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ABSTRACT

Diffusion models have made remarkable progress in capturing and reproducing
real-world data. Despite their success and further potential, their latent space, the
core of diffusion models, mostly still remains unexplored. In fact, the latent spaces
of existing diffusion models still do not align close with the human perception, en-
tangling multiple concepts in a distorted space. In this paper, we present Isometric
Diffusion, equipping a diffusion model with isometric representation learning to
better reflect human intuition and understanding of visual data. Specifically, we
propose a novel loss to promote isometry of the mapping between the latent space
and the data manifold, enabling a semantically and geometrically better latent
space. This approach allows diffusion models to learn a more disentangled latent
space, enabling smoother interpolation and precise control over attributes directly
in the latent space. Our extensive experiments demonstrate the effectiveness of
Isometric Diffusion, suggesting that our method helps to align latent space with
perceptual semantics. This work paves the way for fine-grained data generation
and manipulation.

1 INTRODUCTION

Generative models produce images, texts, or other types of data by learning the distribution of the
observed samples in its latent space and how to map it to the actual data space. In general, we desire
the latent space to reflect the human perception. That is, we wish we could find a linear subspace
of the latent space that is aligned with an attribute that human perceives important to distinguish the
observed samples. Equivalently, we would locate samples that look semantically similar to human
nearby, and vice versa, in the latent space. Such a latent space easily disentangles the key attributes
from the human’s perspective, allowing us to control the generated samples as desired.

Recently, diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song
et al., 2020b) have achieved unprecedented success across multiple fields, including image gen-
eration (Dhariwal & Nichol, 2021; Nichol et al., 2021; Ramesh et al., 2022; Saharia et al., 2022;
Rombach et al., 2022), image editing (Kawar et al., 2023; Ruiz et al., 2023; Hertz et al., 2022), and
video generation (Ho et al., 2022; Blattmann et al., 2023). However, compared to other generative
models like generative adversarial network (GAN) (Goodfellow et al., 2014) or variational autoen-
coder (VAE) (Kingma & Welling, 2013), there are few studies exploring the latent space of diffusion
models. Due to their iterative sampling process that progressively removes noise from random initial
vectors, it is complicated to analyze or manipulate the latent vectors. A naive latent walking by linear
interpolation between two latent vectors, for example, turns out to produce unwanted intermediate
images, as illustrated in Fig. 1 (top).

A couple of recent works report important observations about the latent space X learned by diffusion
models. First of all, Kwon et al. (2023) discovers that a diffusion model already has a semantic latent
space H in the intermediate feature space of its score model. They suggest that H is semantically
well-defined and locally Euclidean, and thus linear perturbations in H would lead to approximately
linear changes in semantic attributes.

However, manipulating attributes indirectly through H is not fully desirable. One reason is addi-
tional computations accompanied with this indirect manipulation, as it requires two times of entire
reverse diffusion process. According to Kwon et al. (2023), asymmetric reverse process is required
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Figure 1: An illustration of latent traversal between two latents x and x′ with DDPM (Ho et al.,
2020), trained on 256× 256 CelebA-HQ. Top: naive linear interpolation (Lerp) assuming Euclidean
space, Mid: spherical interpolation (Slerp) between x and x′ (direction x → x′ is entangled with
unwanted gender axis inducing abrupt changes), Bottom: spherical interpolation with the same la-
tents with our Isometric Diffusion resolving unwanted entanglement.

for image change, and this requires two independent inferences of the score model with different in-
puts: ϵt(xt) and ϵ̃t(xt) = ϵt(xt|f(xt, t)), where f is an additional neural network to find the editing
direction. Another computational cost comes from training f to find local editing directions at every
point of H for accounting every time after stepping forward in H. With this indirect approach, a
clear relationship between X and H has not been established, leaving it as an open question how to
directly manipulate a particular attribute from the latent vector x ∈ X instead of (x,h) ∈ X ⊗H.

A subsequent work (Park et al., 2023b) suggests that a spherical linear interpolation (Slerp) in X
is close to geodesic in H, which implies it approximates a linear interpolation (Lerp) in H. This
discovery indicates that we may be able to manipulate semantics of a generated image directly in X ,
with some care on the spherical geometry of the latent space.

To illustrate, we explore X by sequentially generating images on a spherically interpolated trajectory
between two latent vectors, x,x′ ∈ X . Fig. 1 (mid) illustrates that it is not a geodesic on the data
manifold; on the trajectory between two men, it unnecessarily goes through an woman. This can be
interpreted that there exists some distortion in the latent space of diffusion models, implying that they
fail to adequately preserve the geometric structure of the data manifold. In other words, the latent
space and perceptual semantics do not align well. Such a misalignment often leads to entanglement
of multiple semantic concepts, making it tricky to conduct fine-grained manipulations.

Motivated from the desire to directly align the latent space with the data manifold, we present Iso-
metric Diffusion, a diffusion model equipped with isometric representation learning, where isometry
is a distance preserving map between metric spaces, which also preserves geodesics. More specif-
ically, we introduce a novel loss to encourage isometry between X and the data manifold. With
this additional supervision, the learned X allows semantically disentangled geodesic traversal and
smoother interpolation with less abrupt changes when navigating X , as illustrated in Fig. 1 (bot-
tom). We demonstrate the effectiveness of our proposed method through extensive experiments,
both quantitatively and qualitatively with several widely-used metrics, on multiple datasets.

