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Abstract
In silico screening is an essential component
of drug and materials discovery. This is chal-
lenged by the increasingly intractable size of
virtual libraries and the high cost of evaluating
properties. We propose GNN-SS, a Graph
Neural Network-powered Bayesian Optimization
(BO) algorithm as a simple, scalable solution.
GNN-SS utilizes random sub-sampling to
reduce the computational complexity of the BO
problem, and diversifies queries for training the
model. GNN-SS is sample-efficient, and rapidly
narrows the search space by leveraging the
generalization ability of GNNs. Our algorithm
performs competitively on the QM9 dataset and
achieves state-of-the-art performance amongst
screening methods for the PMO benchmark.

1. Introduction
Molecular optimization is an important problem for early
drug discovery and materials design, wherein the objective is
to retrieve candidate compounds with one or more desirable
properties. Key properties of interest include target binding
affinities and quantum-mechanical energies. However, these
tasks are often complicated by 1) the combinatorially large
size of accessible chemical space, and 2) the prohibitive cost
of evaluating objectives in silico or via experiment. Thus, a
first-line solution is to perform molecular optimization on
finite but large virtual libraries, where candidates can be
readily synthesized and validated.

As libraries grow to cardinalities exceeding 109, brute-force
enumeration for candidate selection becomes increasingly
infeasible. To address this challenge, one promising strat-
egy is to perform Bayesian Optimization, a model-based
approach that leverages a surrogate function to evaluate
molecular properties. BO techniques are renowned for their
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ability to rapidly narrow down the search space to the most
desirable molecules. In particular, by modeling molecules
as graphs, we can use BO methods which exploit the graph
structure and utilize Graph Neural Networks (GNNs) that
capture the complexities of molecular properties, and are in
turn, more sample efficient.

While using a GNN may improve the statistical complexity
of the problem, applying BO to vast discrete libraries is still
computationally prohibitive. Since computing the acquisi-
tion function for each candidate molecule to determine the
one that maximizes the acquisition score becomes expensive
or even impossible. We address this issue by introducing
GNN-SS, a light GNN-powered BO algorithm that
randomly sub-samples the domain before optimizing the
acquisition function. This reduces the computational com-
plexity, and increases the diversity of collected data, which
in turn, enhances exploration to improve the generalization
ability of the network. We evaluate our algorithm with a
limited evaluation budget, paired with various BO policies,
on a domain of commercially available small molecules.
We observe that GNN-SS-UCB achieves state-of-the-art
performance on the PMO benchmark among algorithms for
screening (Gao et al., 2022), even outperforming a number
of generative de novo algorithms for molecular design.

Related Works. Early work on BO for molecular opti-
mization use hand-designed graph kernels (Korovina et al.,
2020), or map graph representations to a continuous latent
space (Gómez-Bombarelli et al., 2018), to then solve the
problem with Gaussian process BO methods, e.g. GP-UCB.
Recent work utilize GNNs, as they exploit the structure
of objective functions defined on graphs. Such approaches
require quantifying the uncertainty of neural network
estimates, which may be done by parameterizing the
uncertainty itself with a neural network (Graff et al., 2021;
Soleimany et al., 2021), probabilistic ensembles (Kim et al.,
2021; Hirschfeld et al., 2020), or directly upper bounding
the uncertainty in the Neural Tangent Kernel regime
(Kassraie et al., 2022). These methods require calculating
the acquisition function over the entire domain, and thus,
can not be scaled to large molecular libraries. Building
upon Kassraie et al. (2022), we propose a scalable algorithm
which exhibits competitive performance, while reducing
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the computation complexity of prior work. To this end, we
leverage the simple idea of random sub-sampling, which
is grounded in the literature of unstructured many-armed
bandits (Mirzasoleiman et al., 2015; Bayati et al., 2020).

2. Problem Setting
We consider optimization problems that emerge in drug
or material design, and formulate them as a Bayesian
optimization problem on a domain of graphs, where
the aim is to optimize an unknown objective function
through sequential queries while receiving noisy function
evaluations. We represent small molecules as undirected
graphs with at most N nodes which represent atoms or
molecular substructures. The BO objective function models
the unknown molecular property of interest, and querying
a graph corresponds to recommending a molecule to be
tested with respect to this property.

At every time step t ∈ {1, . . . , T}, we select a graph Gt

from a graph domain G and observe a noisy evaluation
yt = f(Gt)+ ϵt, where f : G → R is the objective function
and ϵt is i.i.d. zero-mean sub-Gaussian noise. We denote the
history of observations by Ht := {(G1, y1), . . . , (Gt, yt)}.
For a horizon T (i.e., sampling budget), we seek to obtain a
small simple regret rT = f(G∗)−maxt≤T f(Gt), where
G∗ ∈ argmaxG∈G f(G). The aim is to attain a regret that
vanishes with T , meaning that rT → 0 as T →∞, which
implies convergence to the optimal graph. Evaluating molec-
ular properties typically requires running costly simulations
or experiments with noisy outcomes. Therefore, we seek
a sample efficient algorithm that can identify the optimal
molecule with the least number of oracle calls.

