
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CATEGORICAL DISTRIBUTIONS ARE EFFECTIVE NEU-
RAL NETWORK OUTPUTS FOR EVENT PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We demonstrate the effectiveness of using a categorical distribution as a neural
network output for the task of next event prediction. We find that training set sizes
help explain performance differences between models: when training sets are in-
creased, performance differences largely disappear. We introduce 3 new datasets
which provide informative ways to explore model performance; they demonstrate
cases where larger models and the use of the categorical output are effective.

1 INTRODUCTION

Probabilistic modeling of event data with neural networks is the concern of the field of neural net-
work based temporal point processes (TPPs), reviewed by Shchur et al. (2021), Bosser & Taieb
(2023) and Lin et al. (2025).

Figure 1: Bottom: Histogram of inter-event
times for the NYC taxi dataset (Whong,
2014). Top: Intervals containing 1

64 of
events—these intervals are mappable to a
categorical distribution with 64 outcomes.

A variety of continuous distributions have been used
as neural network outputs for predicting future event
times (Bosser & Taieb, 2023). In this work, we pro-
pose to discretize the output domain, roughly into
equal-quantile intervals, and to use the output of a
neural network to represent a categorical distribu-
tion over these intervals. This approach is motivated
by the observation that many datasets collected by
measuring real-world processes exhibit a mixed dis-
tribution containing continuous and discrete parts.
For example, the times between taxi pickups in New
York City obtained by Whong (2014) have a distri-
bution (see Figure 1) that is relatively smooth but
punctuated by regular peaks. This type of distri-
bution is not uncommon, and it will be shown that
a categorical output interpreted as a piecewise con-
stant distribution is effective at modeling such data.

The categorical output is not universally effective (nor is any output tested). Bosser & Taieb (2023)
cataloged the performance differences of many neural TPP models, but did not find an explanation
for these differences. In Section 4, we show that for many models and datasets, performance differ-
ences diminish when training set sizes are increased, suggesting that factors such as regularization
contribute to performance differences at commonly used (and relatively small) training set sizes. To
facilitate this investigation, we extend several existing datasets to larger sizes (see Figure 2).

We then introduce 3 new datasets which fill gaps in the existing dataset landscape. The synthetic
datasets tested in Section 4 are shown to quickly plateau in terms of model performance gains they
yield as training data is increased. In Section 5, we introduce a synthetic dataset using a modified
Metropolis-Hastings algorithm that continues to yield performance gains for orders of magnitude
larger training set sizes. This is useful for representing processes whose underlying dynamics are
not quickly uncovered. In Section 6, we introduce a neuronal spike prediction task motivated by
retinal prosthetics. For this dataset, not only are events from a real-world process, the task itself
replicates the requirements of a real-world task. This is a feature lacking from the real-world datasets
studied in Section 3 and Section 4. Finally, motivated by the structure of the spike prediction task,
we introduce a family of synthetic datasets with discrete event times in Section 7. These datasets

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Two models evaluated in terms of
test set NLL (lower is better) on existing real-
world datasets. The rnn-logmix model
from Shchur et al. (2020) acts as a baseline.
The rnn-cat model uses the same archi-
tecture but with a categorical output struc-
ture. Values are means over 10 trials. Re-
sults for rnn-cat are reported by their dif-
ference to the results for rnn-logmix.

Dataset rnn-logmix rnn-cat

Yelp airport 4.700 +0.057
Yelp Mississuaga 3.890 +0.034
Twitter 3.963 +0.055
Taobao 2.409 -0.553
Wikipedia 5.120 +0.024
Yelp Toronto 4.884 -0.014
PUBG 1.585 -3.781
MOOC 1.862 -2.326
Reddit AskScience 5.643 -0.167
Amazon 5.579 +0.029
Reddit Politics 4.628 -0.721
Last.fm 5.069 -0.014

existing

high distribution
inequality (> 0.8
Gini coefficient)

new
extended

16 k
72 k

10 k
6 k

*
**

*

*

*

Figure 2: Dataset training set sizes. Datasets
marked by * have high Gini coefficient (> 0.8),
which may indicate a discrete component in the
distribution (see Appendix B). New and extended
datasets are introduced in Sections 4 to 7.

reflect the discrete nature of many real-world datasets—discrete, for example, on account of the
measurement process. For all of these new datasets, we observe the effectiveness of the categorical
output. Compared to the existing datasets, the new datasets also demonstrate cases where larger
models are effective.

The next section describes how a categorical distribution over intervals can be used for event pre-
diction on the interval (0,∞).

2 CATEGORICAL DISTRIBUTION FOR INTER-EVENT TIMES ON (0,∞)

For many event datasets, there is no maximum inter-event time, and models are expected to output
distributions over the interval (0,∞). In this work, to form a continuous distribution on (0,∞), the
categorical output is interpreted as assigning probability mass to intervals. The resulting distribution
is a piecewise-continuous one, constructed as follows. We follow a similar approach to Kvamme &
Borgan (2021) and choose intervals that equally divide the training set distribution: we fix N , the
number of intervals, and choose interval lengths such that the first interval extends to contain the
first 1/N of the inter-event times, the second until 2/N and so on until the last interval which extends
to infinity. We let the probability density in each non-final interval be constant, determined by the
interval width and the model’s output. The final interval, being infinite in length, cannot have a
constant non-zero density; instead we use an exponential decay weighted by the model’s output. A
subset of the intervals for a model with 64 outputs for the NYC taxi dataset is shown in Figure 1
(top). The intervals are fixed and do not change during training. Zero-width intervals are avoided
by imposing a minimum interval length. See Appendix C for more details.

3 RESULTS ON EXISTING DATASETS

We compare the categorical output to the existing output heads listed in Table 2. Each output head is
paired with the 3 model stems listed in Table 3. An additional model is also tested, the Transformer
Hawkes Process, used in two sizes thp-0 and thp-1, described by (Zuo et al., 2020). We evaluate
the categorical output on the previously studied datasets listed in Figure 2 (excluding those that are
expanded in the next section).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 2: Output heads used in experiments. See Appendix C for implementation details. To compare
to the categorical head, focus is given to the logmix head throughout this work, as it is found to be
the most effective among the existing heads tested.

Label Head description Studied by
cat categorical distribution this work
const exponential hazard Huang et al. (2019), Li et al. (2018)
exp constant hazard Du et al. (2016), Upadhyay et al. (2018)
logmix lognormal mixture (64 components) Shchur et al. (2020)
nn neural net parameterized hazard Omi et al. (2019)

Table 3: Model stems used in experiments. See Appendix C for implementation details. All existing
heads from Table 2 were original studied with a recurrent neural network (RNN) stem.

Label Stem description Input Layers Heads Embed dim. Parameters
rnn gated recurrent unit 32 1 NA 64 13k
gpt-a GPT-2 transformer 128 2 4 16 108k
gpt-b GPT-2 transformer 128 6 4 32 1.20M

A subset of results is shown in Table 1, comparing cat and logmix heads using the rnn stem
in terms of negative log-likelihood (NLL). Full results in terms of both NLL and mean absolute
error (MAE) for all stem and head combinations are reported in Appendix A (Table 5 and Table 6).

The results in Table 1 show that the categorical output is competitive, although not universally more
effective than the logmix output. The results, when viewed next to Figure 2, hint that dataset size
or the presence of discrete components in the event distributions may be factors that help explain the
results. The next section helps to understand the performance differences by evaluating over a range
of training set sizes.

4 TRAINING SET SIZES DIFFERENTIATE TPP MODEL PERFORMANCE

From the existing real-world datasets listed in Figure 2, we identified the New York City taxi dataset
(Whong, 2014; Du et al., 2016) and the Stack Overflow badge dataset (Du et al., 2016) as having
data sources that allow the datasets to be recreated with much larger sizes. The 7 synthetic datasets
from Omi et al. (2019) can also be recreated with larger sizes (arbitrarily large). In this section, the
training sets of these 9 datasets are varied across 16 sizes from 210 to 225 inter-event times (while
validation and test sets are fixed at 217).

4.1 RESULTS AND DISCUSSION

All output heads from Table 2 are tested with the rnn and gpt-a stems from Table 3. Additionally,
the cat and logmix heads are tested with the larger gpt-b stem. Figure 3 reports NLL for 6 of
the 9 datasets. Appendix A contains the complete results (NLL and MAE for all datasets).

The results support three claims.

First, across all datasets, training set size is an important factor explaining model performance. For
most datasets, the larger models take more samples to plateau but eventually catch up to or surpass
their smaller counterparts. The sensitivity to training set size is also dependent on output structure.
The exponential intensity head sees little difference across training set sizes, whereas the categorical
output sees a large variation. This supports the claim that different output structures can be thought
of as conferring different degrees of regularization, preventing performance degradation at smaller
training set sizes. Across all datasets, in the presence of sufficient data, both the use of the categorical
output and the use of larger models are competitive.

Second, the categorical output achieves strong performance on the NYC taxi dataset, irrespective
of model and training set size. This is consistent with the hypothesis that the discrete nature of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

best worstNLL (lower is better) theoretical bestcommon training set length

(a) Stationary Poisson (b) Self-correcting (c) Hawkes1

(d) Stationary renewal (e) NYC taxi (f) Stack Overflow badges

Figure 3: Performance comparison of 13 models in terms of test set NLL across 6 datasets and
16 training set lengths from 210 to 225. The colormap ranges span each sub-figure’s full range of
values, except for the NYC taxi dataset, where the categorical models’ very low NLL scores (all
< 3.4) are separated to preserve the colormap detail for other models. For synthetic datasets where
a theoretical best score is known, it is marked with a red dashed line.

this dataset (see Figure 1 and Appendix B) explains the effectiveness of the categorical output.
The logmix model can, in principle, represent distributions with sharp peaks; however, across all
training set lengths, the logmix models are unable to match the performance of the categorical
models. One hypothesis is that singularities hinder stable training of a lognormal mixture, similar to
the situation encountered when fitting such mixtures with the expectation-maximization algorithm
(Bishop, 2006); supporting evidence for this theory is presented in Appendix C.5.2.

Finally, a striking observation is that for all synthetic datasets there is a model that requires very little
data to be a top-scoring model. We argue that this is evidence that the event sequences do not have
complex dynamics needing significant training sets to learn. Take for example the stationary Poisson
process where, after a few thousand samples, most of the models reach close to the theoretical best
NLL score, and further improvement would effectively require inferring the state of the underlying
pseudo-random number generator. In the next section, we introduce a new synthetic dataset that
continues to yield performance gains over longer training lengths.

5 METROPOLIS LOGNORMAL EVENT DATASET

The previous section showed how the synthetic datasets from Omi et al. (2019) quickly plateau
in terms of the performance gains they yield, explaining how small models can reach competitive

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: Histogram of
200k samples from the
modified Metropolis-
Hastings algorithm.

Figure 5: 200k pairs of
samples rasterized: xt+1

and previous sample xt. Figure 6: Test set NLL scores on the
Metropolis lognormal dataset.

time (ms)

stimulus

spikes
targetinput

-100-200 0

stride

(a) Spike prediction task

shared
base heads

gpt-a / gpt-bCNN FC FC

ti
m

e

cat

logmix time (ms) 100

median

median

act

act

(b) Categorical and logmix heads

Figure 7: (a) Spike prediction task: given a 1-second snippet of stimulus and spike history, predict
the time of the next spike. Predictions beyond a stride of 80ms are not used. Information after t = 0
is not available to a model, matching the task faced by retinal prosthetic devices. (b) The inputs,
architecture and outputs of the models tested. Figure adapted from Doran et al. (2024).

performance on small training sets. Here, we use a Markov process to create a synthetic dataset that
continues to yield performance gains for orders of magnitude larger training set sizes.

We generate an event sequence from a nested set of state transition matrices. The matrices param-
eterize a modified Metropolis-Hastings sampling algorithm. This process exploits what is typically
considered a weakness of Metropolis-Hastings sampling—that samples are dependent—in order to
gradually leak information about the state transition matrices. The generation procedure is described
in Appendix B.5. Figure 4 plots samples from the sequence before applying the logarithm, reveal-
ing the roughly Gaussian shape of the distribution. For the same samples, Figure 5 plots next vs.
previous samples, highlighting that with enough samples, a highly structured distribution emerges.