2 LATENT SPACE OF DIFFUSION MODELS

In this section, we briefly review the latent spaces of diffusion models and illustrate the objective to
achieve a better disentangled latent space.

2.1 LATENT SPACE X OF DIFFUSION MODELS

Given an observed image space, denoted by X0, the forward process of diffusion models repeatedly
perturbs an image x0 ∈ X0 by xt =

√
ᾱtx0 +

√
1− ᾱtϵ0, with noise ϵ0 ∼ N (0, I) for t = 1, ..., T

and ᾱt =
∏t

i=1 αi. These perturbed images xt construct a chain of latent spaces for t = 1, ..., T ,
and the image space at each time step t is denoted by Xt. For simplicity, we denote XT = X . To
recover the original image x0 from xT , diffusion models train a score model sθ by minimizing the
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(a) S2 manifold (b) Reconstruction only (c) Liso with G = I (d) Liso with full Eq. (6)

Figure 2: (a) Illustration of the input S2 manifold. (b–d) Mapped contours in latent coordinates
learned by an autoencoder; (b) with reconstruction loss only, (c) with isometric loss assuming navie
Euclidean geometry, and (d) with our isometric loss considering S2 geometry.

following denoising score matching loss (Vincent, 2011; Song et al., 2020b):

Ldsm = Et

{
λ(t)Ex0Ext|x0

[
∥sθ(xt, t)−∇xt

log pt(xt|x0)∥22
]}

, (1)

where θ is a set of learnable parameters of the score model and λ(t) is a positive weighting function.

With the trained sθ, we can generate an image x0 from a sample xT ∼ N (0, I) through the reverse
diffusion process. Here, the distribution of the norm of completely noised images ∥xT ∥2 follows a
χ-distribution, and they are distributed on the shell of a sphere, not uniformly within the sphere (see
Sec. 3.1 for more details). For this reason, linearly interpolating two images within X , as shown in
Fig. 1 (top), results in path far from geodesic on the data manifold, while spherical linear interpo-
lation follows a shorter path. As seen in Fig. 1 (mid), however, the spherical linear interpolation is
still semantically not disentangled, indicating that XT is not isometric to the data manifold.

2.2 INTERMEDIATE LATENT SPACE H AS A SEMANTIC SPACE

Kwon et al. (2023) claims that the learned intermediate feature space H of the score model sθ
sufficiently preserves the semantics of the observed images. They report that a linear scaling by
∆h on H controls the magnitude of semantic changes, and applying the same ∆h on a different
sample results in a similar magnitude of effect. This implies that, by minimizing the loss in Eq. (1),
H reasonably learns the low-dimensional data manifold with its geometry preserved and H is close
to isometric to the data manifold. Therefore, we claim that as the mapping from X to H becomes
closer to isometric, the mapping of the data manifold from X can also become more isometric. The
advantages by achieving this objective is covered in Appendix E.

Motivated from these observations, we aim to train the encoder of the score model in a way to ensure
isometry. By aligning a spherical trajectory in X with a geodesic in H, our encoder paves the way
for a more coherent utilization of X as a semantic space.

3 ISOMETRIC REPRESENTATION LEARNING FOR DIFFUSION MODELS

The goal of our work is to learn a latent space X which reflects semantics perceived by human. As
this is not straightforward to achieve directly, we rely on a recent observation by Kwon et al. (2023)
that the bottleneck layers H in diffusion models reasonably reflect semantics (Sec. 2.2). Thus,
instead of building a semantic latent space from scratch, our approach aims to learn a geodesic-
preserving mapping between X and H.

For this, we claim that a scaled isometric mapping (Lee et al., 2021) guides the encoder of the
diffusion model to preserve geodesics between the two spaces (Sec. 3.2), between an approximated
spherical latent space X (Sec. 3.1) and the semantic latent space H. Fig. 3 illustrates the overall
flow of our approach. With stereographic coordinates for X and Cartesian coordinates for H as local
coordinates, respectively, we equip with an appropriate Riemannian metric to the local coordinate
spaces. Then, we guide the encoder of the score model to map from X to H so as to preserve
geodesic between them. Lastly, we discuss computational considerations (Sec. 3.3).

Illustration. Before introducing our method, we first illustrate the purpose of isometric representa-
tion learning with a toy autoencoder model, learning an encoding map from S2 to R2. The autoen-
coder is trained with the reconstruction loss, regularized with the isometric loss in Eq. (6).

3



Under review as a conference paper at ICLR 2024

Figure 3: Illustration of X ,H, and local coordinates of those two manifolds. Our isometric loss
regularizes the encoder of the score model to map a spherical trajectory in X to a linear trajectory in
H, preserving a geodesic in X to a geodesic in H. Πn−1,Φ are charts mapping from Riemmanian
manifolds to local coordinate spaces. z, z′ denote the local coordinates of X ,H, respectively.

Fig. 2 illustrates an autoencoder flattening the given S2 manifold in (a) with three different losses.
Only with reconstruction loss in (b), we see that the manifold is significantly distorted, points far
away in the input often are located closely. We observe less distortion with the isometric loss under
the assumption of the Euclidean metric in local coordinates of S2 (G = I) in (c), but it still does not
preserve geodesic. With our full loss in (d), we may see that the geometry of input space is more
preserved with G = Gstereographic from Eq. (3). We provide more illustrations in Appendix B.

