
Theoretical Investigation of Adafactor for Non-Convex
Smooth Optimization

Yusu Hong
Center for Data Science

and School of Mathematical Sciences
Zhejiang University

yusuhong@zju.edu.cn

Junhong Lin∗

Center for Data Science
Zhejiang University

junhong@zju.edu.cn

Abstract

Adafactor is an early memory-efficient optimization algorithm proposed as an
alternative to Adam. By eliminating first-order momentum and employing a rank-1
matrix factorization to approximate the second-moment matrix, Adafactor achieves
near-zero memory overhead compared to traditional gradient descent methods. De-
spite its practical suitability for large-scale training tasks where memory efficiency
is critical, its theoretical convergence analysis remains unexplored, largely due to
the challenges posed by its matrix factorization and update clipping mechanisms. In
this work, we provide a convergence analysis of Adafactor for non-convex smooth
optimization. We establish optimal convergence rates (up to logarithmic factors)
for finding stationary points in both deterministic and stochastic settings, the latter
under sub-Gaussian noises. Central to our analysis involves viewing Adafactor as
an approximation of Adam, and the use of a new proxy step-size to approximate the
unique adaptive step-size induced by Adafactor’s matrix factorization and update
clipping, along with an induction argument to control the gradient magnitude. Our
finding may theoretically suggest that involving rank-1 matrix approximation of the
second-moment matrix in Adam does not fundamentally hinder the convergence.

1 Introduction

Adaptive gradient-based methods, such as AdaGrad [12], RMSProp [41], Adadelta [47], Adam [22],
and AMSGrad [37], among others, are efficient approaches in solving the following unconstrained
stochastic optimization problem in deep learning fields:

min
X∈Rn×m

f(X) = EZ∈P [l(X;Z)], (1)

where f is a smooth potentially non-convex function, P denotes a probability distribution and X
denotes all the trainable weights of the model2. During the training process, these adaptive methods
store the historical gradients’ information to automatically tune their step-sizes. For example, both
RMSProp and Adam maintain the exponential moving average of squared gradients, and AdaGrad
stores the accumulation of squared gradients. Despite their effectiveness, adaptive gradient algorithms
incur memory overhead compared to standard gradient descent, as they must store additional gradient
statistics (e.g., first and second moments in Adam). This may become problematic when training
large-scale models, such as GPT-3 [4], which contains over 175 billion parameters. The extra memory
requirements may limit batch sizes or model complexity, posing challenges for resource-constrained
training environments.

∗The corresponding author is Junhong Lin.
2We consider the matrix parameter following the same setup in [38].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Adafactor [38] was proposed as a memory-efficient alternative to Adam, and subsequently many other
memory-efficient optimization algorithms have been developed recently, see e.g., [38, 1, 31, 23, 32]
and the references therein. Unlike Adam, which maintains per-parameter first and second moments
of gradients, Adafactor employs a rank-1 matrix factorization to approximate the second-moment
matrix. This reduces memory usage for the second-moment from O(mn) to O(m+ n) with tracking
only the exponential moving averages of the row and column sums of the squared gradient matrix.
Additionally, Adafactor removes Adam’s first-moment buffer and incorporates update clipping to
improve training stability. In real applications, several LLMs including PaLM [8]3 and T5 [36] have
adopted Adafactor as one of their main optimizers [53], and recent numerous studies on memory-
efficient optimization algorithms have adopted Adafactor as the benchmark algorithm for comparative
experiments.

The given empirical results reveal that Adafactor achieves comparable performance to RM-
SProp/Adam on training Transformer models [38], despite discarding part of the gradient infor-
mation to save memory. Unlike Adam, whose convergence theory has been recently studied, e.g.,
[46, 55, 11, 50, 24, 42, 19], theoretical analysis for Adafactor remains absent to the best of our
knowledge, though the algorithm was proposed several years ago. Specially, it is unknown whether
Adafactor can guarantee to find a stationary point as Adam for non-convex smooth optimization, and
if so, what its specific convergence rate is and what conditions on hyper-parameters are required.
We believe that the analysis is challenging, largely due to matrix factorization and update clipping
mechanisms.

In this paper, we take the first step to analyze Adafactor’s convergence theory for non-convex smooth
optimization problems with unbounded gradients. Our main theoretical results are summarized as
follows.

• With an appropriately chosen step-size and any decay rate β2,k ∈ [0, 1), full-batch Adafactor
can find a stationary point with a rate of O(1/T), matching that of Gradient Descent (GD) and
lower rate for first-order methods [5] up to constant factors.

• The stochastic Adafactor without update clipping can attain the convergence rate of Õ(1/
√
T)

under a common step-size parameter ρk ∼ O(1/
√
k) and a decay rate β2,k = 1 − 1/k. The

convergence rate is optimal up to logarithmic factors, matching the lower bound in [2].

• Adafactor with update clipping attain the nearly optimal convergence rate of Õ(1/
√
T), provided

that the clipping threshold and hyper-parameters are chosen appropriately.

We finally provide some simple numerical experiments on natural language processing to complement
our theoretical results.

The analysis is non-trivial compared to memory-unconstrained adaptive methods such as AdaGrad
and Adam due to the unique matrix factorization and update clipping. The core of our analysis is
viewing Adafactor as an approximation of Adam, and designing a new proxy step-size to approximate
the complicated adaptive step-size, while simultaneously breaking the correlation with stochastic
gradients. In addition, we rely on an induction argument to prove that the objective function value is
non-increasing in full-batch cases and that the gradient magnitude remains uniformly bounded during
the training process in stochastic cases.

The rest of the paper is organized as follows. The next section briefly mentions some of the most
relevant works. Section 3 presents some necessary notations and problem setups. Section 4 reviews
Adafactor and its major differences to RMSProp/Adam. Sections 5 and 6 provide convergence bounds
for full-batch Adafactor and stochastic Adafactor (without update clipping), respectively. Section 7
investigates Adafactor with the update clipping. Section 8 summarizes the main proof challenges and
the proof novelty. Section 9 briefly presents experimental results to complement our theory. All the
detailed proofs and some experiments can be found in the appendix.

2 Additional related work

We briefly list some typical works, due to page limitation.

3PaLM applies Adafactor without matrix factorization.

2

Convergence of memory-unconstrained adaptive methods. In the early stages, most works focus
on the regret bound of adaptive methods on (online) convex optimization, e.g., [12, 40] for AdaGrad,
[22, 37] for Adam and AMSGrad. A group of works study the convergence of adaptive methods for
non-convex smooth optimization, including [26, 44, 21, 13, 43, 3, 29] for AdaGrad-Norm, [43, 29, 20]
for AdaGrad, [39, 25] for RMSProp, [54] for AMSGrad, and [46, 10, 55, 11, 6, 17, 50, 24, 42, 19, 7]
for Adam. This body of work for non-convex smooth optimization consistently derives a convergence
rate of Õ(1/

√
T), with differences mainly on the noise and smooth assumptions, hyper-parameter

dependencies and logarithmic factors in convergence bounds.

Memory efficient algorithms. The aforemetioned memory-unconstrained adaptive methods such
as AdaGrad and Adam require additional memory usage to store gradient-related statistics compared
to traditional gradient descent methods. Consequently, a line of works focus on reducing the memory
usage of such adaptive methods. For instance, [1] presents a variant of AdaGrad, called SM3, by
maintaining k sets gradient accumulator. Both Adafactor and CAME [31] use matrix factorization
to approximate the second moment of gradients in Adam. GaLore [51] factorizes the gradients
through Singular Value Decomposition (SVD) before they enter the optimizer state. [32] proposes a
variant of Adam called MicroAdam by compressing both gradients and error feedbacks. Adapprox
[52] leverages randomized low-rank matrix approximation for Adam’s second moment estimator.
[23] develops a 4-bit Adam using quantization techniques to compress the first and second moment
estimators in Adam. [49] reduces the memory by cutting down the learning rate resources in Adam.

However, most of these works provide empirical convergence results, with scare exception on
theoretical analysis. [1] establishes a regret bound in convex and bounded-stochastic-gradients
setting for SM3. [32] provides convergence guarantees in expectation for MicroAdam with the
assumptions of bounded gradients and well-behaved compression operators in non-convex smooth
settings. Notably, these algorithms differ structurally from Adafactor, resulting in key differences in
the proof. Moreover, our results hold with high probability without requiring bounded gradients or
convexity assumptions.

Another line of works also use the idea of memory-efficiency over full-matrix preconditioned gradient
104 methods. For example, works such as [18, 14, 45, 28], employ various techniques to approximate
Hessian matrices in a memory-efficient way. [18] and [28] provide convergence bounds for their
proposed algorithms in convex settings, assuming certain bounded gradient/Hessian-related terms.

