
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROBUST LATENT NEURAL OPERATORS FOR A FAMILY
OF SYSTEMS WITH SPARSE OBSERVATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural operator methods have achieved significant success in the efficient simu-
lation and inverse problems of complex systems by learning a mapping between
two infinite-dimensional Banach spaces. However, existing methods still exhibit
room for optimization in terms of robustness and modeling accuracy. Specifi-
cally, existing methods are characterized by sensitivity to noise and a tendency
to overlook the importance of sparse observations in new domains. Therefore,
we propose a robust latent neural operator based on the variational autoencoder
framework. In this method, an encoder based on recurrent neural networks ef-
fectively extracts sequential information and dynamical characteristics embedded
in the domain-specific sparse observations. Subsequently, a neural operator in
latent space and a decoder facilitate the modelling of the original system. Addi-
tionally, for certain higher-dimensional systems, opting for a lower-dimensional
latent space can reduce task complexity while still maintaining satisfactory model-
ing performance. We conduct experiments across several representative systems,
and the results validate that our method achieves superior modeling accuracy and
enhanced robustness compared to the state of the art baseline approaches.

1 INTRODUCTION

Modeling and forecasting complex dynamical systems have emerged as pivotal research themes
within the scientific machine learning domain, witnessing the development of numerous efficacious
methods and tools (Tang et al., 2020; Wang et al., 2023a). These advancements play a crucial role
across various domains of complex systems research, not only aiding in the understanding of the
intricate behaviors and evolutionary patterns of real-world systems, but also laying the groundwork
for downstream tasks such as system prediction (Li et al., 2024b;a), structure inference (Brugere
et al., 2018; Lorch et al., 2022), change point detection (Bjørheim et al., 2022; Li et al., 2023),
tipping point prediction (Bury et al., 2021; Grziwotz et al., 2023), and system control (Bertsekas,
2019; Wang et al., 2023b).

Traditional artificial models, such as prevalent ordinary differential equation (ODE) and partial dif-
ferential equation (PDE) systems, facilitate the modeling of original systems through determinate
rules. However, these methods often struggle to precisely model more intricate behaviors in real-
world systems. This gap underlines an urgent need for data-driven and machine learning approaches
to explore the dynamics. To identify critical terms within the dynamical equations, the Sparse Iden-
tification of Nonlinear Dynamical Systems (SINDy) (Brunton et al., 2016; Kaiser et al., 2018) ap-
proach is commonly employed. Subsequently, benefiting from the universal approximation capabil-
ity of deep neural networks (Hornik, 1991), an increasing number of researchers are now focusing
on neural network tools. For instance, Recurrent Neural Networks (RNNs) and their extended ar-
chitectures (Memory, 2010; Cho et al., 2014; Suárez et al., 2024) have proven to be effective for
processing sequential data; Neural Ordinary Differential Equations (NODEs) (Chen et al., 2018)
can handle data with irregular intervals, thereby enabling continuous modeling; Graph Neural Net-
works (GNNs) (Murphy et al., 2021; Liu et al., 2023) are capable of efficiently managing data with
graph structures. Although these approaches have achieved success in their specific domains, they
necessitate retraining of the neural networks when environmental parameters change. Consequently,
it is imperative to explore methods for modeling a family of systems.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In response to the above challenge, neural operator methods have been proposed in recent years (Lu
et al., 2021; Li et al., 2020). These methods represent an emergent technology within the domain of
deep learning, aimed at establishing a machine learning model capable of learning mappings from
functional spaces to functional spaces. Specifically, neural operators can effectively handle con-
ditions involving infinite-dimensional variations (including parametric functions, initial conditions,
and boundary conditions, etc.) as inputs, and directly output future system states, thereby achiev-
ing modeling of a family of dynamical systems. Particularly for PDE systems, neural operators
present significant advantages over traditional numerical resolution methods, such as finite element
and finite difference methods. These advantages include enhanced solution speeds while maintain-
ing accuracy, and more efficient handling of various inverse problems (Zhao et al., 2022; Wang &
Wang, 2024).

However, existing neural operator approaches still have room for optimization in terms of noise
robustness and modeling accuracy. For instance, traditional neural operator methods may under-
perform when the observational data is contaminated with noise. Moreover, in new testing envi-
ronments, we might observe system states at several moments, which are often irregularly spaced.
Current approaches overlook the crucial role of these sparse observational data from new domains,
particularly the sequential information and dynamical characteristics embedded within them. There-
fore, we introduce a more robust latent neural operator approach, termed as Robust Latent Neural
Operator (RLNO), grounded in the variational autoencoder (VAE) framework. Specifically, the pri-
mary contributions of our work are as follows.

• RLNO utilizes more domain-specific information compared to traditional neural operators.
When tested in new domains, our approach not only leverages sparse observational state
information but also excavates and utilizes the dynamic information embedded within these
sequential observations.

• RLNO represents a novel approach grounded in VAE framework, incorporating an RNN-
based encoder. This method effectively harnesses the strengths of RNNs and neural oper-
ators to more adeptly extract and utilize the dynamical information within sparse observa-
tions from new domains.

• RLNO inherits characteristics from neural operator approaches, significantly surpassing the
computational efficiency observed in RNN-based and Neural ODE-based methods. Fur-
thermore, we design the OPERATOR-RNN encoder, which can encode unevenly spaced
observations into the initial value distribution of the latent space more efficiently.

• RLNO can select a smaller latent space dimension, thereby reducing the complexity of
operator learning, and facilitating the neural operator’s ability to capture essential features
with limited training data. Consequently, our approach can be extended to modeling tasks
of higher-dimensional complex systems.

2 RELATED WORK

Recent years have seen broad interest and rapid advancements in the area of neural operators. Two
of the most seminal contributions in this domain are the development of Deep Operator Network
(DeepONet) introduced by Lu et al.(Lu et al., 2021), and Fourier Neural Operator (FNO) proposed
by Li et al.(Li et al., 2020). These methods leverage the neural network model Gθ to learn the
operator mapping G† : U → S, where U and S are two infinite-dimensional Banach spaces. Here,
our research focuses on the DeepONet framework, which primarily consists of two components: the
trunk network and the branch network. Specifically, the trunk network accepts an arbitrary position
y as input and outputs the vector c = {c1, c2, · · · , cm}. Concurrently, the branch network takes l
discrete observations {u(x1), u(x2), · · · , u(xl)} of the sampled function u(x) as input and outputs
the vector b = {b1, b2, · · · , bm}. Subsequently, integrate the trunk and branch networks through
the inner product of c and b, thereby estimating the state value at point y. This can be represented
as Gθ(u)(y) = c · b. Here, y represents a position within the domain of G†(u), which could be a
temporal variable or spatial location, among others.

Furthermore, in light of specific application scenarios, a series of improved neural operator methods
have been successively introduced. For instance, Jin et al. proposed a multi-input neural operator
based on tensor products (Jin et al., 2022), and Wang et al. introduced a physics-informed neural op-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Reconstruction Prediction

RNNCell
Data space
Latent space

Sparse observations

OPERATORsolveOPERATOR-RNN encoder
OPERATORsolve

~

Figure 1: The sketched framework of RLNOs.

erator guided by known dynamical equations (Wang et al., 2021). Additionally, Cao et al. developed
a Laplace neural operator capable of handling complex geometrical boundaries (Cao et al., 2024).
And Kontolati et al. preliminarily validated the superiority of neural operators in the latent space
(Kontolati et al., 2024). Moreover, several studies have endeavored to employ novel neural network
architectures for constructing neural operators, achieving superior performance in designated tasks.
This includes the use of convolutional neural networks (Raonic et al., 2023), graph neural networks
(Sun et al., 2023), and Transformer structures (Hao et al., 2023), among others. These neural op-
erator methods can effectively model a family of dynamical systems, playing a pivotal role across
diverse fields such as fluid mechanics (Ye et al., 2024), material science (Oommen et al., 2024), and
climate science (Jiang et al., 2023).