In our applications of interest the number of accessible
molecules ranges between 1010-1020 choices (Nicolaou
et al., 2016), and popular virtual databases of commercially
available compounds include up billions of molecules (e.g.
ZINC, Irwin & Shoichet, 2005). Therefore, we assume
that the domain G is a very large finite dataset of graphs,
where |G| ≫ T , meaning that it is infeasible to evaluate
every graph in the domain within the sampling budget of
T . Standard BO algorithms for large unstructured domains
(e.g., Auer et al., 2002) cannot be applied to this problem
setting, as their sample complexity grows with poly(|G|).

3. Method
To obtain a sample efficient algorithm for maximizing
the objective function, we need to construct an estimator
for f , using a relatively small number of samples from
G. To this end, we utilize two key ideas: 1) we use Graph
Neural Networks which are known to be effective models
for learning complex functions defined on graphs and 2)
we devise a sub-sampling (SS) subroutine that allows for
sampling diverse data for training the network. These two

ideas come together in our GNN-powered Sub-Sampled
BO algorithm (GNN-SS), sketched in Algorithm 1.

Reward Model. To model molecular properties, we use
a graph neural network fGNN(G;θ) : G → R of width
m, where θ ∈ Rp denotes the network’s weights vector, p
is the total number of network parameters. We initialize
the network with θ0 which has zero-mean Gaussian
i.i.d. entries with variance 1/m, and update it as we receive
more evidence on the objective function. As a proxy for
f , we maintain fGNN(G;θt), the GNN trained on the loss

L(θ;Ht) =
1

t

t∑
i=1

(
fGNN(Gi,θ)− yi

)2
2
+mλ∥θ − θ0∥22

where λ is the regularization coefficient. Similar to Kim
et al. (2022) and Zhang et al. (2020), we initialize the
network at every step of the BO problem with θt−1,
and update the parameters via gradient descent for E
epochs. This is in contrast to earlier work on Neural
Bandits which re-initialize the network to θ0 before
running gradient descent (e.g. Zhou et al., 2020; Kassraie
et al., 2022). For action-selection policies which require
uncertainty quantification (e.g., UCB (Srinivas et al., 2010)
or Thompson Sampling (Thompson, 1933)), we use the
gradient of this network at initialization to approximate the
uncertainty over f . Following Kassraie et al. (2022), we set

σ̂2
t (G) := g⊤(G)

[
λI + 1

t

∑t
i=1 g(Gi)g

⊤(Gi)
]−1

g(G), (1)

where g(G) = ∇θfGNN(G;θ0) denotes the gradient at ini-
tialization. For very wide networks, σ̂t presents a provably
calibrated uncertainty estimate. Any network architecture
may be used for estimating f and its uncertainty (e.g., Kipf
& Welling, 2017; Veličković et al., 2017; Xu et al., 2018;
Lim et al., 2022). Lastly, we use ADAM (Kingma & Ba,
2014) for optimizing L. In Appendix A, we outline our
choice of architecture, and details of training the network.

Acquisition Functions. Given (fGNN(·;θt), σ̂2
t (·)) our

reward and uncertainty estimator, we construct acquisition
functions, which are used towards action-selection. We
allow for multiple choices and consider,

αGreedy(G;Ht) = fGNN(G;θt−1),

αUCB(G;Ht) = fGNN(G;θt−1) + βσ̂t−1(G),

αTS(G;Ht) ∼ GP(fGNN(G;θt−1), βσ̂t−1(G)) .

Here, the GREEDY acquisition function directly uses the
reward estimate as a proxy for the true unknown reward.
The UCB function considers an optimistic estimate of the
reward by adding the uncertainty estimate to the reward esti-
mate, and TS takes a probabilistic optimistic approach, and
samples a function from the Gaussian process defined above.

Random Sub-sampling. The common approach to action
selection is to choose Gt via maxG∈G α(G;Ht). However,
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this will require evaluating α for all members of G, which
comes with a high computational burden when working on
datasets of billions of molecules. We utilize a sub-sampling
routine where at every step t, we first draw a random subset
Gt ⊂ G, where |Gt| ≪ |G|. We then rank the member of
Gt, with respect to α(·;Ht), and query the top-b graphs.

The advantage of random sub-sampling is threefold. It saves
computations at each round, by allowing us to evaluate
α(·;Ht) only over K = |Gt| molecules. Sub-sampling
limits the number of graphs available for query, including
more promising molecules which drive GNN-SS to exploit.
This implicitly encourages exploration, which is believed
to be beneficial on large finite domains with complex
objectives(Bastani & Bayati, 2020). This additional
exploration helps build a diverse dataset Ht for training
fGNN in the future steps, and in turn, yields an accurate
reward estimator fGNN(G;θt−1) that generalizes well over
the entire domain. The choice of K is crucial to balancing
exploration and exploitation. Moreover, it should be chosen
such that the probability of not ever sampling the optimal
molecule is small. In our experiments we choose it roughly
as O(

√
T ), more details are included in Appendix A.