Figure 6 shows how models perform across a range of training set lengths. Here, all heads (except
nn) benefit from having a larger base model, and smaller models do not quickly approach a compet-
itive score. This dataset is important for being a synthetic event dataset where there is a clear benefit
of using larger models, and those models gradually improve with more data. Regarding gpt-a-nn:
we observed this model to be more prone to training instability compared to rnn-nn, a possible
explanation for its poorer performance.

6 A CATEGORICAL OUTPUT IS EFFECTIVE FOR SPIKE PREDICTION

The real-world datasets studied in previous sections are event sequences recorded from real pro-
cesses; however, predicting the next event in these sequences is not grounded in a realistic task.
This section introduces a task motivated by retinal prosthetic devices. We demonstrate how the de-
mands of a real-world task can lead to a discrete output structure being suitable for predicting events
of an otherwise continuous process. In this setting, we again see the usefulness of the categorical
distribution.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

gpt-a
gpt-b

Figure 8: Performance comparison between logmix (a 64-component lognormal mixture) and cat
(an 81-bin categorical distribution) for the task of spike prediction. NLL is reported on the left.
The next 3 metrics are spike train similarity/distance metrics, evaluated autoregressively; they share
a smoothing parameter of 60ms. The model stem is tested in two sizes: gpt-a and the larger
gpt-b. We follow Agarwal et al. (2021) and report metrics as interquartile means over the 1611
chicken RGCs over 10 training repeats, with 95% bootstrap confidence intervals as error bars.

Retinal prosthetic devices must mimic the activity patterns of cells by considering impinging light
and previous spike activity. Gogliettino et al. (2023) describes such a device for electrically stimu-
lating the primate retina. We design a task that captures some of the requirements of such a device.

We create a dataset of snippets from multi-electrode array recordings of chicken retinal ganglion
cells (RGCs) responding to visual stimuli (Seifert et al., 2023). An input is a 1024-length snippet of
a recording (~1 second), containing the stimulus and spike history of a single cell. The target is the
time until the cell’s next spike (see Figure 7a). There are 1611 cells across 16 recordings. Further
details on the dataset are contained in Appendix D. To gauge how well models might operate in a
retinal prosthetic device, we roll out the models autoregressively and compare the generated spike
trains to the ground truth spike trains using common spike train similarity metrics.

6.1 SAMPLING AND PREDICTION RATES MOTIVATE A CATEGORICAL OUTPUT

Two temporal scales are associated with the task: the sampling period and the prediction period.
The sampling period of the spikes and stimulus is ~1ms (1.008ms). The autoregressive regime
introduces the prediction period—the maximum duration to wait before making a new prediction.
A shorter prediction period allows for faster integration of new stimulus information, but carries a
computational cost. We fix 80 samples (~80ms) as the prediction period. There are diminishing
returns to reducing this period, as 80ms is close to the mean response delay of the RGCs recorded
by Seifert et al. (2023).

The two temporal scales make the categorical distribution a natural choice for a model output. With
80ms prediction period and 1ms sampling period, a categorical distribution with 81 outcomes is the
minimal neural network output that remains fully descriptive: 80 classes for the 80 intervals in the
prediction period and one class for the interval [80ms,∞). The sampling frequency implies that no
finer resolution than 1ms is needed, and the prediction frequency ensures that no granularity at all
is needed beyond 80ms. Figure 7b shows the categorical output being used for the spike prediction
task above the output head it is compared against, the mixture of lognormals.

6.2 MODELS: HEAD(CNN + TRANSFORMER)

We train 4 models. The logmix and cat heads are attached to the same architecture: a convolu-
tional neural network (CNN) followed by gpt-a or gpt-b. A straightforward ResNet (He et al.,
2016) based CNN stem encodes a 1024-length frame of stimulus and spike history into a 64-length
sequence of vectors of length 64. This sequence is passed to gpt-a (or gpt-b) from Table 3. An
embedding of the cell number is added to the input sequence. The output of the transformer is either
an 81 length vector in the case of the categorical output, or a 64× 3 = 192 length vector in the case
of the mixture of 64 lognormals. Appendix C describes the models in more detail.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

6.3 EXPERIMENT AND RESULTS

The models are trained at next spike prediction with a NLL loss (see Appendix D for training de-
tails). Point estimates are made using the median of the output distribution. We evaluate model
performance with 4 metrics: NLL, Schreiber Similarity, Van Rossum distance and smoothed Pear-
son correlation. The latter 3 metrics are calculated using the spike trains generated by rolling out the
models autoregressively; the metrics share a smoothing parameter set to 60ms, a duration shown to
be appropriate by Doran et al. (2024). Schreiber similarity introduced by Schreiber et al. (2003) and
Van Rossum distance introduced by Van Rossum (2001) are common metrics used to compare spike
trains. See (Paiva et al., 2010) for a review of spike train comparison metrics. The NLL calculation
uses probability mass, and for the logmix model, this involves integrating the continuous distribution
over a 1ms interval.

All 4 metrics are reported in Figure 8. The categorical output consistently outperforms the mixture
of lognormals, highlighting the effectiveness of the simple output structure. The benefit of using the
larger model stem (gpt-b) is also clear.

7 EVENT SEQUENCES FROM MODULO ADDITION

The spike prediction task justified the use of a discrete representation for events of a continuous
process. This section introduces a family of synthetic processes that generate events in discrete in-
tervals. The aim is for these synthetic processes to be a useful tool to investigate model performance
in the same way that synthetic processes such as Hawkes processes are useful in the continuous
setting. Modulo addition will be used to create the event sequences. The sequences can be related
to real-world processes that involve wrap-around events, such as timer or frame counter overflows.

Using modulo addition, an increasing sequence defined over a grid can be used to generate event
sequences with varying degrees of complexity. Consider tracking a particle along a 1D track and
recording when the particle passes 10 meters, 20 meters, 30 meters and so on. Over a 2D plane,
we could record the times when a particle moves from one quadrant to another. As the number
of dimensions increases, the number of faces a particle can exit through to enter another division
increases. Figure 10 shows a particle moving in 1D, 2D and 3D space and generating events with
respect to a grid. To predict when a particle will move to the next quadrant, the previous events can
be observed to narrow down the particle’s position and velocity. This becomes more challenging
and requires more data points as the number of dimensions increases. By varying the number of
dimensions, a family of event sequences can be created with various decoding difficulties.

Figure 9: Four snapshots of a particle moving in 1, 2 and 3-dimensional space. When the particle
passes a boundary, an event is generated. An example event sequence is shown. The 3-dimensional
case is visualized by the particle wrapping around in a single voxel.

Figure 10: Inter-event time distributions for 1, 2 and 3-d modulo sequences where the starting
position, a0, is sampled uniformly from [0, 1021)d and the velocity, v, uniformly from [10, 80]d.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) zero input (b) gpt-a-exp (c) gpt-a-logmix (d) gpt-a-cat

(e) gpt-a-const (f) gpt-a-nn (g) gpt-b-logmix (h) gpt-b-cat

Figure 11: Performance comparison of 8 models in terms of test set mean absolute error (MAE).
Each model is trained and evaluated over a landscape of 16 training set sizes for 10 modulo datasets.
Model (a) takes no input and just outputs the empirical training set distribution; it acts as a baseline.

7.1 10 DATASETS, FROM 1D TO 10D

We create 10 datasets of discrete time event sequences, one for each dimension from 1 to 10.

A 1-dimensional sequence is generated as follows. A grid size n is fixed. In this work, we use
n = 1021. A velocity v and starting position a0 are chosen. A sequence of positions a0, a1, a2, . . .
is generated by ai+1 = ai+ v. Whenever ai+1 < ai mod n, an event is generated at time t = i+1.

A d-dimensional sequence is generated from vector addition in the same way. A vector n of length
d is fixed. We fix n to be n = (1021, 1021, . . . , 1021). A velocity v and starting position a0 are
chosen. A sequence of positions a0,a1,a2, . . . is generated by ai+1 = ai + v. Whenever any of
the components of ai overflow with respect to n when transitioning to ai+1, an event is generated
at time t = i+ 1.

The 1D dataset is formed of many separate event sequences of length 1024 generated for different a0
and v. To create a sequence, we sample a0 uniformly from [0, 1021) and v uniformly from [10, 80]
and generate 1024 events per sequence. The other 9 datasets are generated in the same way. Having
many short sequences rather than a single long sequence makes the dataset more representative of
datasets like the NYC taxi dataset, the Stack Overflow dataset and the chicken RGC dataset, all
of which contain numerous separate sequences. More details on the generation process, including
motivations for the bounds of v and an analogous continuous process, are described in Appendix B.7.
For each dataset, we generate 217 sequences, for a total of 227 events per dataset. This is then split
into training, validation and test sets in an 8:1:1 ratio. As before, we consider 16 subsets of the
training set, containing 20, 21, ..., 215 sequences (210, 211, ..., 225 events).

7.2 RESULTS AND DISCUSSION

Seven gpt-a and gpt-b based models are trained on the modulo datasets. Figure 11 shows MAE
for the models across the landscape of modulo datasets. NLL scores appear in Appendix A. The first
figure, Figure 11a, is the result of predicting using only the training set’s empirical distribution (no
event history input is used) and acts as a baseline for comparison.

The first observation is that for all dimensions, there is a training set size above which gpt-a-cat
is equal to or better than the other gpt-a models. This result is another example demonstrating
the competitiveness of the categorical head when there is sufficient data. We also see the benefit
of using larger models when training set sizes are large, demonstrated by a reduction in MAE for
logmix and categorical heads when switching from gpt-a to gpt-b. There are also differences

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

between models when using small training sets; for example, the logmix head is more effective than
the categorical head. This effect is relatively insensitive to model size, which is evidence that the
output structures themselves affect generalization when data is limited.

By comparing to the zero input baseline, we see that the usefulness of the contextual information
decreases with increasing dimension—by 10D, even with 225 samples, no model markedly outper-
forms the zero input baseline. From this perspective, the modulo datasets form a spectrum between
easy (1D) and difficult (10D) in terms of inferring the next event from event histories. In Ap-
pendix B.7, the concept of dataset difficult is analysed in terms of V-information introduced by
Ethayarajh et al. (2022).

8 DISCUSSION

An argument of this work is that the task and dataset should drive model choice. In the spike predic-
tion task, the task itself characterized a categorical output structure. The NYC taxi dataset, whether
due to the discrete nature of the recording process or the presence of periodicity in the underlying
system, has a distribution of inter-event times with many narrow peaks and is conducive to being
represented with a categorical distribution. This situation is not uncommon—the histograms of all
real-world datasets used in this work are listed in Appendix B, and many have shapes with narrow
peaks capturing the majority of events. In addition to the inescapable discrete nature of many event
sequences recorded from real-world processes, realistic tasks associated with these sequences may
also define a resolution of interest. The spike prediction task is one such example. It is reasonable
to expect that use cases for predicting the next taxi request or the next visit to a location would
also describe a resolution at which predictions are relevant, such as seconds or minutes. Evaluating
probability mass within intervals would call into question the density-based loss signals typically
used for training TPP models. It would be interesting for future works to consider what other output
representations may be effective if mass rather than density based evaluations are used.

A second theme of this work is explaining performance differences between models. Section 4
showed how the training set sizes used in existing benchmarks snapshot the performance at a point
where reducing model size can be beneficial, presumably on account of the regularization effect of
model capacity. It was also shown that the synthetic datasets from Omi et al. (2019) are such that
small models achieve competitive performance at short training set sizes. This was argued to be
on account of how quickly these datasets plateau in terms of the performance gains they afford as
training data is increased. Both of these points suggest that existing benchmarks may be of limited
use to practitioners interested in using large models to exploit large amounts of data.

9 LIMITATIONS

Several limitations reduce the strength of the conclusions. The work does not consider the prediction
of additional spatial or categorical information. The exposition of both discrete and continuous
settings makes the treatment more comprehensive, but makes it more difficult to compare results
across sections. This work broadly ascribes model capacity and output structure as being important
for explaining performance across datasets; however, specific mechanisms are not isolated, such as
data memorization or the alignment of the output distribution family to a dataset’s distribution.