Notations. For any positive integer T , let [T] = {1, 2, · · · , T}. ∥ · ∥F and ∥ · ∥∞ denote the
Frobenius norm and ℓ∞-norm, respectively. a ∼ O(b) and a ≤ O(b) denote a = C0b and a ≤ C0b
for some positive constant C0. For any two matrices X = (xij)ij ,Y = (yij)ij ∈ Rn×m, we define
⟨X,Y ⟩ =

∑n
i=1

∑m
j=1 xijyij . X ⊙ Y , X

Y or X/Y , and
√
X denote the element-wise product,

quotient, and square root, respectively. 0n and 1n denote the zero and one n-dimensional vectors
respectively, and 1n×m denotes the one n×m-dimensional matrix. For any sequence {αi}i≥1, we
define

∑b
i=a αi = 0 and

∏b
i=a αi = 1 if a > b. χA denotes the indicator function with the set A.

We define RMS(X) =
√

1
mn

∑n
i=1

∑m
j=1 x

2
ij .

3 Problem setup

We consider unconstrained stochastic optimization in (1) over Rn×m under the Frobenius norm. The
objective function f : Rn×m → R is differentiable. Given an n×m matrix X , we assume a gradient
oracle that returns a random matrix g(X,Z) ∈ Rn×m dependent on the random sample Z. The
gradient of f at X is denoted by ∇f(X) ∈ Rn×m.

Assumptions. We make the following assumptions throughout the paper.

• (A1) L-smoothness: for any X,Y ∈ Rn×m, ∥∇f(Y)−∇f(X)∥F ≤ L∥Y −X∥F ;
• (A2) Bounded below: there exists f∗ > −∞ such that f(X) ≥ f∗, ∀X ∈ Rn×m;
• (A3) Unbiased estimator: the gradient oracle returns an unbiased estimator of ∇f(X), i.e.,
E [g(X,Z) | X] = ∇f(X), ∀X ∈ Rn×m;

• (A4) Sub-Gaussian noise: for σ > 0, E
[
exp

(
∥g(X,Z)−∇f(X)∥2

F

σ2

) ∣∣∣X] ≤ e,∀X ∈ Rn×m.

3

Algorithm 1 Adafactor

Input: Horizon T , initialization X1 ∈ Rn×m, R0 = 0m, C0 = 0⊤
n , step-size parameters

{ρk}k≥1, decay rates {β2,k}k≥1 ∈ [0, 1), regularization constant ϵ1 > 0, clipping threshold d.
for k = 1, · · · , T do

Draw a random sample Zk and Gk = g(Xk,Zk);
Rk = β2,kRk−1 + (1− β2,k)(Gk ⊙Gk + ϵ11n1

⊤
m)1m;

Ck = β2,kCk−1 + (1− β2,k)1
⊤
n (Gk ⊙Gk + ϵ11n1

⊤
m);

Wk = (RkCk)/(1
⊤
nRk);

Uk = Gk/
√
Wk;

ηk = ρk/max{1,RMS(Uk)/d};
Xk+1 = Xk − ηk ·Gk/

√
Wk;

end for

Assumptions (A1)–(A4) are standard in the convergence analysis for smooth non-convex optimization.
In particular, the sub-Gaussian noise assumption is widely used in the convergence analysis of
gradient-based methods, including SGD [15], AdaGrad [27, 21, 29], and Adam [24].

4 A review of Adafactor

In this section, we briefly introduce Adafactor and highlight its major differences from Adam. The
pseudocode for Adafactor is presented in Algorithm 1.

Matrix factorization. Throughout the training process, Adam maintains two n×m matrices, Mk

and Vk, using the exponential moving average update: for β1,k, β2,k ∈ [0, 1),

Mk = β1,kMk−1 + (1− β1,k)Gk, Vk = β2,kVk−1 + (1− β2,k)(Gk ⊙Gk), (2)

which results in tripled memory usage. The key innovation of Adafactor in improving memory
usage is to approximate Vk as the outer product of two rank-1 matrices Rk and Ck/(1

⊤
nRk), as

shown in Algorithm 1. Moreover, Rk and Ck are exactly the row sums and column sums of Vk, and
they also follow the exponential moving average update. Therefore, Adafactor only maintains two
rank-1 matrices Rk and Ck, significantly reducing the memory usage of storing Vk from O(mn) to
O(m+ n).

Increasing decay rate. In Adam, corrective terms are introduced into Mk and Vk, leading to two
decay rates that increase toward one. Theoretically, it has been demonstrated that a value close to
one for β2,k would ensure the convergence, e.g., [11, 55, 50] where as a constant one may lead to
divergence [37]. Inspired by this observation, Adafactor used an increasing second-moment decay
rate β2,k = 1− 1/kc, c > 0 to replace corrective terms. As pointed out by [38], this setting allows
for enjoying the stability of a low β2,k at the early stages of training and the insurance of convergence
from a high β2,k as the run progresses. Moreover, it leverages the bias correction.

Update clipping. Adafactor modifies the update process by discarding the first-order moment Mk

and instead applies an update clipping technique inside the step-size ηk. It is worth highlighting
that the update clipping involves dividing the root-mean-square of Uk when it exceeds a threshold
d, which differs from the standard gradient-clipping with the form ηk = ρk/max {1, ∥Gk∥F /d}.
This mechanism helps to calibrate the second-moment estimator Wk when it’s larger-than-desired
Gk ⊙Gk. Empirical findings in [38] indicate that implementing update clipping leads to significant
performance improvements when the learning-rate warm-up is not used.

5 Convergence bound for full-batch Adafactor

We first provide the convergence bound for the full-batch Adafactor. At each iteration, full-batch
Adafactor obtains the gradient ∇f(Xk) and then updates Rk,Ck using ∇f(Xk) instead of Gk in
Algorithm 1. The proof can be found in Appendix A.

4

Theorem 5.1. Let {Xk}k≥1 be generated by Algorithm 2, and Assumptions (A1) and (A2) hold. For
any constants c0, d > 0 and β2,1 ∈ [0, 1), we define

G :=
√
2L(f(X1)− f∗) + c0, ∆ := max{1, G2}+ c0

d(1− β2,1)
. (3)

If 0 ≤ β2,k < 1, ρk = ρ0, ∀k ≥ 1 and

ϵ1 =
c0

dmn(1− β2,1)
, 0 < ρ0 ≤ c30

Ld2mnG∆2
, (4)

then, for any T ≥ 1,

min
k∈[T]

∥Ḡk∥2F ≤ 2G∆(f(X1)− f∗)

ρ0T
.

The result indicates that full-batch Adafactor can find a stationary point at a rate of O(1/T), matching
that of Gradient Descent and the lower bound for deterministic non-convex smooth optimization [5]
up to constant factors. We require ϵ1 ∼ O

(
1

mn

)
and ρ0 ≤ O

(
1

mn

)
. The setting for β2,k is mild,

including the default setup [38] where β2,k = 1− 1/k0.8. In addition, we can set ρ0 ∼ O
(

1
mn

)
to

derive a convergence bound of O(mn) with respect to the dimension.

6 Stochastic Adafactor without update clipping

In the stochastic case, we start from the simple scenario where ηk = ρk, dropping the update clipping
1/max{1,RMS(Uk)/d}. The main reasons are as follows.

• As a first step toward theoretically investigating the convergence of Adafactor, we retain its
most essential component—the matrix factorization—while temporarily omitting the relatively
secondary update clipping. This simplification makes the proof more tractable.

• As pointed out in the experiments from [38], Adafactor’s performance shows little difference
with and without update clipping when implementing learning rate warm-up which is a popular
method in deep learning [53].

We now present the probabilistic convergence bound for Adafactor without update clipping as follows.
The detailed proof can be found in Appendix B.

Theorem 6.1. Let {Xk}k≥1 be generated by Algorithm 1 with ηk = ρk, ∀k ≥ 1 and Assumptions
(A1)-(A4) hold. For any T ≥ 1, δ ∈ (0, 1/4), λ0, c0 > 0, we define

H2 := 2L(f(X1)− f∗) +
12σ2λ0

c0
log

(
T

δ

)
+

4λ0(24 + λ0)(1 + log T)

c20
,

ΣH := H + σ

√
log

(
eT

δ

)
, H := Σ2

H + c0
√
mn. (5)

If ρ0 satisfies that

0 < ρ0 ≤ λ0

L
min

{
1√
H
,

1

Σ2
HH3/2

,
1

ΣH

√
H

}
, (6)

and other parameters satisfy that ϵ1 = c0√
mn

, β2,1 = 1
2 , ρ1 = ρ0, and for some constant c ∈ [0, 1],

β2,k = 1− 1

kc
, ρk =

ρ0
k1−c/2

, ∀k ≥ 2, (7)

then, with probability at least 1− 4δ,

min
k∈[T]

∥∇f(Xk)∥2F ≤ H2

ρ0LT c/2

(
H + σ

√
log

(
eT

δ

)
+

√
c0

)
. (8)

5

Convergence rate. Since H2 ∼ O(log T), we can set ρ0 = λ0

LΣ2
HH3/2 ∼ O

(
1

log5/2(T)

)
satisfying

(6), which leads to O
(

log4(T)
T c/2

)
order of convergence rate. With logarithmic factors ignored, Adafac-

tor can achieve the nearly optimal Õ(1/
√
T) convergence rate when c = 1, matching the one for

RMSProp/Adam and the lower bound [2] for stochastic non-convex smooth optimization.