Recall that the sampling process of diffusion models starts from a Gaussian noise, xT ∼ N (0, In) ∈
Rn, where T is the number of reverse time steps. Then, the radii of Gaussian noise vectors xT

follow χ-distribution: r =
√∑n

i=1 x
2
T,i ∼ χ(n), whose mean and variance are approximately

√
n

and variance of 1, respectively. For a sufficiently large n (e.g., n = 3 × 2562 to generate an image
of size 256× 256), the noise vectors reside within close proximity of a hypersphere with r =

√
n.

3.1 SPHERICAL APPROXIMATION OF THE LATENT SPACE

From this observation, we approximate the noise vectors x ∈ X (we omit subscripts to be un-
cluttered) reside on the hypersphere manifold Sn−1(r) = {x ∈ Rn : ∥x∥ = r}. To define a
Riemannian metric on Sn−1(r), we need to choose charts and local coordinates to represent the
Riemannian manifolds (Miranda, 1995). We choose the stereographic coordinates (Apostol, 1974)
as the local coordinate to represent X and Φ = id following the linearity argument of H (Kwon
et al., 2023). Stereographic projection Πn−1 : Sn−1(r)\{N} → Rn−1 is a bijective transformation
from every point except for the north pole (N ) on the hypersphere to a plane with north pole as the
reference point. Πn−1 and its inverse projection Π−1

n−1 are given by

Πn−1(x) =
1

r − xn
(x1,x2, · · · ,xn−1), Π−1

n−1(z) =
r

|z|2 + 1
(2z1, 2z2, · · · , 2zn−1, |z|2 − 1). (2)

Figure 4: Scheduling of α

In stereographic coordinates, the Riemannian metric of the
Sn−1(r) (do Carmo, 1992) is given by

Gstereographic(z) =
4r4

(|z|2 + r2)2
In−1, ∀z ∈ Rn−1. (3)

Recall that a diffusion model consists of a chain of la-
tent spaces. Hence, it is needed to verify at every time
step the validity of spherical approximation. From xt =√
ᾱtx0 +

√
1− ᾱtϵ0, the variance of perturbation kernels is

Var[p(xt|x0)] = 1−ᾱt = 1−e
∫
−β(t)dt (Song et al., 2020b).
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We use a linear noise schedule βt = β0(1 − t
T ) + βT

t
T with βt = 1 − αt, where the variance

schedule is illustrated in Fig. 4. We claim that for a sufficiently large t,
√
1− ᾱt ≈ 1 and thus

the latent space can be approximated to a sphere. That is, we approximate Xt ≈ Sn−1(r) with
r =

√
1− ᾱt · E[χ(n)] ≈

√
n(1− ᾱt) for t > pT , where we set p ∈ [0, 1] as a hyperparamter.

3.2 ISOMETRIC MAPPINGS

Definition. An isometric mapping (or isometry) is a transformation between two metric spaces
that globally preserves distances and angles. A mapping between two Riemannian manifolds e′θ :

M1 → M2 (f in local coordinates; f = Φ ◦ e′θ ◦ Π
−1
n−1) is a scaled isometry (Lee et al., 2021) if

and only if
G(z) = cJf (z)

⊤H(f(z))Jf (z), ∀z ∈ Rn−1, (4)

where c ∈ R is a constant, Jf (z) = ∂f
∂z (z) ∈ R(n−1)×m is the Jacobian of f , G(z) ∈

R(n−1)×(n−1) and H(z′) ∈ Rm×m are the Riemannian metrics defined at the local coordinates
z, z′ of M1 = Rn−1 and M2 = Rm, respectively. Equivalently, f is a scaled isometry if and only
if J⊤

f HJfG
−1 = cI where c ∈ R is a global constant. If c = 1 globally, f is a strict isometry.

Scaled isometry allows the constant c to vary, preserving only the scaled distances and angles. This
relaxation makes it easier to optimize a function to preserve geodesic with less restrictions.

In our problem formulation, M1 = Sn−1 (X ), M2 = Rm (H), and H(z′) = Im, as introduced in
Sec. 3.1. Although evaluation of J⊤

f HJfG
−1 is coordinate-invariant, our choice of stereographic

coordinates is computationally advantageous, as its Riemannian metric in Eq. (3) is proportional to
the identity matrix.

Geodesic-preserving Property. In order for an encoding mapping from X to H to respect the
semantic structure embedded in the image space, we would like to make this mapping geodesic-
preserving. We claim that the scaled isometry leads to a geodesic-preserving mapping

argmin
γ(t)

∫ 1

0

√
γ̇(t)⊤G(γ(t))γ̇(t)dt = argmin

γ(t)

∫ 1

0

√
γ̇(t)⊤J(γ(t))⊤H(f(γ(t)))J(γ(t))γ̇(t)dt, (5)

for an arbitrary trajectory γ : [0, 1] → Rn in local coordinates of M1 with fixed endpoints (γ(0) =
x0, γ(1) = x1), where x0,x1 ∈ Rn are constant vectors and γ̇(t) = dγ

dt (t).