10 CONCLUSION

This work demonstrates that the categorical distribution is an effective representation for spike pre-
diction across a range of datasets. On existing TPP datasets, we show that many performance differ-
ences between models reduce as training set sizes are increased. We show that for existing synthetic
datasets, model size has very little effect on performance. We introduce a synthetic dataset where
larger models can make use of larger training set sizes. We describe a case study (neuronal spike
prediction) where the categorical distribution is a natural fit given the structure of the task. This task
is additionally valuable as it is accompanied by application-relevant performance metrics. Inspired
by the spike prediction task, we introduce a family of synthetic datasets where events are recorded
in finite intervals.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

Supplementary code (including datasets) permits all experiments to be reproduced. The Stack Over-
flow dataset is not included, as the usage agreement prevents distribution; for this case, instructions
for obtaining the data are provided in Appendix B.3. To accompany the code, the appendix also
includes descriptions of models (Appendix C), datasets (Appendix B) and training procedures (Ap-
pendix E).

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep Reinforcement Learning at the Edge of the Statistical Precipice. In Advances in Neural
Information Processing Systems, volume 34, pp. 29304–29320. Curran Associates, Inc., 2021.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0-387-31073-8.

Tanguy Bosser and Souhaib Ben Taieb. On the Predictive Accuracy of Neural Temporal Point
Process Models for Continuous-time Event Data. Transactions on Machine Learning Research,
March 2023. ISSN 2835-8856.

Kevin Doran, Marvin Seifert, Carola A. M. Yovanovich, and Tom Baden. Spike Distance Function
as a Learning Objective for Spike Prediction. In Proceedings of the 41st International Conference
on Machine Learning, pp. 11474–11500. PMLR, July 2024.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent Marked Temporal Point Processes: Embedding Event History to Vector. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 1555–1564, New York, NY, USA, August 2016. Association for Computing Ma-
chinery. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939875.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with V-
usable information. In Proceedings of the 39th International Conference on Machine Learning,
pp. 5988–6008. PMLR, June 2022.

Alex R. Gogliettino, Sasidhar S. Madugula, Lauren E. Grosberg, Ramandeep S. Vilkhu, Jeff
Brown, Huy Nguyen, Alexandra Kling, Paweł Hottowy, Władysław Dąbrowski, Alexander Sher,
Alan M. Litke, and E. J. Chichilnisky. High-Fidelity Reproduction of Visual Signals by Elec-
trical Stimulation in the Central Primate Retina. The Journal of Neuroscience: The Official
Journal of the Society for Neuroscience, 43(25):4625–4641, June 2023. ISSN 1529-2401. doi:
10.1523/JNEUROSCI.1091-22.2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, Las Vegas, NV, USA, June 2016. IEEE. ISBN 978-1-4673-8851-1. doi: 10.1109/
CVPR.2016.90.

Jeremy Howard, Sylvain Gugger, and Soumith Chintala. Deep Learning for Coders with Fastai
and PyTorch: AI Applications without a PhD. O’Reilly Media, Inc, Sebastopol, California, first
edition edition, 2020. ISBN 978-1-4920-4552-6.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-Excitation Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7132–7141, 2018.

Hengguan Huang, Hao Wang, and Brian Mak. Recurrent Poisson Process Unit for Speech Recog-
nition. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):6538–6545, July
2019. ISSN 2374-3468. doi: 10.1609/aaai.v33i01.33016538.

Rob J. Hyndman and Yanan Fan. Sample Quantiles in Statistical Packages. The American Statisti-
cian, 50(4):361–365, 1996. ISSN 0003-1305. doi: 10.2307/2684934.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Håvard Kvamme and Ørnulf Borgan. Continuous and discrete-time survival prediction with neural
networks. Lifetime Data Analysis, 27(4):710–736, October 2021. ISSN 1572-9249. doi: 10.1007/
s10985-021-09532-6.

Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning Temporal Point
Processes via Reinforcement Learning. In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Haitao Lin, Cheng Tan, Lirong Wu, Zicheng Liu, Zhangyang Gao, and Stan Z. Li. An Ex-
tensive Survey With Empirical Studies on Deep Temporal Point Process. IEEE Transactions
on Knowledge and Data Engineering, 37(4):1599–1619, April 2025. ISSN 1558-2191. doi:
10.1109/TKDE.2024.3522114.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, January 2019.

David Lüdke, Marin Biloš, Oleksandr Shchur, Marten Lienen, and Stephan Günnemann. Add and
Thin: Diffusion for Temporal Point Processes. Advances in Neural Information Processing Sys-
tems, 36:56784–56801, December 2023.

Takahiro Omi, naonori ueda, and Kazuyuki Aihara. Fully Neural Network based Model for General
Temporal Point Processes. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Stack Overflow. Stack Exchange Data Dump. https://stackoverflow.com/help/data-dumps, August
2024.

Antonio R. C. Paiva, Il Memming Park, and Jose C. Principe. A comparison of binless spike
train measures. Neural Computing and Applications, 19(3):405–419, April 2010. doi: 10.1007/
s00521-009-0307-6.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. Technical report, OpenAI, February 2019.

Susanne Schreiber, Susanne Schreiber, Jean Marc Fellous, Diane Whitmer, Paul H. E. Tiesinga, and
Terrence J. Sejnowski. A new correlation-based measure of spike timing reliability. Neurocom-
puting, 52:925–931, June 2003. doi: 10.1016/s0925-2312(02)00838-x.

Marvin Seifert, Paul A. Roberts, George Kafetzis, Daniel Osorio, and Tom Baden. Birds multiplex
spectral and temporal visual information via retinal On- and Off-channels. Nature Communica-
tions, 14(1):5308, August 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-41032-z.

Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-Free Learning of Temporal
Point Processes, January 2020.

Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural Tem-
poral Point Processes: A Review. In Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, pp. 4585–4593, Montreal, Canada, August 2021. Interna-
tional Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-9-6. doi:
10.24963/ijcai.2021/623.

Leslie N. Smith. Cyclical Learning Rates for Training Neural Networks. 2017 IEEE Win-
ter Conference on Applications of Computer Vision (WACV), pp. 464–472, March 2017. doi:
10.1109/WACV.2017.58.

Leslie N. Smith and Nicholay Topin. Super-Convergence: Very Fast Training of Neural Networks
Using Large Learning Rates. https://arxiv.org/abs/1708.07120v3, August 2017.

Utkarsh Upadhyay, Abir De, and Manuel Gomez Rodriguez. Deep Reinforcement Learning of
Marked Temporal Point Processes. In Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018.

M. C. W. Van Rossum. A Novel Spike Distance. Neural Computation, 13(4):751–763, April 2001.
doi: 10.1162/089976601300014321.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chris Whong. NYC’s Taxi Trip Data. https://chriswhong.com/open-data/foil_nyc_taxi/, March
2014.

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A Theory of Usable
Information under Computational Constraints. In Eighth International Conference on Learning
Representations, April 2020.

Siqiao Xue, Xiaoming Shi, Zhixuan Chu, Yan Wang, Hongyan Hao, Fan Zhou, Caigao Jiang, Chen
Pan, James Y. Zhang, Qingsong Wen, Jun Zhou, and Hongyuan Mei. EasyTPP: Towards Open
Benchmarking Temporal Point Processes. https://arxiv.org/abs/2307.08097v3, July 2023.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer Hawkes
Process. In Proceedings of the 37th International Conference on Machine Learning, pp. 11692–
11702. PMLR, November 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A SUPPLEMENTARY RESULTS

This appendix presents results supplementary to Sections 3 to 7.

Table 1 from Section 3 (Results on existing datasets) showed results for rnn-logmix and
rnn-cat evaluated on 12 real-world datasets. These results are extended by Table 4 to include
information on the variability over the 10 runs. Many of these datasets have fixed training, valida-
tion and test sets, so training runs do not differ in terms of data used, only in terms of initialization
and training stochasticity.

In Table 5, the same 12 datasets are used to test all model combinations of rnn, gpt-a and gpt-b
stems with heads const, exp, nn, logmix and cat, along with the Transformer Hawkes models,
thp-0 and thp-1. Table 6 shows the corresponding MAE scores.

In Section 4 (Training set sizes differentiate TPP model performance), Figure 3 showed NLL scores
on a subset of the synthetic datasets used in this work. Figure 12 and Figure 13 below show the
complete set of NLL and MAE scores for the synthetic datasets, and Figure 14 and Figure 15 show
the NLL and MAE scores for the real-world datasets.

In Section 7 (Event sequences from modulo addition), results were reported in terms of MAE. The
corresponding NLL scores are shown in Figure 16.

Table 4: Extension of Table 1 from Section 3 (Results on existing datasets). Two models
(rnn-logmix and rnn-cat) evaluated in terms of test set NLL (lower is better) on existing
real-world datasets. Point estimates are the mean over 10 trials. Variability is expressed as 95%
confidence intervals calculated assuming a normal distribution of the mean: ±1.96 s√

10
, where s is

the sample standard deviation.

Dataset rnn-logmix rnn-cat

Yelp airport 4.700 ± 5.43e-03 4.756 ± 2.63e-03
Yelp Mississuaga 3.890 ± 1.41e-03 3.925 ± 1.68e-03
Twitter 3.963 ± 1.60e-03 4.017 ± 1.42e-03
Taobao 2.409 ± 8.53e-04 1.856 ± 3.12e-04
Wikipedia 5.120 ± 1.07e-03 5.144 ± 7.58e-04
Yelp Toronto 4.884 ± 1.05e-02 4.870 ± 3.81e-04
PUBG 1.585 ± 7.33e-02 -2.195 ± 5.43e-04
MOOC 1.862 ± 9.01e-02 -0.464 ± 1.19e-03
Reddit AskScience 5.643 ± 1.49e-02 5.476 ± 3.54e-04
Amazon 5.579 ± 9.28e-03 5.608 ± 2.48e-04
Reddit Politics 4.628 ± 4.01e-02 3.906 ± 4.84e-04
Last.fm 5.069 ± 1.56e-02 5.055 ± 4.94e-03

A.1 DISCUSSION

The supplementary results motivate the discussion of two points: the contrast between MAE and
NLL metrics, and the presence of infinite NLL scores.

The MAE scores on the synthetic and real-world datasets (Figure 13 and Figure 15) show a simi-
lar pattern to the NLL scores (Figure 12 and Figure 14). Quick plateauing of performance on the
synthetic datasets from Omi et al. (2019) is even more apparent in terms of MAE. The ability to con-
centrate probability mass allows the models with a categorical output to achieve a low NLL score
on the NYC taxi dataset does not correspond to a similarly low MAE score. This is further evidence
to support the claim that NLL should be evaluated in terms of probability mass by specifying an
interval of interest, such as hours, rather than evaluating in terms of probability density. Indeed, a
theoretically best scoring model in terms of NLL simply outputs arbitrarily large probability densi-
ties at the countable rationals, yet such a model would not score well in terms of other metrics such
as MAE.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ta
bl

e
5:

E
xt

en
si

on
of

Ta
bl

e
1

fr
om

Se
ct

io
n

3
(R

es
ul

ts
on

ex
is

tin
g

da
ta

se
ts

).
Te

st
se

tN
L

L
sc

or
es

(l
ow

er
is

be
tte

r)
fo

rv
ar

io
us

m
od

el
s

on
re

al
-w

or
ld

da
ta

se
ts

.5
ou

tp
ut

he
ad

s
(l
o
g
m
i
x

,c
a
t

,n
n

,c
o
n
s
t

an
d
e
x
p

)a
re

pa
ir

ed
w

ith
3

m
od

el
st

em
s

(r
n
n

,g
p
t
-
a

an
d
g
p
t
-
b

).
A

dd
iti

on
al

ly
,t
h
p
-
0

an
d
t
h
p
-
1

fr
om

Z
uo

et
al

.(
20

20
)

ar
e

in
cl

ud
ed

.
C

ol
um

ns
ar

e
or

de
re

d
in

te
rm

s
of

tr
ai

ni
ng

se
tl

en
gt

h,
fr

om
la

rg
es

t(
le

ft
)t

o
sm

al
le

st
(r

ig
ht

).
T

he
r
n
n
-
l
o
g
m
i
x

is
ta

ke
n

as
th

e
ba

se
lin

e
(fi

rs
tc

ol
um

n)
,

an
d

al
lo

th
er

re
su

lts
ar

e
re

po
rt

ed
as

di
ff

er
en

ce
s

fr
om

th
es

e
re

su
lts

.F
or

th
e
l
o
g
m
i
x

an
d
c
a
t

ou
tp

ut
he

ad
s,

re
su

lts
ar

e
th

e
m

ea
n

ov
er

10
ru

ns
,w

hi
le

al
lo

th
er

re
su

lts
ar

e
fr

om
a

si
ng

le
ru

n.