Hyper-parameter setups. Our result indicates that the optimal rate is attained with β2,k = 1−
1/k, ρk = ρ0/

√
k, a pattern commonly appeared in theoretical analyses of RMSProp [55, 25] and

Adam [55]. When c increases from 0 to 1, the convergence rate also improves. We also test our
hyperparameter setup empirically, indicating a similar improvement as c increases, see Figure 1 and
Table 1 in the appendix.

We apply polynomial decay step-size parameters, which have been widely used in existing literature
such as [33]. We also require ρ0 ≤ O

(
1

poly(log T)

)
and ϵ1 ∼ O

(
1√
mn

)
.

Dimension dependency. We can set ρ0 ∼ O(H−3/2) ∼ O((mn)−3/4) given that H2 ∼ O(1) and
H ∼ O(

√
mn). With the setup, the convergence bound is O((mn)3/4) with respect to the dimension.

Under the assumptions of smoothness, [29, 20] derive bounds of at least O(mn) with respect to
the dimension for AdaGrad. For Adam and RMSProp, many existing works [11, 50, 42, 25] derive
O(poly(mn)) dependency while [24] derive a dimension-free convergence bound. Our convergence
bounds show comparable dimension dependency to most results for AdaGrad and Adam, though a gap
remains toward achieving fully dimension-free guarantees, and improving the dimension dependency
could be further investigated in the future.

Time-invariant β2,k. The following convergence bound sets a time-invariant β2,k = 1−1/T, ∀k ∈
[T], a setting commonly used in Adam’s convergence results [11, 42, 19]. The result indicates that
Adafactor can still achieve Õ(1/

√
T) convergence rate. The detailed proof is in Appendix B.5.

Corollary 1. Let T ≥ 1, δ ∈ (0, 1/4), H and H be defined in (5). If β2,1 = 1
2 , β2,k = 1− 1

T , ∀k ∈
[T] \ {1}, ρk = ρ0√

T
, ∀k ∈ [T], ϵ1 = c0√

mn
, and ρ0 ≤ λ0

L min
{

1√
H , 1

2Σ2
HH3/2 ,

1
ΣH

√
H

}
, then it holds

that with probability at least 1− 4δ,

1

T

T∑
k=1

∥∇f(Xk)∥2F ≤ H2

ρ0L
√
T

(
H + σ

√
log

(
eT

δ

)
+

√
c0

)
.

7 Stochastic Adafactor with update clipping

In this section, we consider the update clipping and slightly change the threshold d in Algorithm 1
to a time-varying threshold dk. The update clipping in Adafactor differs from the standard clipping
mechanism, bringing some more essential challenges for analysis. In what follows, we demonstrate
that incorporating such clipping can still ensure convergence for Adafactor under sub-Gaussian noise.
The detailed proof is in Appendix C.

Theorem 7.1. Let {Xk}k≥1 be generated by Algorithm 1 with d replaced by dk. Let Assumptions
(A1)-(A4) hold. For any T ≥ 1, δ ∈ (0, 1/4), λ0, c0 > 0 and α > 1, let

I2 := 2L(f(X1)− f∗) +
4λ0(24 + λ0)(1 + log T)

c20
+

2
√
δ(1 + log T)

c0

+
96λ0

c0
log

(
T

δ

)
+

2α+1λ0(1 + log T)

(mn)(α−1)/2cα0
. (9)

Also, let ΣI := I + σ
√
log
(
eT
δ

)
and I := Σ2

I + c0
√
mn. If ρ0 satisfies that

0 < ρ0 ≤ λ0

L
min

{
1

Σ2
I

√
I
,

1

Σ2
II3/2

,
1

ΣI

√
I
,

1

I(ΣI

√
I)α

}
, (10)

6

ϵ1, β2,k and ρk follow the setups in (7) for any c ∈ [0, 1], and dk ≥ k
c

2(α−1) , ∀k ∈ [T], then, with
probability at least 1− 4δ,

min
k∈[T]

∥Ḡk∥2F ≤ I2

ρ0LT c/2

(
I + σ

√
log

(
eT

δ

)
+
√
c0

)
.

Convergence rate. With I2 ∼ O(log T), both Σ2
I and I are O(log T) order and the typical setup

of ρ0 is O
(
1/ logmax{ 5

2 ,
1+2α

2 }(T)
)

satisfying (10), which leads to O
(

logmax{4,2+α}(T)
T c/2

)
order for

the convergence bound. With c = 1, Adafactor still achieve the nearly optimal Õ(1/
√
T) rate. In

addition, we can set ρ0 ∼ O(I−3/2) ∼ O((mn)−3/4) given that I2 ∼ O(1) and I ∼ O(
√
mn).

With the setup, the convergence bound is O((mn)3/4) with respect to the dimension.

Impact of update clipping. When incorporating update clipping, α influences the selection of ρ0
and dk, and the log T order in the convergence bound. The results suggest that the update clipping
does not significantly impact the convergence rate under sub-Gaussian noise. We hypothesize that
under sub-Gaussian (light-tailed) noise, update clipping is not necessary for ensuring convergence.
However, for other cases such as the heavy-tailed noise, update clipping may play a crucial role,
similar to the role of standard gradient clipping, as demonstrated in e.g., [9, 48, 16, 7].

We require dk to increase with steps k. At the early stages of training where the updates are usually
unstable [38, Figure 1], dk is small to ensure the clipping works effectively. As training progresses, the
sequences become more stable. Consequently, there is less need for update clipping, corresponding
to a relatively large dk. We test this setup through some experiments, showing its comparable
performance with the standard setting dk = 1, see Figure 4 and Table 2 in the appendix.

Time-invariant β2,k. We also provide the convergence bound with β2,k = 1− 1/T , which shares
a similar form to the one in Corollary 1. The detailed proof is in Appendix C.4.

Corollary 2. Let T ≥ 1, δ ∈ (0, 1/4), H and H be defined in Theorem 7.1. If β2,1 =
1
2 , β2,k = 1 − 1

T , ∀k ∈ [T] \ {1}, ρk = ρ0√
T
, ∀k ∈ [T], ϵ1 = c0√

mn
, and ρ0 ≤

λ0

L min
{

1
Σ2

I

√
I ,

1
2Σ2

II3/2 ,
1

ΣI

√
I ,

1
I(ΣI

√
I)α

}
, then it holds that with probability at least 1− 4δ,

1

T

T∑
k=1

∥∇f(Xk)∥2F ≤ I2

ρ0LT c/2

(
I + σ

√
log

(
eT

δ

)
+
√
c0

)
.

8 Summary of proof challenges and techniques

In this section, we will summarize the main proof challenges brought by Adafactor, which are
essentially different from other memory-unconstrained adaptive methods such as Adam due to the
unique matrix factorization and update clipping.

We let Ḡk := ∇f(Xk) and begin by the descent lemma of the smoothness [34, Theorem 2.1.5],

f(Xk+1) ≤ f(Xk)−ηk

〈
Ḡk,

Gk√
Wk

〉
︸ ︷︷ ︸

(I)

+
Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F︸ ︷︷ ︸

(II)

, ∀k ≥ 1. (11)

Then, the following challenges arise from estimating (I) and (II).

Challenge I. Correlation between Gk and Wk. The classical method for estimating (I) is to
decompose it as the “descent term” plus the “noise variance term”:

(I) = −ηk

∥∥∥∥ Ḡk
4
√
Wk

∥∥∥∥2
F︸ ︷︷ ︸

descent term

− ηk

〈
Ḡk,

Gk − Ḡk√
Wk

〉
︸ ︷︷ ︸

noise variance

.

7

For non-adaptive methods such as SGD, “noise variance” is a martingale difference sequence.
However, its conditional expectation is not necessarily zero, and the property of martingale can no
longer be used due to the correlation of Gk and Wk in Adafactor. Other adaptive methods such as
AdaGrad and Adam, also face a similar problem. To overcome this, existing works for AdaGrad and
Adam such as [44, 11, 42, 19] typically introduce a proxy step-size matrix Ak that is conditionally
independent of Gk and decompose (I) as

(I) = −ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

− ηk

〈
Ḡk,

Gk − Ḡk√
Ak

〉
︸ ︷︷ ︸

martingale difference

+ ηk

〈
Ḡk,Gk ⊙

(
1√
Ak

− 1√
Wk

)〉
︸ ︷︷ ︸

error

. (12)

For these works, proxy step-sizes are designed based on the linear update of adaptive step-sizes such
as (2). However, Adafactor uses a more complicated adaptive step-size with a non-linear update rule
between Wk and Wk−1 as shown in Algorithm 1, making existing proxy step-sizes not applicable.

Solution. We first define some temporary bounds for (stochastic) gradients: for fixed horizon T

and any k ∈ [T], Dk := maxs∈[k] ∥Ḡs∥F ,Σk := Dk + σ
√
log
(
eT
δ

)
and

Gk,1 := Σ2
k +mϵ1, Gk,2 := Σ2

k + nϵ1, Gk := Σ2
k +mnϵ1. (13)

Relying on the property of sub-Gaussian noise, we can verify that with probability at least 1− δ,
max
s∈[k]

∥Gs∥F ≤ Σk, ∀k ∈ [T]. (14)

We design a new proxy step-size matrix Ak as follows:

Ak :=
(β2,kRk−1 + (1− β2,k)Gk,1 · 1n)

(
β2,kCk−1 + (1− β2,k)Gk,2 · 1⊤

m

)
β2,kSk−1 + (1− β2,k)Gk

.