Algorithm 1 GNN-SS
Input: network architecture fGNN, acq. function α(·),
horizon T , warm-start steps T0, regularization parameter
λ, random subset size K, batch size b ≤ K, training
epochs E, (optional) pre-train dataset Hoff

Initialize: K0 ← λI , θ0 ∼ N (0, Ip/m), H0 = ∅.
θ0 ← TRAINGNN(Hoff ,θ0, E) ▷ Pre-train
g(·)← ∇θfGNN(·;θ0)
for round t = 1, . . . , T0 do ▷ Exploration Stage

Gt ∼ Unif(G) and query yt = f(Gt) + ϵt
Ht ← Ht−1 ∪ {(Gt, yt)}

end for
θT0
← TRAINGNN(HT0

,θ0, E)

KT0
←K0 +

∑T0

t=1

∑b
i=1 g(Gt,i)g

⊤(Gt,i)
for round t = T0 + 1, . . . , T do ▷ Optimization Stage

Sub-sample Gt ∼ Unif(G) where |Gt| = K

{Gt,i}bi=1← argmaxG∈Gt
α(G;Ht−1)

Query yt,i = f(Gt,i) + ϵt,i for i ∈ [b]
Ht ← Ht−1 ∪ {(Gt,1, yt,1), . . . , (Gt,b, yt,b)}
θt ← TRAINGNN(Ht,θt−1, E)

Update Kt ←Kt−1 +
∑b

i=1 g(Gi)g
⊤(Gi)

end for

3.1. Scaling to Large Databases

To obtain an algorithm that is sample efficient and com-
putationally light, we employ a few more techniques. Al-
gorithm 1 shows how these techniques come together to
construct GNN-SS, and Table 1 shows the computational
complexity of GNN-SS, which is considerably lighter than
its competitors, since K ≪ |G|. We highlight that the fol-

lowing techniques are optional design choices, that may
improve performance in some problem instances.

Pre-training and Transfer. In many problem instances,
there is available offline data on the Bayesian optimization
task at hand, or from similar tasks, e.g., same domain of
molecules and different objective functions. One approach
to improve sample efficiency is to pre-train the network on
offline data, and then run GNN-SS. In case the available
data is from other tasks, this translates to performing transfer
learning. Appendix C.2, shows how pre-training on the data
from a previously solved task, improves the performance on
a correlated downstream task.

Exploration Stage. We start the algorithm with an
exploration stage, during which we randomly query a small
number (∼ 102) of molecules. This improves the network’s
ability to generalize over all regions in the domain, without
necessarily having sampled from them. The idea of an
exploratory stage stems from the high-dimensional bandit
literature (e.g., Hao et al., 2020; Bastani & Bayati, 2020),
where additional exploration is required to obtain an
accurate estimate of the reward.

Batching. Choosing b > 1 yields a simple batched
variant of GNN-SS. At every step, after sub-sampling,
molecules are scored according to α(·;Ht) and the top-
b graphs are queries as a batch, i.e. {Gt,i}bi=1 ←
argmaxG∈Gt

α(G;Ht). Batching is primarily done to
avoid the cost of re-training the model for every new query.

Uncertainty Quantification. Optimistic policies require
inverting a p×p matrix (c.f. (1)). This operation is typically
the memory and computation bottleneck of the algorithm,
and limits the size of the networks that we can use. We
present two solutions. Assuming that network parameters
are uncorrelated, we use a diagonal approximation of this
matrix, and reduce the O(p3) cost of matrix inversion
to linear. This assumption is often made for very wide
networks (e.g., Yang, 2020). Another way to address this
problem, is to parameterize the uncertainty function also
as a neural network, and employ a second fGNN as a proxy
for σt(·), which we demonstrate in Algorithm 2.

Table 1. GNN-SS is computationally lighter than other GNN-
powered baselines, since K < T ≪ |G|.

METHOD RUNTIME

MOLPAL (GRAFF ET AL., 2021) O(T |G| + bET 2)
GNN-UCB (KASSRAIE ET AL., 2022) O(T |G| + ET 2)
GNN-SS-UCB (OURS) O(TK + bET 2)

4. Results
ZINC (Irwin & Shoichet, 2005) and QM9 (Ruddigkeit et al.,
2012; Ramakrishnan et al., 2014) are datasets of small or-
ganic molecules that are commonly used for benchmarking
algorithms for molecular optimization (e.g., in Gao et al.,
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Figure 1. Top-1 optimization curves for rewards in QM9 (Isotropic Polarizablity, Dipole moment) and ZINC (JNK3, PERINDOPRIL

MPO). Variants of GNN-SS approach the oracle in all instances. Horizontal line shows dataset’s maximum and the gray area above
GNN-SS-Oracle is unreachable by sub-sampled algorithms.

2022; Kim et al., 2022; Graff et al., 2021). Our experiments
demonstrate the application of GNN-SS for virtual screen-
ing on these datasets, based on molecular properties which
are of interest in drug and materials design.