Isometry Loss. To sum up, we can encourage the mapping from X to H to preserve geodesics by
regularizing R(z) = Jf (z)

⊤H(f(z))Jf (z)G
−1(z) = cI , for some c ∈ R. It can be achieved by

minimizing the following isometry loss:

Liso(eθ, t) =
Ext∼P (xt)[Tr(R

2(zt))]

Ext∼P (zt)[Tr(R(zt))]2
=

Ext∼P (xt)Ev∼N (0,I)[v
⊤R(zt)

⊤R(zt)v]

Ext∼P (xt)Ev∼N (0,I)[v⊤R(zt)v]2
, (6)

where P (xt) is the noise probability distribution at timestep t, and zt = Πn−1(xt). The second
equality holds due to the stochastic trace estimator (Hutchinson, 1989), where v ∈ Rn−1 is a random
vector such that E[vv⊤] = I . As a result, our final loss to train the score model is defined by

L = Ldsm + λiso(p, t)Liso, (7)

where λiso(p, t) is a non-negative weighting function to control the relative importance of isometry
regularizer for each Xt and p ∈ [0, 1] is the ratio of steps that we do not apply Liso. We use
λiso(p, t) = λiso1t′>pT (t

′ = t) where 1(·) is the indicator function, and the denoising process starts
from t = T .

Applying to Diffusion Models. The isometric loss is not directly applicable to a diffusion model,
since it iteratively generates the samples. To guide a geodesic mapping between hT ∈ H and x0

(an actual image), we may regularize each step of the iterative sequence; that is, the encoding map
between xi and hi for i = 1, ..., T .

Instead of regularizing all steps, we may selectively apply it. For time steps closer to T , samples
are closer to a Gaussian, so our assumption may reasonably hold. For time steps closer to 0, how-
ever, samples are not sufficiently perturbed yet and thus they follow some intermediate distribution
between the Gaussian and the original data distribution as described in Sec. 3.1. Hence, we may not
assume these samples lie on Sn−1 manifold.
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3.3 COMPUTATIONAL CONSIDERATIONS

To sidestep the heavy computation of full Jacobian matrices, we use stochastic trace estimator to
substitute the trace of Jacobian to Jacobian-vector product (JVP). Exploiting the commutativity
of the Riemmanian metric in stereographic coordinates, we utilize Ev∼N (0,I)[v

⊤J⊤JG−1v] =

Ev∼N (0,I)[v
⊤
√
G−1J⊤J

√
G−1v] to reduce the number of JVP evaluations. We provide more

details about the computation of stochastic trace estimator in Appendix A.2.

4 EXPERIMENTS

We conduct extensive experiments to verify the effectiveness of our method to diffusion models and
corroborate that latent space of diffusion models can be disentangled with isometric loss Liso.

4.1 EXPERIMENTAL SETTINGS

Dataset. We evaluate our approach on CIFAR-10, CelebA-HQ (Huang et al., 2018), LSUN-
Church (Wang et al., 2017), and LSUN-Bedrooms (Wang et al., 2017). The training partition of
each dataset consists of 50,000, 14,342, 126,227, and 3,033,042 samples, respectively. We resize
each image to 256× 256 except for CIFAR-10 and horizontally flip it with probability 0.5.

Evaluation Metrics. Fréchet inception distance (FID) (Heusel et al., 2017) is a widely-used metric
to assess the quality of images created by a generative model by comparing the distribution of
generated images with that of ground truth images. Perceptual Path Length (PPL) (Karras et al.,
2019) evaluates how well the generator interpolates between points in the latent space, defined as
PPL = E[ 1ϵ2 d(xt,xt+ϵ)], where d(·, ·) is a distance function. We use LPIPS (Zhang et al., 2018)
distance using AlexNet (Krizhevsky et al., 2012) for d. A lower PPL indicates that the latent space
is better disentangled, since when two or more axes are entangled and geodesic interpolation in X
induces a sub-optimal trajectory in the semantic space, the LPIPS distance gets larger and thereby
so does the PPL. For experimentation, we perform 20 and 100 steps of DDIM sampling for FID and
PPL, computed with 10,000 and 50,000 images, respectively. Linear separability (LS) (Karras et al.,
2019) measures the degree of disentanglement of a latent space, by measuring how much the latent
space is separable by a hyperplane. Mean condition number (MCN) and variance of Riemannian
metric (VoR) measure how much a mapping is close to a scaled-isometry, proposed by (Lee et al.,
2021). We provide further details on these metrics in Appendix D.

We additionally design a new metric called mean Relative Trajectory Length (mRTL), measuring the
extent to which a trajectory in X is mapped to geodesic in H. Specifically, mRTL is defined as the
mean ratio between the L2 distance d2(t) between h,h′ ∈ H features corresponding to two latents
x,x′ ∈ X and another distance measured on the manifold dM(t), following along a path on {Ht}.
That is, RTL(t) = Ex,x′∈X [dM(t)/d2(t)] and mRTL = Et[RTL(t)], where t denotes the timesteps
of the sampling schedule. Intuitively, it represents the degree of isometry of the encoder f .

Implementation Details. Our network architecture follows the backbone of DDPM (Ho et al.,
2020), which uses a U-Net (Ronneberger et al., 2015) internally. We take a DDPM (Ho et al., 2020)
pre-trained on CelebA (Liu et al., 2015) as a starting point, and further train it with each competing
method until it achieves the lowest FID. If not specified, we train with batch size 32, learning rate
10−4, p = 0.5, and λiso = 10−4 for 10 epochs by default. We use Adam optimizer and exponential
moving average (Brown, 1956) on model parameters with a decay factor of 0.9999. We set the
number of inference steps to 100. We use 4 NVIDIA A100 GPUs with 40GB memory.