Ak satisfies two important properties: (a). It’s conditionally independent with Gk − Ḡk . Thereby,
“martingale difference” can be bounded through the concentration inequality of the martingale
difference sequence. (b). The following “distance” between Wk and Ak can be estimated by Dk

multiplying a small term
√
1− β2,k as β2,k is set to close enough to one,∣∣∣w(k)

ij − a
(k)
ij

∣∣∣√
a
(k)
ij

≤ O
(
Dk

√
1− β2,k

)
, ∀k ∈ [T], i ∈ [n], j ∈ [m].

Relying on this bound and the set up of ηk and β2,k in (7), it holds that with probability at least 1− δ,
t∑

k=1

error ≤
t∑

k=1

ηk
4

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+O
(
ρ0Σ

2
tG

3/2
t log t

)
, ∀t ∈ [T]. (15)

We also refer to the proof of Proposition B.1 in the appendix for more details.

Challenge II. Additional update clipping. The first solution only considers the case where the
update clipping is omitted. The update clipping introduces an even more complex adaptive step-size.
We incorporate the new proxy step-size method in Solution 1 and some techniques from the analysis
of algorithms with standard clipping [9, 30, 35].

Solution. We first rewrite the update rule as

Xk+1 = Xk − ρk
G̃k√
Wk

, G̃k =
Gk

max{1,RMS(Uk)/dk}
.

Then, we follow Ak in the first solution and provide a decomposition for (I) in (11),

(I) = −ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F︸ ︷︷ ︸

descent term

+ ρk

〈
Ḡk,

(
1√
Ak

− 1√
Wk

)
⊙ G̃k

〉
︸ ︷︷ ︸

error 1

−ρk

〈
Ḡk,

G̃k√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

martingale difference

+ ρk

〈
Ḡk,

Ḡk√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

error 2

,

8

where Zk is the k-th random sample. Note that “error 1” shares a similar form as “error” in (12),
which can be estimated similarly as in (15). The critical point is to handle the additional “error 2”.
With Ak conditionally independent with Zk and Ḡk = EZk

[Gk] from Assumption 3,

error 2 ≤ ρk

∥∥∥∥ Ḡk√
Ak

∥∥∥∥
F

· EZk
∥Ωk∥F , Ωk := Gk

(
1− 1

max{1, ∥Uk∥F /(dk
√
mn)}

)
. (16)

Under the probability event of (14), we will estimate EZk
∥Ωk∥F which is solely dependent on

Z1, · · · ,Zk−1. Then, we can further derive that

EZk
∥Ωk∥F ≤ Σk

√
δ

T
+Σα

k

(
2
√
Gk

dkmnϵ1

)α−1

. (17)

Combining the above, and applying setups for dk, ρk and ϵ1, we get the following bound under (14),
t∑

k=1

error 2 ≤ O

(
t∑

k=1

ρ0Dk

(
Σk

√
Gk

)α
k

)
≤ O

(
ρ0Dt

(
Σt

√
Gt

)α
log t

)
, ∀t ∈ [T].

For more details, we refer to the proof of Proposition C.1 in the appendix.

Challenge III. Potential unbounded gradient magnitude. Throughout the paper, we do not
assume the gradient magnitude is bounded. Therefore, we can only estimate (I) and (II) through the
temporary bounds Dk,Σk and Gk in (13).

Solution (stochastic case). First, based on the estimations for (I) and (II), one can derive that for
some increasing positive function ϕ(x), with probability at least 1− δ,

f(Xt+1)− f∗ ≤ −1

2

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+O
(
ρ0ϕ(Dt) log

(
T

δ

))
, ∀t ∈ [T]. (18)

Then, we use an induction argument to restrict the gradient magnitude. The induction will start by
verifying D1 ≤ H and then assume that Dt ≤ H for some t ∈ [T] where H is a value defined with
O(
√
log(T/δ)) order in prior. Using the induction assumption and ∥Ḡt+1∥2F ≤ 2L(f(Xt+1)− f∗)

into (18),

∥Ḡt+1∥2F ≤ −L

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+O
(
ρ0Lϕ(H) log

(
T

δ

))
≤ O

(
c0 log

(
T

δ

))
, (19)

where the last inequality applies the setup ρ0 ≤ c0
Lϕ(H) . Then, we derive that ∥Ḡt+1∥2F ≤ H2 as H2

is O(log(T/δ)) order and can be set equal to the RHS of (19). The induction is thereby complete,
and the gradient magnitude is bounded by H . See the proof of Proposition B.1 for more details.

Solution (full-batch case). In the noiseless case, (I) and (II) can be cancelled with each other
through a proper selection of ηk. Relying on this, we can use an induction to derive a stronger result
where f(Xt) is non-increasing with t. See the proof of Proposition A.1 for more details.

9 Experiment

Many existing works, such as [38, 51, 32, 53], have empirically demonstrated the convergence of
Adafactor, showing that it achieves comparable performance to Adam in training NLP models.

While our main contribution lies in theoretical analysis, we also test our hyper-parameter setups in the
full fine-tuning (FFT) scenario. We train BERT-Base and BERT-Large on GLUE/MNLI and GPT-2
on BookCorpus dataset. We follow the setup in Theorem 6.1 and require c to range from 0.6 to 1.0.
Training loss curves are presented in Figure 1 and Figure 3, and test accuracy is reported in Table 1 in
the appendix. The results show that as c increases, both convergence speed and test accuracy improve,
consistent with our theoretical findings. The detailed training setting can be found in Appendix D.1.

We also compare our configuration at c = 1 (the optimal selection in theoretical) with the default
setting proposed in [38] and with Adam, finding that their performances remain comparable. When
incorporating update clipping, we test the increasing clipping threshold dk = k

c
2(α−1) proposed in

Theorem 7.1, and find its performance to be comparable to the default setting where dk = 1 and to
Adam. Detailed experimental results are provided in Appendix D.2.

9

0 10000 20000 30000 40000
Step t

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

 L
os

s

c=1.0
c=0.9
c=0.8

c=0.7
c=0.6

(a) BERT-Large on GLUE/MNLI

20k 40k 60k 80k 100k 120k 140k
Step t

3.5

3.6

3.7

3.8

3.9

Tr
ai

ni
ng

 L
os

s

c=1.0
c=0.9
c=0.8

c=0.7
c=0.6

(b) GPT-2 on BookCorpus dataset

Figure 1: Training loss vs steps for different decay rates using Adafactor (no update clipping)

10 Conclusion

In this paper, we take the first step toward understanding the convergence of Adafactor in the non-
convex smooth landscape under sub-Gaussian noise. Our theoretical results indicate that with the
proper hyper-parameter setups, Adafactor can achieve the optimal convergence rate, matching the
lower bound for first-order methods in full-batch cases up to constant factors, and stochastic cases up
to logarithmic factors.

Limitations. First, the convergence behavior of Adafactor with a constant clipping threshold,
which may be more common in practical applications, remains theoretically unexplored. Second,
it remains unknown whether Adafactor can still converge under other noise assumptions, such
as heavy-tail noise and affine variance noise. Third, the convergence results for Adafactor are
established under the standard smoothness assumption. It would be interesting to further investigate
convergence under more general smoothness conditions that better reflect practical applications, such
as (L0, L1)-smoothness. Finally, it’s beneficial to further support our theoretical results through
thorough experiments on large language models.

Acknowledgement

This work was supported in part by the NSFC under grant number 12471096, and the National Key
Research and Development Program of China under grant number 2021YFA1003500.

References
[1] Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive

optimization. In Advances in Neural Information Processing Systems, 2019.

[2] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Wood-
worth. Lower bounds for non-convex stochastic optimization. Mathematical Programming,
199(1-2):165–214, 2023.

[3] Amit Attia and Tomer Koren. SGD with AdaGrad stepsizes: full adaptivity with high probability
to unknown parameters, unbounded gradients and affine variance. In International Conference
on Machine Learning, 2023.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pages
1877–1901, 2020.

[5] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points I. Mathematical Programming, 184(1):71–120, 2020.

[6] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of
Adam-type algorithms for non-convex optimization. In International Conference on Learning
Representations, 2019.

10

[7] Savelii Chezhegov, Yaroslav Klyukin, Andrei Semenov, Aleksandr Beznosikov, Alexander
Gasnikov, Samuel Horváth, Martin Takáč, and Eduard Gorbunov. Gradient clipping improves
AdaGrad when the noise is heavy-tailed. arXiv preprint arXiv:2406.04443, 2024.

[8] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–
113, 2023.

[9] Ashok Cutkosky and Harsh Mehta. High-probability bounds for non-convex stochastic opti-
mization with heavy tails. In Advances in Neural Information Processing Systems, volume 34,
pages 4883–4895, 2021.