For ZINC, which consists of 250k molecules, we consider
all 23 molecular objectives of the Practical Molecular
Optimization (PMO) benchmark (Gao et al., 2022), and
include commonly used scores such as quantitative estimate
of drug-likeness (QED) (Bickerton et al., 2012). The QM9
dataset (visualized in Figure 2) offers 19 objective functions
related to the geometric, electronic, and thermodynamic
properties of 134k molecules. Some objectives in these
dataset are known to be challenging to optimize (Adachi
et al., 2023; Liao & Smidt, 2023), due to the scarcity of
molecules with non-zero values. This is referred to as a
needle-in-a-haystack problem, where the shared structure
of observed molecules with low-reward is uninformative
about unseen molecules with high reward.

For QM9, which presents several complex reward functions,
we instantiate GNN-SS with a Gated-MPNN (Gilmer
et al., 2017) with edge features as fGNN, and for ZINC,
we employ a vanilla GCN similar to Graff et al. (2021).
To run GNN-SS on each dataset, we use different sets
of hyper-parameters, and provide the tuning details in
Appendix A. All results are average across 5 runs with
different random seeds, and the standard error is reported.
Figure 1 shows the performance of GNN-SS paired with
UCB, TS and GREEDY policies on 4 objective functions,
two from each of the mentioned datasets. We limit the
horizon to a realistic sampling budget, and for every t, we
plot the top-1 reward, i.e. maxs≤t f(Gs) the value of the
highest scoring molecule queried so far. As a sanity check,
we also run SS-Rand which simply draws a random graph
from Gt, and SS-Oracle which has oracle knowledge of f
and queries argmaxG∈Gt

f(G) after random sub-sampling.
A sub-sampled policy cannot achieve a performance higher
than SS-Oracle, and should perform better than SS-Rand.

To compare our algorithm to prior work, we use the PMO
benchmark, in which the total number of queried molecules,

i.e. the number of oracle calls, is restricted to a budget of
T = 10, 000. This benchmark considers 29 algorithms for
virtual screening, and evaluates the performance of each
by area-under-the-optimization-curve (AUC, as plotted in
Figure 1), summed across the 23 objective functions. As
reported in Table 2 and 3, GNN-SS achieves state-of-the-
art performance among non-generative models, including
MOLPAL, and ranks 4th overall among the 29 algorithms
considered in this benchmark. Importantly, GNN-SS out-
ranks several generative algorithms which go beyond ZINC
for maximizing the properties of interest, e.g. SMILES-
LSTM (Brown et al., 2019) and MARS (Xie et al., 2021).
Appendix C.4 presents benchmarking results on QM9,
where we compare variants of Algorithm 1 to SOBER
(Adachi et al., 2023) and BGNN-BO (Kim et al., 2022).

Table 2. Summary of PMO benchmark, complete results in Table 3

MOLECULAR
PROPERTY

MOLPAL
(GRAFF ET AL.)

GNN-SS-UCB
(OURS)

GSK3B 0.776 ± 0.002 0.862 ± 0.086
. . . . . . . . .
QED 0.942± 0.000 0.947 ± 0.000
SITAGLIPTIN MPO 0.100± 0.013 0.478 ± 0.000
ZALEPLON MPO 0.262± 0.004 0.514 ± 0.016

TOP-1 AUC SUM 12.21 13.83
n/29 RANK 10 4

5. Conclusion
We presented GNN-SS, a Graph Neural Network BO
algorithm that draws on sub-sampling as a scalable solution
to the problem of screening very large molecular libraries.
Following the results of Kassraie et al. (2022), we quantify
the epistemic uncertainty of GNN estimates, allowing us
to employ optimistic action-selection policies. We demon-
strated that GNN-SS achieves competitive performance
on the PMO benchmark for sample-efficient molecular
optimization, and on the challenging QM9 dataset. Scaling
BO to virtual databases with billions of molecules, or
efficiently going beyond a library and performing de novo
design are still unresolved. We conjecture that, optimistic
action-selection based on auto-regressive GNN frameworks
(Bradshaw et al., 2020) may be a solution to this problem.
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A. Experiment Details
A.1. GNN-SS for Virtual Screening on ZINC

Table 3. Full PMO benchmark results. Bold indicates a better result than MOLPAL. Standard errors are computed with 5 seeded replicates.
(*) The maximum reward for Albuterol similarity in the benchmark dataset is 0.666.

MOLECULAR
OBJECTIVE

MOLPAL
(GRAFF ET AL.)