M
od

el
L

as
t.f

m
R

ed
di

tP
ol

.
A

m
az

on
R

ed
di

tA
sk

.
M

O
O

C
PU

B
G

Y
el

p
To

r.
W

ik
ip

ed
ia

Ta
ob

ao
Tw

itt
er

Y
el

p
M

.
Y

el
p

ai
rp

or
t

rn
n-

lo
gm

ix
5.

06
9

4.
62

8
5.

57
9

5.
64

3
1.

86
2

1.
58

5
4.

88
4

5.
12

0
2.

40
9

3.
96

3
3.

89
0

4.
70

0
gp

t-
b-

ca
t

-0
.0

45
-0

.7
44

+0
.0

45
-0

.1
61

-2
.2

67
-3

.7
97

-0
.2

63
+0

.1
04

-0
.5

28
+0

.1
41

+0
.0

57
+0

.0
81

gp
t-

a-
ca

t
-0

.1
01

-0
.7

46
+0

.0
38

-0
.1

66
-2

.2
91

-3
.8

01
-0

.0
04

+0
.0

82
-0

.5
36

+0
.1

22
+0

.0
35

+0
.0

61
rn

n-
ca

t
-0

.0
13

-0
.7

21
+0

.0
29

-0
.1

67
-2

.3
26

-3
.7

80
-0

.0
14

+0
.0

24
-0

.5
53

+0
.0

54
+0

.0
34

+0
.0

57
gp

t-
b-

lo
gm

ix
-0

.0
68

-0
.8

29
+0

.1
25

-0
.7

05
-0

.1
22

+0
.3

44
-0

.2
64

+0
.0

79
+0

.0
19

+0
.0

76
+0

.0
01

+0
.0

05
gp

t-
a-

lo
gm

ix
-0

.1
15

-0
.9

59
+0

.0
78

-0
.9

41
-0

.6
08

+0
.4

59
-0

.2
10

+0
.0

65
+0

.0
12

+0
.0

75
-0

.0
03

+0
.0

01
gp

t-
b-

nn
+0

.0
28

+0
.4

68
+0

.0
79

+0
.1

84
+1

.7
68

+2
.3

23
+0

.0
92

+0
.1

63
+0

.0
26

+0
.1

47
+0

.0
78

+0
.0

68
gp

t-
a-

nn
+0

.0
35

+0
.4

66
+0

.0
48

+0
.1

67
+1

.6
47

+1
.8

07
+0

.1
63

+0
.0

88
+0

.0
17

+0
.0

84
+0

.0
17

+0
.0

28
rn

n-
nn

+0
.2

27
+0

.4
79

+0
.0

97
+0

.1
63

+1
.6

32
+2

.2
25

+0
.1

05
+0

.0
55

+0
.0

02
+0

.0
30

+0
.0

48
+0

.0
22

gp
t-

b-
ex

p
+1

.1
09

+0
.4

82
+2

.7
04

+0
.1

73
+4

.1
58

+2
.4

00
+0

.3
40

+1
.0

08
+0

.3
01

+0
.3

74
+0

.0
45

+0
.0

25
gp

t-
a-

ex
p

+1
.1

73
+0

.4
92

+2
.7

13
+0

.1
73

+4
.1

65
+2

.3
98

+0
.3

40
+0

.9
73

+0
.2

99
+0

.3
76

+0
.0

39
+0

.0
16

rn
n-

ex
p

+1
.2

99
+0

.4
88

+2
.7

02
+0

.1
66

+4
.1

59
+2

.4
02

+0
.3

36
+0

.9
19

+0
.2

90
+0

.3
25

+0
.0

46
+0

.0
08

gp
t-

b-
co

ns
t

+1
.5

17
+0

.4
83

+2
.9

35
+0

.1
89

+5
.6

01
+2

.4
10

+0
.3

56
+1

.6
05

+0
.6

63
+0

.6
12

+0
.0

63
+0

.0
45

gp
t-

a-
co

ns
t

+1
.5

05
+0

.4
83

+2
.9

35
+0

.1
86

+5
.6

00
+2

.4
10

+0
.3

55
+1

.6
00

+0
.6

71
+0

.6
06

+0
.0

62
+0

.0
39

rn
n-

co
ns

t
+1

.5
41

+0
.4

86
+2

.9
33

+0
.1

80
+5

.6
79

+2
.4

13
+0

.3
51

+1
.4

96
+0

.6
48

+0
.5

74
+0

.0
69

+0
.0

26
th

p-
1

+1
.3

38
+0

.4
84

+2
.7

17
+0

.2
01

+5
.1

20
+2

.4
01

+0
.3

64
+1

.4
61

+0
.3

17
+0

.4
80

+0
.0

46
+0

.0
19

th
p-

0
+1

.4
56

+0
.4

91
+2

.7
13

+0
.1

92
+4

.2
24

+2
.4

01
+0

.3
70

+1
.0

94
+0

.3
09

+0
.3

77
+0

.0
39

+0
.0

18

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ta
bl

e
6:

M
A

E
ve

rs
io

n
of

Ta
bl

e
1

fr
om

Se
ct

io
n

3
(R

es
ul

ts
on

ex
is

tin
g

da
ta

se
ts

).
Te

st
se

tM
A

E
sc

or
es

(l
ow

er
is

be
tte

r)
fo

rv
ar

io
us

m
od

el
s

on
re

al
-w

or
ld

da
ta

se
ts

.5
ou

tp
ut

he
ad

s
(l
o
g
m
i
x

,c
a
t

,n
n

,c
o
n
s
t

an
d
e
x
p

)a
re

pa
ir

ed
w

ith
3

m
od

el
st

em
s

(r
n
n

,g
p
t
-
a

an
d
g
p
t
-
b

).
A

dd
iti

on
al

ly
,t
h
p
-
0

an
d
t
h
p
-
1

fr
om

Z
uo

et
al

.
(2

02
0)

ar
e

in
cl

ud
ed

.
C

ol
um

ns
ar

e
or

de
re

d
in

te
rm

s
of

tr
ai

ni
ng

se
tl

en
gt

h,
fr

om
la

rg
es

t(
le

ft
)

to
sm

al
le

st
(r

ig
ht

).
T

he
r
n
n
-
l
o
g
m
i
x

is
ta

ke
n

as
th

e
ba

se
lin

e
(fi

rs
t

co
lu

m
n)

,a
nd

al
lo

th
er

re
su

lts
ar

e
re

po
rt

ed
as

di
ff

er
en

ce
s

fr
om

th
es

e
re

su
lts

.
Fo

r
th

e
l
o
g
m
i
x

an
d
c
a
t

ou
tp

ut
he

ad
s,

re
su

lts
ar

e
th

e
m

ea
n

ov
er

10
ru

ns
,w

hi
le

al
l

ot
he

rr
es

ul
ts

ar
e

fr
om

a
si

ng
le

ru
n.

M
od

el
L

as
t.f

m
R

ed
di

tP
ol

.
A

m
az

on
R

ed
di

tA
sk

.
M

O
O

C
PU

B
G

Y
el

p
To

r.
W

ik
ip

ed
ia

Ta
ob

ao
Tw

itt
er

Y
el

p
M

.
Y

el
p

ai
rp

or
t

rn
n-

lo
gm

ix
13

25
51

.7
9

86
1.

9
19

4.
5

73
1.

6
18

.3
3

64
.9

7
41

2.
2

7.
50

2
36

.5
7

20
.1

7
34

.4
6

gp
t-

b-
ca

t
+0

06
-0

.2
7

-5
.9

+1
.9

+-
0.

0
-0

.9
7

+0
.0

6
+4

.6
+0

.0
51

+1
.0

6
+0

.4
6

+1
.1

6
gp

t-
a-

ca
t

+0
04

-0
.3

3
-6

.2
+1

.7
-0

.1
-0

.9
6

+0
.7

0
+4

.3
+0

.0
48

+0
.9

5
+0

.2
9

+0
.9

2
rn

n-
ca

t
+0

02
-0

.2
3

-1
1.

0
-0

.6
-0

.4
-0

.9
1

-0
.0

4
+0

.7
+0

.0
12

+0
.3

3
+0

.3
8

+0
.3

5
gp

t-
b-

lo
gm

ix
+0

06
-0

.2
0

-6
.1

+0
.6

+-
0.

0
-0

.9
3

+0
.0

3
+4

.4
+0

.0
39

+0
.8

5
+0

.3
0

+1
.0

0
gp

t-
a-

lo
gm

ix
+0

03
+0

.1
1

-4
.9

+2
.5

+-
0.

0
-0

.9
3

-0
.2

8
+4

.1
+0

.0
29

+0
.8

9
+0

.2
0

+0
.8

9
gp

t-
b-

nn
+0

18
-0

.3
7

+2
0.

8
+4

.2
+0

.3
-0

.9
4

+0
.2

9
+3

.5
+0

.0
21

+0
.5

4
+0

.6
2

+0
.6

1
gp

t-
a-

nn
+0

24
-0

.2
3

+2
0.

7
+3

.8
+0

.3
-0

.8
9

+0
.9

3
+4

.5
+0

.0
24

+0
.5

0
+0

.4
3

+0
.8

1
rn

n-
nn

+0
05

-0
.2

1
+2

1.
1

-0
.4

+2
.0

-0
.8

7
+0

.2
7

+0
.7

-0
.0

04
+0

.0
6

+0
.4

9
+0

.4
3

gp
t-

b-
ex

p
+0

65
-0

.3
5

+1
85

.8
+1

.3
+2

7.
6

-0
.9

6
+0

.3
0

+2
4.

4
+0

.1
85

+1
.3

4
+0

.4
2

+0
.6

2
gp

t-
a-

ex
p

+0
57

+0
.0

4
+2

02
.9

+1
.1

+2
6.

8
-0

.9
9

+0
.3

8
+2

1.
3

+0
.1

45
+1

.5
9

+0
.2

9
+0

.2
9

rn
n-

ex
p

+0
78

-0
.2

2
+1

90
.4

+0
.0

+3
2.

3
-0

.8
9

+0
.0

8
+1

9.
9

+0
.1

52
+1

.1
7

+0
.3

0
+0

.2
4

gp
t-

b-
co

ns
t

+2
43

-0
.3

5
+4

35
.2

+3
.1

+3
49

.0
-0

.8
1

+0
.6

3
+1

36
.7

+1
.3

23
+6

.7
0

+0
.7

9
+1

.6
4

gp
t-

a-
co

ns
t

+2
19

-0
.3

5
+4

44
.5

+3
.5

+3
76

.2
-0

.8
0

+0
.3

7
+1

43
.0

+1
.5

39
+6

.3
2

+1
.0

3
+0

.9
4

rn
n-

co
ns

t
+2

34
-0

.1
8

+4
24

.8
+1

.8
+3

62
.5

-0
.7

7
+0

.3
2

+1
08

.8
+1

.2
51

+5
.1

9
+0

.4
2

+0
.5

7
th

p-
1

+0
77

+2
1.

03
+1

00
2.

7
+5

7.
5

+0
.2

+4
.5

2
+1

8.
11

+1
0.

5
+0

.4
31

+3
.7

4
+5

.2
2

+1
0.

17
th

p-
0

+0
77

+2
0.

98
+1

00
2.

8
+5

7.
5

+0
.2

+4
.5

3
+1

8.
11

+1
0.

5
+0

.4
48

+3
.6

9
+5

.1
8

+1
0.