[10] Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees for RMSProp and
Adam in non-convex optimization and an empirical comparison to Nesterov acceleration. arXiv
preprint arXiv:1807.06766, 2018.

[11] Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence
proof of Adam and AdaGrad. Transactions on Machine Learning Research, 2022.

[12] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(7):2121–2159, 2011.

[13] Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai,
and Rachel Ward. The power of adaptivity in SGD: self-tuning step sizes with unbounded
gradients and affine variance. In Conference on Learning Theory, 2022.

[14] Elias Frantar, Eldar Kurtic, and Dan Alistarh. M-FAC: Efficient matrix-free approximations of
second-order information. In Advances in Neural Information Processing Systems, volume 34,
pages 14873–14886, 2021.

[15] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[16] Eduard Gorbunov, Marina Danilova, and Alexander Gasnikov. Stochastic optimization with
heavy-tailed noise via accelerated gradient clipping. In Advances in Neural Information
Processing Systems, volume 33, pages 15042–15053, 2020.

[17] Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis
for algorithms of the Adam family. In Annual Workshop on Optimization for Machine Learning,
2021.

[18] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor
optimization. In International Conference on Machine Learning, pages 1842–1850. PMLR,
2018.

[19] Yusu Hong and Junhong Lin. On convergence of Adam for stochastic optimization under
relaxed assumptions. In Advances in Neural Information Processing Systems, volume 37, pages
10827–10877, 2024.

[20] Yusu Hong and Junhong Lin. Revisiting convergence of AdaGrad with relaxed assumptions. In
Uncertainty in Artificial Intelligence, pages 1727–1750. PMLR, 2024.

[21] Ali Kavis, Kfir Yehuda Levy, and Volkan Cevher. High probability bounds for a class of
nonconvex algorithms with AdaGrad stepsize. In International Conference on Learning Repre-
sentations, 2022.

[22] Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[23] Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. In
Advances in Neural Information Processing Systems, volume 36, 2024.

[24] Haochuan Li, Ali Jadbabaie, and Alexander Rakhlin. Convergence of Adam under relaxed
assumptions. In Advances in Neural Information Processing Systems, 2023.

11

[25] Huan Li, Yiming Dong, and Zhouchen Lin. On the O(
√
d

T 1/4) convergence rate of RMSProp
and its momentum extension measured by l1-norm. Journal of Machine Learning Research,
26(131):1–25, 2025.

[26] Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with
adaptive stepsizes. In International Conference on Artificial Intelligence and Statistics, 2019.

[27] Xiaoyu Li and Francesco Orabona. A high probability analysis of adaptive SGD with momentum.
In Workshop on International Conference on Machine Learning, 2020.

[28] Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342,
2023.

[29] Zijian Liu, Ta Duy Nguyen, Thien Hang Nguyen, Alina Ene, and Huy Nguyen. High probability
convergence of stochastic gradient methods. In International Conference on Machine Learning,
2023.

[30] Zijian Liu, Jiawei Zhang, and Zhengyuan Zhou. Breaking the lower bound with (little) structure:
Acceleration in non-convex stochastic optimization with heavy-tailed noise. In Conference on
Learning Theory, pages 2266–2290. PMLR, 2023.

[31] Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo Jiang, Xin Jiang, and Yang You. CAME:
Confidence-guided adaptive memory efficient optimization. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics, 2023.

[32] Ionut-Vlad Modoranu, Mher Safaryan, Grigory Malinovsky, Eldar Kurtić, Thomas Robert,
Peter Richtarik, and Dan Alistarh. Microadam: Accurate adaptive optimization with low space
overhead and provable convergence. In Advances in Neural Information Processing Systems,
volume 37, pages 1–43, 2024.

[33] Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation algo-
rithms for machine learning. In Advances in neural information processing systems, volume 24,
2011.

[34] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[35] Ta Duy Nguyen, Thien H Nguyen, Alina Ene, and Huy Nguyen. Improved convergence in
high probability of clipped gradient methods with heavy tailed noise. In Advances in Neural
Information Processing Systems, volume 36, pages 24191–24222, 2023.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[37] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond.
In International Conference on Learning Representations, 2018.

[38] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, 2018.

[39] Naichen Shi, Dawei Li, Mingyi Hong, and Ruoyu Sun. RMSProp converges with proper
hyper-parameter. In International Conference on Learning Representations, 2020.

[40] Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. arXiv preprint
arXiv:1002.4862, 2010.

[41] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-RMSProp: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

[42] Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap
between the upper bound and lower bound of Adam’s iteration complexity. In Advances in
Neural Information Processing Systems, 2023.

12

[43] Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of AdaGrad for
non-convex objectives: simple proofs and relaxed assumptions. In Conference on Learning
Theory, 2023.

[44] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: sharp convergence over
nonconvex landscapes. Journal of Machine Learning Research, 21(1):9047–9076, 2020.

[45] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, volume 35, pages 10665–10673, 2021.

[46] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
methods for nonconvex optimization. In Advances in Neural Information Processing Systems,
2018.

[47] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

[48] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In
Advances in Neural Information Processing Systems, 2020.

[49] Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu
Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. In
International Conference on Learning Representations, 2025.

[50] Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can con-
verge without any modification on update rules. In Advances in Neural Information Processing
Systems, 2022.

[51] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In International
Conference on Machine Learning, pages 61121–61143. PMLR, 2024.

[52] Pengxiang Zhao, Ping Li, Yingjie Gu, Yi Zheng, Stephan Ludger Kölker, Zhefeng Wang, and
Xiaoming Yuan. Adapprox: Adaptive approximation in Adam optimization via randomized
low-rank matrices. arXiv preprint arXiv:2403.14958, 2024.

[53] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

[54] Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the
convergence of adaptive gradient methods for nonconvex optimization. In Annual Workshop on
Optimization for Machine Learning, 2020.

[55] Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for
convergences of Adam and RMSProp. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019.

13

A Proof detail for Theorem 5.1

We first provide the form of full-batch Adafactor as follows. The only difference to Algorithm 1 is
the replacement of the stochastic gradient by the gradient ∇f(Xk) at each iteration.

Algorithm 2 Full-batch Adafactor

Input: Initialization point X1 ∈ Rn×m, R̄0 = 0n, C̄0 = 0⊤
m, step-size parameters {ρk}k≥1,

decay rate {β2,k}k≥1 ∈ [0, 1), regularization constant ϵ1 > 0, clipping threshold d.
for k = 1, · · · , T do
Ḡk = ∇f(Xk);
R̄k = β2,kR̄k−1 + (1− β2,k)(Ḡk ⊙ Ḡk + ϵ11n1

⊤
m)1m;

C̄k = β2,kC̄k−1 + (1− β2,k)1
⊤
n (Ḡk ⊙ Ḡk + ϵ11n1

⊤
m);

W̄k = (R̄kC̄k)/1
⊤
n R̄k;

Ūk = Ḡk/
√

W̄k;
η̂k = ρk/max{1,RMS(Ūk)/d};
Xk+1 = Xk − η̂k · Ḡk/

√
W̄k;

end for

A.1 Preliminary

We first denote the auxiliary matrix Ḡ2
k,ϵ1

= Ḡk ⊙ Ḡk + ϵ11n1
⊤
m. In addition, we define V̄k =(

v̄
(k)
ij

)
ij

as follows,

V̄0 = 0n×m, V̄k = β2,kV̄k−1 + (1− β2,k)Ḡ
2
k,ϵ1 , k ≥ 1. (20)

To simplify the notation, we let Ḡk =
(
ḡ
(k)
ij

)
ij

, R(i)

V̄k
, C(j)

V̄k
and SV̄k

be the i-th row sum, j-th column

sum and the coordinate sum of V̄k respectively. The same definition principal is applied to the
notation R

(i)

Ḡ2
k,ϵ1

and C
(j)

Ḡ2
k,ϵ1

. We also use w̄
(k)
ij , v̄

(k)
ij , ū

(k)
ij to denote the coordinates of W̄k, V̄k, Ūk

in Algorithm 2 respectively. In addition, we define the temporary upper bound for the gradient
magnitude

Dt := max
k∈[t]

∥Ḡk∥F , ∆t := D2
t +mnϵ1. (21)

A.2 Technical lemmas

Before proving the main result, we introduce some technical lemmas.

Lemma A.1. For any t ≥ 1,
∑t

k=1
1
k ≤ 1 + log t.

Proof. With a simple calculation, we have
t∑

k=1

1

k
= 1 +

t∑
k=2

∫ k

k−1

1

k
dx ≤ 1 +

∫ t

1

1

x
dx = 1 + log t.

The following result is standard in the analysis of smooth-based optimization.
Lemma A.2. Let f satisfy Assumptions (A1) and (A2). Then, ∥∇f(X)∥2F ≤ 2L(f(X)− f∗) and

f(Y) ≤ f(X) + ⟨∇f(X),Y −X⟩+ L

2
∥Y −X∥2F , ∀X,Y ∈ Rn×m. (22)

Lemma A.3. Let β2,k ∈ [0, 1], ∀k ≥ 1 and Γk be defined by

Γ0 = 0, Γk = β2,kΓk−1 + (1− β2,k), ∀k ≥ 1.