GNN-SS-UCB
(OURS)

ALBUTEROL SIM. 0.694* ± 0.003 0.640 ± 0.017
AMLODIPINE MPO 0.621 ± 0.010 0.543 ± 0.007
CELECOXIB REDISC. 0.496 ± 0.002 0.436 ± 0.008
DECO HOP 0.804 ± 0.019 0.874 ± 0.016
DRD2 0.902 ± 0.007 0.972 ± 0.011
FEXOFENADINE MPO 0.704 ± 0.001 0.744 ± 0.008
GSK3B 0.776 ± 0.002 0.862 ± 0.086
ISOMERS C7H8N2O2 0.832 ± 0.005 0.979 ± 0.016
ISOMERS C9H10N2O2PF2CL 0.361 ± 0.009 0.785 ± 0.023
JNK3 0.457 ± 0.024 0.552 ± 0.051
MEDIAN1 0.301 ± 0.000 0.303 ± 0.012
MEDIAN2 0.266± 0.000 0.275 ± 0.012
MESTRANOL SIM. 0.708± 0.006 0.864 ± 0.029
OSIMERTINIB MPO 0.803± 0.001 0.803 ± 0.004
PERINDOPRIL MPO 0.495± 0.003 0.463 ± 0.004
QED 0.942± 0.000 0.947 ± 0.000
RANOLAZINE MPO 0.515± 0.007 0.556 ± 0.011
SCAFFOLD HOP 0.518± 0.001 0.524 ± 0.002
SITAGLIPTIN MPO 0.100± 0.013 0.478 ± 0.001
THIOTHIXENE REDISC. 0.356± 0.000 0.391 ± 0.012
TROGLITAZONE REDISC. 0.290± 0.000 0.326 ± 0.000
VALSARTAN SMARTS 0.000± 0.000 0.000 ± 0.000
ZALEPLON MPO 0.262± 0.004 0.514 ± 0.016

TOP-1 AUC SUM 12.21 13.83
n/29 RANK 10 4

We use the ZINC dataset provided in pyTDC, objectives are evaluated using oracles from the same library (Huang et al.,
2021). For a fair comparison to MolPAL, we use similar default parameters: m = 384, L = 3 graph convolutional layers,
λ = 0.0001, b = 100, K = 4000, T = 10, 000/b. We select the best performing exploration coefficient β via a grid-search
over {0.001, 0.01, 0.1, 1.0}. As an additional experiment, we use a larger network with m = 512 and absolute Laplacian
positional-encodings (LaPEs) with k = 6 (Dwivedi et al., 2023), for the three MPO objectives that are functions of the
number of substructures, e.g. aromatic rings. The results are: AMLODIPINE MPO 0.621 ± 0.025, RANOLAZINE MPO 0.565 ±
0.017, PERINDOPRIL MPO 0.539 ± 0.016.

We maintain a diagonal approximation of the Gram matrix, and for our ZINC experiments we slightly modify the equation
for σ̂t from Kassraie et al. (2022), and following Zhou et al. (2020) instead use the updated gradients g(G;θt−1) to calculate
the uncertainty,

σ̃2
t (G) := g⊤(G;θt−1)

[
λI +

1

t

t∑
i=1

g(Gi;θt−1)g
⊤(G;θt−1)

]−1

g(G;θt−1).

We represent each molecule as an undirected atomic graph with node feature matrix X ∈ RN×128, where N is the number
of nodes. Features encode atomic identity, formal charge, number of hydrogens, hybridization, and ring membership. All
node features are first normalized to the unit sphere Xj ∈ Sd−1.

In order to model the rewards of ZINC, we employ a vanilla GCN as our surrogate function. The network parameters are
initialized with iid. unit Gaussian entries, and following the procedure of (Graff et al., 2021), pre-trained offline for each
reward on 500 molecules. We limit training to 250 epochs, with batchsize 250. Early-stopping is used with a patience of
25 iterations without improvement on the validation set. We use MSELoss with lr = 1e-5 and a linear decay towards
1e-6. ϕ = ReLU non-linearities are applied between each hidden layer. We modify the pytorch_geometric library
(Fey & Lenssen, 2019) to make use of the neural tangent parameterization for all GCNConv layers, where cϕ =

√
2 and ml

is the width of the l-layer weights. Linear layers are similarly parameterized, following Kassraie et al. (2022).



Graph Neural Network BO for Large Molecular Spaces

f
(l)
GCN(X,A) =

cϕ√
ml

ϕ

(
D−1/2AD−1/2X(l−1)W (l)

)

The graph representation is obtained as X̄ = pool(X) before passing to a final linear layer. We experimented with
set2set, mean, sum, max and cat(X̄mean, X̄sum) pooling layers, and selected the best performing pooling opera-
tion.

We note that for the random seed used in our experiments, the subset Hoff ⊂ G for the VALSARTAN SMARTS objective
only contains molecules with zero reward, and thus the model is not expected to generalize to unseen molecules of high
(non-zero) reward, as seen in Table 3.

A.2. GNN-SS for Virtual Screening on QM9

The default parameters used for all the experiments are, β = 0.5, λ = 0.003, T0 = 400, T = 1500, K = 200, b = 100
where K, T and b are occasionally fine-tuned slightly depending on the reward optimized during the experiments. We select
the best performing exploration coefficient β via a grid-search over {0.001, 0.01, 0.1, 1.0}.

