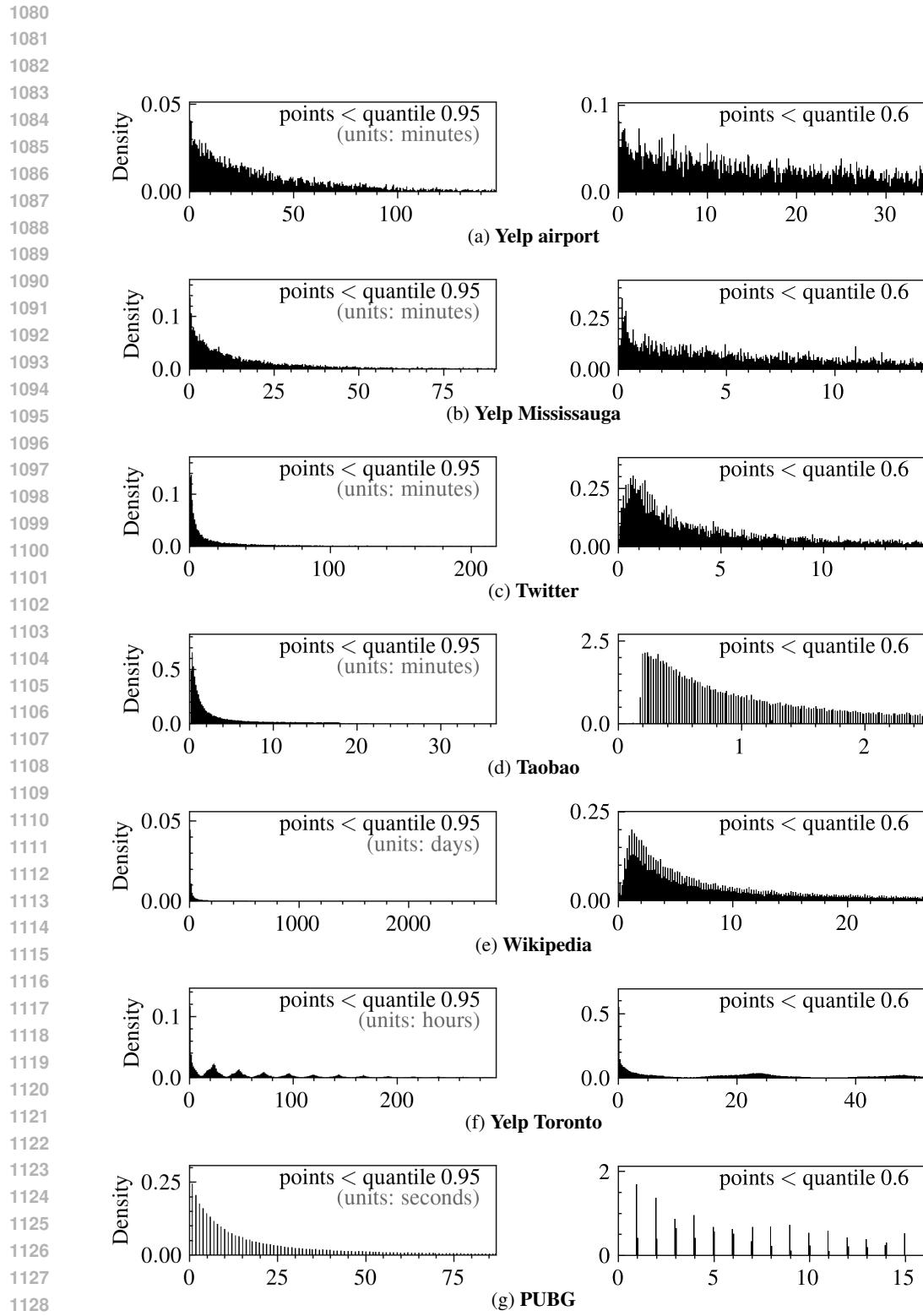


Figure 18: Histograms for 7 real-world datasets. Histograms extend until the 0.95 quantile (**left**) and 0.6 quantile (**right**). All histograms have 128 bins. The y -axis shows normalized counts.

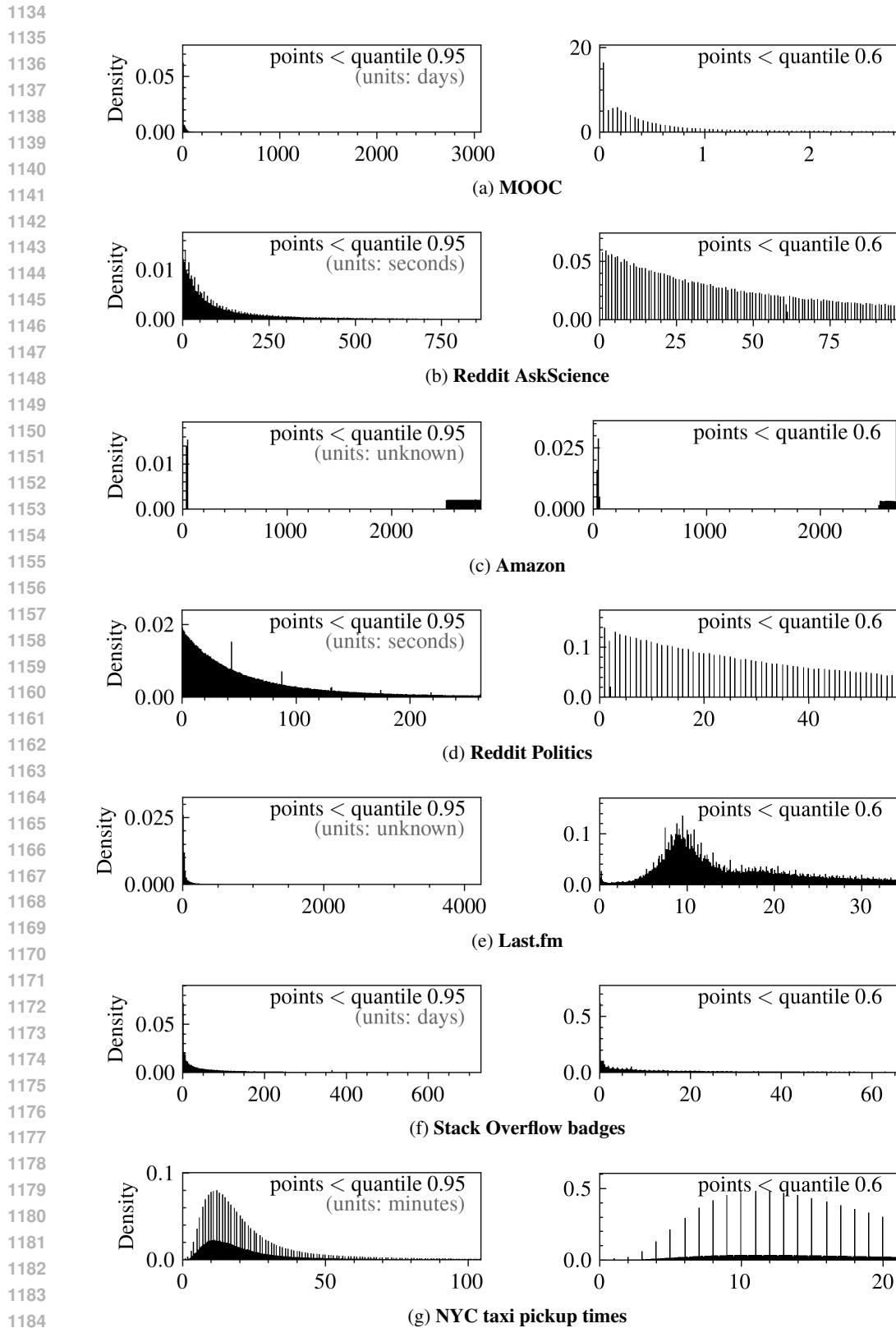
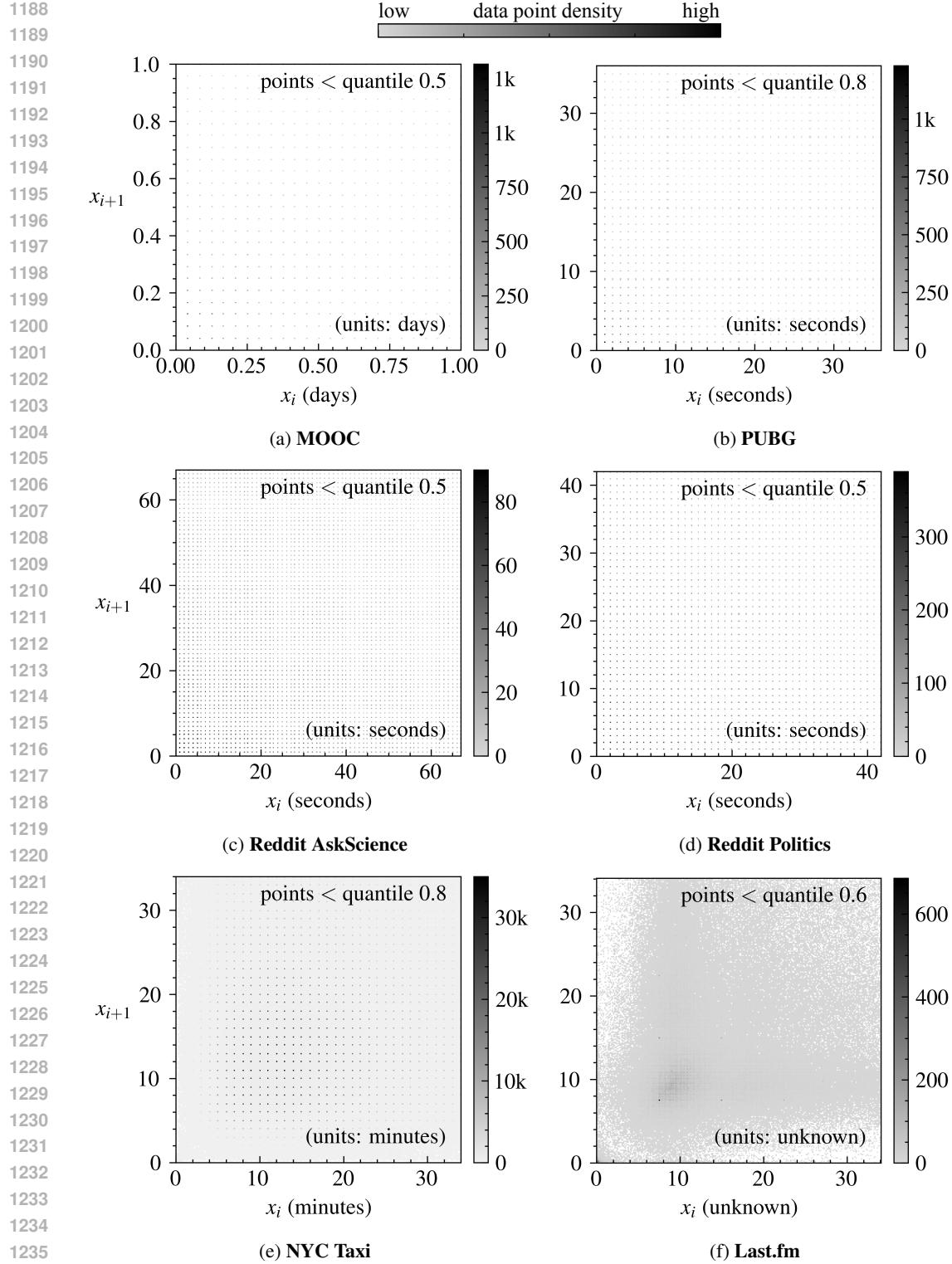