Then, (1− β2,1) ≤ Γk ≤ 1,∀k ≥ 1.

14

Proof. We could prove the result by induction. Since Γ0 = 0, it’s easy to derive that (1− β2,1) =
Γ1 ≤ 1. Suppose that for any j ∈ [k − 1], (1− β2,1) ≤ Γj ≤ 1. Then

Γk ≥ β2,k(1− β2,1) + (1− β2,k) ≥ 1− β2,1, Γk ≤ β2,k + (1− β2,k) = 1.

The induction is then complete.

Lemma A.4. Let V̄k be defined in (20), R̄k and C̄k be defind in Algorithm 2. For any k ≥ 0, it holds
that

R̄k = V̄k1m, C̄k = 1⊤
n V̄k, SV̄k

= 1⊤
n R̄k = 1⊤

n V̄k1m.

As a consequence, for any i ∈ [n], j ∈ [m],

R
(i)

V̄k
= β2,kR

(i)

V̄k−1
+ (1− β2,k)R

(i)

Ḡ2
k,ϵ1

, C
(j)

V̄k
= β2,kC

(j)

V̄k−1
+ (1− β2,k)C

(j)

Ḡ2
k,ϵ1

.

Proof. Note that R̄0 = V̄01m = 0n and C̄0 = 1⊤
n V̄0 = 0⊤

m. Suppose that for any j ≤ k − 1,
R̄j = V̄j1m, C̄j = 1⊤

n V̄j . Then, using the updated rule in Algorithm 2 and (20),
R̄k = β2,kR̄k−1 + (1− β2,k)Ḡ

2
k,ϵ11m =

(
β2,kV̄k−1 + (1− β2,k)Ḡ

2
k,ϵ1

)
1m = V̄k1m,

C̄k = β2,kC̄k−1 + (1− β2,k)1
⊤
n Ḡ

2
k,ϵ1 = 1⊤

n

(
β2,kV̄k−1 + (1− β2,k)Ḡ

2
k,ϵ1

)
= 1⊤

n V̄k.
(23)

Since SV̄k
represents the coordinate sum of V̄k, we could derive that

SV̄k
=

n∑
i=1

m∑
j=1

v̄
(k)
ij = 1⊤

n R̄k = 1⊤
n V̄k1m.

Since R(i)

V̄k
denotes the i-th row sum of V̄k, it’s the i-th coordinate of R̄k. Hence, for each coordinate

of R̄k, using (23),

R
(i)

V̄k
= β2,kR

(i)

V̄k−1
+ (1− β2,k)R

(i)

Ḡ2
k,ϵ1

.

Similarly, we can derive the result related to C
(j)

V̄k
.

Lemma A.5. Let Dk and ∆k be defined in (21). Then, for any i ∈ [n], j ∈ [m], k ≥ 1, it holds that

R
(i)

V̄k
∈ [mϵ1(1− β2,1), D

2
k +mϵ1], C

(j)

V̄k
∈ [nϵ1(1− β2,1), D

2
k + nϵ1],

SV̄k
∈ [mnϵ1(1− β2,1),∆k].

Proof. Recalling the definition of V̄k in (20) and Γk in Lemma A.3, we derive that

SV̄k
=

n∑
i=1

m∑
j=1

v̄
(k)
ij =

n∑
i=1

m∑
j=1

k∑
p=1

(1− β2,p)

((
ḡ
(p)
ij

)2
+ ϵ1

) k∏
l=p+1

β2,l


≤

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Ḡp∥2F + Γkmnϵ1

≤ Γk(D
2
k +mnϵ1) ≤ ∆k, (24)

where the last inequality applies Lemma A.3. Following (24) and Lemma A.3, we also derive that
SV̄k

≥ mnϵ1Γk ≥ mnϵ1(1− β2,1).

We also derive the upper bounds for R(i)

V̄k
and C

(j)

V̄k
as follows,

R
(i)

V̄k
=

m∑
j=1

v̄
(k)
ij ≤

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Ḡp∥2F + Γkmϵ1 ≤ D2
k +mϵ1,

C
(j)

V̄k
=

n∑
i=1

v̄
(k)
ij ≤

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Ḡp∥2F + Γknϵ1 ≤ D2
k + nϵ1.

Similarly, the lower bound could be derived by

R
(i)

V̄k
≥ mϵ1Γk ≥ mϵ1(1− β2,1), C

(j)

V̄k
≥ nϵ1Γk ≥ nϵ1(1− β2,1).

15

A.3 Non-increasing function value.

Before proving Theorem 5.1, we need to establish a key proposition as follows, indicating that the
objective function value is non-increasing under the proper selection of ϵ1 and ρk in (4). The proof
will rely on an induction argument.
Proposition A.1. Following the same conditions in Theorem 5.1, for any k ≥ 1,

f(Xk+1) ≤ f(Xk)−
ρk∥Ḡk∥2F
2G∆

, (25)

where G and ∆ are as in (3).

Proof. Using Lemma A.2 and the updated rule in Algorithm 2, we get that

f(Xk+1) ≤ f(Xk) + ⟨Ḡk,Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2F

= f(Xk)− η̂k

〈
Ḡk,

Ḡk√
W̄k

〉
+

Lη̂2k
2

∥∥∥∥∥ Ḡk√
W̄k

∥∥∥∥∥
2

F

≤ f(Xk)− η̂k

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F︸ ︷︷ ︸
(a)

+
L

2
η̂2k

∥∥∥∥∥ Ḡk√
W̄k

∥∥∥∥∥
2

F︸ ︷︷ ︸
(b)

. (26)

Step 1: Estimating (a) and (b). To lower bound (a), we first discuss the maximum operator inside
η̂k. Let two index sets be defined as

E
(k)
1 =

{
s ∈ [k] | ∥Ūs∥F ≥ d

√
mn
}
, E

(k)
2 =

{
s ∈ [k] | ∥Ūs∥F < d

√
mn
}
.

Using Lemma A.5 and w
(k)
ij =

R
(i)

V̄k
C

(j)

V̄k

SV̄k

, and noting that R(i)

V̄k
, C

(j)

V̄k
≤ SV̄k

, we derive that

w̄
(k)
ij ≥ mnϵ21(1− β2,1)

2

∆k
, w

(k)
ij ≤ SV̄k

≤ ∆k. (27)

Then, we have

∥Ūk∥2F =

n∑
i=1

m∑
j=1

(
ḡ
(k)
ij

)2
w̄

(k)
ij

≤ ∥Ḡk∥2F∆k

mnϵ21(1− β2,1)2
≤ D2

k∆k

mnϵ21(1− β2,1)2
. (28)

Hence, we have when k ∈ E
(t)
1 ,

η̂k

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

≥ d
√
mnρk

∥Ūk∥F

∥∥Ḡk

∥∥2
F

maxi,j

√
w̄

(k)
ij

≥ dϵ1mn(1− β2,1)
ρk∥Ḡk∥2F
Dk∆k

. (29)

When k ∈ E
(t)
2 , we obtain that

η̂k

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

≥
ρk
∥∥Ḡk

∥∥2
F

maxi,j

√
w̄

(k)
ij

≥ ρk∥Ḡk∥2F√
∆k

. (30)

Combining with (29) and (30), and using ϵ1 = c0
dmn(1−β2,1)

, we derive that

(a) ≥ min

{
1√
∆k

,
c0

Dk∆k

}
ρk∥Ḡk∥2F . (31)

Using (27), we have

(b) ≤ Lρ2k∥Ḡk∥2F
2mini,j w̄

(k)
ij

≤ Lρ2k∥Ḡk∥2F∆k

2(1− β2,1)2mnϵ21
. (32)

16

Step 2: Verifying k = 1. To prove the desired result in (25), we use an induction argument. First,
we need to prove the case of k = 1. Note that when k = 1, from Lemma A.2 and ϵ1 in (4),

D2
1 = ∥Ḡ1∥2F ≤ 2L(f(X1)− f∗) ≤ G2, ∆1 = D2

1 +mnϵ1 ≤ G2 +mnϵ1 ≤ ∆. (33)

Then, setting k = 1 in (31) and using (33),

(a) ≥ min

{
1√
∆
,
c0
G∆

}
ρ1∥Ḡ1∥2F =

c0ρ1∥Ḡ1∥2F
G∆

, (34)

where the equality applies that ∆ ≥ 1 and c0
G ≤ 1 from (3). Similarly, applying (33) into (32) with

k = 1, and combining with (34) and (26) with k = 1,

f(X2) ≤ f(X1) + ρ1∥Ḡ1∥2F
(

Lρ1∆

2(1− β2,1)2mnϵ21
− c0

G∆

)
≤ f(X1)−

c0ρ1∥Ḡ1∥2F
2G∆

,

where the last inequality applies the setup of ϵ1, ρ1 in (4).