In this variant of GNN-SS, we utilize two separate models, one for the posterior mean, namely, fMPNN, and the other for
computing the posterior variance denoted as fGCN. We use the pytorch_geometric implementation of a Gated-MPNN
(Gilmer et al., 2017) for fMPNN and a vanilla GCN (Kipf & Welling, 2017) with one hidden layer of width m = 256 for
fGCN. To approximate the posterior variance, we use the formulation presented in (Valko et al., 2013), which is equivalent
to (1). In simple terms, the approximate posterior variance for any new sample G, at step t is computed as

σ̂2
t (G) = λ−1

(
k(G,G)− k⊤

t (G)(Kt + λI)−1kt(G)
)

where Kt = {k(Gi, Gj)}i,j≤t is the t × t kernel matrix, k(G) = [k(G,Gi)]i≤t, and k(·, ·) := g(·;θGCN
0 )⊤g(·;θGCN

0 ).
As shown in subsection C.3, this method yields well-calibrated confidence sets with the added benefit of speeding up the
uncertainty computations as t≪ p.

ReLU non-linearities are used in all of the modules of the network. The graphs are first processed through a linear+ReLU
layer, followed by recurrent layers, namely, GatedRecurrentUnits, which apply message passing and learn edge
features at the same time by treating the hidden states of the nodes and the messages as sequences. Here, the initial
inputs to the recurrent layers are the the node and edge features {hG,j , eG,i,j}Ni,j=1 where hG,j ∈ R15 consist of the
spatial information of the atoms within the molecules along with the atom features defined in (Gilmer et al., 2017) and
eG,i,j ∈ R4 is a one-hot-encoding vector denoting the bond type (including None) between nodes i and j. Finally, through
an LSTM based module, the previously generated sequences of node states are mapped to an aggregated graph representation
h̄ = h̄set2set before passing to a final linear layer.

In each experiment, the Gated-MPNN is pre-trained offline with |Hoff | ∈ {4500, 5000} molecules for E = 100 epochs.
We use MSELoss with a StepLearningRateScheduler, with parameters factor=0.7, patience=5 and
min_lr=1e-5. Online training is enacted for GD_stop_count=10000 gradient descent steps with a learning rate
lr=1e-3.

Throughout all the experiments, we use MSELoss except for the "Dipole Moment(µ)" reward, where we have preferred to
use a natural adaptation of FocalLoss(Lin et al., 2018) to the regression setting. The reason behind this choice, was due to
the ’needle in a haystack’ optimization setting caused by this reward as motivated in (Adachi et al., 2023). To elaborate, this
reward characteristically has few favorable candidates which are also, generally speaking, uncorrelated with most alternative
candidates, thus making them hard to pinpoint or generalize well into. For this purpose, we have used FocalLoss in
the hopes of emphasizing the high MSEs that stem from misidentifying these top candidates, thus driving the network to
generalize better into these regions which has seemingly proven useful.

B. More on QM9 Rewards
We briefly discuss rewards in the QM9 dataset. We select the considered rewards in order to compare to existing works. As
such, we have included the Dipole Moment reward in our experiments as in (Adachi et al., 2023). We can better observe in
Figure 2, the needle-in-a-haystack setting mentioned in Section 4 where most of the candidates are of low-reward. Only



Graph Neural Network BO for Large Molecular Spaces

Algorithm 2 Dual Network GNN-SS
Input: Data G, main network architecture fMPNN(.), smaller network architecture fGCN(.; θ), horizon T , warm-start
steps T0, exploration coefficient β, regularization parameter λ, batch size b, random subsample size K, pre-train subset
Hoff , training epochs E
Initialize: α(·)← {αUCB, αTS, αGreedy}
L ← {Focal(·; ·),MSE(·; ·)}
UncEst← {MahalanobisApprox.(Valko et al., 2013),DiagonalApprox.}
Hoff ∼ Unif(G)
θMPNN
0 ← TRAINGNN(Hoff ,θ

MPNN
0 , E) ▷ Offline Supervised Pre-training

θGCN
0 ∼ N (0, Ip/m)

g(·)← ∇fGCN(G;θGCN
0 )

K0 ← ∅
Buffer for acquired candidtes H0 = ∅
for round t = 1, , ..., T0 do ▷ Exploration Phase

Gt ∼ Unif(G)
Query yt = f(Gt) + ϵt
Ht ←− Ht−1 ∪ {(Gt, yt)}

end for
θMPNN
T0

← TRAINGNN(HT0 ,θ
MPNN
0 )

KT0 ←−K0 ∪ {gT (Gt,i)g(Gt,j)}i,j≤T0

for round T0 < t ≤ T do ▷ Optimization Phase
Sub-sample Gt ∼ Unif(G) where |Gt| = K

{Gt,i}bi=1← argmaxG∈Gt
α(G;Ht, β)

Query yt,i = f(Gt,i) + ϵt,i for i ∈ [b]

Ht+b ← Ht ∪ {(Gt,1, yt,1), . . . , (Gt,b, yt,b)}
θt+b ← TRAINGNN(Ht,θ

MPNN
t , E)

Update Kt+b ←−Kt ∪ {gT (Gt,i)g(Gt,j)}i,j∈[b]

t = t + b
end for

several of the top candidates are structurally similar to undesirable molecules. The global maximum, in particular, appears
structurally dissimilar to the rest of the data.