Figure 19: Histograms for 7 real-world datasets. Histograms extend until the 0.95 quantile (**left**) and 0.6 quantile (**right**). All histograms have 128 bins. The y -axis shows normalized counts.



1237 Figure 20: Distribution of pairs of inter-event times, x_i and x_{i+1} for 6 real-world datasets. The first
 1238 4 datasets (**MOOC–Reddit Politics**) appear to have a grid structure on account of the resolution
 1239 at which the data was recorded. The last 2 datasets (**NYC Taxi** and **Last.fm**) have a grid structure
 1240 embedded within a smoother distribution, suggestive of a periodic component to the underlying
 1241 process. Each figure has a quantile threshold chosen so that the structure is visible. Each figure is a
 rasterization of event counts into a 256×256 pixel grid.

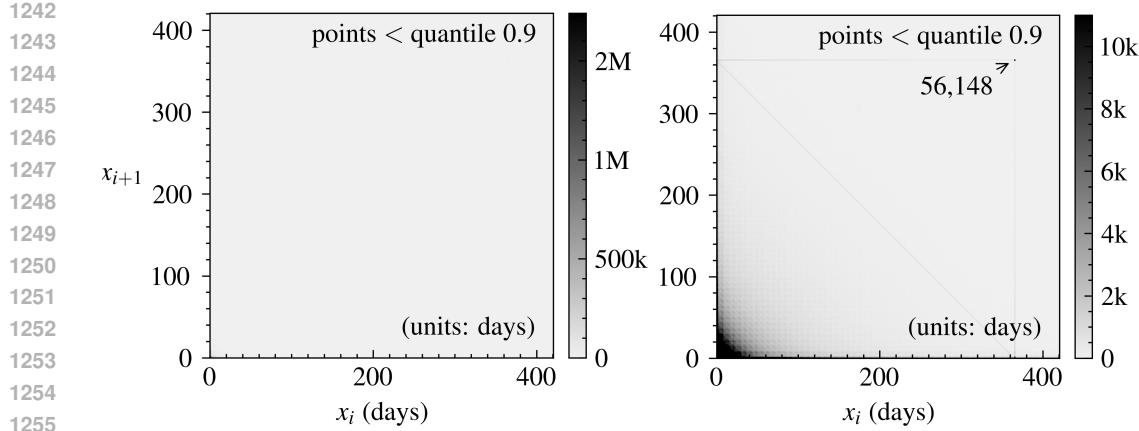


Figure 21: Distribution of pairs of inter-event times, x_i and x_{i+1} for the **Stack Overflow** dataset. The **right** figure is a clipped version of the **left** figure. The peak at ~ 365 days is small relative to the overall density, but is visible in the **right** figure when the maximum colormap value is reduced. This peak presumably corresponds to a badge typically awarded yearly.

validation and test splits, whereas for the other datasets, a random split into train, validation and test sets was carried out with a ratio of 6:2:2.

B.3 EXTENSION OF NYC TAXI PICKUP TIMES AND STACK OVERFLOW BADGES

While there are many “real-world” datasets used in literature on TPPs, most are relatively small with less than 1 million events. New York City taxi pickup times and Stack Overflow badges were chosen for this work as the source data contains tens of millions of events, allowing a wide range of training set sizes to be investigated.

Data on taxi pickup times in various cities has been used in numerous works on TPPs. We use the data collected by Whong (2014). This data is used in works such as (Du et al., 2016). The data was obtained by Whong (2014) through filing a Freedom of Information Law Request (FOIL) to the New York City Taxi and Limousine Commission. The data comprises of millions of rows where each row contains (among other information): medallion ID, pickup datetime and dropoff datetime. For example: `["89D227B655E5C82AECF13C3F540D4C", "2013-01-01 15:11:48", "2013-01-01 15:18:10"]`. The pickup and dropoff datetimes are recorded with a resolution of seconds. We process this data by grouping all entries by medallion, sorting by pickup time to create a list of event sequences, and then subtracting adjacent event times to form sequences of inter-event times. Subsets of this list of lists are used to form the training, validation and test sets. The training set is formed by taking the first n sequences such that the n sequences contain at least 2^{25} inter-event times. The validation set is taken next followed by the test set such that each has at least 2^{17} inter-event times. The remaining events are not used. While data is recorded at a resolution of seconds, we rescale the data to units of minutes. We do no further processing of the data. This is in contrast to Du et al. (2016) who split sequences at gaps larger than 12 hours. We hypothesize that splitting at large gaps would benefit models which are less capable of expressing distributions with peaks far from zero; for example, a model outputting a constant hazard (equivalent to a parameterized Poisson distribution), cannot concentrate probability far from zero without also increasing the distribution’s second moment. We argue that there is no fundamental reason why models should not be expected to model these gaps, and so we do not split any sequences.

Timestamps of users receiving badges on the website Stack Overflow were also used by Du et al. (2016). In order to complete training, validation and test sets of size 2^{25} , 2^{17} and 2^{17} , we obtained a more recent data export (last updated 29th August 2024) of the data from the Stack Overflow website (Overflow, 2024). Timestamps for this dataset are recorded with a resolution of milliseconds. Processing was carried out in the same manner as for the NYC taxi dataset described above, this time grouping by the column `UserId`, and rescaling to units of days. At the time of download, Stack

1296 Overflow stipulated that the data was provided under the condition that the data is for the users' own
 1297 use; and so we do not distribute a copy.
 1298

1299

1300

1301

1302 B.4 SYNTHETIC DATASETS FROM (OMI ET AL., 2019)

1303

1304

1305 We generate the 7 synthetic datasets from (Omi et al., 2019) following the released code that accom-
 1306 panied that work. We extended the length of the generated sequences to fill training, validation and
 1307 test sets of size 2^{25} , 2^{17} and 2^{17} respectively.

1308

1309

1310

1311 B.5 METROPOLIS LOGNORMAL PROCESS

1312

1313

1314 The Metropolis lognormal process is an intentionally poor sampler of lognormal distribution, im-
 1315 plemented with a modified Metropolis-Hastings algorithm, described in Appendix B.6 and Algo-
 1316 rithm 1. The sampler's target distribution is a standard normal distribution, and the events of the
 1317 process are obtained by taking the log of outputs of the sampler. A sampler uses a stochastic transi-
 1318 tion matrix like that shown in Figure 23. The proposed samples are generated with another modified
 1319 Metropolis-Hastings sampler. In total, there is a stack of 3 such samplers.

1320

1321

1322

1323 B.5.1 MOTIVATION

1324

1325

1326 The Metropolis lognormal process was designed to be decodable to a high degree given sufficient
 1327 event history and compute. It was also designed so that unconditional inter-event times follow a
 1328 relatively simple distribution—this is intended to match real-world processes which can be fully de-
 1329 terministic given enough information yet have aggregate properties that follow simple distributions.
 1330 The Metropolis lognormal process achieves both of these properties by being a poor sampler of a
 1331 lognormal distribution. The inter-event times are approximate draws from a lognormal distribution,
 1332 achieving one of the goals above, but the sampling is determined by fixed transition matrices, which
 1333 can be decoded given a sufficiently long sequence.

1334

1335

1336

1337 B.6 SEQUENCE GENERATION

1338

1339 The sequence generation algorithm is shown in Algorithm 1. This section gives an overview of the
 1340 algorithm.

1341

1342 A sequence is generated as follows. First, a transition matrix defining a cycle between states is fixed.
 1343 We use 20 states. The domain, $(-\infty, \infty)$, is split into 22 intervals; 2 outer intervals, $(-\infty, 4.3)$ and
 1344 $(4.3, \infty)$, which each contain a small amount (10^{-5}) of the probability mass of a normal distribution,
 1345 and 20 intervals that share the remaining ($>99\%$) probability mass evenly. The 20 states correspond
 1346 to the 20 inner intervals, while the 2 outer intervals are not used. The Metropolis-Hastings sampling
 1347 process uses a proposal distribution located at the previous sample. We modify this process to first
 1348 follow the transition matrix to a new state before sampling with a proposal distribution from the
 1349 corresponding location in the new interval. We nest this process by having the proposal distribution
 also be a pseudo-normal distribution generated by the same process but with a separate transition
 matrix. The log of the generated values become a sequence of inter-event times.