Step 3: Verifying k = t. Suppose that for any k ≤ t− 1, (25) holds. Consequently, for any k ≤ t,

∥Ḡk∥2F ≤ 2L(f(Xk)− f∗) ≤ · · · ≤ 2L(f(X1)− f∗) ≤ G2, ∆k ≤ ∆. (35)

Then, setting k = t in (31) and (32), and using (35), we have

(a) ≥ min

{
1√
∆
,
c0
G∆

}
ρt∥Ḡt∥2F =

c0ρt∥Ḡt∥2F
G∆

, (b) ≤ Lρ2t∥Ḡt∥2F∆
2(1− β2,1)2mnϵ21

. (36)

Plugging (36) into (26) with k = t, and using ρt in (4), we get that

f(Xt+1) ≤ f(Xt) + ρt∥Ḡt∥2F
(

Lρt∆

2(1− β2,1)2mnϵ21
− c0

G∆

)
≤ f(Xt)−

c0ρt∥Ḡt∥2F
2G∆

.

Then, the induction is complete, and we prove the desired result.

A.4 Proof of Theorem 5.1

Now, based on Proposition A.1, we can easily prove the main convergence result. Consequently,
subtracting f∗ on both sides of (25) and summing up both sides over k ∈ [T],

T∑
k=1

ρk∥Ḡk∥2F
2G∆

≤ f(X1)− f(Xt+1) ≤ f(X1)− f∗,

where the last inequality applies Assumption (A2). Then, with ρk = ρ0, we can derive that

min
k∈[T]

∥Ḡk∥2F ≤ 1

T

T∑
k=1

∥Ḡk∥2F ≤ 2G∆(f(X1)− f∗)

ρ0T
.

B Proof detail for Theorem 6.1

B.1 Preliminary

We first follow the notations of Ḡk =
(
ḡ
(k)
ij

)
ij

:= ∇f(Xk). Let Gk =
(
g
(k)
ij

)
ij

and ξk :=

Gk − Ḡk. We define G2
k,ϵ1

:= Gk ⊙Gk + ϵ11n1
⊤
m and Vk =

(
v
(k)
ij

)
ij

as

V0 = 0n×m, Vk = β2,kVk−1 + (1− β2,k)G
2
k,ϵ1 , k ≥ 1. (37)

We also define R
(i)
Vk

, C
(j)
Vk

and SVk
as the i-th row sum, j-th column sum and coordinate sum of Vk

respectively. R(i)

G2
k,ϵ1

and C
(j)

G2
k,ϵ1

represent the same definitions with respect to G2
k,ϵ1

. Then, using a

similar deduction in Lemma A.4, we obtain that for any k ≥ 1, i ∈ [n], j ∈ [m],

R
(i)
Vk

= β2,kR
(i)
Vk−1

+ (1− β2,k)R
(i)

G2
k,ϵ1

, C
(j)
Vk

= β2,kC
(j)
Vk−1

+ (1− β2,k)C
(j)

G2
k,ϵ1

. (38)

17

As a consequence of (38), each coordinate of Wk satisfies that

w
(k)
ij =

R
(i)
Vk

C
(j)
Vk

SVk

=

(
β2,kR

(i)
Vk−1

+ (1− β2,k)R
(i)

G2
k,ϵ1

)(
β2,kC

(j)
Vk−1

+ (1− β2,k)C
(j)

G2
k,ϵ1

)
β2,kSVk−1

+ (1− β2,k)SG2
k,ϵ1

.

(39)

A well-constructed proxy step-size. For any k ≥ 1, define

Dk := max
s∈[k]

∥Ḡs∥F , Σk := Dk + σ

√
log

(
eT

δ

)
,

Gk,1 := Σ2
k +mϵ1, Gk,2 := Σ2

k + nϵ1, Gk := Σ2
k +mnϵ1. (40)

Then, we introduce a proxy step-size matrix Ak =
(
a
(k)
ij

)
ij

such that

a
(k)
ij =

(
β2,kR

(i)
Vk−1

+ (1− β2,k)Gk,1

)(
β2,kC

(j)
Vk−1

+ (1− β2,k)Gk,2

)
β2,kSVk−1

+ (1− β2,k)Gk
. (41)

The proxy step-size technique is a standard way in the convergence analysis of adaptive methods, e.g.,
[44, 11]. We provide a new proxy step-size in (41) to handle the matrix factorization in Adafactor.
This construction satisfies two properties. First, it’s independent from the k-th random sample Zk

and thereby conditionally independent with the k-th stochastic gradient Gk. Second, it needs to
remain sufficiently close to the original adaptive step-size Wk to avoid generating divergent terms, as
indicated in Lemma B.6.

B.2 Technical lemmas

In the following, we first provide some necessary technical lemmas. We introduce a concentration
inequality for the martingale difference sequence. See [27] for a proof.

Lemma B.1. Suppose that {Zs}s∈[T] is a martingale difference sequence with respect to ζ1, · · · , ζT .
Assume that for each s ∈ [T], σs is a random variable only dependent on ζ1, · · · , ζs−1 and satisfies
that

E
[
exp

(
Z2
s

σ2
s

) ∣∣∣ζ1, · · · , ζs−1

]
≤ e.

Then, for any λ > 0, and for any δ ∈ (0, 1), it holds that

P

(
T∑

s=1

Zs >
1

λ
log

(
1

δ

)
+

3

4
λ

T∑
s=1

σ2
s

)
≤ δ.

We also introduce a standard result showing that the maximum magnitude of a sequence of vectors
with sub-Gaussian norm is restricted. See [27, Lemma 5] for a proof.

Lemma B.2. Let T ≥ 1 and ξk = Gk − Ḡk, ∀k ∈ [T] satisfy Assumption (A4). Then, with
probability at least 1− δ,

max
k∈[T]

∥ξk∥2F ≤ σ2 log

(
eT

δ

)
. (42)

Then, the following lemmas will be established based on the probabilistic event in Lemma B.2.

Lemma B.3. Let T ≥ 1, β2,1 = 1/2, β2,k ∈ [0, 1), ∀k ≥ 2 and Gk,1,Gk,2,Gk be defined in (40). If
(42) happens, then, for any k ∈ [T], i ∈ [n] and j ∈ [m],

R
(i)

G2
k,ϵ1

, R
(i)
Vk

∈ [mϵ1/2,Gk,1], C
(j)

G2
k,ϵ1

, C
(j)
Vk

∈ [nϵ1/2,Gk,2], SG2
k,ϵ1

, SVk
∈ [mnϵ1/2,Gk].

18

Proof. First, using (42), we have for any k ∈ [T],

∥Gk∥F ≤ ∥Ḡk∥F + ∥ξk∥F ≤ Dk + σ

√
log

(
eT

δ

)
= Σk. (43)

Using (40), we derive that

mnϵ1/2 ≤ SG2
k,ϵ1

=

n∑
i=1

m∑
j=1

((
g
(k)
ij

)2
+ ϵ1

)
= ∥Gk∥2F +mnϵ1 ≤ Gk,

mϵ1/2 ≤ R
(i)

G2
k,ϵ1

=

m∑
j=1

((
g
(k)
ij

)2
+ ϵ1

)
≤ ∥Gk∥2F +mϵ1 ≤ Gk,1,

nϵ1/2 ≤ C
(j)

G2
k,ϵ1

=

n∑
i=1

((
g
(k)
ij

)2
+ ϵ1

)
≤ ∥Gk∥2F + nϵ1 ≤ Gk,2.

Using Lemma A.3 and (43), we can show that

mϵ1(1− β2,1) ≤ R
(i)
Vk

≤
k∑

p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Gp∥2F + Γkmϵ1 ≤ Γk(Σ
2
k +mϵ1).

With β2,1 = 1/2, we then obtain the desired result. The bounds for C(j)
Vk

, SVk
can be also derived by

the similar deduction.

We have the following lemma to control each coordinate of the proxy step-size matrix Ak.
Lemma B.4. Let T ≥ 1, β2,1 = 1/2, β2,k ∈ [0, 1), ∀k ≥ 2. If (42) happens, then it holds that for
any k ∈ [T], i ∈ [n], j ∈ [m],

mnϵ21
4Gk

≤ w
(k)
ij ,

mnϵ21
4Gk

≤ a
(k)
ij ≤ min{Gk,1,Gk,2}.

Consequently,
∥∥∥ Gk√

Wk

∥∥∥2
F
≤ 4Σ2

kGk

mnϵ21
.

Proof. With w
(k)
ij =

R
(i)
Vk

C
(j)
Vk

SVk
, we can easily derive from Lemma B.3 that

w
(k)
ij ≥ mnϵ21

4Gk
,

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ ∥Gk∥2F
mini,j w

(k)
ij

≤ 4Σ2
kGk

mnϵ21
,

where the last inequality applies (43). Since R
(i)
Vk−1

, C
(j)
Vk−1

≤ SVk−1
and Gk,1,Gk,2 ≤ Gk, we have

β2,kR
(i)
Vk−1

+ (1− β2,k)Gk,1

β2,kSVk−1
+ (1− β2,k)Gk

≤ 1,
β2,kC

(j)
Vk−1

+ (1− β2,k)Gk,2

β2,kSVk−1
+ (1− β2,k)Gk

≤ 1.