26

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

best worstNLL (lower is better) theoretical bestcommon training set length

(a) Stationary Poisson (b) Stationary renewal (c) Hawkes1

(d) Nonstationary Poisson (e) Nonstationary renewal (f) Hawkes2

(g) Self-correcting (h) Metropolis lognorm

Figure 12: Performance comparison of 14 models in terms of test set NLL across 8 synthetic
datasets. There are 16 training set lengths from 210 to 225. The colormap ranges span each sub-
figure’s full range of values. Where a theoretical best score is known, it is marked with a red dashed
line.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

best worstMAE (lower is better)

(a) Stationary Poisson (b) Stationary renewal (c) Hawkes1

(d) Nonstationary Poisson (e) Nonstationary renewal (f) Hawkes2

(g) Self-correcting (h) Metropolis lognorm

Figure 13: Performance comparison of 14 models in terms of test set MAE across 8 synthetic
datasets. There are 16 training set lengths from 210 to 225. The colormap ranges span each sub-
figure’s full range of values.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

best worstNLL (lower is better) theoretical bestcommon training set length

(a) NYC taxi pickup times
(unit: minutes)

(b) Stack Overflow badges
(unit: days)

Figure 14: Performance comparison of 14 models in terms of test set NLL across 2 real-world
datasets. There are 16 training set lengths from 210 to 225. The colormap ranges span each sub-
figure’s full range of values.

best worstMAE (lower is better)

(a) NYC taxi pickup times
(unit: minutes)

(b) Stack Overflow badges
(unit: days)

Figure 15: Performance comparison of 14 models in terms of test set MAE across 2 real-world
datasets. There are 16 training set lengths from 210 to 225. The colormap ranges span each sub-
figure’s full range of values. The inter-event times for the NYC taxi dataset are scaled to minutes,
and the Stack Overflow badges dataset is scaled to days.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) zero input (b) gpt-a-exp (c) gpt-a-logmix (d) gpt-a-cat

(e) gpt-a-const (f) gpt-a-nn (g) gpt-b-logmix (h) gpt-b-cat

Figure 16: Performance comparison of 8 models in terms of test set NLL. Each model is trained
and evaluated over a landscape of 16 training set sizes for 10 modulo datasets. Model (a) takes
no input and just outputs the empirical training set distribution; it acts as a baseline. Likelihood
is probability mass based and involves integrating over a 1-unit interval for models that output a
continuous distribution. White (□) represents a likelihood of 0 (∞ negative log-likelihood) and
includes the case where a model assigns a likelihood low enough to encounter numerical issues.

Another observation from the comparison between MAE and NLL is that thp-0 and thp-1 score
far lower in terms of MAE compared to NLL. These models have two output heads, one for specify-
ing a probability distribution, and another for making point predictions, and the models are trained
with a sum of negative log-likelihood and mean-squared error (MSE) loss terms using these heads
(Zuo et al., 2020). One possible explanation for the poor MAE scores is that, according to statistical
decision theory, the median of a distribution minimizes the expected cost under an MAE cost model,
whereas the mean of a distribution minimizes the expected cost under an MSE cost model. That is
to say, it is possible that the MSE loss term is suboptimal for the task of point predictions evaluated
with MAE.

Infinite negative log-likelihood (zero likelihood) scores on the modulo datasets raise questions of
numerical precision, overfitting and test set lengths. The NLL scores for the cyclic datasets (Fig-
ure 16) contain zero likelihood scores: the logmix head concentrates sufficiently little probability
mass to the interval containing the ground truth event that calculating the log probability produces
the floating-point representation of negative infinity (when using float32 precision). Although
this occurs rarely, the relatively large test sets used in this work magnify the chance that this leads to
an infinite NLL score. In part, this is a reflection of the issues of NLL as a metric; when viewing the
performance of the logmix head in terms of MAE (Figure 11), there is no indication of this issue.
A poor way to address this issue is to clamp the output probabilities above a minimum value—this
causes the output distribution to no longer be a valid probability distribution by having infinite prob-
ability mass on the interval [0,∞). If the cause is a result of gpt-a-logmix or gpt-b-logmix
being overconfident in certain values, a suitable solution could be to design a loss term that encour-
ages at least one of the mixture components to have a relatively large variance (and non-zero mixture
weight).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 17: Histograms for the Chicken RGC spike dataset. The histogram extend until the 0.95
quantile (left) and 0.6 quantile (right). The histograms have 128 bins. The y-axis shows normalized
counts.

B DATASETS

This appendix describes the datasets used in Sections 3 to 7. Appendix B.4 and Appendix B.3
explain the extension of existing datasets to accommodate larger training set lengths. Appendix B.5
describes the algorithm behind the Metropolis lognormal dataset and Appendix B.7 gives further
details on the modulo datasets.

B.1 DISTRIBUTION PROPERTIES

Histograms for all real-world datasets are shown in Figure 17, Figure 18 and Figure 19.

B.1.1 GINI COEFFICIENT

The Gini coefficients for these datasets are listed in Table 7. The Gini coefficient is a measure
of distribution inequality, which is useful in this context for indicating distributions which might
have a mix of continuous and discrete parts. A distribution where probability is concentrated in a
few isolated points in an otherwise large support will have a high Gini coefficient. The NYC Taxi
dataset has such a distribution (see Figure 19g). The Gini coefficient is calculated without binning
and operates on the resolution of the data type, float32.

Table 7: Gini coefficients for the distribution of inter-event times of the real-world datasets.

Dataset Gini coefficient

Amazon 0.000
Yelp airport 0.148
Yelp Toronto 0.192
Yelp Mississuaga 0.361
Twitter 0.438
Stack Overflow 0.461
Taobao 0.587
Last.fm 0.705
Wikipedia 0.722
Chicken RGCs 0.745
PUBG 0.871
Reddit AskScience 0.877
MOOC 0.885
Reddit Politics 0.906
NYC taxi 0.974

B.2 SOURCES FOR THE REAL-WORLD DATASETS

The Last.fm, MOOC, Wikipedia and Yelp Toronto datasets used in this work were those made
available alongside Shchur et al. (2020). The PUBG, Twitter, Yelp Airport, Yelp Mississauga and
two Reddit datasets were those made available alongside Lüdke et al. (2023). The Taobao and
Amazon datasets are from Xue et al. (2023). The Taobao and Amazon datasets define fixed train,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Yelp airport

(b) Yelp Mississauga

(c) Twitter

(d) Taobao

(e) Wikipedia

(f) Yelp Toronto

(g) PUBG

Figure 18: Histograms for 7 real-world datasets. Histograms extend until the 0.95 quantile (left) and
0.6 quantile (right). All histograms have 128 bins. The y-axis shows normalized counts.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) MOOC

(b) Reddit AskScience

(c) Amazon

(d) Reddit Politics

(e) Last.fm

(f) Stack Overflow badges

(g) NYC taxi pickup times

Figure 19: Histograms for 7 real-world datasets. Histograms extend until the 0.95 quantile (left) and
0.6 quantile (right). All histograms have 128 bins. The y-axis shows normalized counts.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

low highdata point density

(a) MOOC (b) PUBG

(c) Reddit AskScience (d) Reddit Politics

(e) NYC Taxi (f) Last.fm

Figure 20: Distribution of pairs of inter-event times, xi and xi+1 for 6 real-world datasets. The first
4 datasets (MOOC–Reddit Politics) appear to have a grid structure on account of the resolution
at which the data was recorded. The last 2 datasets (NYC Taxi and Last.fm) have a grid structure
embedded within a smoother distribution, suggestive of a periodic component to the underlying
process. Each figure has a quantile threshold chosen so that the structure is visible. Each figure is a
rasterization of event counts into a 256× 256 pixel grid.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 21: Distribution of pairs of inter-event times, xi and xi+1 for the Stack Overflow dataset.
The right figure is a clipped version of the left figure. The peak at ~365 days is small relative to
the overall density, but is visible in the right figure when the maximum colormap value is reduced.
This peak presumably corresponds to a badge typically awarded yearly.

validation and test splits, whereas for the other datasets, a random split into train, validation and test
sets was carried out with a ratio of 6:2:2.

B.3 EXTENSION OF NYC TAXI PICKUP TIMES AND STACK OVERFLOW BADGES

While there are many “real-world” datasets used in literature on TPPs, most are relatively small with
less than 1 million events. New York City taxi pickup times and Stack Overflow badges were chosen
for this work as the source data contains tens of millions of events, allowing a wide range of training
set sizes to be investigated.

Data on taxi pickup times in various cities has been used in numerous works on TPPs. We use the
data collected by Whong (2014). This data is used in works such as (Du et al., 2016). The data
was obtained by Whong (2014) through filing a Freedom of Information Law Request (FOIL) to the
New York City Taxi and Limousine Commission. The data comprises of millions of rows where
each row contains (among other information): medallion ID, pickup datetime and dropoff datetime.
For example: ["89D227B655E5C82AECF13C3F540D4C", "2013-01-01 15:11:48",
"2013-01-01 15:18:10"]. The pickup and dropoff datetimes are recorded with a resolution
of seconds. We process this data by grouping all entries by medallion, sorting by pickup time to
create a list of event sequences, and then subtracting adjacent event times to form sequences of
inter-event times. Subsets of this list of lists are used to form the training, validation and test sets.
The training set is formed by taking the first n sequences such that the n sequences contain at
least 225 inter-event times. The validation set is taken next followed by the test set such that each
has at least 217 inter-event times. The remaining events are not used. While data is recorded at a
resolution of seconds, we rescale the data to units of minutes. We do no further processing of the
data. This is in contrast to Du et al. (2016) who split sequences at gaps larger than 12 hours. We
hypothesize that splitting at large gaps would benefit models which are less capable of expressing
distributions with peaks far from zero; for example, a model outputting a constant hazard (equivalent
to a parameterized Poisson distribution), cannot concentrate probability far from zero without also
increasing the distribution’s second moment. We argue that there is no fundamental reason why
models should not be expected to model these gaps, and so we do not split any sequences.

Timestamps of users receiving badges on the website Stack Overflow were also used by Du et al.
(2016). In order to complete training, validation and test sets of size 225, 217 and 217, we obtained a
more recent data export (last updated 29th August 2024) of the data from the Stack Overflow website
(Overflow, 2024). Timestamps for this dataset are recorded with a resolution of milliseconds. Pro-
cessing was carried out in the same manner as for the NYC taxi dataset described above, this time
grouping by the column UserId, and rescaling to units of days. At the time of download, Stack

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Overflow stipulated that the data was provided under the condition that the data is for the users’ own
use; and so we do not distribute a copy.

B.4 SYNTHETIC DATASETS FROM (OMI ET AL., 2019)

We generate the 7 synthetic datasets from (Omi et al., 2019) following the released code that accom-
panied that work. We extended the length of the generated sequences to fill training, validation and
test sets of size 225, 217 and 217 respectively.

B.5 METROPOLIS LOGNORMAL PROCESS

The Metropolis lognormal process is an intentionally poor sampler of lognormal distribution, im-
plemented with a modified Metropolis-Hastings algorithm, described in Appendix B.6 and Algo-
rithm 1. The sampler’s target distribution is a standard normal distribution, and the events of the
process are obtained by taking the log of outputs of the sampler. A sampler uses a stochastic transi-
tion matrix like that shown in Figure 23. The proposed samples are generated with another modified
Metropolis-Hastings sampler. In total, there is a stack of 3 such samplers.

B.5.1 MOTIVATION

The Metropolis lognormal process was designed to be decodable to a high degree given sufficient
event history and compute. It was also designed so that unconditional inter-event times follow a
relatively simple distribution—this is intended to match real-world processes which can be fully de-
terministic given enough information yet have aggregate properties that follow simple distributions.
The Metropolis lognormal process achieves both of these properties by being a poor sampler of a
lognormal distribution. The inter-event times are approximate draws from a lognormal distribution,
achieving one of the goals above, but the sampling is determined by fixed transition matrices, which
can be decoded given a sufficiently long sequence.

B.6 SEQUENCE GENERATION

The sequence generation algorithm is shown in Algorithm 1. This section gives an overview of the
algorithm.