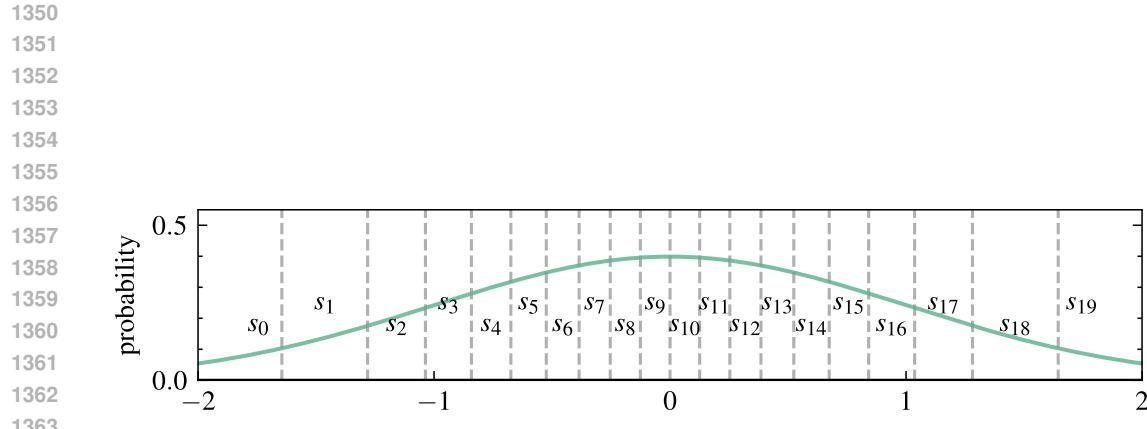


Figure 22: The interval $(-4.26, 4.26)$, which contains all but 2×10^{-5} of the probability mass of the standard normal distribution, is divided into 20 subintervals, each containing equal probability mass with respect to the standard normal. The outer intervals, $(-\infty, -4.26)$ and $(4.26, \infty)$, are not used. The intervals are labelled s_0, s_1, \dots, s_{19} corresponding to the states used in the Metropolis-Hastings sampler. Here, the figure zooms in to $(-2, 2)$ to see the shorter intervals more clearly.

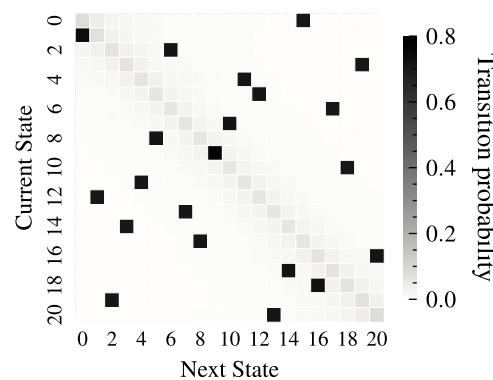


Figure 23: The stochastic state transition matrix used by the outermost sampler. The preponderance of probability is assigned to the next state of a random cycle, with a small amount of probability assigned down the diagonal. Reducing the probability assigned to the diagonal increases the determinism of the sampler, but reduces how well the sampler approximates the target distribution.

1404 **Algorithm 1** Modified Metropolis-Hastings sampler. A subset of the real line (t_{\min}, t_{\max}) is sub-
 1405 divided into S intervals of equal probability mass according to the target distribution π ; these S
 1406 intervals are the states. Before querying the proposal distribution, the algorithm transitions accord-
 1407 ing to a stochastic transition matrix between these states. To calculate the forward and reversal
 1408 probability, an approximating distribution, `innerPdf`, is used. The sampler calls the `step` function
 1409 in a loop, and, unlike standard Metropolis-Hastings, repeated samples are discarded. The samplers
 1410 can be stacked; in this work, we stack 3 such samplers, and for the base distribution q_0 , a deter-
 1411 ministic cycle between 30 quantile points of a normal distribution is used. This makes the sequence
 1412 deterministic up to the randomness implied by the transition matrices, T_1 , T_2 and T_3 and the uniform
 1413 sampling, \mathcal{U} .

```

1414
1415 1: function mapPos( $x, s_{\text{from}}, s_{\text{to}}$ )
1416 2: Compute the relative position of  $x$  within the interval of state  $s_{\text{from}}$  and map it to the corre-
1417 sponding position in the interval of state  $s_{\text{to}}$ .
1418 3: return mapped position
1419 4: function posToState( $x$ )
1420 5: Determine the state the given position  $x$  is in.
1421 6: return state
1422 7: function Sampler.init( $x_0, \pi, T, \text{innerSampler}, \text{innerPdf}$ )
1423 8: The innerSampler is called to generate new proposals, and innerPdf is called to approximate
1424 the distribution of the innerSampler for the purpose of calculating the reversal probability.
1425 9: State:  $x_t \leftarrow x_0$ 
1426 10: State:  $\pi, q, T, \text{innerSampler}, \text{innerPdf}$ 
1427 11: function Sampler.step
1428 12:  $s_t \leftarrow \text{posToState}(x_t)$  ▷ Determine current state
1429 13:  $s' \leftarrow \text{Sample from } T(s' | s_t)$  ▷ Transition to next state
1430 14:  $x' \leftarrow \text{mapPos}(x_t, s_t, s')$ 
1431 15:  $x_{t+1} \leftarrow \text{innerSampler}(x_{t+1} | x')$  ▷ Propose new sample
1432 16:  $p_{\text{forward}} \leftarrow T(s' | s_t) \text{innerPdf}(x_{t+1} | x')$ 
1433 17:  $p_{\text{reverse}} \leftarrow \sum_{i \in S} \text{innerPdf}(x_t | \text{mapPos}(x_{t+1}, s', s_i)) T(s' | s_i)$ 
1434 18: Compute acceptance ratio:
1435 
$$\alpha \leftarrow \frac{\pi(x_{t+1}) p_{\text{reverse}}}{\pi(x_t) p_{\text{forward}}}$$

1436 19:  $u \leftarrow \text{Sample from } \mathcal{U}(0, 1)$ 
1437 20: if  $u < \alpha$  then ▷ Accept proposal
1438 21: return  $x_{t+1}$ 
1439 22: else ▷ Reject, keep current state
1440 23: return  $x_t$ 
1441 24: function Sampler.sample
1442 25:  $x_{t+1} \leftarrow \text{Sampler.step}$  ▷ Ignore repeated samples
1443 26: while  $x_{t+1} = x_t$  do
1444 27:  $x_{t+1} \leftarrow \text{Sampler.step}$  ▷ Update state
1445 28:  $x_t \leftarrow x_{t+1}$ 
1446 29: return  $x_{t+1}$ 
1447 30: function nestedSampler( $q_0$ )
1448 31:  $\pi_1 \leftarrow \mathcal{N}(0, 1)$ 
1449 32:  $\pi_2 \leftarrow \mathcal{N}(0, \frac{1}{3})$  ▷ Inner samplers are narrower
1450 33:  $x_0 \leftarrow 0$ 
1451 34:  $T_1, T_2, T_3 \leftarrow \text{sample transition matrices}$ 
1452 35:  $q_1 \leftarrow \text{Sampler.init}(x_0, \pi_1, T_1, q_0, \pi_2)$ 
1453 36:  $q_2 \leftarrow \text{Sampler.init}(x_0, \pi_2, T_2, q_1, \pi_2)$ 
1454 37:  $q_3 \leftarrow \text{Sampler.init}(x_0, \pi_2, T_3, q_2, \pi_2)$ 
1455 38: return  $q_3$ 

```

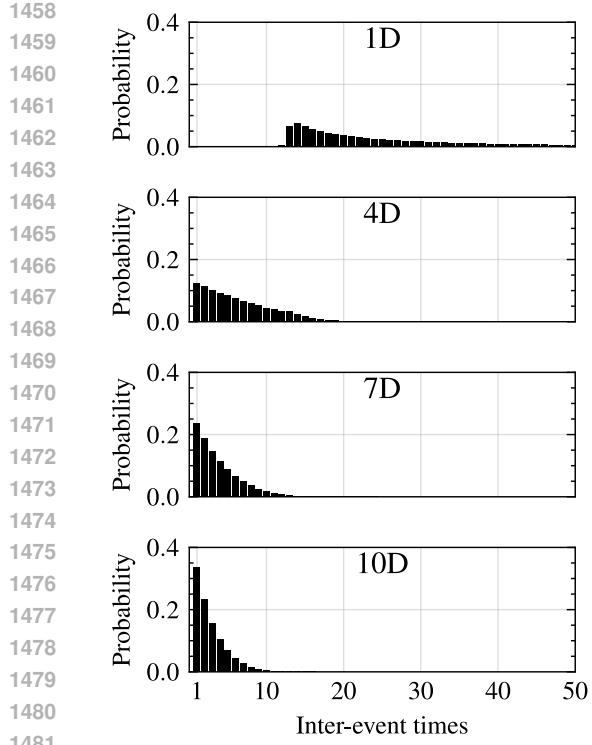


Figure 24: Training sets. Distribution of inter-event times for overflow datasets of dimension 1, 4, 7 and 10 (from top to bottom). The distribution is the count distribution of inter-event times over the 0.8×2^{17} sequences in the training set.

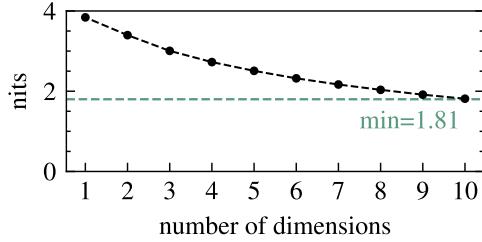


Figure 25: Entropy of the count distribution of inter-event times for the 10 training sets.

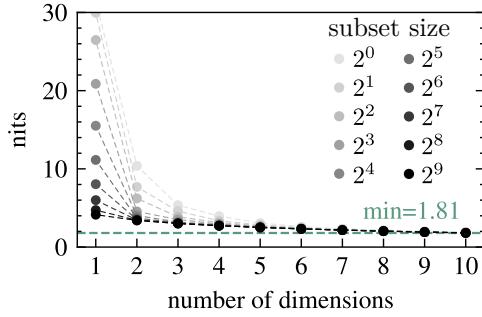


Figure 26: Mean cross-entropy between the distribution of inter-event times in the whole training set and in subsets of the training set. For 10 subset sizes ranging from 2^0 to 2^9 , the mean cross-entropy is calculated using 100 random subsets of that size. Subset sizes 2^9 and above are indistinguishable on the figure.

B.7 MODULO SEQUENCES

This section describes further details of the modulo ‘‘overflow’’ sequences. Appendix B.7.1 describes the properties of the inter-event time distributions of the modulo sequences. Appendix B.7.2 rephrases the sequences in terms of cyclic groups, which allows the easy deduction of the period of the sequences. Appendix B.7.3 describes analogous continuous-time sequences. Appendix B.7.4 explains the motivation behind the bounds on the velocity v used to generate the sequences in this work.