4.2 QUANTITATIVE COMPARISON

Overall Comparison. In Tab. 1–2, we quantitatively compares the performance of our method
and DDPM (Base) in various metrics. The results indicate that the diffusion models trained with
our isometric loss regularizer exhibit substantial drop (improvement) in PPL implying smoother
transitions during latent traversal. Decrease of mRTL, MCN, and VoR signified the encoder of score
model became successfully closer to scaled-isometry. For CelebA-HQ, LS and LS measured by
SVM with radial basis fucntion kernel significantly decreased, indicating the disentanglement of
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FID-10k↓ PPL-50k↓ mRTL↓ MCN ↓ VoR ↓
Dataset Base Ours Base Ours Base Ours Base Ours Base Ours

CIFAR-10 10.27 12.50 105 76 2.03 1.92 155 107 0.50 0.57
CelebA-HQ 15.89 16.18 648 570 2.67 2.50 497 180 1.42 0.85
LSUN-Church 10.56 13.01 2028 1587 3.71 3.21 375 217 1.92 1.37
LSUN-Bedrooms 9.49 11.95 4515 3809 3.38 3.21 320 186 1.69 1.12

Table 1: Quantitative comparison. Diffusion models trained with our isometric loss achieve con-
sistent improvement over the baseline on multiple datasets, with slight sacrifice in FID scores.

LS ↓ LS (radial) ↓
Dataset Base Ours Base Ours

CelebA-HQ 4.39 2.65 12.3 6.8

Table 2: Quantitative comparison of
linear separability (LS). LS measures
the disentanglement of latent space.

Figure 5: RTL with
various λiso. A
stronger regularization
reduces the ratio to 1,
flattening the trajecto-
ries in H.

latent space. This further implies better alignment between the latent space and semantic space,
disentangling semantic components in the latent space, as desired.

We notice a trade-off between FID and other metrics. Using our isometry loss, PPL and mRTL
significantly drop, while FID sometimes marginally increases. In spite of slightly increased FID,
however, the quality of the generated images is not significantly damaged, e.g., as seen in examples
in Fig. V. With the improved PPL and mRTL, however, latent traversal gets smoother without abrupt
changes, easing controlled image manipulation (see Sec. 4.3 for more details).

Mean Relative Trajectory Length. Fig. 5 shows the measured Relative Trajectory Length (RTL)
scores across the reverse timesteps in DDIM (T = 20). As the guidance of isometric loss gets larger
with a larger λiso, the RTL tends to decrease, indicating the geodesic in X (slerp) maps to geodesic
in {Ht}. We notice a significant drop when t ≤ 10 especially with a larger λiso, where the isometric
loss is applied. This indeed shows the isometric loss is accurately guiding the encoder of the score
model to learn an isometric representation.

4.3 ANALYSIS ON THE DISENTANGLEMENT OF LATENT SPACE X

Interpolation. We first conduct traversals on the latent space X between two points x,x′ ∈ X ,
illustrating the generated images from interpolated points between them in Fig. 6. We observe
that with our isometric loss the latent space is better disentangled, resulting in smoother transitions
without abrupt changes in gender. More examples are provided in Fig. VII–VIII in Appendix H.

Linearity. We also claim that the latent space X learned with our isometric loss has a property
of linearity. Specifically, we compare the generated images with ours to baseline. Both cases are
naively moved along the slerp in their latent spaces. We illustrate this in Fig. 7 by demonstrating that
a spherical perturbation on X with various intensity of ∆x adds or removes specific attributes from
the generated images accordingly. We find the editable direction by employing Local Basis (Jang
et al., 2022), an unsupervised method for identifying semantic-factorizing directions in the latent
space based on its local geometry, and perturb the latents through this direction both for baseline and
our model. This method discovers the principal variations of the latent space in the neighborhood
of the base latent code. As seen in Fig. 7, the baseline often changes multiple factors (age, gender)
abruptly and inconsistently with γ (e.g., when γ = −1 on the right example, it suddenly shows a
male-like output), while ours show smoother changes.

With previous diffusion-based image editing methods, one needed to take into account the geometry
of H for every step in the editing trajectory (Park et al., 2023b). This requires computation of the
Jacobian and its eigenvectors at every step forward in the trajectory via parallel transport along H.
This is usually approximated via a projection, referred as geodesic shooting. Using our isometric
loss, on the other hand, the editing trajectory becomes closer to the trivial geodesic of the latent
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Figure 6: Examples of latent traversal between two images x and x′ with DDPM (Ho et al., 2020),
trained on 256× 256 CelebA-HQ. We observe unnecessary changes of female → male in the base-
line, while smoother transitions in ours. For quantitative support, we plot LPIPS distance between
each adjacent frames (Blue: Baseline, Orange: Ours).
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Figure 7: Linearity. Images generated from a latent vector x (corresponds to the boxed columns)
and from slightly perturbed ones, x + γ∆x with γ ∈ {−2,−1, 0, 1, 2}, where ∆x corresponds to
the age axis.

space; slerp in X . Thus, we can directly move along the slerp in X without requiring any additional
computations or approximations to find the editing direction of image.

4.4 ABLATION STUDY

Tab. 3 shows the ablation study on the choice of optimal p and G. With p = 0.5 and G =
Gstereographic, we observe the best performance in FID and PPL. FID increases with p < 0.5, while
PPL improvement gets marginal when p > 0.5. Also, when calculating the isometric loss, using an
appropriate Riemannian metric G of the latent space turns out to be important. That is, the model
with G = Gstereographic achieves competitive FID and PPL scores at the same time, while either
of them gets significantly worse with G = I. This result supports our spherical assumption on
the latent space X of diffusion models and modeling it as a Riemannian manifold Sn−1 is indeed
reasonable.
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p G λiso FID-10k ↓ PPL-50k ↓
1 - - 15.89 653
0 I 10−4 24.07 447

0.5 I 10−3 30.28 441
0.5 I 10−4 16.60 619

0.5 Gstereographic 10−4 16.18 570

Table 3: Ablation study on p (the ratio of steps to skip isometric loss) and G (the choice of Rie-
mannian metric). This experiment has been conducted on CelebA-HQ 256 × 256.