Secondly, we include the Isotropic Polarizability reward, as studied in (Kim et al., 2022), which quantifies the dipole polar-
ization of molecules under an electric field. As visible in Figure 2, we notice that this reward has distributional characteristics
similar to Dipole Moment and hence is likely prone to the same challenges we face in that reward. Unsurprisingly, in Figure 4,
we notice how the global maximum in particular is extremely isolated from all closest candidates in terms of the reward value.

Rest of the rewards are picked referring to our qualitative assessments of the UMAP visualizations of the rewards in Figure
2. In Figure 2, we observe that some rewards have smoother and continuous distributions across the reward surface, whereas
some rewards suffer from a ’needle in a haystack’ phenomenon. Therefore, since we want to evaluate our algorithm under
the two settings, we would have to pick a mix of rewards corresponding to the two categories. Additionally, when we inspect
the heatmap in Figure 3, we immediately notice that certain rewards are almost perfectly positive correlated and we strictly
avoid using such pairs of rewards in our experiments as they can trivialize the variety in our optimization tasks.

C. Further Experiments on QM9
C.1. Predicted Means vs Rewards

In this section, we share our plots depicting the true rewards against the means predicted by the network at the final step
of the algorithm in Figure 4. We clearly see that our previous observations in Appendix B align with the findings in these
plots in that we notice the discontinuous reward distributions and the scarcity of the top candidates manifesting in an
extreme fashion for the Dipole Moment, Isotropic Polarizability and HOMO-LUMO Energy Gap rewards. In particular, we
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Figure 2. The UMAP visualizations of the QM9 rewards we have used in our benchmark experiments. The global maximum in each plot
is denoted with a purple "⋆" symbol.

notice that the top candidates are necessarily isolated from the nearest candidates, therefore, posing challenges in terms of
generalizing well into and in turn, acquisition. For all rewards, we underline that despite these challenges, our algorithm
converges to the global maximum at least once in 5 runs as reported in Table 4.

C.2. Transfer Learning

In this section, we present our results regarding the transfer learning performance of the algorithm to investigate whether
transfer learning indeed yields a substantial difference in performance for downstream optimization tasks. For the purpose
of transfer learning, we have chosen to pretrain our network on a small random subset of 6000 samples with the "HOMO-
LUMO Energy Gap" surrogate reward and then observe the performance of the algorithm on the "Lowest Unoccupied
Molecular Orbital Energy" reward. The reason for this choice primarily stems from the correlation of these two rewards as
apparent from Figure 3. Thus, we have reason to believe that transfer learning between these two rewards could in fact be
meaningful.

Moreover, in our experiments with different QM9 rewards, we have identified that our default algorithm’s (GNN-SS-UCB
with untuned hyperparameters) performance on the "Lowest Unoccupied Molecular Orbital Energy" reward fell behind
the other rewards. On the other hand, as presented in Figure 7, our algorithm actually had competitive performance on the
reward "HOMO-LUMO Energy Gap" and managed to solve the optimization task. Therefore, this is an ideal showcase
where a practitioner could first solve the optimization for one reward and then use the trained network for transfer learning
on a more challenging yet correlated reward.

As observed in Figure 5, transfer learning indeed yields a significant leap in the performance of the algorithm as transfer
learning with GNN-SS-UCB clearly outperforms the default GNN-SS-UCB algorithm on all three metrics reported.
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Figure 3. Heatmap of the pairwise PearsonR correlations between all the rewards, computed over the molecules in the QM9 dataset .

C.3. QM9 Calibration Experiments

In Figure 6, we report the calibration curves of the predicted confidence intervals, for all QM9 rewards we have benchmarked.
The x-axis is α, the confidence level considered, and the y-axis reports the empirical frequency of samples covered within
that α-level confidence set, defined as

∑|Hval|
i=1 1(yi ≤ F−1(α))/|Hval|. A perfect calibration would overlap with the x = y

line. Falling below this indicates insufficient coverage and means our algorithm is overconfident.

C.4. Existing Baselines for QM9

We finally compare our collective results on QM9 to GBNN-BO (Kim et al., 2022) and SOBER (Adachi et al., 2023) which
report results for the Isotropic Polarizability and Dipole Moment rewards respectively. For the SOBER benchmark, we limit
our oracle budget to 6, 000 evaluations in accordance with the reported sample size in the paper. For the other benchmark,
we limit our budget to 6, 500 queries. Due to the limited and varying amount of experimental results presented in these
benchmarks, we compare them on the basis of maximum rewards acquired within horizon and global convergence to be
consistent across benchmarks. We notice that our algorithm performs at least as good as these baselines.