B.7.1 PROPERTIES OF THE MODULO DATASETS

This section builds some intuition on the modulo datasets. Figure 24 shows the distribution of inter-event times for the 1, 4, 7 and 10-dimension datasets. With increasing dimension, the distribution of inter-event times shifts to concentrate near 1, with a roughly exponential shape. The entropy of all 10 datasets is shown in Figure 25. The decreasing entropy with increasing dimension explains how the NLL scores for the zero input model (Figure 16a) decrease (improve) with increasing dimension. This is also demonstrated in Figure 26, where the cross-entropy between the full training set and smaller training sets predicts the NLL scores of the zero input model; the distributions of subsets with more than 2^9 sequences (2^{19} events) can be seen to be very similar to the overall distribution. Finally, Figure 27 uses \mathcal{V} -information (Xu et al., 2020) as applied by Ethayarajh et al. (2022) to gauge how difficult the datasets are for the gpt-b-cat model to learn beyond what the zero input model can learn. Interestingly, for some of the dimensions, there is a U-shaped relationship where at both small and large dataset sizes, the gpt-b-cat model can outperform the zero input model to a greater degree compared to intermediate dataset sizes.

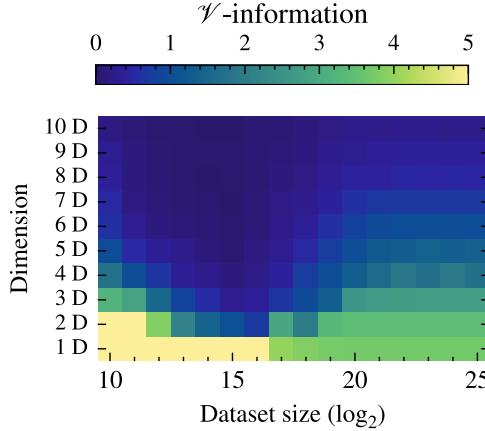


Figure 27: \mathcal{V} -information calculated following Ethayarajh et al. (2022) as $H_{\mathcal{V}}(Y) - H_{\mathcal{V}}(Y|X)$, where $H_{\mathcal{V}}(Y)$ is estimated from the cross-entropy from Figure 26 and the gpt-b-cat model results in Figure 16 are used for $H_{\mathcal{V}}(Y|X)$. The set \mathcal{V} is the set of all possible mappings describable by the gpt-b-cat architecture. Estimating $H_{\mathcal{V}}(Y)$ from the cross-entropy is possible as a gpt-b-cat model trained with no input will match the empirical distribution of the inter-event times in the provided training set.

B.7.2 CYCLIC GROUP PERSPECTIVE

The sequence $(\mathbf{a}_k)_{k=0}^{\infty}$ of particle positions in d dimensions can be understood as stepping through a sub-cycle of a cyclic group. In 1-dimension, for a given $n \in \mathbb{N}$, two elements c and g of the cyclic group $\mathbb{Z}/n\mathbb{Z}$ define the sequence $(a_k)_{k=0}^{\infty}$ as cg^k . The overflow sequence contains every k such that $cg^k < cg^{k-1}$. Moving to higher dimensions, let G be the product of d cyclic groups G_1, G_2, \dots, G_d of order n_1, n_2, \dots, n_d . Let c and g be elements of G and, as before, define the sequence $(g_k)_{k=0}^{\infty}$ as cg^k , with the overflows now defined as the ks where any element of cg^k is less than the previous element in cg^{k-1} . If all n_1, n_2, \dots, n_d are chosen to be prime, then it is guaranteed that all sequences will have a period of $n_1 \times n_2 \times \dots \times n_d$. As long as this product is less than the input length of a model, we can be confident that a model is not simply repeating a loop seen in its input.

B.7.3 CONTINUOUS SEQUENCES

A continuous analogue in 1-dimension is to consider a particle starting from position $p_0 \in \mathbb{R}$ and moving in a straight line with velocity $v \in \mathbb{R}$. An event occurs at every time $t > 0$ such that $p_0 + vt = kn$ for some $k \in \mathbb{N}$ and fixed $n \in \mathbb{R}$. An event sequence is then defined as the ordered set of all such t . This extends naturally to higher dimensions by considering vectors \mathbf{p}_0 , \mathbf{v} and \mathbf{n} , and having events occur every time one of the components of $\mathbf{p}_0 + \mathbf{v}t$ is an integer multiple of the corresponding component of \mathbf{n} .

More complicated sequences can be generated by adding more particles or making them bounce rather than pass through faces, or making the task to determine the next collision time of a set of particles with mass moving in a box.

B.7.4 BOUNDS ON V

An upper bound on v prevents the inter-event time distribution from collapsing to $\mathbb{P}(\Delta t = 1) = 1$ as the dimension increases. For example, in 10-dimensions, if components of \mathbf{v} are around 500, with the grid being defined by $\mathbf{n} = [1021]^d$, then each component overflows every 2-3 steps, resulting in almost every step containing an event. In this work, the upper bound on v was set to 80 to limit this effect.

The reason for the lower bound of 10 is that it sets the maximum inter-event time at around 100 (103). The benefit of this is that it allows the discrete approach to encode all possible event times with a reasonable array size. This marks a similarity to the spike prediction task, where 81 bins were sufficient to encode all events of interest. If there is a larger maximum inter-event time, then

1566 the discrete model can use a larger output array or group events into a single output bin, similar to
 1567 how bins were chosen in Section 3.
 1568

1569 C MODEL DETAILS

1570
 1571 This section covers some details on implementing the models used in this work. More details on how
 1572 a categorical distribution can be mapped to a distribution over $[0, \infty)$ are covered in Appendix C.1.
 1573 Encoding event times to be input to gpt-a and gpt-b is covered in Appendix C.3. Appendix C.4
 1574 describes the implementation of the existing models used in this work.
 1575

1576 C.1 BIN WIDTHS AND DENSITIES FOR THE CATEGORICAL HEAD WITH CONTINUOUS DATA

1577
 1578 When the target distribution is constrained to a small finite number of possibilities, as is the case
 1579 for the spike prediction task and the modulo datasets, the categorical head can output an array of
 1580 unnormalized probabilities with one element per possible event. This strategy does not work when
 1581 the target distribution is closer to being continuous, as is the case for the datasets used in Sections 3
 1582 to 4. As described in Section 3, in this work, we follow Kvamme & Borgan (2021) and split the
 1583 domain of the target distribution into intervals (as many intervals as we have output elements) that
 1584 evenly share the probability mass of the training set’s empirical distribution. In this work, the do-
 1585 main is always assumed to be $[0, \infty)$, and the categorical models always output 128 elements. The
 1586 endpoints of the intervals are determined as follows. The first interval begins at 0 and the last in-
 1587 terval extends to ∞ . The 127 remaining boundaries are assigned to the $1/128, 2/128, \dots, 127/128$
 1588 quantiles of the inter-event times from the training set. The quantiles are calculated using the default
 1589 numpy quantile function, which uses the linear interpolation method from (Hyndman & Fan, 1996).
 1590 Figure 28 shows an example output from a trained gpt-a-cat model with 128 output elements.
 1591 The probability density within each interval is $\frac{c_i}{w_i}$, where c_i is the probability mass assigned to the
 1592 i -th interval and w_i is the width of the i -th interval. Thus, for all bins except the final bin, the output
 1593 of the categorical head is interpreted as a piecewise constant density function.
 1594

1595 For the final infinite length interval, the probability density is given by: $f(t) = c_{128} \lambda e^{-\lambda t}$, where
 1596 c_{128} is the probability mass assigned to the final interval, and λ , the rate parameter, is chosen to be
 1597 the length of the 2nd last interval. In practical applications where predictions are updated when new
 1598 information becomes available, the final bin may not require a density function, and the probability
 1599 mass assigned to it is sufficient. A density for the last bin is used in this work so as to enable
 1600 comparison to other models using the density-based NLL metric.
 1601

1602 When calculating intervals, if a single inter-event time is frequent enough to represent more than
 1603 $\frac{1}{N}$ of the probability mass, then a zero width interval could be encountered, leading to an infinite
 1604 probability density. To prevent this singularity, we impose a minimum interval width of 2^{-17} to
 1605 avoid numerical issues. While not explored in this work, the choice of minimum can act as a form
 1606 of regularization, with wider minimums providing stronger regularization.
 1607

1608 C.2 GPT-A AND GPT-B

1609 The gpt-a and gpt-b transformers follow the standard GPT-2 architecture ((Radford et al., 2019))
 1610 with the layer configurations (layers-heads-embedding size) set to 2-4-16 and 6-4-32 respectively.
 1611 This gives gpt-a and gpt-b 108k and 1.20M trainable parameters, respectively. The standard
 1612 GPT-2 small configuration defined by Radford et al. (2019) uses a 12-12-768 configuration, high-
 1613 lighting that both gpt-a and gpt-b are very small in the context of GPTs used as large language
 1614 models. Computational limits prevented the investigation of larger models.
 1615

1616 C.3 INPUT ENCODING FOR GPT BASED MODELS

1617 When the gpt-a and gpt-b architectures are used for the spike prediction task, the input to these
 1618 modules is a sequence outputted by the CNN encoder. When the gpt-a and gpt-b architectures
 1619 are used on their own, for example in Section 3, the scalar values representing inter-event times are
 1620 converted to a vector representation according to Algorithm 2 before being input into the transform-
 1621 ers. This approach is similar to that used by Zuo et al. (2020). We do not hard-code the sinusoidal
 1622