3 METHOD

In a standard setup, the sampling function u under probability measure µ and the solution function s
forms Ntr training samples {u(i), s(i)}Ntr

i=1. Then we train parameter θ using the following equation
to obtain the optimal neural operator Gθ† :

min
θ∈Θ

Eu∼µ∥G†(u)− Gθ(u)∥ = min
θ∈Θ

1

Ntr

Ntr∑
i=1

∥s(i) − Gθ(u
(i))∥ (1)

where Θ is the parameter space of the constructed model, and θ† is the optimal parameters obtained
post-training. To enhance the robustness of neural operators, we propose the Robust Latent Neural
Operator (RLNO) method based on the VAE framework in the latent space. Subsequently, we
elaborate on our RLNO method in conjunction with Fig.1.

3.1 NEURAL OPERATORS IN LATENT SPACE

Representations in latent spaces are ubiquitous in machine learning tasks, where the system dynam-
ics govern the behavior of latent variables z in latent space, and the system states s are interpreted
as manifestations of z under a specific observation function g. Given that g is unknown, it can be
represented by a neural network gθdec parameterized by θdec. Accordingly, we need to establish a
neural operator that maps the sampling function u to the solution function z in the latent space, and
this operator is still denoted as Gθ in our work.

Then we consider the framework of VAE and employ a generative model defined by neural operators
to estimate the solution function trajectory:

z0 ∼ p(z0),

z0, z1, · · · , zT = OPERATORsolve(Gθ, u, z0, (t0, t1, · · · , tT)),
si ∼ p(si|gθdec(zi)), i = 0, 1, · · · , T,

(2)

where z0 signifies the initial state of the latent variable at time t0, sampled from the probability
distribution p(z0). And it is commonly assumed that the prior distribution of z0 adheres to a Gaus-
sian distribution in the VAE framework. Furthermore, “OPERATORsolve” denotes the utilization

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of the neural operator Gθ to determine the evolution of the latent variable. The decoder gθdec maps
these latent variables to the parameters of the probability distribution p(si|gθdec(zi)). In DeepONet
framework, we initially consider a common scenario where the sample function u corresponds to
the initial value z0, then we have

zi = OPERATORsolve(Gθ, z0, (ti)) = Gθ(z0)(ti) =

m∑
k=1

bk(z0)ck(ti), i = 0, 1, · · · , T, (3)

where z represents the latent variable in ODE systems. Similarly, for PDE systems, we have

zi = OPERATORsolve(Gθ, z0,x, (ti)) =

m∑
k=1

bk(z0)ck(x, ti), i = 0, 1, · · · , T, (4)

where x denotes spatial dimension, which takes the form (x) for one-dimensional (1D) PDEs and
(x, y) for two-dimensional (2D) PDEs.

3.2 ENCODING FOR NON-UNIFORM INTERVAL OBSERVATION DATA

Inspired by the framework of Latent NODEs (Chen et al., 2018), we employ a backward RNN to
encode sparse observations into the initial distribution of latent variables, that is, employing the
posterior distribution q(z0|{si, ti}Tenc

i=0) to approximate the distribution p(z0). However, in practical
applications, the observational data {si, ti}Tenc

i=0 may not be uniformly spaced, and the traditional
RNN encoder is incapable of encoding the temporal intervals. In earlier work by Rubanova et al.,
two alternative approaches were introduced (Rubanova et al., 2019). One employs hidden states
in RNN that decay exponentially over time, referred to as RNN-Decay encoder, and the other is
based on NODE, known as the ODE-RNN encoder. However, the effectiveness of the RNN-Decay
encoder requires further enhancement, while the ODE process of the ODE-RNN encoder exhibits
significant computational complexity.

Algorithm 1: OPERATOR-RNN encoder

Require: Data and corresponding timestamps {si, ti}Tenc
i=0

Ensure: Distribution parameters for the initial hidden state z0, i.e., mean µz0 and standard
deviation σz0

1: Initialize h0 = 0;
2: for i in 1, 2, · · · , Tenc do

h′
i = OPERATORsolve(G̃θ̃, hi−1, (tTenc−i+1 − tTenc−i));

hi = RNNCellϕ(h′
i, sTenc−i);

end for
3: µz0 , σz0 = g̃θenc(hTenc);
4: Return: µz0 , σz0

Therefore, we design a novel encoder based on neural operators, named OPERATOR-RNN encoder:

h′
i = OPERATORsolve(G̃θ̃, hi−1, (tTenc−i+1 − tTenc−i)) = G̃θ̃(hi−1)(tTenc−i+1 − tTenc−i),

hi = RNNCellϕ(h′
i, sTenc−i), and i ∈ {1, 2, · · · , Tenc},

(5)

where G̃θ̃ denotes a neural operator parameterized by θ̃, and it is employed in the first equation
of the OPERATOR-RNN encoder, thereby incorporating the temporal intervals into the encoder
process. Finally, we map the final hidden state hTenc to the mean µz0 and standard deviation σz0 of
the distribution q(z0|{si, ti}Tenc

i=0) through a three-layer neural network g̃θenc parameterized by θ, i.e.,
µz0 , σz0 = g̃θenc(hTdec). The pseudocode for the execution process of the OPERATOR-RNN encoder
is provided in Algorithm 1, succinctly described as

q(z0|{si, ti}Tenc
i=0) = N (µz0 , σz0),

µz0 , σz0 = OPERATOR-RNNθenc,θ̃,ϕ
({si, ti}Tenc

i=0),
(6)

where θenc, θ̃, and ϕ represent the trainable parameters of the OPERATOR-RNN encoder. It should
be noted that in the above process, we feed the observational data in reverse order from tTenc to t0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 TRAINING RLNO USING EVIDENCE LOWER BOUND

Finally, we train the encoder, decoder, and the neural operator concurrently by maximizing the
Evidence Lower Bound (ELBO):

ELBO(θenc, θ̃, ϕ, θ, θdec) =Ez0∼qθenc,θ̃,ϕ(z0|{si,ti}
Tenc
i=0)

[log pθ,θdec(s0, s1, · · · , sT |z0)]

− KL
(
qθenc,θ̃,ϕ

(
z0|{si, ti}Tenc

i=0

)
∥p(z0)

)
,

(7)

where the first term represents the data likelihood, the second term denotes the Kullback-Leibler
(KL) divergence between the prior distribution p and the estimated distribution q of the initial state
z0, and the detailed derivation process is provided in Appendix A. It should be noted that the first
term comprises T data points, while the OPERATOR-RNN encoder considers only the initial Tenc
data points. Given the reality of sparse observations and the need for extrapolation prediction, we
typically adopt T ≫ Tenc. Consequently, the trained RLNO model can effectively perform system
reconstruction and prediction tasks.

3.4 THE CASE OF MULTI-INPUT FUNCTIONS

Beyond the initial hidden state z0, our approach may incorporate additional sampling functions
as inputs, such as parameter functions and boundary conditions. Without loss of generality, we
consider an additional sampling function u. Following the approach outlined in (Jin et al., 2022), we
can extend the RLNO method. Specifically, we introduce a new branch network and incorporate the
additional sampling function u as input, and it outputs the vector {d1, d2, · · · , dm}. Consequently,
the neural operator Gθ depicted in Equation (3) can be extended to:

zi = OPERATORsolve(Gθ, z0, u, (ti)) = Gθ(z0)(u)(ti)

=

m∑
k=1

bk(z0)dk(u)ck(ti), i = 0, 1, · · · , T. (8)

To facilitate the discussion in experiments, we refer to the aforementioned extension method as
Multi Input RLNO (MI-RLNO).