Benchmark results are summarized by comparing the different variants of our algorithm on the chosen QM9 rewards
in Table 4. Firstly, our work stands out among other recent works in the neural bandit literature by presenting various
baselines for a large collection of QM9 rewards in a self-contained fashion. Moreover, our work also performs competitively
in terms of the cumulative regret and Top-K performances across multiple QM9 rewards including Dipole Moment and
Isotropic Polarizability, which might have high relevance for the practitioner. We further observe that, in most cases, the
GNN-SS-GREEDY variant performs on par with the GNN-SS-UCB variant, in line with the findings of (Bayati et al.,
2020). This outcome is most welcome, as we believe that the GNN-SS-GREEDY variant could be a competitive and less
costly alternative to SS-UCB, especially as we scale up to much larger libraries in the future. We do note however, that for
the case of the ’Lowest Unoccupied Molecular Orbital Energy’ and ’Isotropic Polarizability’ GNN-SS-UCB outperforms
GNN-SS-GREEDY and we suspect this might be related to the ’needle in a haystack’ problem encountered in these
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Figure 4. The true rewards (y-axis) plotted against the final predicted means (x-axis) for all molecules in QM9. The molecules are also
colored to distinguish between collected (green) and uncollected (red) samples within the horizon of the algorithm. The results are
depicted for the rewards: "Dipole Moment (µ)", "Isotropic Polarizability (α)", "Gap Between ϵHOMO and ϵLUMO (∆ϵ)" from left to
right.

0 500 1000 1500 2000
Online Oracle Calls

1

0

1

2

3

4

5

to
p_

1

10 2 10 1 100 101

Log-TopK Percent Samples Queried

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f T
op

-K
 S

am
pl

es
 A

cq
ui

re
d

0 500 1000 1500 2000
Online Oracle Calls

0

1000

2000

3000

4000

R t

QM9 : Lowest unoccupied molecular orbital energy( LUMO)

SS ORACLE GNN SS UCB(TRANSFER) SS RANDOM GNN SS UCB

Figure 5. The Top-1 optimization curve and the Top-K Accuracy and Cumulative Regret plots (left to right), comparing the performance
of our GNN-SS-UCB algorithm on the "Lowest unoccupied molecular orbital energy (ϵLUMO)" reward, against the same task with
additional transfer-learning from "Gap Between ϵHOMO and ϵLUMO reward. The results depicted are averaged over 5 random seeds.

rewards or poor hyperparameter tuning. Nevertheless, in the very large scale setting, the source of randomness injected by
our subsampling strategies alone may be sufficient to guide the exploration accurately (Bayati et al., 2020) and therefore
we could replace UCB acquisition with simple greedy selection, also eliminating any computational overhead caused by
uncertainty quantification.

Table 4. Benchmark results for our algorithm on the QM9 dataset using the GNN-SS-UCB, GNN-SS-GREEDY, SS-ORACLE and
SS-RANDOM sampling variants. The Top-%0.01 performance and the empirical frequency of Convergence to Global Maximum are
reported over 5 runs with different random seeds each.

Reward GNN-SS-UCB GNN-SS-GREEDY SS-RANDOM SS-ORACLE

Top-K(0.01%) CGM Top-K(0.01%) CGM Top-K(0.01%) CGM Top-K(0.01%) CGM

Dipole Moment(µ) 0.833±0.048 0.8 0.833±0.074 1.0 0.000±0.000 0.0 0.916±0.091 1.0
Isotropic Polarizability(α) 0.819±0.155 1.0 0.600±0.185 0.0 0.027±0.039 0.0 0.983±0.033 1.0
Gap Between ϵHOMO and ϵLUMO(∆ϵ) 0.694±0.104 0.4 0.466±0.227 0.0 0.000±0.000 0.0 0.987±0.064 1.0
Electronic Spatial Extent(⟨R2⟩) 0.902±0.057 1.0 0.917±0.053 0.8 0.000±0.000 0.0 1.000±0.000 1.0
Internal Energy at 0K(U0) 0.900±0.062 1.0 0.917±0.048 1.0 0.041±0.063 0.0 1.000±0.000 1.0
Atomization Energy at 0K(UATOM

0 ) 0.933±0.062 1.0 0.958±0.042 1.0 0.000±0.000 0.0 1.000±0.000 1.0
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Table 5. Comparison of our algorithm against two recent benchmarks for QM9, SOBER and BGNN-BO. We note that the sampling
complexities for our algorithm include the randomly chosen samples used for supervised pre-training.

Metric Dipole Moment Isotropic Polarizability

GNN-SS-UCB SOBER GNN-SS-UCB BGNN-BO

Top Reward Acquired 29.557 29.557 196.620 143.53
Vanishing Regret ✓ ✓ ✓ ✗
Sampling Budget 6000 6000 6500 500
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Figure 6. Calibration Curves for the GNN-SS-UCB, SS-ORACLE and SS-RANDOM sampling variants of our algorithm on 6 distinct
rewards of the QM9 Dataset. The shared results are computed over 5 runs with different random seeds each. GNN-SS-GREEDY isn’t
included in this plot since the posterior confidences aren’t computed for this variant.
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Figure 7. The Top-1 optimization curves (left) and Top-K accuracy plots (right) associated with GNN-SS-UCB, GNN-SS-GREEDY,
SS-ORACLE and SS-RANDOM sampling variants of our algorithm on miscellaneous QM9 rewards.The shared results are computed
over 5 runs with different random seeds each.
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