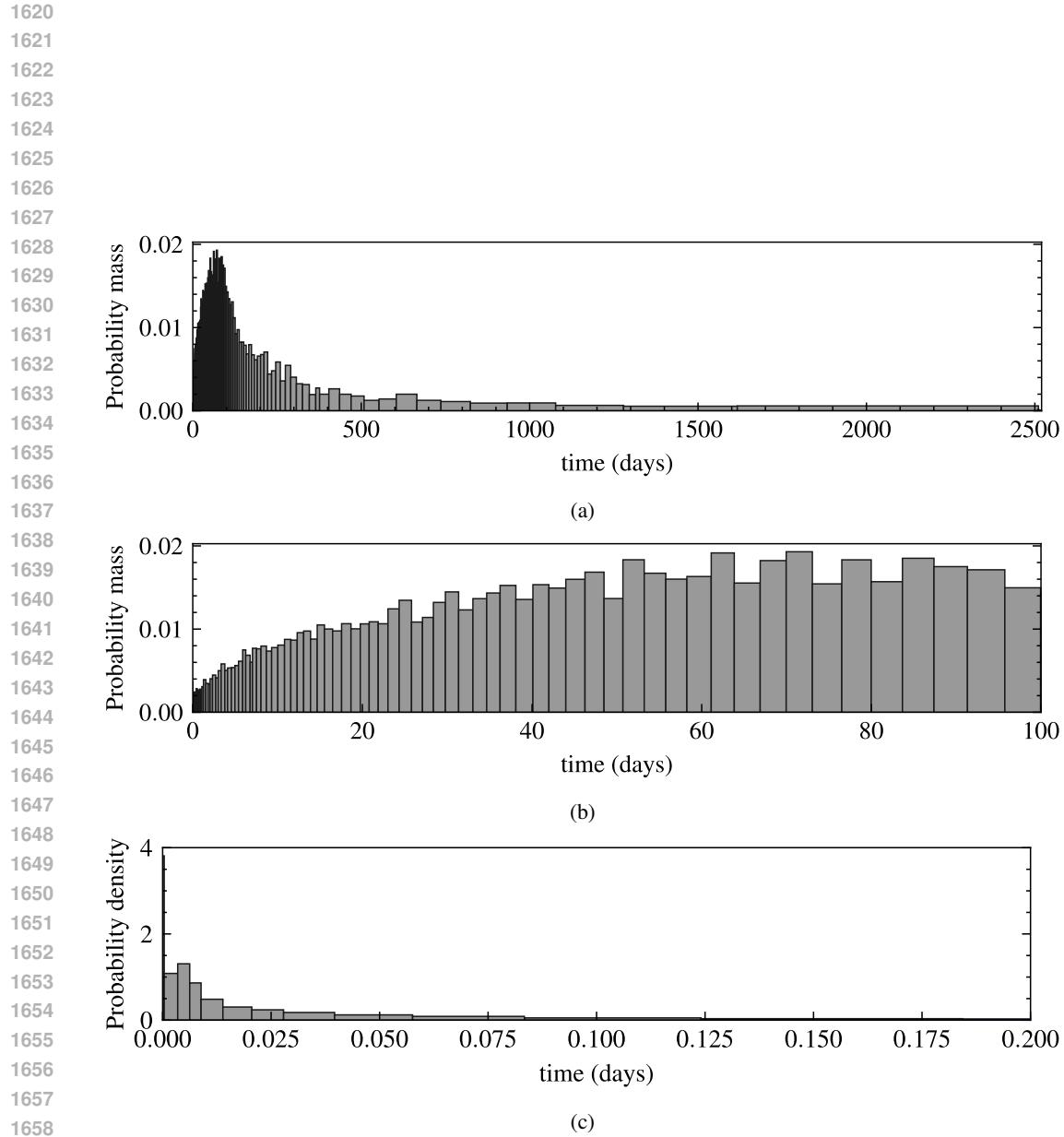


Figure 28: An example output of a gpt-a-cat model trained on the 2^{25} length Stack Overflow badges training set. **(a):** the probability mass assigned to each of the 128 output intervals. The bar widths correspond to the interval widths and heights correspond to the probability mass assigned to the intervals by the model. The final infinite interval starts from 2511 and is assigned only a small probability (7.5×10^{-5}), so cannot be seen. **(b):** the same output as (a), but zoomed in to the interval (0, 100). **(c):** zoomed into the interval (0, 0.2), but this time, the bar heights correspond to the probability density over the intervals (mass/width). In this example, the probability density is highest for the very narrow intervals near 0.

1674 frequencies but choose appropriate scales so that both long and short intervals seen in the data are
 1675 captured.
 1676

1677 **Algorithm 2** Encode a scalar value v into a vector of even size n . v_{epsilon} should be chosen near the
 1678 smallest inter-event time expected to be encountered and v_{max} should be chosen to be near the largest
 1679 time expected to be spanned by inputs to the model, and will depend on the length of a model’s input.
 1680 In this work, we choose v_{epsilon} as the smallest inter-event time observed in the training set, and v_{max}
 1681 as the largest time between events t_i and t_{i+L} where L is the input length of the model.

```

1: function encodeValue( $v, v_{\text{epsilon}}, v_{\text{max}}, n$ )
2:    $\text{scale}_{\text{min}} \leftarrow 2\pi/v_{\text{max}}$                                  $\triangleright$  Or use  $\frac{3}{2}\pi$  to add a little more range
3:    $\text{scale}_{\text{max}} \leftarrow 2\pi/v_{\text{epsilon}}$ 
4:    $\text{scale} \leftarrow \text{linspace}(\log(\text{scale}_{\text{min}}), \log(\text{scale}_{\text{max}}), n/2)$        $\triangleright$  A vector of length  $n/2$ 
5:    $x_1 \leftarrow \cos(\exp(\text{scale}) \cdot v)$ 
6:    $x_2 \leftarrow \sin(\exp(\text{scale}) \cdot v)$ 
7:    $x \leftarrow \text{concat}(x_1, x_2)$ 
8:   return  $x$ 

```

1690
 1691 **C.4 IMPLEMENTATION OF EXISTING MODELS**
 1692

1693 The `const`, `exp` and `nn` heads are implemented following the code accompanying (Omi et al.,
 1694 2019). The `logmix` head is implemented following the code accompanying Shchur et al. (2020).
 1695 The `thp-0` and `thp-1` models are implemented partially following (Zuo et al., 2020), but deferring
 1696 to the implementation accompanying (Xue et al., 2023) for a number of bug fixes to the original
 1697 model.

1698 One deviation from these implementations is in model initialization. In order to improve conver-
 1699 gence speed and stability while training, all models were initialized so that their outputs have first
 1700 and second moments similar to those of the training set’s empirical distribution.
 1701

1702 **C.5 LIMITATIONS OF EXISTING MODELS**
 1703

1704 The existing output structures considered in this work have limitations in terms of distribution flex-
 1705 ibility and training stability, both of which contribute to preventing them from representing multi-
 1706 modal distributions with very narrow peaks.
 1707

1708 **C.5.1 DISTRIBUTION FLEXIBILITY**
 1709

1710 The constant intensity, exponential intensity and the softplus intensity (used by `thp-0` and `thp-1`)
 1711 correspond to distributions over $[0, \infty)$ with 1 or 2 parameters. With only 1 or 2 parameters, they
 1712 do not have the flexibility to represent distributions where there are multiple separated peaks of high
 1713 probability density, which is a property of several of the real-world datasets (see Figure 20).

1714 The **constant intensity** output corresponds to the exponential distribution. The exponential distri-
 1715 bution has a single scalar parameter with the distribution’s mode fixed at 0. The distribution cannot
 1716 concentrate probability at any non-zero point.

1717 The **exponential intensity** output corresponds to the Gompertz distribution. The Gompertz distri-
 1718 bution has two parameters, a scale and a shape parameter. It is a unimodal distribution so cannot
 1719 concentrate probability at two or more separated points.

1720 The **softplus intensity** function corresponds to a non-standard unimodal probability distribution
 1721 with two parameters. Its unimodal shape is inferred from the monotonicity of the softplus function.
 1722 Being unimodal, it is restricted in its ability to concentrate probability at multiple separated points.
 1723

1724 **C.5.2 MIXTURE OF LOGNORMALS INSTABILITY**
 1725

1726 A mixture of lognormals can theoretically represent distributions with multiple sharp peaks. How-
 1727 ever, when training models with this output structure on datasets where there is a significant discrete
 component to the inter-event distributions, we do not observe the models being able to strongly

1728 concentrate probability in narrow peaks. We argue that such models struggle to represent such dis-
 1729 tributions on account of training instability in the presence of singularities.
 1730

1731 A mixture of lognormals on $t \in (0, \infty)$ is equivalent to a mixture of Gaussians on $y \in (-\infty, \infty)$,
 1732 where $y = \log(t)$, and so models that output a mixture of lognormals can be thought of as outputting
 1733 a mixture of Gaussians on a log scale. A mixture of Gaussians can produce any number of modes,
 1734 up to the number of components in the mixture.

1735 The process of fitting these mixtures using the expectation-maximization (EM) algorithm demon-
 1736 strates how this flexibility does not necessarily allow the mixture to represent distributions with
 1737 sharp peaks. When fitting a mixture of Gaussians using the EM algorithm, a component's variance
 1738 can collapse toward zero at a single point. To avoid this, strategies such as introducing priors on the
 1739 parameters or resetting the EM optimization procedure are used Bishop (2006).

1740 When using stochastic gradient descent to train a neural network with a mixture of lognormals
 1741 output, we argue that encountering such singularities can manifest as unstable training and prevent
 1742 models from expressing distributions with sharp peaks. A simple case study (Figure 29) shows
 1743 gpt-a, outputting a 2-component lognormal mixture, trained on a dataset generated from a mixture
 1744 of a lognormal distribution and a point mass. As one of the output components narrows around the
 1745 single point, sudden spikes in gradient cause the parameters of the component to be perturbed and
 1746 its mixing weight to suddenly decrease. "Real-world" datasets such as the NYC taxi dataset have
 1747 such point masses, and training stability in the presence of these sharp distributions is a candidate
 1748 explanation for why the `logmix` head is not observed to concentrate probability at such points in
 1749 a stable manner. To prevent the instability, regularization could be introduced in the form of a prior
 1750 on the variance of each component. Doing so amounts to specifying a resolution of interest for the
 1751 task and would be further evidence of the benefit of acknowledging the discrete nature of recorded
 1752 event times.