4 EXPERIMENTS

In this section, we conduct experiments on a system equipped with 64GB RAM and an NVIDIA
Tesla V100 GPU with 16GB of memory, and provide a detailed analysis of our methodology across
several representative systems. In real-world applications, observational errors are commonly en-
countered. Therefore, we introduce the Gaussian observational noise with a mean of 0 and a standard
deviation of σn into the simulated experiment data. Additionally, to further validate the effective-
ness of our method, we benchmark our experimental results against state-of-the-art (SOTA) baseline
methods, namely: Deep Operator Network (DeepONet) (Lu et al., 2021), Multi-Input DeepONet
(MI-DON) (Jin et al., 2022), GRU Variational Autoencoder (GRUVAE) (Rubanova et al., 2019),
GRU Decay (GRUDecay) (Che et al., 2018), Latent DeepONet with a multi-layer autoencoder
(MLAE) (Kontolati et al., 2024), and Latent Neural ODE (LNODE) (Rubanova et al., 2019). More-
over, for systems governed by PDEs, we also consider PDE-Net (Long et al., 2018) and Fourier
Neural Operator (FNO) (Li et al., 2020) to provide a comprehensive comparative analysis. And the
implementation details and discussion about the above baseline methods can be found in Appendix
B. Additionally, we detail the hyperparameter settings of RLNO method in Appendix C.

4.1 TOY DATASET

First, we consider a toy dataset of periodic trajectories from the literature on the LNODE approach
(Rubanova et al., 2019). Specifically, we take σn = 0.2 and T = 100 to generat 2000 trajectories
with non-equidistant observations, allocating 80% for training and 20% for testing. The frequency
and initial value of each trajectory are sampled from their respective uniform distributions. Subse-
quently, we set Tenc = 10 for recognition network and employ various methods to learn the dynamics
of these trajectories, and the experimental results are shown in Fig. 2. It is evident from Fig. 2 that

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 2: The experimental results of toy dataset using different methods. (a) The prediction perfor-
mance in a test data. (b) The mean squared error (MSE) of predictions by various methods.

our RLNO method effectively predicts this family of systems, exhibiting the lowest prediction error
compared to baseline methods.

Under the conditions of unknown frequencies and high noise, our RLNO method significantly out-
performs traditional baseline methods based on RNNs and neural operators, thereby demonstrating
the necessity and superiority of our framework design. In addition, although the LNODE method
exhibits comparable predictive performance to our method in this toy experiment, it suffers from
catastrophic failure in terms of computational cost and training convergence as dimensionality in-
creases, particularly for the PDE systems discussed subsequently.

4.2 1D PDE SYSTEMS

In this section, we validate our approach through two representative 1D PDE systems, including the
Diffusion-Reaction (DR) equation system:

∂ts = 0.01∂xxs+ 0.01s2 + u1(x, t), x ∈ [0, 1], t ∈ [0, 1], (9)

and the Kuramoto-Sivashinsky equation (KS) system:

∂ts = −∂x(s
2/2)− ∂xxs− u2(x, t)∂xxxxs, x ∈ [0, 2π], t ∈ [0, 0.5], (10)

where u1 and u2 represent the parameter functions of the DR and KS systems, respectively. To
more robustly validate our method, we consider constructing a family of dynamical systems and
performing experiments through two approaches. The first involves generating initial values s0
using Gaussian random fields (GRFs) with a radial-basis function kernel, given by

s0 ∼ c ·G
{
µG, exp

[
||x1 − x2||2/(2l2)

]}
, (11)

where µG represents the mean value, l is the length scale that governs the smoothness of the sampling
function, and c serves as the scaling factor for the output. And the second approach pertains to the
random generation of parameters u through GRFs. Additionally, during the data generation phase,
each piece of data comprises T equidistant data points. Subsequently, sparse observational data is
created by randomly retaining a proportion λ of these points. Unless otherwise specified, we set the
recognition network parameter Tenc to 10.

Table 1: Comparing the MSE (± two standard deviations) across multiple experiments

Systems (MI-) DON GRUVAE GRUDecay MLAE LNODE FNO (MI-) RLNO

DR (case 1) 0.0114 ±0.0146 0.0255 ±0.0279 0.0181 ±0.0214 0.0094 ±0.0119 0.0033 ±0.0045 0.0238 ±0.0245 0.0012 ±0.0016

KS (case 1) 0.3697 ±0.8492 3.1764 ±5.1487 2.8613 ±4.5272 0.4116 ±0.5953 0.3212 ±0.7671 0.4438 ±0.7112 0.1230 ±0.2325

DR (case 2) 0.2240 ±0.3976 0.0080 ±0.0140 0.0216 ±0.0479 0.1632 ±0.1888 0.0219 ±0.0475 0.2921 ±0.3727 0.0017 ±0.0020

KS (case 2) 0.5686 ±0.8873 5.0330 ±9.1339 4.9334 ±8.7576 0.8876 ±1.2794 0.9740 ±1.3793 0.7478 ±0.8183 0.2389 ±0.3637

NS (case 1) 0.0013 ±0.0009 0.0030 ±0.0054 0.0052 ±0.0048 0.0037 ±0.0055 0.0015 ±0.0017 0.0024 ±0.0009 0.0005 ±0.0004

NS (case 2) 0.0009 ±0.0017 0.0291 ±0.0306 0.0417 ±0.0437 0.0032 ±0.0041 0.0026 ±0.0108 0.0040 ±0.0064 0.0001 ±0.0002

In the first experimental setup, we fix the parameters u1 ≡ 0 and u2 ≡ 0.081, and employ GRFs to
generate the initial condition s0, thereby modeling a family of dynamical systems with varying initial

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

DeepONet GRUVAE

GRUVAE

MLAE

MLAE

LNODE

LNODE

GRUDecay

GRUDecay

RLNO

RLNO DeepONet

Pr
ed

ic
tio

n
(D

R
)

Pr
ed

ic
tio

n
(K

S)

Observations (DR)Ground truth (DR)

Observations (KS)Ground truth (KS)

Add noise

Sparse
observation

Add noise

Sparse
observation

(a)

(c)

(b)

(d)

Figure 3: Experimental results of various methods in DR and KS systems. (a) True and observed
values of DR system. (b) Prediction results of the DR system. (c) True and observed values of KS
system. (d) Prediction results of the DR system.

values. For the experiments of DR system, experimental data were generated based on the following
parameter settings: GRF parameters c = 1.0, l = 0.2, the numbers of training and test samples
Ntr = 8000, Nte = 2000, the number of sampling points and step size T = 100, ∆t = 0.01,
sparsity parameter λ = 0.6, and noise intensity σn = 0.4. Figure 3(a) randomly presents a sample
of test data. After training, the predictive performances of RLNO and the baseline methods are
depicted in Fig. 3(b), with the corresponding Mean Squared Error (MSE) results reported in the first
row of Table 1. For the experiments of KS system, we generate experimental data with the following
parameters: c = 10, l = 0.2, Ntr = 4000, Nte = 1000, T = 100, ∆t = 0.005, λ = 0.6, σn = 1.0,
and an example of test data is shown in Fig. 3(c). After training, the predictive performance is
illustrated in Fig.3(d), with the corresponding MSE results detailed in the second row of Table
1. Given that the KS system exhibits chaotic behavior and is a stiff system, the task of modeling
this family of dynamical systems becomes significantly more complex. Despite these challenges,
our approach maintains a more robust and accurate predictive performance, significantly surpassing
other baseline methods. In this context, even when the LNODE method employs smaller simulation
steps and higher-precision numerical solvers, it fails to achieve predictive performance comparable
to that of the RLNO method.