5 RELATED WORKS

Diffusion models. Recently, diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Song et al., 2020b) have achieved a great success in eclectic fields, containing image generation
(Dhariwal & Nichol, 2021; Baranchuk et al., 2021; Choi et al., 2021b; Sehwag et al., 2022; Meng
et al., 2023), image synthesis (Meng et al., 2021; Tumanyan et al., 2023; Liu et al., 2023), video
generation (Ho et al., 2022; Blattmann et al., 2023) and sound generation (Yang et al., 2023). From
a pure Gaussian noise, DDPM (Ho et al., 2020) samples the image by predicting the next distribution
using Markov chain property. With non-Markovian process, DDIM (Song et al., 2020a) accelerates
the denoising process of DDPM by skipping sampling steps.

Latent Space of Generative Models. On traditional Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014; Radford et al., 2015; Zhu et al., 2017; Choi et al., 2018; Ramesh et al.,
2018; Härkönen et al., 2020; Abdal et al., 2021) models, StyleGAN (Karras et al., 2019) is a pi-
oneering work on latent space analysis and improvement. In StyleGANv2 (Karras et al., 2020), a
path length regularizer guides the generator to learn an isometric mapping from the latent space to
the image space. Recently, additional studies on GANs (Shen et al., 2020a;b; Shen & Zhou, 2021)
and VAEs (Hadjeres et al., 2017; Zheng & Sun, 2019; Zhou & Wei, 2020) have examined the latent
spaces of generative models. Kwon et al. (2023) found that the internal feature space of U-Net in
diffusion models, H, plays the same role as a semantic latent space. Preechakul et al. (2022) dis-
covered that using a semantic encoder enables the access to the semantic space of diffusion models.
However, this method utilizes conditional diffusion model, while our work proposes a method that
can directly utilize the latent space without any condition.

Isometric Latent Space for Generative Models. There exist some previous works on utilizing Rie-
mannian geometry to understand the latent spaces. (Arvanitidis et al., 2021) claimed understanding
Riemmanian geometry of latent space can improve analysis of representations as well as generative
modeling. (Chen et al., 2020) proposed that interpreting the latent space as Riemannian manifold
and regularizing the Riemannian metric to be a scaled identity help VAEs learn a good latent repre-
sentation. (Lee et al., 2021) proposed an isometric regularization method for geometry-preserving
latent space coordinates in scale-free and coordinate invariant form. However, due to the iterative
property of diffusion models, unlike VAEs and GANs, it is demanding to apply isometric represen-
tation learning on diffusion models. Thus, to the best of our knowledge, no previous works have
been done on applying an isometric mapping to the semantic space of diffusion models.

6 SUMMARY AND LIMITATIONS

In this paper, we have addressed a critical issue in the field of generative models, specifically uncon-
ditional diffusion models. In spite of their advances in generating photorealistic samples, they have
lagged behind in terms of understanding and controlling their latent spaces.

The proposed approach, Isometric Diffusion, leverages isometric representation learning to bridge
the gap between the latent space X and the data manifold. With a mapping from latent space to data
manifold being close to isometry learned by our approach, we demonstrate that a more intuitive and
disentangled latent space for diffusion models can be achieved both quantitatively and qualitatively.

Limitations. Our proposed method is applicable primarily in noise spaces close to a Gaussian
distribution, limiting its applicability. Overcoming this limitation would be an interesting direction
for future work.
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ETHICS STATEMENT

The proposed approach in this paper aims to ease the image or video editing, selectively adjusting
certain aspects of them as intended. Our work shares ethical issues of generative models that are
currently known in research community; to name some, deep fake, fake news, malicious editing to
manipulate evidence, and so on. We believe our work does not significantly worsen these concerns
in general, but a better disentangled latent semantic space with our approach might ease these abuse
cases as well. Also, other relevant ethical issues regarding potential discrimination caused by a
biased dataset still remain the same with our approach, neither improving nor worsening ethical
concerns in this aspect. A collective effort within the entire research community and society will be
important to keep generative models beneficial.

REPRODUCIBILITY STATEMENT

We submit our code used for experiments in this paper as a supplementary material. We also plan to
publicly release this upon acceptance. The readers would be able to reproduce the reported results
by running this code. We also describe the detailed experimental settings including hyperparameters
and hardware environments we use in Sec. 4.1 and 4.4.
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A STOCHASTIC TRACE ESTIMATOR

A.1 ESTIMATION ACCURACY

In Eq. 6 of the main text, we explained that the second quality holds because of the stochastic trace
estimator (Hutchinson, 1989) which is an algorithm to obtain such an estimate from matrix-vector
products:

Tr(A) = E[v⊤Av] ≃ 1

N

N∑
i=1

vTi Avi, (8)

where A is any square matrix and v is random vector such that E[vv⊤] = I .

As shown in Fig. III the error of stochastic trace estimator increases as the number of sample N . In
this experiment, A follows N (0, I) ∈ R256×256 and v follows N (0, I) ∈ R256×1.

Figure I: Approximation error of stochastic trace estimator against the number of samples.
Each point on the graph represents the error corresponding to a particular sample size.