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

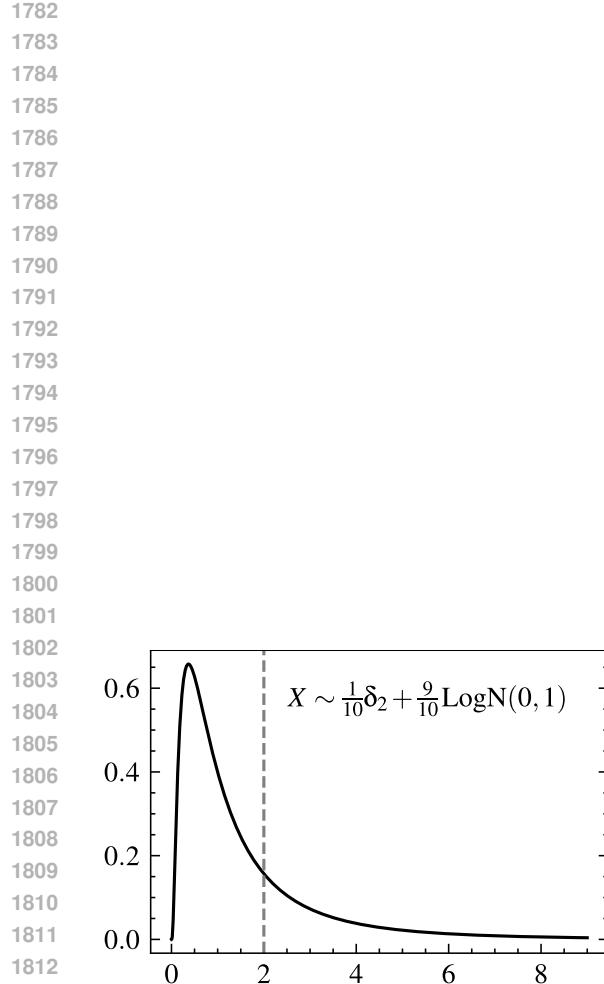
1777

1778

1779

1780

1781



(a) The probability distribution of a dataset generated from a mixture of a point mass at $t = 2$ and a lognormal distribution with parameters $\mu = 0$ and $\sigma = 1.0$.

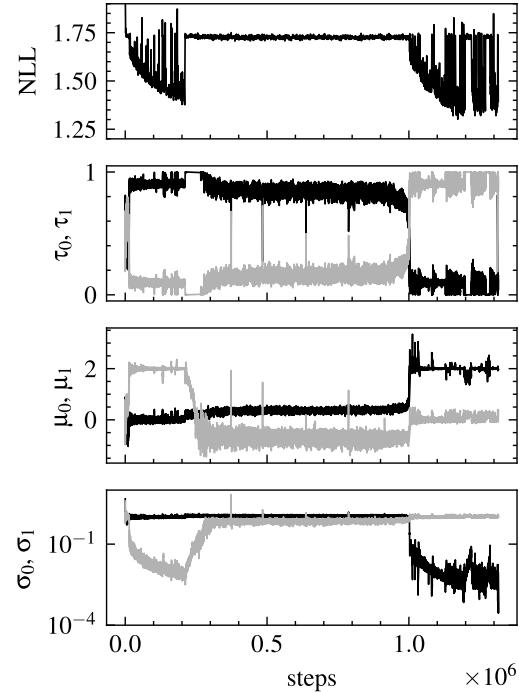


Figure 29: The instability of a logmix output head when a dataset has a probability mass at a certain point. (a): shows the distribution of inter-event times. The dataset is formed from a mixture where 10% of values come from a point source at $t = 2$, and the remaining values are drawn from a lognormal distribution with parameters $\mu = 0$ and $\sigma = 1.0$. All events are independent. The model used is a gpt—a stem with a 2-component lognormal mixture output. The model is trained using stochastic gradient descent with momentum (0.9) and a learning rate of 5×10^{-4} . (b): shows the mixture parameters (the model output) and the NLL (calculated on an evaluation set) over the course of training. The six model parameters are the mixing parameters (τ_0, τ_1) and the means and variances ($\mu_0, \mu_1, \sigma_0, \sigma_1$) of the two underlying Gaussian distributions. Notably, neither μ_0 nor μ_1 approach 2.0 in a stable manner. Training stopped when evaluating the distribution median produced NaN values. This instability occurs reliably across runs.

1836 **D SPIKE PREDICTION**
18371838 This appendix is supplementary to Section 6: *A categorical output is effective for spike prediction.*
18391840 **D.1 DATASET**
18411842 The spike prediction task uses a dataset constructed from 16 recordings of chicken RGC spike ac-
1843 tivity; the recordings were carried out by Seifert et al. (2023) using a multi-electrode array. Each
1844 recording is 15 minutes long and contains activity of multiple RGCs. The processing of the record-
1845 ings to produce a dataset follows the procedure described by Doran et al. (2024), who created a
1846 dataset from 1 of the 16 recordings. In total, across the 16 recordings, 1611 cells are used.
18471848 Both the stimulus and spike times are stored at a sample rate of 992 Hz. The sample period is very
1849 close to 1 ms (1.0081), and when discussing model inputs and outputs we make the simplification
1850 of assuming 1 bin is 1 ms. This means that while the 80×1.0081 ms intervals actually sum to
1851 80.65 ms, we refer to the combined 80 bin interval as being 80 ms for simplicity.
18521853 An input to a model is a 5×1024 -shaped array representing just over 1 second of stimulus and spike
1854 history—4 rows record the 4-LED stimulus, and the last row encodes the spike train as a binary
1855 sequence. For any given input, the ground-truth output is 1 of 81 possible events corresponding
1856 to a spike occurring in one of 81 intervals: 80 approximately 1 ms length intervals and the final
1857 infinite interval. The recording is broken into intervals along the time axis in order to form training,
1858 validation and test segments with a ratio 7:2:1. From a training, validation or test interval, a sample
1859 is formed from any sub-interval long enough to cover both input and output lengths ($1024 + 80$ bins).
18601861 **D.2 MODEL ARCHITECTURE**
18621863 The overall model architecture can be summarized as: `head(gpt(cnn(input) +`
1864 `embed(cell_id)))`, where the head is either the `logmix` or `cat` head. The transformer ar-
1865 chitecture was described in Appendix C.2, and the CNN architecture is described below. The em-
1866 bedding is a standard 1-hot vector encoding of the integer cell ID $\in [0, 1611]$.
18671868 **D.3 CNN ENCODER**
18691870 The CNN encoder shared by all spike prediction models takes a 5×1024 -shaped input and produces
1871 a 64×64 shaped intermediate representation which is added to the cell ID embedding to form the
1872 input to the `gpt-a` or `gpt-b` transformers. The CNN architecture is described in Table 8. ResNet
1873 blocks (He et al., 2016) with an expansion factor of 4 form the core of the encoder. Squeeze and
1874 excite layers (Hu et al., 2018) were applied to the residual connections between ResNet blocks.
18751876 **D.4 OUTPUT HEADS**
18771878 For the spike prediction task, the two output heads were implemented as linear functions (fully-
1879 connected layers) taking the last vector of the transformer output as input. The `logmix` outputs
1880 $64 \times 3 = 192$ values used to parameterize a mixture of 64 log-normal distributions. The `cat` head
1881 outputs 81 values, used to parameterize the categorical distribution over 81 intervals.
18821883 **D.5 TRAINING**
18841885 A batch size of 1024 was used for all models. Models were trained over 2 epochs, which was
1886 empirically determined to be long enough to see all models exhibit overfitting. While 2 epochs may
1887 seem low, the $10\frac{1}{2}$ minutes of the training set produces over 1 billion unique timesteps ($10\frac{1}{2}$ minutes
1888 with 992 samples per second for 1611 cells), and each of these timesteps appear in multiple inputs
1889 per epoch. Cross-entropy loss is used for both output heads. This is a probability density calculation
1890 for the `logmix` head, and a probability mass calculation for the `cat` head. The probability mass
1891 calculation for the `cat` head is equivalent to a density scaled by the interval widths. While training,
1892 evaluations were carried out at regular training step intervals—every 5000 training steps. Other
1893 training settings shared by other experiments are described in Appendix E.
1894

1890 Table 8: Convolution layers of the stimulus and spike history encoder used for spike prediction,
 1891 containing ~603 k trainable parameters.

Layer	Input size	Kernels (length, channels, stride)	Output size
Conv 1	5×1024	$[21, 16, 2] \times 1$	16×512
Conv 2	16×512	$[21, 16, 1] \times 1$	16×512
ResNet blocks (downsampling)	16×512	$\begin{bmatrix} 1 & 128 & 1 \\ 7 & 128 & 2 \\ 1 & 64 & 1 \end{bmatrix} \times 3$	64×64
ResNet block	64×64	$\begin{bmatrix} 1, 128, 1 \\ 7, 128, 1 \\ 1, 64, 1 \end{bmatrix} \times 1$	64×64

D.6 EVALUATION

Four metrics are used to describe the performance of models at the spike prediction task: negative log-likelihood, Van Rossum distance, Schreiber similarity and smoothed Pearson correlation. The metrics are calculated on a held-out test interval of the RGC recording.

D.7 NEGATIVE LOG-LIKELIHOOD

Negative log-likelihood (NLL) is the mean negative log-likelihood of the ground truth spikes given a model’s output, calculated for every input-output snippet in the test set. This is a non-autoregressive metric. It is calculated in terms of probability mass, which involves integrating over the interval for the `logmix` head.

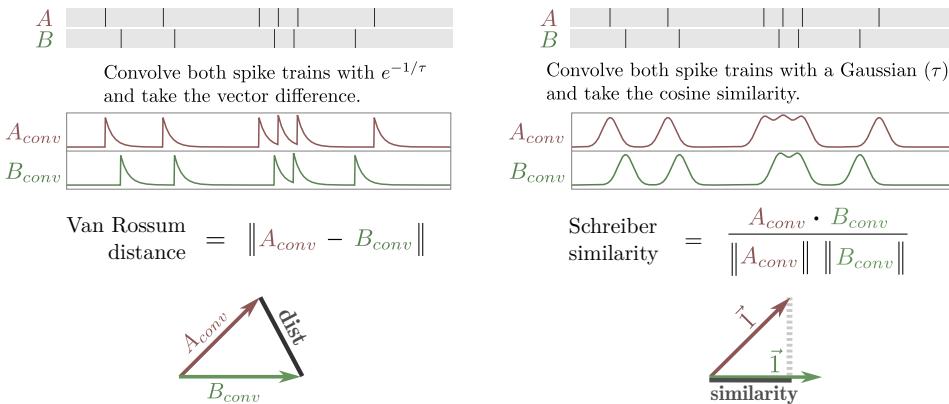


Figure 30: Calculation of Van Rossum distance (**left**) and Schreiber similarity (**right**) from two input spike trains. Both metrics employ distinct smoothing kernels to produce an intermediate vector. Van Rossum distance can be thought of as measuring the Euclidean distance between the vectors, while the Schreiber similarity assesses the angle between them. Figure taken from Doran et al. (2024).