To further validate the effectiveness of our approach, two additional experiments are considered. Ini-
tially, for the DR system, we fix the initial condition s0 and utilize the GRF to generate the parameter
function u, thereby modeling a family of dynamical systems with varying parameters. Here, we take
σn = 0.1 and maintain all other experimental parameters consistent with those of the DR (case 1).
As illustrated in the third row of Table 1, it is evident that our method achieves the lowest prediction
error. It is noteworthy that in the experiments of DR (case 2), we configure u(x) as a time-invariant
sampling function. In this context, our approach can accurately model the neural operator even
without knowledge of the sampling function u(x). This is attributed to the RLNO method’s capac-
ity to capture the underlying dynamics related to u(x) via non-uniform sparse observations. In such
scenarios, RNN-based methods (GRUVAE and GRUDecay) outperform methods solely based on
neural operators (DeepONet, FNO and MLAE). Our proposed RLNO method, which leverages the
advantages of both RNN encoding and neural operators, therefore, demonstrates optimal predictive
performance.

Finally, we examine a more complex scenario involving the KS system, wherein both the initial value
condition s0 and the parameter function u are randomly generated by GRFs. Here, we designate u(t)
as a time-varying sampling function, with the corresponding GRF parameters set to c = 0.01 and
l = 0.5, and all other parameters are consistent with those employed in the experiments of KS (case
1). In this scenario, we utilize MI-DON as the first baseline method, and treat both the parameter
function u and initial value s0 as inputs to the FNO method. Given that Tenc ≪ T , the OPERATOR-
RNN encoder is unable to capture the parameter information across the entire data. Consequently,
we employ the MI-RLNO method to incorporate u(t) as an additional input correspondingly. As
demonstrated in the fourth row of Table 1, it is evident that our approach yields the most superior
predictive performance. Additionally, methods based on neural operators outperform those based
on RNNs, attributed to the utilization of u(t) information.

Moreover, we also apply the PDE-NET approach for predicting the PDE systems discussed in this
paper. However, we observe that such methods struggle to accurately infer the underlying equations

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Pr
ed

ic
tio

n
(N

S)
M

SE
Tr

ue
 (N

S)

Pr
ed

ic
tio

n
(N

S)
M

SE
Tr

ue
 (N

S)

Step 1(a) (b)Step 20 Step 50 Step 100 Step 1 Step 20 Step 50 Step 100

Figure 4: Experimental performance in NS system using RLNO method. (a) Experimental results
for NS (case 1). (b) Experimental results for NS (case 2).

of the systems in noisy environments. Consequently, the predictive error tends to escalate rapidly
with accumulation, leading to the divergence of predictive outcomes midway. Therefore, this paper
does not specifically present the predictive results of the PDE-NET baseline method.

4.3 2D NS SYSTEM

Next, we explore the application of the proposed method within the context of 2D PDE systems, and
its dynamic equations are:

∂ts = ∂xγ∂ys− ∂yγ∂xs+ 0.001∆s+ u(x, y, t), ∆γ = −s, (12)

where (x, y) ∈ [0, 2]2, t ∈ [0, 3], γ is the stream function, ∆ represents the Laplacian opera-
tor. Subsequently, we generate experimental data based on the following experimental parameters:
Ntr = 4000, Nte = 1000, T = 100, ∆t = 0.03, γ = 0.6, σn = 0.2.

Similarly, here we conduct experiments under two distinct scenarios. For the first case, we consider
a spatial resolution of 32 × 32 and employ a 2D GRFs to randomly generate the initial condition
s0, thereby modeling a family of systems with varying initial conditions. After training, the exper-
imental results of the RLNO method are illustrated in Fig 4(a), with the predictive MSE of various
methods presented in the fifth row of Table 1. For the second case, we consider a spatial resolution
of 64 × 64, and employ a 2D GRFs to randomly generate initial values s0 and parameters u. The
corresponding experimental outcomes are presented in Fig. 4(b) and the last row of Table 1. The re-
sults from these experiments indicate that our proposed RLNO method is capable of utilizing sparse
observations to achieve more robust and accurate modeling.

4.4 ABLATION EXPERIMENTS AND ROBUSTNESS ANALYSIS

In this section, we validate the robustness of the RLNO method under varying parameter settings
through experiments and demonstrate the advantages of the OPERATOR-RNN encoder and the VAE
framework through ablation studies.

Table 2: Comparing the MSE (± two standard deviations) across different σn and Ntr

Methods σn = 0.1 σn = 0.6 σn = 1.2 Ntr = 2000 Ntr = 5000 Ntr = 20000

Ab1 0.0006 ±0.0025 0.0037 ±0.0068 0.0115 ±0.0146 0.0084 ±0.0243 0.0076 ±0.0107 0.0072 ±0.0070

Ab2 0.0005 ±0.0028 0.0025 ±0.0066 0.0097 ±0.0134 0.0057 ±0.0179 0.0053 ±0.0093 0.0046 ±0.0051

Ab3 0.0010 ±0.0038 0.0047 ±0.0103 0.0147 ±0.0212 0.0104 ±0.0219 0.0064 ±0.0138 0.0052 ±0.0050

Ab4 0.0008 ±0.0043 0.0049 ±0.0186 0.0187 ±0.0324 0.0198 ±0.0488 0.0120 ±0.0271 0.0041 ±0.0046

RLNO 0.0006 ±0.0025 0.0023 ±0.0048 0.0067 ±0.0114 0.0054 ±0.0183 0.0041 ±0.0091 0.0029 ±0.0038

To rigorously validate the effectiveness of our approach, we design the following ablation experi-
ments: First, we modify the RLNO framework by substituting the OPERATOR-RNN encoder with
a standard RNN encoder, denoting this variant as “Ab1”; second, within the RLNO framework, we
replace the OPERATOR-RNN encoder with the RNN-Decay encoder, and label this adaptation as
“Ab2”; third, we replace the OPERATOR-RNN encoder with the ODE-RNN encoder, denoting this

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

St
ep

 1
St

ep
 2

0
St

ep
 5

0
St

ep
 1

00

Ground truth

Figure 5: Experimental results across different dz in a test data of NS (case 2) experiment.

approach as ”Ab3”; fourth, we alter the loss function from the ELBO to MSE, which we designate
as “Ab4”.

First, we conduct experiments of DR (case 1) under varying noise intensities and training set sizes.
The predicted MSE is presented in Table 2 and the predicted performance is shown in Figs. S1 and
S2 in Appendix C, where the sparsity parameter λ = 0.2, the first three columns of experiments
utilize Ntr = 4000, the latter three columns are conducted with σn = 1.0, and all other parameter
settings remain consistent with those described previously. Experimental results demonstrate that, in
scenarios with low observation noise, various ablation study methods yield commendable outcomes,
among which RLNO and Ab2 exhibit optimal performance. As the intensity of noise escalates, the
superiority of the RLNO method becomes increasingly pronounced. On one hand, our method
exhibits lower prediction errors in comparison with both Ab1 and Ab2, thereby confirming the
superiority of the OPERATOR-RNN encoder; on the other hand, Ab3 displays the highest prediction
error, corroborating that training using the ELBO indeed possesses enhanced noise robustness. In
addition, our approach consistently demonstrates superior performance across varying training set
sizes Ntr, particularly manifesting significant advantages with abundant training data. It is evident
that the OPERATOR-RNN encoder, coupled with the ELBO training objective, can fully leverage
training data to learn more authentic underlying dynamics.