A sequence is generated as follows. First, a transition matrix defining a cycle between states is fixed.
We use 20 states. The domain, (−∞,∞), is split into 22 intervals; 2 outer intervals, (−∞, 4.3) and
(4.3,∞), which each contain a small amount (10−5) of the probability mass of a normal distribution,
and 20 intervals that share the remaining (>99%) probability mass evenly. The 20 states correspond
to the 20 inner intervals, while the 2 outer intervals are not used. The Metropolis-Hastings sampling
process uses a proposal distribution located at the previous sample. We modify this process to first
follow the transition matrix to a new state before sampling with a proposal distribution from the
corresponding location in the new interval. We nest this process by having the proposal distribution
also be a pseudo-normal distribution generated by the same process but with a separate transition
matrix. The log of the generated values become a sequence of inter-event times.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 22: The interval (−4.26, 4.26), which contains all but 2×10−5 of the probability mass of the
standard normal distribution, is divided into 20 subintervals, each containing equal probability mass
with respect to the standard normal. The outer intervals, (−∞,−4.26) and (4.26,∞), are not used.
The intervals are labelled s0, s1, ..., s19 corresponding to the states used in the Metropolis-Hastings
sampler. Here, the figure zooms in to (−2, 2) to see the shorter intervals more clearly.

Figure 23: The stochastic state transition matrix used by the outermost sampler. The preponderance
of probability is assigned to the next state of a random cycle, with a small amount of probability
assigned down the diagonal. Reducing the probability assigned to the diagonal increases the deter-
minism of the sampler, but reduces how well the sampler approximates the target distribution.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 1 Modified Metropolis-Hastings sampler. A subset of the real line (tmin, tmax) is sub-
divided into S intervals of equal probability mass according to the target distribution π; these S
intervals are the states. Before querying the proposal distribution, the algorithm transitions accord-
ing to a stochastic transition matrix between these states. To calculate the forward and reversal
probability, an approximating distribution, innerPdf, is used. The sampler calls the step function
in a loop, and, unlike standard Metropolis-Hastings, repeated samples are discarded. The samplers
can be stacked; in this work, we stack 3 such samplers, and for the base distribution q0, a deter-
ministic cycle between 30 quantile points of a normal distribution is used. This makes the sequence
deterministic up to the randomness implied by the transition matrices, T1, T2 and T3 and the uniform
sampling, U .

1: function mapPos(x, sfrom, sto)
2: Compute the relative position of x within the interval of state sfrom and map it to the corre-

sponding position in the interval of state sto.
3: return mapped position
4: function posToState(x)
5: Determine the state the given position x is in.
6: return state
7: function Sampler.init(x0, π, T, innerSampler, innerPdf)
8: The innerSampler is called to generate new proposals, and innerPdf is called to approximate

the distribution of the innerSampler for the purpose of calculating the reversal probability.
9: State: xt ← x0

10: State: π, q, T , innerSampler, innerPdf
11: function Sampler.step
12: st ← posToState(xt) ▷ Determine current state
13: s′ ← Sample from T (s′ | st) ▷ Transition to next state
14: x′ ← mapPos(xt, st, s

′)
15: xt+1 ← innerSampler(xt+1 | x′) ▷ Propose new sample
16: pforward ← T (s′ | st) innerPdf(xt+1 | x′)
17: preverse ←

∑
i∈S innerPdf(xt | mapPos(xt+1, s

′, si)) T (s′ | si)
18: Compute acceptance ratio:

α← π(xt+1) preverse

π(xt) pforward

19: u← Sample from U(0, 1)
20: if u < α then
21: return xt+1 ▷ Accept proposal
22: else
23: return xt ▷ Reject, keep current state
24: function Sampler.sample
25: xt+1 ← Sampler.step
26: while xt+1 = xt do ▷ Ignore repeated samples
27: xt+1 ← Sampler.step
28: xt ← xt+1 ▷ Update state
29: return xt+1

30: function nestedSampler(q0)
31: π1 ← N (0, 1)
32: π2 ← N (0, 1

3) ▷ Inner samplers are narrower
33: x0 ← 0
34: T1, T2, T3 ← sample transition matrices
35: q1 ← Sampler.init(x0, π1, T1, q0, π2)
36: q2 ← Sampler.init(x0, π2, T2, q1, π2)
37: q3 ← Sampler.init(x0, π2, T3, q2, π2)
38: return q3

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 24: Training sets. Distribution of inter-
event times for overflow datasets of dimension
1, 4, 7 and 10 (from top to bottom). The dis-
tribution is the count distribution of inter-event
times over the 0.8× 217 sequences in the train-
ing set.

Figure 25: Entropy of the count distribution of
inter-event times for the 10 training sets.

subset size

Figure 26: Mean cross-entropy between the
distribution of inter-event times in the whole
training set and in subsets of the training set.
For 10 subset sizes ranging from 20 to 29,
the mean cross-entropy is calculated using 100
random subsets of that size. Subset sizes 29

and above are indistinguishable on the figure.

B.7 MODULO SEQUENCES

This section describes further details of the modulo “overflow” sequences. Appendix B.7.1 de-
scribes the properties of the inter-event time distributions of the modulo sequences. Appendix B.7.2
rephrases the sequences in terms of cyclic groups, which allows the easy deduction of the period
of the sequences. Appendix B.7.3 describes analogous continuous-time sequences. Appendix B.7.4
explains the motivation behind the bounds on the velocity v used to generate the sequences in this
work.

B.7.1 PROPERTIES OF THE MODULO DATASETS

This section builds some intuition on the modulo datasets. Figure 24 shows the distribution of inter-
event times for the 1, 4, 7 and 10-dimension datasets. With increasing dimension, the distribution of
inter-event times shifts to concentrate near 1, with a roughly exponential shape. The entropy of all 10
datasets is shown in Figure 25. The decreasing entropy with increasing dimension explains how the
NLL scores for the zero input model (Figure 16a) decrease (improve) with increasing dimension.
This is also demonstrated in Figure 26, where the cross-entropy between the full training set and
smaller training sets predicts the NLL scores of the zero input model; the distributions of subsets
with more than 29 sequences (219 events) can be seen to be very similar to the overall distribution.
Finally, Figure 27 uses V-information (Xu et al., 2020) as applied by Ethayarajh et al. (2022) to
gauge how difficult the datasets are for the gpt-b-cat model to learn beyond what the zero input
model can learn. Interestingly, for some of the dimensions, there is a U-shaped relationship where
at both small and large dataset sizes, the gpt-b-cat model can outperform the zero input model
to a greater degree compared to intermediate dataset sizes.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 27: V-information calculated following Ethayarajh et al. (2022) as HV(Y) − HV(Y |X),
where HV(Y) is estimated from the cross-entropy from Figure 26 and the gpt-b-cat model
results in Figure 16 are used for HV(Y |X). The set V is the set of all possible mappings describ-
able by the gpt-b-cat architecture. Estimating HV(Y) from the cross-entropy is possible as a
gpt-b-cat model trained with no input will match the empirical distribution of the inter-event
times in the provided training set.

B.7.2 CYCLIC GROUP PERSPECTIVE

The sequence (ak)
∞
k=0 of particle positions in d dimensions can be understood as stepping through

a sub-cycle of a cyclic group. In 1-dimension, for a given n ∈ N, two elements c and g of the cyclic
group Z/nZ define the sequence (ak)∞k=0 as cgk. The overflow sequence contains every k such that
cgk < cgk−1. Moving to higher dimensions, let G be the product of d cyclic groups G1, G1, ...Gd

of order n1, n2, ...nd. Let c and g be elements of G and, as before, define the sequence (gk)
∞
k=0 as

cgk, with the overflows now defined as the ks where any element of cgk is less than the previous
element in cgk−1. If all n1, n2, ..., nd are chosen to be prime, then it is guaranteed that all sequences
will have a period of n1 × n2 × ... × nd. As long as this product is less than the input length of a
model, we can be confident that a model is not simply repeating a loop seen in its input.

B.7.3 CONTINUOUS SEQUENCES

A continuous analogue in 1-dimension is to consider a particle starting from position p0 ∈ R and
moving in a straight line with velocity v ∈ R. An event occurs at every time t > 0 such that
p0 + vt = kn for some k ∈ N and fixed n ∈ R. An event sequence is then defined as the ordered
set of all such t. This extends naturally to higher dimensions by considering vectors p0, v and n,
and having events occur every time one of the components of p0 + vt is an integer multiple of the
corresponding component of n.

More complicated sequences can be generated by adding more particles or making them bounce
rather than pass through faces, or making the task to determine the next collision time of a set of
particles with mass moving in a box.

B.7.4 BOUNDS ON V

An upper bound on v prevents the inter-event time distribution from collapsing to P(∆t = 1) = 1 as
the dimension increases. For example, in 10-dimensions, if components of v are around 500, with
the grid being defined by n = [1021]d, then each component overflows every 2-3 steps, resulting in
almost every step containing an event. In this work, the upper bound on v was set to 80 to limit this
effect.

The reason for the lower bound of 10 is that it sets the maximum inter-event time at around 100
(103). The benefit of this is that it allows the discrete approach to encode all possible event times
with a reasonable array size. This marks a similarity to the spike prediction task, where 81 bins
were sufficient to encode all events of interest. If there is a larger maximum inter-event time, then

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

the discrete model can use a larger output array or group events into a single output bin, similar to
how bins were chosen in Section 3.

C MODEL DETAILS

This section covers some details on implementing the models used in this work. More details on how
a categorical distribution can be mapped to a distribution over [0,∞) are covered in Appendix C.1.
Encoding event times to be input to gpt-a and gpt-b is covered in Appendix C.3. Appendix C.4
describes the implementation of the existing models used in this work.

C.1 BIN WIDTHS AND DENSITIES FOR THE CATEGORICAL HEAD WITH CONTINUOUS DATA

When the target distribution is constrained to a small finite number of possibilities, as is the case
for the spike prediction task and the modulo datasets, the categorical head can output an array of
unnormalized probabilities with one element per possible event. This strategy does not work when
the target distribution is closer to being continuous, as is the case for the datasets used in Sections 3
to 4. As described in Section 3, in this work, we follow Kvamme & Borgan (2021) and split the
domain of the target distribution into intervals (as many intervals as we have output elements) that
evenly share the probability mass of the training set’s empirical distribution. In this work, the do-
main is always assumed to be [0,∞), and the categorical models always output 128 elements. The
endpoints of the intervals are determined as follows. The first interval begins at 0 and the last in-
terval extends to∞. The 127 remaining boundaries are assigned to the 1/128, 2/128, ..., 127/128
quantiles of the inter-event times from the training set. The quantiles are calculated using the default
numpy quantile function, which uses the linear interpolation method from (Hyndman & Fan, 1996).
Figure 28 shows an example output from a trained gpt-a-cat model with 128 output elements.
The probability density within each interval is ci

wi
, where ci is the probability mass assigned to the

i-th interval and wi is the width of the i-th interval. Thus, for all bins except the final bin, the output
of the categorical head is interpreted as a piecewise constant density function.

For the final infinite length interval, the probability density is given by: f(t) = c128λe
−λt, where

c128 is the probability mass assigned to the final interval, and λ, the rate parameter, is chosen to be
the length of the 2nd last interval. In practical applications where predictions are updated when new
information becomes available, the final bin may not require a density function, and the probability
mass assigned to it is sufficient. A density for the last bin is used in this work so as to enable
comparison to other models using the density-based NLL metric.

When calculating intervals, if a single inter-event time is frequent enough to represent more than
1
N of the probability mass, then a zero width interval could be encountered, leading to an infinite
probability density. To prevent this singularity, we impose a minimum interval width of 2−17 to
avoid numerical issues. While not explored in this work, the choice of minimum can act as a form
of regularization, with wider minimums providing stronger regularization.

C.2 GPT-A AND GPT-B

The gpt-a and gpt-b transformers follow the standard GPT-2 architecture ((Radford et al., 2019))
with the layer configurations (layers-heads-embedding size) set to 2-4-16 and 6-4-32 respectively.
This gives gpt-a and gpt-b 108k and 1.20M trainable parameters, respectively. The standard
GPT-2 small configuration defined by Radford et al. (2019) uses a 12-12-768 configuration, high-
lighting that both gpt-a and gpt-b are very small in the context of GPTs used as large language
models. Computational limits prevented the investigation of larger models.