D.7.1 SPIKE TRAIN SIMILARITY/DIFFERENCE METRICS

The remaining 3 metrics are calculated after first producing a predicted spike train. A spike train is produced by evaluating a model autoregressively, shifting forward until the time of the next predicted

1944 spike or the maximum stride of 80 bins. A model is given the first input snippet including the ground
1945 truth spikes. The median of the model’s output distribution is used as the prediction for the next
1946 spike. For example, if there is a spike predicted in the 10th bin, then nine 0s and one 1 will be
1947 appended to the existing spike train. This process repeats until the stimulus is fully consumed.

1948 Once a spike train is generated, Van Rossum distance, Schreiber similarity and smoothed Pearson
1949 correlation can be calculated. The process of calculating Van Rossum distance and Schreiber simi-
1950 larity is shown in Figure 30. Smoothed Pearson correlation is calculated as the well-known Pearson
1951 correlation after first smoothing with a Gaussian kernel. For all metrics, the smoothing parameter is
1952 set to 60 ms, which is a length shown to be appropriate by Doran et al. (2024).

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998
1999

E TRAINING AND EVALUATION DETAILS

2000
2001
2002
2003
2004

This appendix describes hyperparameters and other settings associated with training and evaluation. Appendix E.1 covers settings shared by all experiments. Settings specific to the spike prediction task were covered in Appendix D.5. Appendix E.2 covers settings associated with the remaining experiments.

2005
2006

E.1 SHARED SETTINGS AND HYPERPARAMETERS

2007
2008
2009

The following settings were shared across all training runs across all experiments.

Software. Pytorch 2.6.0 with Cuda 12.4.1 was used for training and evaluation.

2010
2011
2012
2013

Optimizer. All training runs use the AdamW optimizer described by (Loshchilov & Hutter, 2019). AdamW parameters (β_1 , β_2 , eps, weight decay) were set to (0.9, 0.99, 1×10^{-5} , 0.02)—chosen roughly in line with heuristics described by Howard et al. (2020). Weight decay was applied to all parameters except bias and embedding parameters.

2014
2015
2016

Precision. Pytorch’s automatic mixed precision and gradient scaling were used during training. In cases where greater numerical precision is needed, such as when calculating probabilities from hazard outputs, 32-bit floating-point precision was used.

2017
2018
2019
2020

Loss function. Most models were trained to minimize negative log-likelihood. The spike distance model that appears in Appendix D was trained to minimize the mean-squared error between the output and target representations. thp-0 and thp-1 used a loss term that is the sum of a negative log-likelihood term and a mean-squared error term (Zuo et al., 2020).

2021
2022
2023

Model choice. The final models are selected from the checkpoints taken during training with the lowest validation loss.

2024
2025

Learning rate scheduler. The 1-cycle learning rate policy with 3 phases described by Smith & Topin (2017) was used.

2026
2027
2028

Maximum learning rate. The maximum learning rate, which parameterizes the learning rate scheduler, was chosen by carrying out learning rate range tests as described by Smith (2017). The choice of learning rate is described in more detail below, in Appendix E.3.

2029
2030
2031
2032
2033
2034

Early stopping. An early-stopping strategy was used to reduce wasted compute. After at least 1/2 of the total training steps have been completed (when the learning rate is decreasing), early stopping is triggered if the smoothed validation loss (smoothed at 0.8) has not improved over 12 evaluations. Post-training, training and validation loss curves were inspected to ensure that early stopping was not triggered prematurely.

2035
2036

E.2 SETTINGS FOR EXPERIMENTS FROM SECTIONS 3 TO 7

2037
2038
2039
2040

The approach to hyperparameter selection described in this section is used for the experiments from Section 3 onwards. The choice of settings such as batch size, training duration and learning rate is more involved for these experiments, as the heterogeneous combinations of models and datasets require a more sophisticated choice of hyperparameters.

2041
2042
2043
2044
2045
2046
2047
2048

Training steps. In order to compare training runs across datasets of different sizes, the number of epochs is not fixed. We set two upper limits: the number of samples drawn during training is capped at 2^{27} (~134 million samples), and the number of epochs is capped at 512. These limits are large enough so that both the larger and smaller datasets are trained for sufficient samples in order for training to converge (or overfit). The longest training set has 2^{25} events, and so each sample can be seen 4 times during training. For training set sizes smaller than 2^{19} , samples will be seen 512 times during training. The combination of these caps with the batch size settings described next results in the training settings shown in Table 9.

2049
2050
2051

Batch size. The wide range of training set sizes means that there isn’t a single batch size suitable for all training runs. When the training set size is relatively large, a batch size of 1024 is used. This value was chosen as a batch size any smaller led to the overall training time becoming prohibitively long. As the size of the training set is reduced, this batch size eventually becomes unsuitably large

2052 in comparison to the dataset size; for example, a whole epoch of the smallest training set would fit
 2053 into a single batch, and we would no longer be performing stochastic gradient descent. To address
 2054 this, batch size is reduced for the smaller datasets by limiting it to a maximum of $\frac{1}{128}$ of the training
 2055 set size.

2056 A limitation of having batch size vary with training set length is that it becomes another potential
 2057 explanation for differences in performance. We argue that this does not detract from the results as
 2058 the batch sizes that are paired with each training set size are representative of what a practitioner
 2059 would use; for example, it would not be representative of common practice to train a model on the
 2060 2^{25} length training sets with a batch size of 4.

2061 **Steps per evaluation.** Models are evaluated every 1024 training steps, or every epoch, whichever
 2062 is sooner. Evaluating every epoch is too infrequent for the larger training sets. The effect of these
 2063 settings is still to evaluate more frequently for smaller datasets; this is suitable as models quickly
 2064 overfit on these datasets, and it is desirable to have more frequent evaluations in order to select the
 2065 best-performing model parameters.

2067 Table 9: Relationship between training set size and a number of settings: batch size, number of
 2068 epochs, number of steps and number of evaluations. Batch size is capped at $\frac{1}{128}$ of the training
 2069 set size. The number of epochs is capped at 512. 2^{27} samples are drawn, or until the epoch limit
 2070 of 512 is reached. An evaluation is run every epoch or every 1024 steps, whichever is sooner. A
 2071 consequence of these settings is that all configurations share the same number of steps.

Train length	Batch size	Epochs	Steps	Evals
1024	8	512	65536	512
2048	16	512	65536	512
4096	32	512	65536	512
8192	64	512	65536	512
16384	128	512	65536	512
32768	256	512	65536	512
65536	512	512	65536	512
131072	1024	512	65536	512
262144	2048	512	65536	512
524288	2048	256	65536	256
1048576	2048	128	65536	128
2097152	2048	64	65536	64
4194304	2048	32	65536	64
8388608	2048	16	65536	64
16777216	2048	8	65536	64
33554432	2048	4	65536	64

2090 **Learning rate.** With multiple datasets, models and batch sizes, fixing a single learning rate would
 2091 risk skewing results in favour of configurations that best suit the chosen learning rate. Instead of
 2092 fixing a learning rate, we fix a strategy for selecting a learning rate. This is described in the next
 2093 section.

2095 E.3 LEARNING RATE SELECTION

2097 For all configurations of models and datasets, an individual maximum learning rate is chosen by
 2098 using the learning rate range test introduced by Smith (2017). An issue with this approach is its
 2099 sensitivity to noise in the loss curve generated by a sweep over learning rates; this noise makes
 2100 it difficult to identify the region of steepest descent. We modify the approach slightly in order
 2101 to increase robustness: for each configuration we carry out 8 learning rate sweeps. Averaging 8
 2102 sweeps is insufficient to smooth out the noise in the loss curves. Instead, we use Kalman filtering to
 2103 estimate the expected change in loss at each learning rate and integrate this curve to obtain the final
 2104 smoothed loss curve. This process generates smooth curves from which critical points can be more
 2105 easily identified. From the smoothed loss curve, we choose a learning rate that is the geometric
 mean between the point of steepest descent and the point where the loss curve ends or begins to

increase. The selection of the two points—the point of steepest descent and the endpoint—is not always reliable, and so all selected learning rates were manually inspected, with a small number being manually overridden.

The results of this learning rate sweep for `gpt-a-cat` for the synthetic datasets are shown in Figure 31. The same results but for `rnn-nn` are shown in Figure 32. Interestingly, these results show that the learning rate identified by the range test varies very little between batch sizes on these datasets. To reduce the number of manual overrides, we take the median learning rate across batch sizes as the final learning rate and manually override this for configurations where it is too high or low.

Similar to the situation with batch size, having a learning rate vary across models and datasets introduces an extra factor that may account for differences in performance across configurations. This may be considered a limitation; however, we argue that to fairly compare models, training should be *best-effort*—that is, each model should be trained with the learning rate most appropriate for it and the dataset it is being trained on. In this sense, while the learning rate varies across models and datasets, the strategy for choosing the learning rate is held constant.