Table 3: Comparing the MSE (± two standard deviations) across different encoding lengths Tenc

Methods Tenc = 1 Tenc = 2 Tenc = 3 Tenc = 6 Tenc = 12 Tenc = 20

Ab1 0.3868 ±0.6011 0.3076 ±0.4414 0.2875 ±0.4163 0.1675 ±0.3338 0.1441 ±0.3047 0.1427 ±0.3327

Ab2 0.3868 ±0.6011 0.2714 ±0.4295 0.2052 ±0.3524 0.1644 ±0.2949 0.1438 ±0.2879 0.1312 ±0.2712

Ab3 0.3868 ±0.6011 0.2854 ±0.3218 0.2368 ±0.4255 0.1825 ±0.4707 0.1997 ±0.4132 0.1912 ±0.6320

Ab4 0.4098 ±0.9593 0.3622 ±0.5661 0.2695 ±0.5768 0.2546 ±0.3707 0.2154 ±0.3624 0.2551 ±0.5151

RLNO 0.3868 ±0.6011 0.2164 ±0.3872 0.1945 ±0.3287 0.1329 ±0.3023 0.1271 ±0.2456 0.1219 ±0.2165

Table 4: Comparing the MSE (± two standard deviations) across different latent space dimensions

Systems dz = 8 dz = 16 dz = 32 dz = 64 dz = 128 dz = 256

DR (case 1) 0.0025 ±0.0089 0.0022 ±0.0072 0.0021 ±0.0063 0.0021 ±0.0049 0.0021 ±0.0073 0.0020 ±0.0067

KS (case 1) 0.4991 ±0.8232 0.1473 ±0.3068 0.1390 ±0.2893 0.1334 ±0.2742 0.1304 ±0.2518 0.1368 ±0.2625

NS (case 1) 0.0024 ±0.0027 0.0019 ±0.0020 0.0013 ±0.0007 0.0012 ±0.0007 0.0013 ±0.0007 0.0011 ±0.0006

NS (case 2) 4.6e-4 ±3.6e-4 2.8e-4 ±2.0e-4 2.1e-4 ±1.6e-4 1.5e-4 ±1.3e-4 1.4e-4 ±1.1e-4 1.6e-4 ±1.6e-4

Additionally, we conduct experiments of KS (case 1) under the condition of varying recognition
lengths (Tenc), and keep all other experimental parameters consistent with previous settings. The
predicted MSE is presented in Table 3 and the predicted performance is shown in Figure S3 in
Appendix C. The experimental results demonstrate that an increase in Tenc enhances the amount
of dynamic information encoded in the initial values of the latent variables, thereby improving the
modeling effectiveness. Moreover, as Tenc increases, the magnitude of improvement in modeling
performance correspondingly decreases. This phenomenon can be explained from two perspectives.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Firstly, the fixed number of RNN neurons entails an upper limit on its capacity for encoding infor-
mation. Secondly, the intrinsic memory decay attribute of RNNs leads to a gradual forgetting of
inputs from the more distant past. Despite this, the utilization of sparse observation information can
indeed significantly enhance the modeling performance of neural operators.

Finally, we opt for varying hidden space dimensions dz and conduct four experiments: DR (case 1),
KS (case 1), NS (case 1), and NS (case 2), and the corresponding predictive results are presented
in Table 4. The experimental outcomes indicate that despite the relatively high dimensionality of
the experimental data spaces (64 dimensions for the DR and KS experiments, 32 × 32 dimensions
for NS (case 1), and 64× 64 dimensions for NS (case 2)), it is feasible to select lower-dimensional
latent spaces while still maintaining high modeling accuracy. Our experiments partially reveal the
redundant nature of features within the original data space, suggesting that this dimensionality re-
duction can decrease the complexity of the task at hand. However, the dimension of the latent space
should not be excessively reduced, as the optimal size is contingent upon the complexity of the task
itself. For instance, in the more complex experiment of NS (Case 2), modeling effectiveness notice-
ably improves as dz increases, up to a point where dz ≤ 64, as shown in the Fig. 5 and Table 4.
Therefore, choosing dz = 64 for modeling these systems is efficacious, even though this represents
a significant reduction from the original data space dimensions (64 × 64). These findings indicate
that our approach is capable of extracting critical dynamical information within a family of systems,
thereby facilitating its application to even higher-dimensional and more complex PDE systems.

5 CONCLUDING REMARKS

In this work, we introduce a novel neural operator method named RLNO, grounded in the framework
of VAEs. This method initially encodes the original system states into a latent space. Subsequently,
the future states of these latent variables are predicted by modeling a neural operator Gθ. Finally, a
decoder maps the variables from the latent space back to the data space, thus enabling the modeling
of the original system. In this process, our model is trained by maximizing the evidence lower bound,
and the Gaussian prior assumption within the model enables our method to more effectively handle
observations with noise. We conduct experiments across several parametric ODE and PDE systems,
and the results demonstrate that our RLNO method surpasses state-of-the-art baseline methods in
terms of noise robustness and modeling accuracy.

To enhance the encoding of sparse observational data, our RLNO method incorporates an
OPERATOR-RNN encoder. This encoder not only inputs multiple observational data points but
also encodes temporal interval information of sequential data, thereby exhibiting superior modeling
performance in irregularly spaced observations compared to traditional RNN encoders. Moreover,
while both the ODE-RNN encoder and the RNN-Decay encoder are capable of encoding tempo-
ral interval information, their performance is inferior to our method, and the ODE-RNN encoder
incurs a high computational cost in PDE systems. This assertion was validated through meticu-
lously designed ablation studies, indicating that our method can more effectively utilize sparse and
spaced observational data for operator learning. Additionally, we conducted a parameter sensitivity
analysis on the dimensionality of the latent space. Results indicate that lower-dimensional latent
states achieve impressive modeling accuracy. This dimensionality reduction in the latent space
decreases the task’s complexity, facilitating the neural operator’s ability to capture essential fea-
tures with limited training data. Consequently, this approach can be extended to modeling tasks of
higher-dimensional complex systems. These findings are consistent with the conclusions drawn in
(Kontolati et al., 2024).

Certainly, the RLNO method exhibits certain limitations that warrant further investigation. For
instance, when the length of the recognition network Tenc is sufficiently large, the predictive perfor-
mance of our method does not significantly improve. This suggests that the RNN-based encoders
may gradually forget information from more distant observations. Thus, developing an encoder with
long-term memory capabilities could further enhance the modeling capacity of RLNO. Moreover,
current neural operator methods typically excel in modeling a family of dynamical systems under
relatively simple sampling distribution scenarios (e.g., Gaussian random fields). Therefore, future
efforts are required to devise more effective neural operators capable of modeling systems within
more complex sampling distributions. This is of significant practical importance for replacing inef-
ficient numerical simulations with efficient neural operators.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To foster reproducibility in research, we take several measures to ensure that our findings are trans-
parent and verifiable. First, the manuscript provides detailed descriptions of the RLNO framework
utilized throughout the study. Subsequently, we generate experimental data through the code pro-
vided in the “code/data” folder within the supplementary material, and present the related parameter
settings in the main text and Appendix C. Finally, the detailed implementation procedure for the
RLNO method, baseline approaches, and all ablation study codes are provided in the “code/lib”
folder, and all executable code files pertaining to the experiments are located in the “code” folder
within the supplementary material.