Despite the inherent errors of estimator, we conduct a simple experiment in the setting similar to
Fig. 2 to investigate whether optimizing with estimated trace converges similar to optimizing with
exact trace. As shown in Fig. II, optimizing the model by approximating the trace of the matrix
with the stochastic trace estimator yields similar results to those obtained by using the actual trace
of the matrix. Furthermore, Fig. III demonstrates that the approximated trace exhibits a similar
convergence pattern in loss over training time. These results suggest that the final convergence point
is similar even when the loss function is optimized by estimating the trace of the matrix through
stochastic trace estimator.

(a) S2 manifold (b) Liso with estimator (c) Liso with exact trace

Figure II: (a) Illustration of the input S2 manifold. (b) latent coordinates learned with isometric
regularizer, estimated with the stochastic trace estimator. (c) latent coordinates learned with exact
iosmetric regularizer.

A.2 COMPUTATIONAL COMPARISON

Given that X ⊂ R256×256×3 and H ⊂ R8×8×512, the encoder’s Jacobian, J, contains 6,442,450,944
elements. With float32 data type, the Jacobian matrix uses approximately 24 GB of memory.
The computation time for a single Jacobian takes 202.77 seconds under our environment (NVidia
A100).
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Figure III: Loss plot during training of the toy model. Loss calculated with trace estimator suc-
cessfully converges compared to that calculated with the exact trace value. Loss calculated with
trace estimator was repeated 5 times.

(a) S2 manifold (b) Reconstruction only (c) Liso with G = I (d) Liso with full Eq. (6)

Figure IV: (a) Illustration of the input S2 manifold. (b–d) Mapped contours in latent coordinates
learned by an autoencoder; (b) with reconstruction loss only, (c) with isometric loss assuming navie
Euclidean geometry, and (d) with our isometric loss considering S2 geometry.

In contrast, the Jacobian Vector Product (JVP) does not explicitly calculate the entire Jacobian ma-
trix, but it directly computes the product of the Jacobian matrix with a specific vector, requiring only
(256×256×3+8×8×512)×4 = 91,750 bytes, which is approximately 0.875MB of memory. In our
isometry loss, we utilize three times of JVPs for estimating a trace of J acobian. The computation
time for a single JVP takes 0.6 seconds under our environment.

B ILLUSTRATION ON ISOMETRIC LOSS

At Fig IV, We provide more illustrations of the latent space of an autoencoder, regularized with
isometric loss.

C LINEARITY EXAMPLES

Fig. V further illustrates the linearity of X with images manipulated in two directions in X . We
followed (Choi et al., 2021a) to find the editing directions. Comparing the results of baseline and
ours, we observe that our method better disentangles the concept of age and gender, successfully
drawing a young male and an old female (marked with red boxes), where the baseline fails to. This
indicates that the latent space trained with out approach is better disentangled, and they can be easily
combined back with a linear combination.
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Figure V: An illustration of linear combination in X . With ours, age and gender axes (marked
with red boxes) are better disentangled, and can be naturally combined back.

D DETAILS ON EVALUATION METRICS

We provide further details of the evaluation metrics we use throughout this paper.

Linear separability (LS) (Karras et al., 2019) measures the degree of disentanglement of a latent
space. Karras et al. (2019) argues that if a latent space is disentangled, it should be able to find a
consistent direction that changes an image attribute independently, and thus the latent space labeled
according to the specific attribute should be separable by a hyperplane. The formal definition of this
metric is as follows:

LS = e
∑

i H(Yi|Xi), (9)
where i is the attribute index, H(·|·) is conditional entropy, X are the classes predicted by SVM, and
Y are the classes predicted by a pre-trained classifier. Intuitively, it measures how much additional
information is needed to fully determine the label determined by the classifier, knowing the label
predicted by SVM, hence indicating how much the latent space is separable by a hyperplane.

We train a classifier with ResNeXt (Xie et al., 2017) to predict the 40 attribute confidence scores
with CelebA annotated for each image, and then follow the method in (Karras et al., 2019). We
calculate it with SVMs using linear kernel and radial basis function kernel, regarding the spherical
geometry of the latent space. We compute it with 1,000 images pruned after sorting with classifier
confidence scores, from 2,000 images generated.

Mean condition number (MCN) and variance of Riemannian metric (VoR) are the metrics measuring
how much a mapping is close to a scaled-isometry, proposed by (Lee et al., 2021). We measure
MCN and VoR of the score models’ encoders to measure how much our isometric regularizer has
successfully guided the encoder to be isometric. Formally, the mean condition number (MCN) is
defined as

MCN = Ex0
Ext∼p(xt|x0)

[
σM (J(xt))

σm(J(xt))

]
, (10)

where σM , σm are the maximum and minimum singular values. MCN measures how isotropic the
Riemannian metric is. Note that σi(J(xt)) = λ2

i (J
⊤(xt)J(xt)), where λi is the i-th eigenvalue.

The variance of Riemannian metric (VoR) is defined as

VoR =
∑
i

Varx0,xt∼p(xt|x0) [σi(J(xt))] , (11)

where we measure how homogeneous Riemannian metric is. Note that we slightly modify its def-
inition to bypass the exact calculation of Jacobian by exploiting SVD. Satisfying both isotropicity

iii



Under review as a conference paper at ICLR 2024

FID-10k↓ PPL-50k↓ mRTL↓ MCN ↓ VoR ↓
Model Base Ours Base Ours Base Ours Base Ours Base Ours

DDPM 15.89 16.18 648 570 2.67 2.50 497 180 1.42 0.85
LDM 10.79 11.46 439 397 2.89 2.73 322 198 1.04 0.54

Table I: Quantitative comparison on LDM. We trained unconditional LDM on CelebA-HQ, and
compared various metrics measuring the quality of the latent space.

and homogeneity of Riemannian metric, a mapping can be determined its proximity to isometry. We
measure them with 1,000 images.