C.3 INPUT ENCODING FOR GPT BASED MODELS

When the gpt-a and gpt-b architectures are used for the spike prediction task, the input to these
modules is a sequence outputted by the CNN encoder. When the gpt-a and gpt-b architectures
are used on their own, for example in Section 3, the scalar values representing inter-event times are
converted to a vector representation according to Algorithm 2 before being input into the transform-
ers. This approach is similar to that used by Zuo et al. (2020). We do not hard-code the sinusoidal

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a)

(b)

(c)

Figure 28: An example output of a gpt-a-cat model trained on the 225 length Stack Overflow
badges training set. (a): the probability mass assigned to each of the 128 output intervals. The bar
widths correspond to the interval widths and heights correspond to the probability mass assigned
to the intervals by the model. The final infinite interval starts from 2511 and is assigned only a
small probability (7.5× 10−5), so cannot be seen. (b): the same output as (a), but zoomed in to the
interval (0, 100). (c): zoomed into the interval (0, 0.2), but this time, the bar heights correspond to
the probability density over the intervals (mass/width). In this example, the probability density is
highest for the very narrow intervals near 0.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

frequencies but choose appropriate scales so that both long and short intervals seen in the data are
captured.

Algorithm 2 Encode a scalar value v into a vector of even size n. vepsilon should be chosen near the
smallest inter-event time expected to be encountered and vmax should be chosen to be near the largest
time expected to be spanned by inputs to the model, and will depend on the length of a model’s input.
In this work, we choose vepsilon as the smallest inter-event time observed in the training set, and vmax
as the largest time between events ti and ti+L where L is the input length of the model.

1: function encodeValue(v, vepsilon, vmax, n)
2: scalemin ← 2π/vmax ▷ Or use 3

2π to add a little more range
3: scalemax ← 2π/vepsilon
4: scale← linspace(log(scalemin), log(scalemax), n/2) ▷ A vector of length n/2
5: x1 ← cos(exp(scale) · v)
6: x2 ← sin(exp(scale) · v)
7: x← concat(x1, x2)
8: return x

C.4 IMPLEMENTATION OF EXISTING MODELS

The const, exp and nn heads are implemented following the code accompanying (Omi et al.,
2019). The logmix head is implemented following the code accompanying Shchur et al. (2020).
The thp-0 and thp-1models are implemented partially following (Zuo et al., 2020), but deferring
to the implementation accompanying (Xue et al., 2023) for a number of bug fixes to the original
model.

One deviation from these implementations is in model initialization. In order to improve conver-
gence speed and stability while training, all models were initialized so that their outputs have first
and second moments similar to those of the training set’s empirical distribution.

C.5 LIMITATIONS OF EXISTING MODELS

The existing output structures considered in this work have limitations in terms of distribution flex-
ibility and training stability, both of which contribute to preventing them from representing multi-
modal distributions with very narrow peaks.

C.5.1 DISTRIBUTION FLEXIBILITY

The constant intensity, exponential intensity and the softplus intensity (used by thp-0 and thp-1)
correspond to distributions over [0,∞) with 1 or 2 parameters. With only 1 or 2 parameters, they
do not have the flexibility to represent distributions where there are multiple separated peaks of high
probability density, which is a property of several of the real-world datasets (see Figure 20).

The constant intensity output corresponds to the exponential distribution. The exponential distri-
bution has a single scalar parameter with the distribution’s mode fixed at 0. The distribution cannot
concentrate probability at any non-zero point.

The exponential intensity output corresponds to the Gompertz distribution. The Gompertz distri-
bution has two parameters, a scale and a shape parameter. It is a unimodal distribution so cannot
concentrate probability at two or more separated points.

The softplus intensity function corresponds to a non-standard unimodal probability distribution
with two parameters. Its unimodal shape is inferred from the monotonicity of the softplus function.
Being unimodal, it is restricted in its ability to concentrate probability at multiple separated points.

C.5.2 MIXTURE OF LOGNORMALS INSTABILITY

A mixture of lognormals can theoretically represent distributions with multiple sharp peaks. How-
ever, when training models with this output structure on datasets where there is a significant discrete
component to the inter-event distributions, we do not observe the models being able to strongly

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

concentrate probability in narrow peaks. We argue that such models struggle to represent such dis-
tributions on account of training instability in the presence of singularities.

A mixture of lognormals on t ∈ (0,∞) is equivalent to a mixture of Gaussians on y ∈ (−∞,∞),
where y = log(t), and so models that output a mixture of lognormals can be thought of as outputting
a mixture of Gaussians on a log scale. A mixture of Gaussians can produce any number of modes,
up to the number of components in the mixture.

The process of fitting these mixtures using the expectation-maximization (EM) algorithm demon-
strates how this flexibility does not necessarily allow the mixture to represent distributions with
sharp peaks. When fitting a mixture of Gaussians using the EM algorithm, a component’s variance
can collapse toward zero at a single point. To avoid this, strategies such as introducing priors on the
parameters or resetting the EM optimization procedure are used Bishop (2006).

When using stochastic gradient descent to train a neural network with a mixture of lognormals
output, we argue that encountering such singularities can manifest as unstable training and prevent
models from expressing distributions with sharp peaks. A simple case study (Figure 29) shows
gpt-a, outputting a 2-component lognormal mixture, trained on a dataset generated from a mixture
of a lognormal distribution and a point mass. As one of the output components narrows around the
single point, sudden spikes in gradient cause the parameters of the component to be perturbed and
its mixing weight to suddenly decrease. "Real-world" datasets such as the NYC taxi dataset have
such point masses, and training stability in the presence of these sharp distributions is a candidate
explanation for why the logmix head is not observed to concentrate probability at such points in
a stable manner. To prevent the instability, regularization could be introduced in the form of a prior
on the variance of each component. Doing so amounts to specifying a resolution of interest for the
task and would be further evidence of the benefit of acknowledging the discrete nature of recorded
event times.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(a) The probability distribution of a dataset generated
from a mixture of a point mass at t = 2 and a lognor-
mal distribution with parameters µ = 0 and σ = 1.0.

(b) How the NLL (evaluated on a held-out valida-
tion set) and the model’s six parameters change while
training.

Figure 29: The instability of a logmix output head when a dataset has a probability mass at a certain
point. (a): shows the distribution of inter-event times. The dataset is formed from a mixture where
10% of values come from a point source at t = 2, and the remaining values are drawn from a
lognormal distribution with parameters µ = 0 and σ = 1.0. All events are independent. The
model used is a gpt-a stem with a 2-component lognormal mixture output. The model is trained
using stochastic gradient descent with momentum (0.9) and a learning rate of 5× 10−4. (b): shows
the mixture parameters (the model output) and the NLL (calculated on an evaluation set) over the
course of training. The six model parameters are the mixing parameters (τ0, τ1) and the means and
variances (µ0, µ1, σ0, σ1) of the two underlying Gaussian distributions. Notably, neither µ0 nor µ1

approach 2.0 in a stable manner. Training stopped when evaluating the distribution median produced
NaN values. This instability occurs reliably across runs.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

D SPIKE PREDICTION

This appendix is supplementary to Section 6: A categorical output is effective for spike prediction.

D.1 DATASET

The spike prediction task uses a dataset constructed from 16 recordings of chicken RGC spike ac-
tivity; the recordings were carried out by Seifert et al. (2023) using a multi-electrode array. Each
recording is 15 minutes long and contains activity of multiple RGCs. The processing of the record-
ings to produce a dataset follows the procedure described by Doran et al. (2024), who created a
dataset from 1 of the 16 recordings. In total, across the 16 recordings, 1611 cells are used.

Both the stimulus and spike times are stored at a sample rate of 992Hz. The sample period is very
close to 1ms (1.0081), and when discussing model inputs and outputs we make the simplification
of assuming 1 bin is 1ms. This means that while the 80 × 1.0081ms intervals actually sum to
80.65ms, we refer to the combined 80 bin interval as being 80ms for simplicity.

An input to a model is a 5×1024-shaped array representing just over 1 second of stimulus and spike
history—4 rows record the 4-LED stimulus, and the last row encodes the spike train as a binary
sequence. For any given input, the ground-truth output is 1 of 81 possible events corresponding
to a spike occurring in one of 81 intervals: 80 approximately 1ms length intervals and the final
infinite interval. The recording is broken into intervals along the time axis in order to form training,
validation and test segments with a ratio 7:2:1. From a training, validation or test interval, a sample
is formed from any sub-interval long enough to cover both input and output lengths (1024+80 bins).

D.2 MODEL ARCHITECTURE

The overall model architecture can be summarized as: head(gpt(cnn(input) +
embed(cell_id))), where the head is either the logmix or cat head. The transformer ar-
chitecture was described in Appendix C.2, and the CNN architecture is described below. The em-
bedding is a standard 1-hot vector encoding of the integer cell ID ∈ [0, 1611).

D.3 CNN ENCODER

The CNN encoder shared by all spike prediction models takes a 5×1024-shaped input and produces
a 64 × 64 shaped intermediate representation which is added to the cell ID embedding to form the
input to the gpt-a or gpt-b transformers. The CNN architecture is described in Table 8. ResNet
blocks (He et al., 2016) with an expansion factor of 4 form the core of the encoder. Squeeze and
excite layers (Hu et al., 2018) were applied to the residual connections between ResNet blocks.

D.4 OUTPUT HEADS

For the spike prediction task, the two output heads were implemented as linear functions (fully-
connected layers) taking the last vector of the transformer output as input. The logmix outputs
64× 3 = 192 values used to parameterize a mixture of 64 log-normal distributions. The cat head
outputs 81 values, used to parameterize the categorical distribution over 81 intervals.

D.5 TRAINING

A batch size of 1024 was used for all models. Models were trained over 2 epochs, which was
empirically determined to be long enough to see all models exhibit overfitting. While 2 epochs may
seem low, the 10 1

2 minutes of the training set produces over 1 billion unique timesteps (10 1
2 minutes

with 992 samples per second for 1611 cells), and each of these timesteps appear in multiple inputs
per epoch. Cross-entropy loss is used for both output heads. This is a probability density calculation
for the logmix head, and a probability mass calculation for the cat head. The probability mass
calculation for the cat head is equivalent to a density scaled by the interval widths. While training,
evaluations were carried out at regular training step intervals—every 5000 training steps. Other
training settings shared by other experiments are described in Appendix E.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 8: Convolution layers of the stimulus and spike history encoder used for spike prediction,
containing ~603 k trainable parameters.

Layer Input size Kernels (length, channels, stride) Output size

Conv 1 5×1024 [21, 16, 2]× 1 16× 512

Conv 2 16×512 [21, 16, 1]× 1 16× 512

ResNet blocks
(downsampling) 16 × 512

[
1 128 1
7 128 2
1 64 1

]
× 3 64× 64

ResNet block 64× 64

[
1, 128, 1
7, 128, 1
1, 64, 1

]
× 1 64× 64

D.6 EVALUATION

Four metrics are used to describe the performance of models at the spike prediction task: negative
log-likelihood, Van Rossum distance, Schreiber similarity and smoothed Pearson correlation. The
metrics are calculated on a held-out test interval of the RGC recording.

D.7 NEGATIVE LOG-LIKELIHOOD

Negative log-likelihood (NLL) is the mean negative log-likelihood of the ground truth spikes given a
model’s output, calculated for every input-output snippet in the test set. This is a non-autoregressive
metric. It is calculated in terms of probability mass, which involves integrating over the interval for
the logmix head.

=Van Rossum
distance

dist

=Schreiber
similarity

similarity

Figure 30: Calculation of Van Rossum distance (left) and Schreiber similarity (right) from two input
spike trains. Both metrics employ distinct smoothing kernels to produce an intermediate vector. Van
Rossum distance can be thought of as measuring the Euclidean distance between the vectors, while
the Schreiber similarity assesses the angle between them. Figure taken from Doran et al. (2024).