REFERENCES

Dimitri Bertsekas. Reinforcement learning and optimal control, volume 1. Athena Scientific, 2019.

Fredrik Bjørheim, Sudath C Siriwardane, and Dimitrios Pavlou. A review of fatigue damage detec-
tion and measurement techniques. International Journal of Fatigue, 154:106556, 2022.

Ivan Brugere, Brian Gallagher, and Tanya Y Berger-Wolf. Network structure inference, a survey:
Motivations, methods, and applications. ACM Computing Surveys (CSUR), 51(2):1–39, 2018.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, 2016.

Thomas M Bury, RI Sujith, Induja Pavithran, Marten Scheffer, Timothy M Lenton, Madhur Anand,
and Chris T Bauch. Deep learning for early warning signals of tipping points. Proceedings of the
National Academy of Sciences, 118(39):e2106140118, 2021.

Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Laplace neural operator for solving
differential equations. Nature Machine Intelligence, pp. 1–10, 2024.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific reports, 8(1):6085,
2018.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Florian Grziwotz, Chun-Wei Chang, Vasilis Dakos, Egbert H van Nes, Markus Schwarzländer,
Oliver Kamps, Martin Heßler, Isao T Tokuda, Arndt Telschow, and Chih-hao Hsieh. Anticipating
the occurrence and type of critical transitions. Science Advances, 9(1):eabq4558, 2023.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

Peishi Jiang, Zhao Yang, Jiali Wang, Chenfu Huang, Pengfei Xue, TC Chakraborty, Xingyuan Chen,
and Yun Qian. Efficient super-resolution of near-surface climate modeling using the fourier neural
operator. Journal of Advances in Modeling Earth Systems, 15(7):e2023MS003800, 2023.

Pengzhan Jin, Shuai Meng, and Lu Lu. Mionet: Learning multiple-input operators via tensor prod-
uct. SIAM Journal on Scientific Computing, 44(6):A3490–A3514, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Sparse identification of nonlinear dynamics
for model predictive control in the low-data limit. Proceedings of the Royal Society A, 474(2219):
20180335, 2018.

Katiana Kontolati, Somdatta Goswami, George Em Karniadakis, and Michael D Shields. Learning
nonlinear operators in latent spaces for real-time predictions of complex dynamics in physical
systems. Nature Communications, 15(1):5101, 2024.

Xin Li, Qunxi Zhu, Chengli Zhao, Xuzhe Qian, Xue Zhang, Xiaojun Duan, and Wei Lin. Tipping
point detection using reservoir computing. Research, 6:0174, 2023.

Xin Li, Jingdong Zhang, Qunxi Zhu, Chengli Zhao, Xue Zhang, Xiaojun Duan, and Wei Lin.
From fourier to neural odes: Flow matching for modeling complex systems. arXiv preprint
arXiv:2405.11542, 2024a.

Xin Li, Qunxi Zhu, Chengli Zhao, Xiaojun Duan, Bolin Zhao, Xue Zhang, Huanfei Ma, Jie Sun,
and Wei Lin. Higher-order granger reservoir computing: simultaneously achieving scalable com-
plex structures inference and accurate dynamics prediction. Nature Communications, 15(1):2506,
2024b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Jinbo Liu, Yunliang Chen, Xiaohui Huang, Jianxin Li, and Geyong Min. Gnn-based long and short
term preference modeling for next-location prediction. Information Sciences, 629:1–14, 2023.

Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from data with a numeric-
symbolic hybrid deep network. J. Comput. Phys., 399, 2018. URL https://api.
semanticscholar.org/CorpusID:54559221.

Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, and Bernhard Schölkopf. Amortized
inference for causal structure learning. Advances in Neural Information Processing Systems, 35:
13104–13118, 2022.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Long Short-Term Memory. Long short-term memory. Neural computation, 9(8):1735–1780, 2010.

Charles Murphy, Edward Laurence, and Antoine Allard. Deep learning of contagion dynamics on
complex networks. Nature Communications, 12(1):4720, 2021.

Vivek Oommen, Khemraj Shukla, Saaketh Desai, Rémi Dingreville, and George Em Karniadakis.
Rethinking materials simulations: Blending direct numerical simulations with neural operators.
npj Computational Materials, 10(1):145, 2024.

Bogdan Raonic, Roberto Molinaro, Tobias Rohner, Siddhartha Mishra, and Emmanuel de Bezenac.
Convolutional neural operators. In ICLR 2023 Workshop on Physics for Machine Learning, 2023.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Laura E. Suárez, Agoston Mihalik, Filip Milisav, Kenji Marshall, Mingze Li, Petra E. Vértes, Guil-
laume Lajoie, and Bratislav Misic. Connectome-based reservoir computing with the conn2res
toolbox. Nature Communications, 15(1):656, 2024. doi: 10.1038/s41467-024-44900-4. URL
https://doi.org/10.1038/s41467-024-44900-4.

Yixuan Sun, Christian Moya, Guang Lin, and Meng Yue. Deepgraphonet: A deep graph operator
network to learn and zero-shot transfer the dynamic response of networked systems. IEEE Systems
Journal, 2023.

12

https://api.semanticscholar.org/CorpusID:54559221
https://api.semanticscholar.org/CorpusID:54559221
https://doi.org/10.1038/s41467-024-44900-4

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Tang, Jürgen Kurths, Wei Lin, Edward Ott, and Ljupco Kocarev. Introduction to focus is-
sue: When machine learning meets complex systems: Networks, chaos, and nonlinear dynamics.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(6), 2020.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
intelligence. Nature, 620(7972):47–60, 2023a.

Nanzhe Wang, Haibin Chang, Xiang-Zhao Kong, and Dongxiao Zhang. Deep learning based closed-
loop well control optimization of geothermal reservoir with uncertain permeability. Renewable
Energy, 211:379–394, 2023b.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
tial differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605,
2021.

Tian Wang and Chuang Wang. Latent neural operator for solving forward and inverse pde problems.
arXiv preprint arXiv:2406.03923, 2024.

Ximeng Ye, Hongyu Li, Jingjie Huang, and Guoliang Qin. On the locality of local neural operator in
learning fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 427:117035,
2024.

Qingqing Zhao, David B Lindell, and Gordon Wetzstein. Learning to solve pde-constrained inverse
problems with graph networks. arXiv preprint arXiv:2206.00711, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix

A THE EXECUTION DETAILS OF THE RLNO METHOD

A.1 APPROXIMATE POSTERIOR AND EVIDENCE LOWER BOUND

In this section, we provide a detailed description of the approximate posterior distribution q men-
tioned in the main text, and derive the optimization objective, the Evidence Lower Bound (ELBO).

Given the data s0:T = {s0, s1, · · · , sT } from the original system, our primary interest in variational
inference (VI) tasks lies in the posterior distribution of the latent variables, p(z0|s0:T). Evaluat-
ing this distribution directly is often challenging or impractical due to the involved marginalization
operations, which require integration or summation over all possible configurations of the latent
variables—a task that becomes exceedingly complex in high-dimensional spaces. VI addresses this
issue by introducing a more tractable distribution, q(z0), as an approximation of the posterior distri-
bution. Due to

log p(s0:T) = log

∫
p(s0:T , z0)dz0 = log

∫
p(s0:T , z0)

q(z0)

q(z0)
dz0

= logEq(z0)

[
p(s0:T , z0)

q(z0)

]
≥ Eq(z0)

[
log

p(s0:T , z0)

q(z0)

]
= ELBO,

(S1)

the ELBO serves as a lower bound for the log evidence, also known as the log marginal likelihood.
Through derivation, we can obtain:

ELBO =

∫
q(z0) log

p(s0:T , z0)

q(z0)
dz0 =

∫
q(z0) log

p(s0:T |z0)p(z0)
q(z0)

dz0

=

∫
q(z0) log p(s0:T |z0)dz0 −

∫
q(z0) log

q(z0)

p(z0)
dz0

= L1 − L2.