E ADVANTAGES OF SMOOTH LATENT SPACE

While there exists some topological discrepancy between Gaussian prior and the true image distri-
bution, generative modeling have often modeled their latent spaces as Gaussian (e.g. GANs, VAEs)
and there have been studies on the advantages of geometric regularizing in learning a ‘better’ latent
space modeled as Gaussian, even though the target distribution will be quite different from it. We
believe that such geodesic preserving property is motivated from various literatures in generative
models.

For example, StyleGAN2 (Karras et al., 2020) uses path length regularizer to guide the generator
to become closer to isometry and achieves a smoother latent space. Their work shows that the
path-length-regularized StyleGAN2 improves 1) to lower PPL (a consistency and stability metric in
image generation), and 2) to have invertibility from image to its latent codes. We believe the latter is
potentially related to the existence of smooth inverse function of the generator, which is an important
feature for image manipulation. In diffusion models, this corresponds to DDIM inversion (Dhariwal
& Nichol, 2021), and we believe our method can improve the inversion quality in diffusion models
and hence contribute to high quality latent manipulations, with similar effects with that of path
length regularized StyleGAN2.

Additionally, FMVAE Chen et al. (2020) uses isometric regularizer to the decoder of VAE to learn
a mapping from Gaussian latent space to image space close to isometry, obtaining advantages in
downstream tasks using geometrically aligned latent space. As also illustrated in Karras et al. (2020);
Chen et al. (2020), we admit that it somehow penalizes the FID score, possibly due to the nature of
regularizer. We leave the exploration of minimizing the tradeoff as a promising future work.

Regarding the various literatures in geometric deep learning for generative modeling (Jeong et al.,
2023), we would like to emphasize that our work introduces the first approach to learn a geometri-
cally sound latent space of diffusion models which better aligns with human perceptions. Also, it
advances the latent interpolation and disentanglement, which relatively has not been explored in the
community.

F REGARDING SCALABILITY OF THE METHOD

As discussed in Park et al. (2023a), the complexity of H increases as the complexity of the training
dataset increases.

While intervention of large-scale training data, latent encoder/decoder, and text encoder in latent
diffusion models (LDM)/Stable Diffusion complicates the relation between the noise space (X) and
the semantic space (H), [E] demonstrates the efficacy of H space also in StableDiffusion in a text-
conditioned setting, hence validating the method also in large-scale setting.

Therefore we believe the method can be scaled up, and also can incorporate text-to-image models
such as StableDiffusion, which can be an interesting direction for future work. At Tab. I, we provide
an additional experiment to verify our method on latent diffusion models following Dhariwal &
Nichol (2021), on CelebA-HQ. As long as the H space is effective, our approach can be easily
adopted to further regularize it with minimal additional cost.
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G PRESERVATION OF H AFTER ISOMETRIC TRAINING

Trained with our isometric loss acting as a regularizer to the denoising score matching loss, it is not
trivial if the model eventually learns the semantic space in H. However, Kwon et al. (2023) argues
that H exists in the bottleneck layer of the U-Net, for all pretrained diffusion models. Hence, it is
reasonable to deduce that H space exists given that the denoising score matching (DSM) loss has
converged. Therefore, it can be inferred that H-space exists if the DSM loss converges to a similar
point, even when the isometric loss is added.

We observe that the addition of the isometry loss does not significantly alter the convergence point
of the diffusion loss and still shows comparable FID scores. From this, we can naturally conclude
that H-space also still exists in our model.

As empirical evidence, we provide some qualitative results of image editing with the H in Fig. VI.
We aim to edit the image x0 to the direction toward x′

0, manipulating only the content of the image
while preserving the person’s identity. Specifically, we first calculate features {ht} and {h′

t} corre-
sponding to xt and x′

t, respectively, where t is the DDIM time steps. Then, we use {ht +1.5h′
t} to

inject contents during the reverse process starting from xT , following Jeong et al. (2023). Note that
the leftmost image for each row is x0, and other images in the same row are the edited ones.

H LATENT TRAVERSAL EXAMPLES

We provide additional examples to compare the latent traversals with the baseline (DDPM) and with
our model trained with isometric loss. Fig. VII–VIII extend Fig. 6 with more examples.
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Figure VI: Empirical observation regarding existence of H in our model. Images in the same
row share the original image x0, images in the same column share the source image x′

0 for editing
direction {h′

t}.

vi



Under review as a conference paper at ICLR 2024

B
as
el
in
e

O
ur

s
B
as
el
in
e

O
ur

s
B
as
el
in
e

O
ur

s
B
as
el
in
e

O
ur

s
B
as
el
in
e

O
ur

s
B
as
el
in
e

O
ur

s
B
as
el
in
e

O
ur

s

Figure VII: Additional examples of latent traversal between two images x and x′ with DDPM
(Ho et al., 2020) and model trained with isometric loss, trained on 256× 256 CelebA-HQ.
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Figure VIII: Additional examples of latent traversal between two images x and x′ with DDPM (Ho
et al., 2020) and model trained with isometric loss, trained on 256× 256 LSUN-Church.
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