E.4 COMPUTE RESOURCES

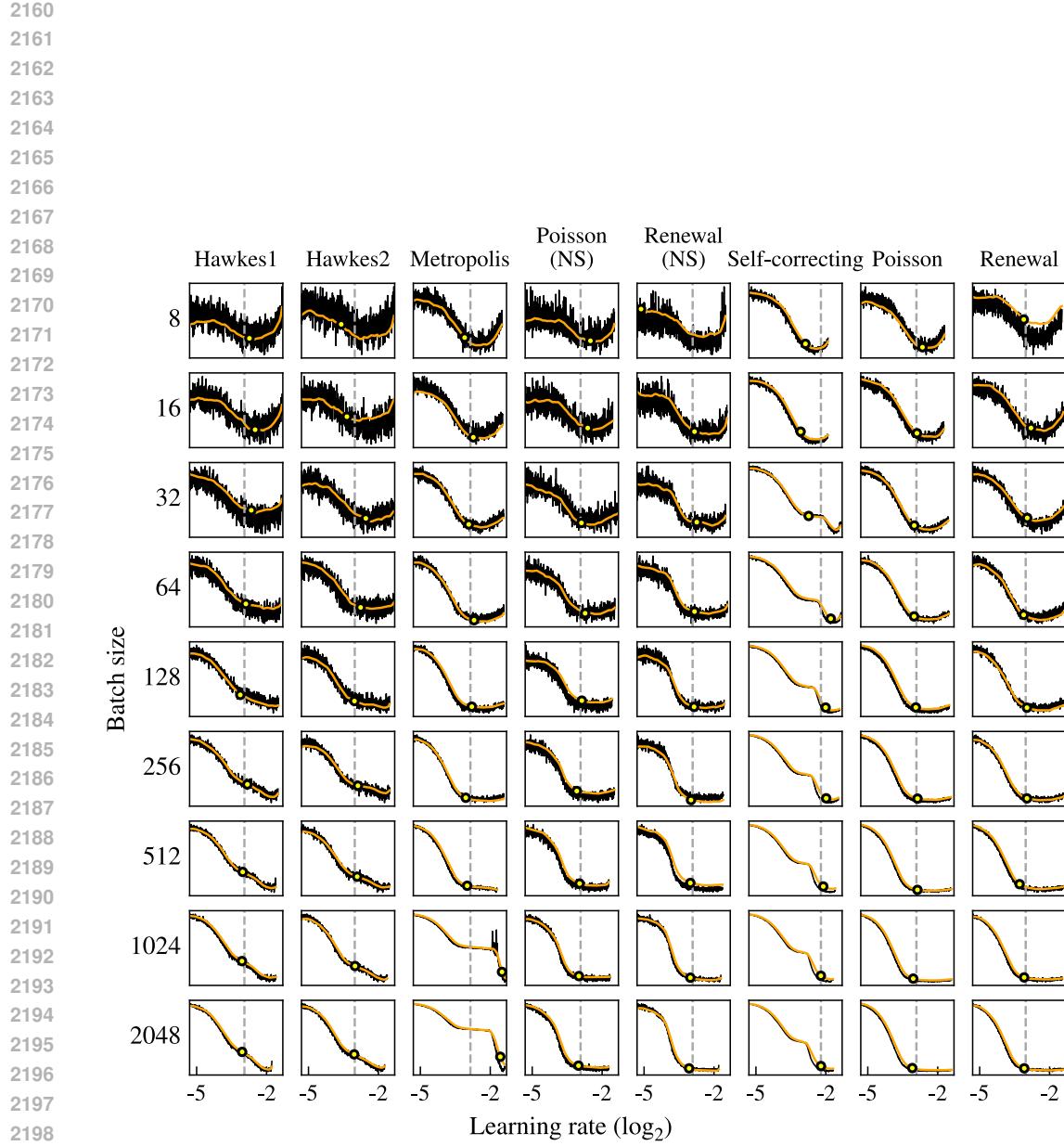
There were three computationally intensive steps for each experiment: learning rate sweeps, training and evaluation. Learning rate sweeps and model evaluation were carried out on a single workstation, with GPU, CPU and RAM specifications: Nvidia RTX 4090 GPU, AMD Ryzen Threadripper PRO 5975WX and 256 GiB RAM. Depending on the experiment, training was carried out on either this workstation or by using 10 Nvidia A40 GPUs from an internal cluster. The wall-clock durations for each of these three steps are reported below, separated by the sections where the results are used. The durations are affected by concurrent jobs that may have been sharing resources, and may include a tapering period where there is not enough remaining work to utilize all GPUs.

For the real-world datasets in Section 3 including the corresponding supplementary results, time taken for learning rate sweeps, training and evaluation was \sim 14 hours, \sim 129 hours and \sim 14 hours respectively. The learning rate sweeps and the evaluation were carried out on the workstation, and training was carried out on the cluster. For Sections 4 to 5, the same triplet of tasks took \sim 20 hours, \sim 223 hours and \sim 11 hours. For the modulo datasets (Section 7), it was \sim 16 hours, \sim 167 hours and \sim 7 hours. For the spike prediction experiment (Section 6), all three steps were run on the workstation. Time taken for the learning rate sweeps, training and evaluation was \sim 9 hours, \sim 122 hours and \sim 9 hours respectively.

Across all experiments, learning rate sweeps took \sim 59 hours on the workstation, training took \sim 122 hours on the workstation and \sim 519 hours on the cluster, and evaluation took \sim 41 hours on the workstation. We estimate that exploratory, failed or unused experiments used approximately 4 times more compute, combined.

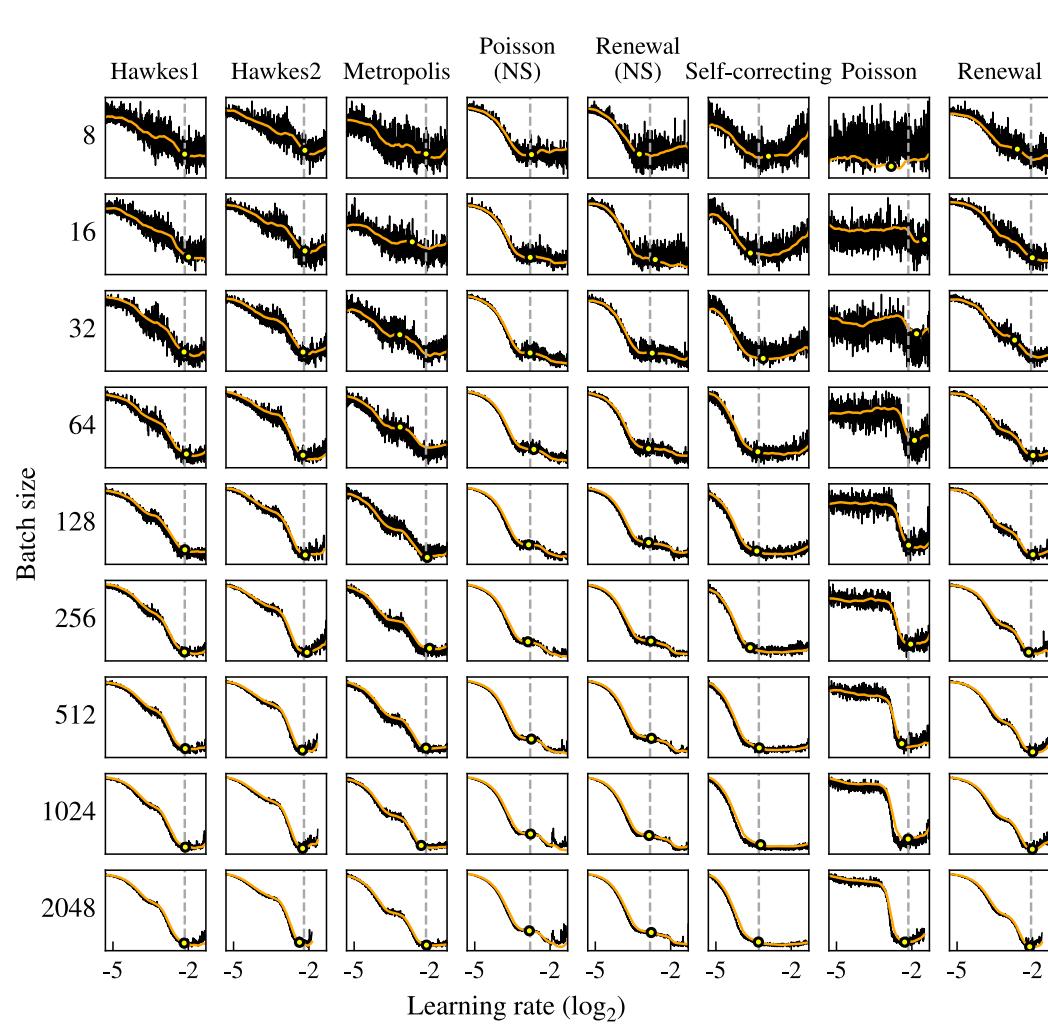
USE OF LARGE LANGUAGE MODELS

Tools utilizing large language models were used for spelling and grammar checking.



2200 Figure 31: Learning rate sweep for gpt-a-cat for the synthetic datasets. The black trace (—) is the mean loss over 8 runs. The orange trace (—) is the Kalman smoothed loss. The yellow points (o) mark the geometric mean between the point of steepest descent and the point where the curve increases or ends—the proposed learning rate. The dashed vertical grey line marks the median proposed learning rate across batch sizes. As the proposed learning rate varies little between batch sizes, in this work, we choose the median learning rate across batch sizes to be used for all batch sizes. We manually select the learning rate for a configuration if the median learning rate is unsuitably high or low.

2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213



2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Figure 32: Learning rate sweep for `rnn-nn` for the synthetic datasets. The black trace (—) is the mean loss over 8 runs. The orange trace (—) is the Kalman smoothed loss. The yellow points (o) mark the geometric mean between the point of steepest descent and the point where the curve increases or ends—the proposed learning rate. The dashed vertical grey line marks the median proposed learning rate across batch sizes.

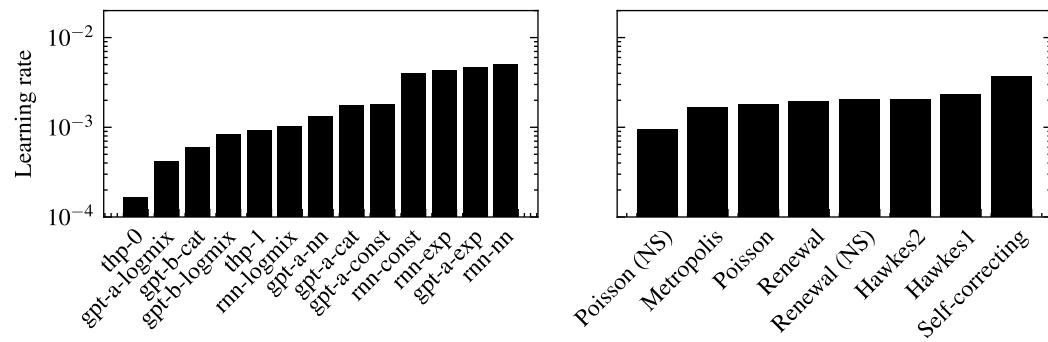


Figure 33: **Left:** mean learning rate used for each model (mean over synthetic datasets). **Right:** mean learning rate used for each of the synthetic datasets (mean over all models).