(S2)

In accordance with Equation (6) in the main text, it is evident that the posterior distribution q(z0) is
determined by the observational data s0:Tenc within the recognition network. This relationship can
succinctly be expressed as follows:

z0 ∼ qθenc,θ̃,ϕ
(z0|{si, ti}Tenc

i=0), (S3)

where θenc, θ̃, and ϕ represent the trainable parameters in the recognition network as defined in the
main text. Therefore, we have:

L1 = Ez0∼qθenc,θ̃,ϕ
(z0|{si,ti}Tenc

i=0)
[log pθ,θdec(s0, s1, · · · , sT |z0)], (S4)

where θ and θdec respectively represent the trainable parameters of the neural operator Gθ in the
latent space and the decoder gθdec . And L2 refers to the Kullback-Leibler (KL) divergence:

L2 = KL
(
qθenc,θ̃,ϕ

(
z0|{si, ti}Tenc

i=0

)
∥p(z0)

)
. (S5)

Through the aforementioned process, we transform the optimization problem of maximizing
log p(s0:T) into maximizing its evidence lower bound.

A.2 THE EXECUTION PSEUDOCODE OF THE RLNO METHOD

To more effectively illustrate the implementation details of the proposed RLNO method, this section
presents its pseudocode in Algorithm 2 and Algorithm 3. In testing process, this methodology takes
as input the observed data from a new domain, {si, ti}Tenc

i=0, along with a sampling function u from
the domain, and outputs direct predictions of the system states sτ , τ ∈ [t0, tT]. It is crucial to note
that the length of the sparse observations Tenc is typically set much shorter than the total data length
T , i.e., Tenc ≪ T .

In addition, in our experiments, the term OPERATORsolve denotes the execution of operator com-
putations utilizing the DeepONet framework, RNNCell employs the GRU module, and the symbols
g̃ and g denote the usage of a three-layer feedforward neural network, respectively.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 2: The Training Process of the RLNO Method

Require: Given Ntr training data instances, each instance comprises T observed states {si, ti}Ti=0,
along with the corresponding sampling function u

Ensure: The trained parameters θ, θ̃, ϕ, θenc, θdec
1: Initialize h0 = 0;
2: for i in 1, 2, · · · , Tenc do

h′
i = OPERATORsolve(G̃θ̃, hi−1, (tTenc−i+1 − tTenc−i));

hi = RNNCellϕ(h′
i, sTenc−i);

end for
3: µz0 , σz0 = g̃θenc(hTenc);
4: Sampling z0 from a Gaussian distribution with mean µz0 and variance σ2

z0 ;
5: z0, z1, . . . , zT = OPERATORsolve(Gθ, u, z0, (t0, t1, . . . , tT));
6: ŝ0, ŝ1, . . . , ŝT = gθdec(z0, z1, . . . , zT);
7: Use Equation (7) in the main text to calculate ELBO, and use it as the loss function to train

parameters θ, θ̃, ϕ, θenc, θdec;
8: Return: After sufficient training, output the trained parameters θ, θ̃, ϕ, θenc, θdec

Algorithm 3: The Testing Process of the RLNO Method

Require: Sparse observations in a new domain {si, ti}Tenc
i=0, sampling function u

Ensure: Prediction of the system state, s(τ), for τ ∈ [t0, tT], where Tenc ≪ T
1: Initialize h0 = 0;
2: for i in 1, 2, · · · , Tenc do

h′
i = OPERATORsolve(G̃θ̃, hi−1, (tTenc−i+1 − tTenc−i));

hi = RNNCellϕ(h′
i, sTenc−i);

end for
3: µz0 , σz0 = g̃θenc(hTenc);
4: Sampling z0 from a Gaussian distribution with mean µz0 and variance σ2

z0 ;
5: zτ = OPERATORsolve(Gθ, u, z0, (τ)), τ ∈ [t0, tT];
6: sτ = gθdec(zτ), τ ∈ [t0, tT];
7: Return: sτ , τ ∈ [t0, tT]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 UNIVERSAL APPROXIMATION THEOREM FOR RLNO

To theoretically validate the effectiveness of the proposed method, we analogously present the Uni-
versal Approximation Theorem for RLNO, as seen in Theorem 1. Subsequently, we briefly provide
the proof of this theorem by integrating the proof process of the classic DeepONet method.
Theorem 1. (Universal Approximation Theorem for RLNO). Suppose that X is a Banach Space,
K1 ∈ X , K2 ∈ Rd are two compact sets in X and Rd, respectively, V is a compact set in C(K1).
Assume that G is a nonlinear continuous operator, which maps V into C(K2). Then for any ϵ > 0,
there are positive integers l, m, continuous vector functions f : Rl → Rm, f̃ : Rd → Rm, and
x1, x2, . . . , xm ∈ K1, such that∣∣∣G(u)(y)− gdec

(
⟨f (u(x1), u(x2), · · · , u(xl), z0) , f̃(y)⟩

)∣∣∣ < ϵ (S6)

holds for all u ∈ V and y ∈ K2, where ⟨·, ·⟩ denotes the dot product in Rl, and

z0 ∼ q(z0|{si, ti}Tenc
i=0) = N (µz0 , σz0),

µz0 , σz0 = OPERATOR-RNN({si, ti}Tenc
i=0),

(S7)

where OPERATOR-RNN serves as an encoder for sparse observations {si, ti} from a specific new
domain in V .

Proof. In fact, when the conditions

gdec(z) = z,

f (u(x1), u(x2), · · · , u(xl), z0) = f (u(x1), u(x2), · · · , u(xl))
(S8)

are met, Theorem 1 simplifies to Theorem 2 as presented in Reference (Lu et al., 2021). Therefore,
by fixing Equation (S8) and based on the proof in Reference (Lu et al., 2021), it is established that
there exist neural networks f and f̃ such that Theorem 1 holds.

In practical applications, both the OPERATOR-RNN and gdec are typically trainable neural net-
works serving as the encoder and decoder, respectively. Generally, the degenerate case represented
by Equation (S8) is not considered. Additional encoder and decoder can significantly enhance the
robustness and accuracy of neural operators, as can be substantiated by the following three consid-
erations.

• First, the VAE framework transforms the operator modeling issue in the original data space
into an operator modeling problem in the latent space, offering enhanced flexibility and
generality. For example, traditional DeepONet approaches, which model the dynamics of
observed variables directly, may struggle to capture the implicit relationships within high-
dimensional data. In contrast, our method, by compressing or expanding observed data
into a latent representation, then modeling the dynamical system within this latent space, is
more adept at capturing complex temporal sequence characteristics.

• Second, our approach employs variational inference to model latent variables, enhancing
its suitability for handling complex data characterized by uncertainty or noise. In fact,
ablation studies and comparative experiments with classic baseline methods convincingly
support this conclusion.

• Third, an RNN-based encoder (OPERATOR-RNN) can efficiently leverage additional ob-
served states and potential dynamics information in new domains. In contrast, classical
neural operator approaches fail to achieve this. In fact, this can be attributed to the fact that
the initial value vectors of latent variables can generate system states under specific sam-
pling functions more robustly and accurately through neural operators in the latent space,
thereby modeling a family of dynamical systems.