D.7.1 SPIKE TRAIN SIMILARITY/DIFFERENCE METRICS

The remaining 3 metrics are calculated after first producing a predicted spike train. A spike train is
produced by evaluating a model autoregressively, shifting forward until the time of the next predicted

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

spike or the maximum stride of 80 bins. A model is given the first input snippet including the ground
truth spikes. The median of the model’s output distribution is used as the prediction for the next
spike. For example, if there is a spike predicted in the 10th bin, then nine 0s and one 1 will be
appended to the existing spike train. This process repeats until the stimulus is fully consumed.

Once a spike train is generated, Van Rossum distance, Schreiber similarity and smoothed Pearson
correlation can be calculated. The process of calculating Van Rossum distance and Schreiber simi-
larity is shown in Figure 30. Smoothed Pearson correlation is calculated as the well-known Pearson
correlation after first smoothing with a Gaussian kernel. For all metrics, the smoothing parameter is
set to 60ms, which is a length shown to be appropriate by Doran et al. (2024).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

E TRAINING AND EVALUATION DETAILS

This appendix describes hyperparameters and other settings associated with training and evaluation.
Appendix E.1 covers settings shared by all experiments. Settings specific to the spike prediction
task were covered in Appendix D.5. Appendix E.2 covers settings associated with the remaining
experiments.

E.1 SHARED SETTINGS AND HYPERPARAMETERS

The following settings were shared across all training runs across all experiments.

Software. Pytorch 2.6.0 with Cuda 12.4.1 was used for training and evaluation.

Optimizer. All training runs use the AdamW optimizer described by (Loshchilov & Hutter, 2019).
AdamW parameters (β1, β2, eps, weight decay) were set to (0.9, 0.99, 1 × 10−5, 0.02)—chosen
roughly in line with heuristics described by Howard et al. (2020). Weight decay was applied to all
parameters except bias and embedding parameters.

Precision. Pytorch’s automatic mixed precision and gradient scaling were used during training.
In cases where greater numerical precision is needed, such as when calculating probabilities from
hazard outputs, 32-bit floating-point precision was used.

Loss function. Most models were trained to minimize negative log-likelihood. The spike distance
model that appears in Appendix D was trained to minimize the mean-squared error between the
output and target representations. thp-0 and thp-1 used a loss term that is the sum of a negative
log-likelihood term and a mean-squared error term (Zuo et al., 2020).

Model choice. The final models are selected from the checkpoints taken during training with the
lowest validation loss.

Learning rate scheduler. The 1-cycle learning rate policy with 3 phases described by Smith &
Topin (2017) was used.

Maximum learning rate. The maximum learning rate, which parameterizes the learning rate sched-
uler, was chosen by carrying out learning rate range tests as described by Smith (2017). The choice
of learning rate is described in more detail below, in Appendix E.3.

Early stopping. An early-stopping strategy was used to reduce wasted compute. After at least 1/2
of the total training steps have been completed (when the learning rate is decreasing), early stopping
is triggered if the smoothed validation loss (smoothed at 0.8) has not improved over 12 evaluations.
Post-training, training and validation loss curves were inspected to ensure that early stopping was
not triggered prematurely.

E.2 SETTINGS FOR EXPERIMENTS FROM SECTIONS 3 TO 7

The approach to hyperparameter selection described in this section is used for the experiments from
Section 3 onwards. The choice of settings such as batch size, training duration and learning rate
is more involved for these experiments, as the heterogeneous combinations of models and datasets
require a more sophisticated choice of hyperparameters.

Training steps. In order to compare training runs across datasets of different sizes, the number of
epochs is not fixed. We set two upper limits: the number of samples drawn during training is capped
at 227 (~134 million samples), and the number of epochs is capped at 512. These limits are large
enough so that both the larger and smaller datasets are trained for sufficient samples in order for
training to converge (or overfit). The longest training set has 225 events, and so each sample can be
seen 4 times during training. For training set sizes smaller than 219, samples will be seen 512 times
during training. The combination of these caps with the batch size settings described next results in
the training settings shown in Table 9.

Batch size. The wide range of training set sizes means that there isn’t a single batch size suitable
for all training runs. When the training set size is relatively large, a batch size of 1024 is used. This
value was chosen as a batch size any smaller led to the overall training time becoming prohibitively
long. As the size of the training set is reduced, this batch size eventually becomes unsuitably large

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

in comparison to the dataset size; for example, a whole epoch of the smallest training set would fit
into a single batch, and we would no longer be performing stochastic gradient descent. To address
this, batch size is reduced for the smaller datasets by limiting it to a maximum of 1

128 of the training
set size.

A limitation of having batch size vary with training set length is that it becomes another potential
explanation for differences in performance. We argue that this does not detract from the results as
the batch sizes that are paired with each training set size are representative of what a practitioner
would use; for example, it would not be representative of common practice to train a model on the
225 length training sets with a batch size of 4.

Steps per evaluation. Models are evaluated every 1024 training steps, or every epoch, whichever
is sooner. Evaluating every epoch is too infrequent for the larger training sets. The effect of these
settings is still to evaluate more frequently for smaller datasets; this is suitable as models quickly
overfit on these datasets, and it is desirable to have more frequent evaluations in order to select the
best-performing model parameters.

Table 9: Relationship between training set size and a number of settings: batch size, number of
epochs, number of steps and number of evaluations. Batch size is capped at 1

128 of the training
set size. The number of epochs is capped at 512. 227 samples are drawn, or until the epoch limit
of 512 is reached. An evaluation is run every epoch or every 1024 steps, whichever is sooner. A
consequence of these settings is that all configurations share the same number of steps.

Train length Batch size Epochs Steps Evals

1024 8 512 65536 512
2048 16 512 65536 512
4096 32 512 65536 512
8192 64 512 65536 512

16384 128 512 65536 512
32768 256 512 65536 512
65536 512 512 65536 512

131072 1024 512 65536 512
262144 2048 512 65536 512
524288 2048 256 65536 256

1048576 2048 128 65536 128
2097152 2048 64 65536 64
4194304 2048 32 65536 64
8388608 2048 16 65536 64

16777216 2048 8 65536 64
33554432 2048 4 65536 64

Learning rate. With multiple datasets, models and batch sizes, fixing a single learning rate would
risk skewing results in favour of configurations that best suit the chosen learning rate. Instead of
fixing a learning rate, we fix a strategy for selecting a learning rate. This is described in the next
section.

E.3 LEARNING RATE SELECTION

For all configurations of models and datasets, an individual maximum learning rate is chosen by
using the learning rate range test introduced by Smith (2017). An issue with this approach is its
sensitivity to noise in the loss curve generated by a sweep over learning rates; this noise makes
it difficult to identify the region of steepest descent. We modify the approach slightly in order
to increase robustness: for each configuration we carry out 8 learning rate sweeps. Averaging 8
sweeps is insufficient to smooth out the noise in the loss curves. Instead, we use Kalman filtering to
estimate the expected change in loss at each learning rate and integrate this curve to obtain the final
smoothed loss curve. This process generates smooth curves from which critical points can be more
easily identified. From the smoothed loss curve, we choose a learning rate that is the geometric
mean between the point of steepest descent and the point where the loss curve ends or begins to

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

increase. The selection of the two points—the point of steepest descent and the endpoint—is not
always reliable, and so all selected learning rates were manually inspected, with a small number
being manually overridden.

The results of this learning rate sweep for gpt-a-cat for the synthetic datasets are shown in
Figure 31. The same results but for rnn-nn are shown in Figure 32. Interestingly, these results
show that the learning rate identified by the range test varies very little between batch sizes on these
datasets. To reduce the number of manual overrides, we take the median learning rate across batch
sizes as the final learning rate and manually override this for configurations where it is too high or
low.

Similar to the situation with batch size, having a learning rate vary across models and datasets
introduces an extra factor that may account for differences in performance across configurations.
This may be considered a limitation; however, we argue that to fairly compare models, training
should be best-effort—that is, each model should be trained with the learning rate most appropriate
for it and the dataset it is being trained on. In this sense, while the learning rate varies across models
and datasets, the strategy for choosing the learning rate is held constant.

E.4 COMPUTE RESOURCES

There were three computationally intensive steps for each experiment: learning rate sweeps, training
and evaluation. Learning rate sweeps and model evaluation were carried out on a single workstation,
with GPU, CPU and RAM specifications: Nvidia RTX 4090 GPU, AMD Ryzen Threadripper PRO
5975WX and 256 GiB RAM. Depending on the experiment, training was carried out on either this
workstation or by using 10 Nvidia A40 GPUs from an internal cluster. The wall-clock durations for
each of these three steps are reported below, separated by the sections where the results are used.
The durations are affected by concurrent jobs that may have been sharing resources, and may include
a tapering period where there is not enough remaining work to utilize all GPUs.

For the real-world datasets in Section 3 including the corresponding supplementary results, time
taken for learning rate sweeps, training and evaluation was ~14 hours, ~129 hours and ~14 hours
respectively. The learning rate sweeps and the evaluation were carried out on the workstation, and
training was carried out on the cluster. For Sections 4 to 5, the same triplet of tasks took ~20 hours,
~223 hours and ~11 hours. For the modulo datasets (Section 7), it was ~16 hours, ~167 hours and ~7
hours. For the spike prediction experiment (Section 6), all three steps were run on the workstation.
Time taken for the learning rate sweeps, training and evaluation was ~9 hours, ~122 hours and ~9
hours respectively.

Across all experiments, learning rate sweeps took ~59 hours on the workstation, training took ~122
hours on the workstation and ~519 hours on the cluster, and evaluation took ~41 hours on the work-
station. We estimate that exploratory, failed or unused experiments used approximately 4 times more
compute, combined.

USE OF LARGE LANGUAGE MODEDLS

Tools utilizing large language models were used for spelling and grammar checking.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Figure 31: Learning rate sweep for gpt-a-cat for the synthetic datasets. The black trace (—)
is the mean loss over 8 runs. The orange trace (—) is the Kalman smoothed loss. The yellow
points (o) mark the geometric mean between the point of steepest descent and the point where
the curve increases or ends—the proposed learning rate. The dashed vertical grey line marks the
median proposed learning rate across batch sizes. As the proposed learning rate varies little between
batch sizes, in this work, we choose the median learning rate across batch sizes to be used for all
batch sizes. We manually select the learning rate for a configuration if the median learning rate is
unsuitably high or low.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Figure 32: Learning rate sweep for rnn-nn for the synthetic datasets. The black trace (—) is the
mean loss over 8 runs. The orange trace (—) is the Kalman smoothed loss. The yellow points
(o) mark the geometric mean between the point of steepest descent and the point where the curve
increases or ends—the proposed learning rate. The dashed vertical grey line marks the median
proposed learning rate across batch sizes.

Figure 33: Left: mean learning rate used for each model (mean over synthetic datasets). Right:
mean learning rate used for each of the synthetic datasets (mean over all models).

42

	Introduction
	Categorical distribution for inter-event times on (0,)
	Results on existing datasets
	Training set sizes differentiate TPP model performance
	Results and discussion

	Metropolis lognormal event dataset
	A categorical output is effective for spike prediction
	Sampling and prediction rates motivate a categorical output
	Models: head(CNN + transformer)
	Experiment and results

	Event sequences from modulo addition
	10 datasets, from 1D to 10D
	Results and discussion

	Discussion
	Limitations
	Conclusion
	Supplementary results
	Discussion

	Datasets
	Distribution properties
	Gini coefficient

	Sources for the real-world datasets
	Extension of NYC taxi pickup times and Stack Overflow badges
	Synthetic datasets from omiFullyNeuralNetwork2019
	Metropolis lognormal process
	Motivation

	Sequence generation
	Modulo sequences
	Properties of the modulo datasets
	Cyclic group perspective
	Continuous sequences
	Bounds on v

	Model details
	Bin widths and densities for the categorical head with continuous data
	gpt-a and gpt-b
	Input encoding for gpt based models
	Implementation of existing models
	Limitations of existing models
	Distribution flexibility
	Mixture of lognormals instability

	Spike prediction
	Dataset
	Model architecture
	CNN encoder
	Output heads
	Training
	Evaluation
	Negative log-likelihood
	Spike train similarity/difference metrics

	Training and evaluation details
	Shared settings and hyperparameters
	Settings for experiments from sec:discreteisbadmaybesec:modulodatasets
	Learning rate selection
	Compute resources