B INTRODUCTION AND DISCUSSION OF BASELINE METHODS

In this section, we offer a succinct overview of the deployment of baseline methodologies within
our experiments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

First, we consider the original version of the Deep Operator Network method (Lu et al., 2021), herein
referred to as DeepONet. This technique is structured around a branch network and a trunk network.
The branch network processes l equidistantly distributed sampling points from the parameter func-
tion u(x, t), generating a m-dimensional vector b = {b1, . . . , bm}. Conversely, the trunk network
accepts the temporal and spatial variables, t and x, respectively, yielding another m-dimensional
vector c = {c1, . . . , cm}. Consequently, the prediction of the system’s state for any given set of
inputs is articulated as follows:

G (u)(x, t) =

m∑
k=1

bk(u)ck(x, t) + q,

where q ∈ R represents a bias term. After training, we can accurately forecast the state value
s(x, t) for any sampled function u. Additionally, when both the initial value s0 and parameter u
vary, we employ the MI-DON approach (Jin et al., 2022). Specifically, we consider introducing a
new branch network that takes the initial value s0 as its input and outputs an m-dimensional vector
d = {d1, · · · , dm}, thereby facilitating the prediction of the system’s future states:

G (s0)(u)(x, t) =
m∑

k=1

bk(u)ck(x, t)dk(s0) + q,

where q is a bias term.

Second, we consider GRU Variational Autoencoder (GRUVAE) method (Rubanova et al., 2019),
which is fundamentally an RNN prediction method in latent space. Specifically, the approach ini-
tially employs an encoder to map s0 to the initial value z0 in the latent space. Subsequently, it
predicts the future states of latent variables through the GRU framework, given by:

hi, zi = GRUCellϕ(hi−1, zi−1), and i ∈ {1, 2, · · · , T}. (S9)

where GURCellϕ is GRU module parameterized by ϕ. And ultimately, decodes the latent variables
back to their original states.

Third, we examine the GRU method with an exponential decay in time (Che et al., 2018), henceforth
referred to as GRUDecay. The method described shares similarities with the second approach in that
it is also based on RNN. However, the distinctive aspect of GRUDecay lies in its consideration of
temporal interval information. Specifically, the GRU state update equation in the hidden space is
formulated as follows:

hi, zi = GRUCellϕ(hi−1, ti − ti−1, zi−1)

= GRUCellϕ(hi−1 · exp{−τ∆t(i)}, zi−1),
(S10)

where i ∈ {1, 2, · · · , T}, ∆t(i) = ti − ti−1 represents the time interval.

Fourth, we consider Latent DeepONet with a multi-layer autoencoder (MLAE) (Kontolati et al.,
2024). This method is a two-stage training approach within a latent space. In the first stage, the
authors pre-train an autoencoder using a multilayer fully connected neural network. This autoen-
coder is capable of encoding raw spatial data into a latent space. Subsequently, a DeepONet method
is trained within this latent space to predict the state of latent variables at any given time. There
are two fundamental distinctions between the MLAE method and our RLNO approach. Firstly,
our method’s OPERATOR-RNN encoder capitalizes on multiple sparse observational data inputs.
Secondly, we employ the VAE framework to train all parameters concurrently.

Fifth, we consider Latent Neural Ordinary Differential Equation (Latent NODE) (Rubanova et al.,
2019). This approach shares similarities with our RLNO method, with the primary distinctions being
two-fold: Firstly, the method utilizes an ODE-RNN encoder for its recognition network; secondly,
it employs “ODEsolve” for predicting the states of latent variables. Despite latent NODE method
exhibiting strong predictive performance in numerous low-dimensional systems, it encounters unac-
ceptably high computational complexity when applied to large-scale, high-dimensional systems or
PDE systems.

Sixth, we consider the PDE-Net approach (Long et al., 2018), which leverages finite differences
to approximate spatial derivative terms and uses simple backward Euler for training and testing.
In particular, for 2-d PDE systems, this method employs specific convolution kernels to compute

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table S1: Experimental hyperparameters in different systems
Experiment Ntr Nte Nx T Tenc ∆t l c λ σn dz drec

Toy model 1600 400 / 100 10 / / / / 0.2 32 32

DR (case 1) 8000 2000 64 100 10 0.01 0.2 1.0 0.6 0.4 64 64

DR (case 2) 8000 2000 64 100 10 0.01 0.2 1.0 0.6 0.1 64 64

KS (case 1) 4000 1000 64 100 10 0.005 0.2 10 0.6 1.0 64 64

KS (case 2) 4000 1000 64 100 10 0.005 0.5 0.01 0.6 1.0 64 64

NS (case 1) 4000 1000 32× 32 100 10 0.03 / / 0.6 0.2 64 100

NS (case 2) 4000 1000 64× 64 100 10 0.03 / / 0.6 0.2 64 100

spatial derivatives. Experiments reveal that the method underperforms when it fails to accurately
infer the underlying dynamical equations, inevitably leading to significant prediction errors in roll-
out forecasts.

Seventh, we consider the Fourier Neural Operator (FNO) approach (Li et al., 2020), which formu-
lates a neural operator by directly parameterizing the integral kernel in Fourier space. In practice,
we take the system state s(x, t) and the parameter function u(x, t) at time t as input and directly
output the system state s(x, t+ δt) at time t+ δt. In fact, in our experimental setup, this method is
unable to achieve super-resolution prediction along the temporal dimension. Consequently, we opt
for predicting the system state at sampling points {t0, t0 +∆t, · · · , t0 + T∆t} with δt = ∆t.

C EXPERIMENTAL PARAMETERS SETTINGS

To facilitate the replication of our experiments, in this section, we provide a detailed account of the
hyperparameter settings used in the main text. Here, Ntr denotes the number of training sets, Nte
represents the number of test sets, Nx indicates the spatial discretization dimensionality of PDEs,
T stands for the number of sampled data points, Tenc signifies the length of the encoder network,
∆t refers to the sampling time step, l and c respectively correspond to the length scale and scaling
factor of GRF, λ represents the sparsification ratio, dz denotes the dimensionality of the latent space
for the neural operator, and drec represents the dimensionality of the latent space for the recognition
network.

D SUPPLEMENTARY EXPERIMENTAL RESULTS

In this section, we supplement the robustness analysis results mentioned in the main text. For de-
tailed information, please refer to Section 4.4 of the main text and Figures S1-S5.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Sparse observations Ground truth

Figure S1: Experimental results across different σn in three test data of DR (case 1) experiment.

Sparse observations Ground truth

Figure S2: Experimental results across different Ntr in three test data of DR (case 1) experiment.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Sparse observations Ground truth

Figure S3: Experimental results across different Tenc in three test data of KS (case 1) experiment.

St
ep

 1
St

ep
 2

0
St

ep
 5

0
St

ep
 1

00

Ground truth

Figure S4: Experimental results across different dz in a test data of NS (case 2) experiment.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

St
ep

 1
St

ep
 2

0
St

ep
 5

0
St

ep
 1

00

Ground truth

Figure S5: Experimental results across different dz in a test data of NS (case 2) experiment.

21

	Introduction
	Related work
	Method
	Neural Operators in Latent Space
	Encoding for Non-Uniform Interval Observation Data
	Training RLNO using Evidence Lower Bound
	The Case of Multi-Input Functions

	Experiments
	Toy dataset
	1D PDE Systems
	2D NS System
	Ablation Experiments and Robustness Analysis

	Concluding Remarks
	The Execution Details of the RLNO Method
	Approximate posterior and Evidence Lower Bound
	The Execution Pseudocode of the RLNO Method
	Universal Approximation Theorem for RLNO

	Introduction and Discussion of Baseline Methods
	Experimental Parameters Settings
	Supplementary Experimental Results