Then, using Lemma B.3, we derive that

a
(k)
ij ≤ min

{
β2,kR

(i)
Vk−1

+ (1− β2,k)Gk,1, β2,kC
(j)
Vk−1

+ (1− β2,k)Gk,2

}
≤ min{Gk,1,Gk,2}.

(44)

To lower bound a
(k)
ij , we can derive from Lemma B.3 that

β2,kR
(i)
Vk−1

+ (1− β2,k)Gk,1 ≥ β2,k(mϵ1/2) + (1− β2,k)(mϵ1/2) = mϵ1/2.

Similarly, we get that β2,kC
(j)
Vk−1

+(1−β2,k)Gk,2 ≥ nϵ1/2 and further deriv that a(k)ij ≥ mϵ1·nϵ1
4Gk

.

Next, we have the following probabilistic result relying on the property of the martingale difference
sequence and sub-Gaussian noise.

19

Lemma B.5. Let ρk be defined in (7) and β2,k ∈ [0, 1). Let Assumptions (A3), (A4) hold and H be
as in (5). If (42) happens, then for any T ≥ 1, λ > 0 and δ ∈ (0, 1), with probability at least 1− 2δ,

−
t∑

k=1

ρk

〈
Ḡk,

ξk√
Ak

〉
≤ 1

4

t∑
k=1

ρk
√
Gk√
H

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
6σ2ρ0

√
H√

mnϵ1
log

(
T

δ

)
, ∀t ∈ [T].

Proof. Let ζk = −ρk

〈
Ḡk,

ξk√
Ak

〉
and the filtration Fk = σ (Z1, · · · ,Zk) where σ(·) denotes the

σ-algebra. Note that ρk, Ḡk and Ak are measurable with Fk−1 and ξk is measurable with Fk. Then,
{ζk}k≥1 is a martingale difference sequence with Fk since from Assumption (A3),

E [ζk | Fk−1] = −ρk

〈
Ḡk,

E [ξk | Fk−1]√
Ak

〉
= 0.

Let ωk = σρk

∥∥∥ Ḡk√
Ak

∥∥∥
F

. We derive from Cauchy-Schwarz inequality and Assumption (A4) that

E
[
exp

(
ζ2k
ω2
k

)
| Fk−1

]
≤ E

exp

∥∥∥ Ḡk√

Ak

∥∥∥2
F
∥ξk∥2F

σ2
∥∥∥ Ḡk√

Ak

∥∥∥2
F

∣∣∣Fk−1

 ≤ e. (45)

Then, using Lemma B.1 and (42), it leads to that for any λ > 0, with probability at least 1− 2δ,

−
t∑

k=1

ρk

〈
Ḡk,

ξk√
Ak

〉
≤ 3λσ2

4

t∑
k=1

ρ2k

∥∥∥∥ Ḡk√
Ak

∥∥∥∥2
F

+
1

λ
log

(
1

δ

)
. (46)

Combining with Lemma B.4 and ρk in (7), we derive that when c ∈ [0, 2),

ρk√
a
(k)
ij

≤ ρ0
k1−c/2

· 2
√
Gk√

mnϵ1
≤ 2ρ0

√
Gk√

mnϵ1
. (47)

Therefore, setting λ =
√
mnϵ1/(6σ

2ρ0
√
H) in (46) and re-scaling δ, we derive that with probability

at least 1− 2δ,

−
t∑

k=1

ρk

〈
Ḡk,

ξk√
Ak

〉
≤ 1

4

t∑
k=1

ρk
√
Gk√
H

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
6σ2ρ0

√
H√

mnϵ1
log

(
T

δ

)
, ∀t ∈ [T].

The following key lemma provides an upper bound for the “relative distance” between Wk and Ak.

Lemma B.6. Let T ≥ 1, β2,1 = 1/2, β2,k ∈ [0, 1), ∀k ≥ 2. If (42) happens, then for any
k ≥ 1, i ∈ [n], j ∈ [m] and Gk in (40), it holds that∣∣∣w(k)

ij − a
(k)
ij

∣∣∣√
a
(k)
ij

≤ 3
√

(1− β2,k)Gk. (48)

Proof. To simplify the notation, we let

Xk = β2,kR
(i)
Vk−1

+ (1− β2,k)R
(i)

G2
k,ϵ1

, X̄k = (1− β2,k)

(
Gk,1 −R

(i)

G2
k,ϵ1

)
,

Yk = β2,kC
(j)
Vk−1

+ (1− β2,k)C
(j)

G2
k,ϵ1

, Ȳk = (1− β2,k)

(
Gk,2 − C

(j)

G2
k,ϵ1

)
,

Zk = β2,kSVk−1
+ (1− β2,k)SG2

k,ϵ1
, Z̄k = (1− β2,k)

(
Gk − SG2

k,ϵ1

)
. (49)

20

Then, we have ∣∣∣w(k)
ij − a

(k)
ij

∣∣∣ = ∣∣∣∣XkYk

Zk
− (Xk + X̄k)(Yk + Ȳk)

Zk + Z̄k

∣∣∣∣
=

∣∣∣∣XkYkZ̄k −XkZkȲk − YkZkX̄k − ZkX̄kȲk

Zk(Zk + Z̄k)

∣∣∣∣ .
Recalling a

(k)
ij in (41), we get that a(k)ij = (Xk+X̄k)(Yk+Ȳk)

Zk+Z̄k
. Hence, we derive that∣∣∣w(k)

ij − a
(k)
ij

∣∣∣√
a
(k)
ij

=

∣∣XkYkZ̄k −XkZkȲk − YkZkX̄k − ZkX̄kȲk

∣∣
Zk

√
(Xk + X̄k)(Yk + Ȳk)(Zk + Z̄k)

≤
∣∣XkȲk + YkX̄k + (X̄kȲk)

∣∣√
(Xk + X̄k)(Yk + Ȳk)(Zk + Z̄k)︸ ︷︷ ︸

(c)

+
XkYkZ̄k

Zk

√
(Xk + X̄k)(Yk + Ȳk)(Zk + Z̄k)︸ ︷︷ ︸

(d)

.

(50)

Since (42) happens, we can apply Lemma B.3 to verify that

0 ≤ X̄k ≤ (1− β2,k)Gk,1, 0 ≤ Ȳk ≤ (1− β2,k)Gk,2, 0 ≤ Z̄k ≤ (1− β2,k)Gk. (51)

Since XkYk ≥ 0, (c) can be bounded as

(c) ≤
∣∣XkȲk + YkX̄k + X̄kȲk

∣∣√
(XkȲk + YkX̄k + X̄kȲk)(Zk + Z̄k)

≤

√
XkȲk + YkX̄k + X̄kȲk

Zk + Z̄k
. (52)

Recalling the definition, we have Xk, X̄k ≤ Zk + Z̄k and Yk ≤ Zk + Z̄k. Further, applying (51), we
derive that

XkȲk

Zk + Z̄k
≤ Ȳk ≤ (1− β2,k)Gk,2,

YkX̄k

Zk + Z̄k
≤ X̄k ≤ (1− β2,k)Gk,1,

X̄kȲk

Zk + Z̄k
≤ Ȳk ≤ (1− β2,k)Gk,2.

We then derive from (52), Gk,1 ≤ Gk and Gk,2 ≤ Gk that

(c) ≤
√
3(1− β2,k)Gk. (53)

Then, we move to bound (d). Recalling the definitions in (49), we have 0 ≤ Xk ≤ Zk, 0 ≤ Yk ≤ Zk.
Combining (51) where X̄k, Ȳk, Z̄k ≥ 0, we have

(d) ≤ XkYkZ̄k

Zk

√
XkYkZ̄k

≤
√
XkYkZ̄k

Zk
≤
√

Z̄k ≤
√
(1− β2,k)Gk. (54)

Applying (53) and (54) into (50), we then derive the desired result.

B.3 Bounding gradient magnitude

In this part, we will control the gradient magnitude along the optimization trajectory. The result is
summarized in the following proposition.
Proposition B.1. Following the same conditions and notations in Theorem 6.1, for any T ≥ 1 and
δ ∈ (0, 1/3), it holds that with probability at least 1− 3δ,

Dt = max
k∈[t]

∥Ḡk∥F ≤ H, Σt ≤ ΣH , Gt ≤ H, ∀t ∈ [T]. (55)

Proof. Using the inequality in Lemma A.2 and Algorithm 1, we have

f(Xk+1) ≤ f(Xk) + ⟨Ḡk,Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2F

≤ f(Xk)− ηk

〈
Ḡk,

Gk√
Wk

〉
+

Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

.

21

Introducing the proxy step-size matrix Ak in (41) and then summing up both sides over k ∈ [t], we
derive that

f(Xt+1) ≤ f(X1)−
t∑

k=1

ηk

〈
Ḡk,

Gk√
Ak

〉
︸ ︷︷ ︸

A

+

t∑
k=1

ηk

〈
Ḡk,Gk ⊙

(
1√
Ak

− 1√
Wk

)〉
︸ ︷︷ ︸

B

+

t∑
k=1

Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F︸ ︷︷ ︸

C

. (56)

Next, we will assume that the probability events in (42) and Lemma B.5 always happen and estimate
A, B, C relying on the temporary upper bounds Dk,Σk,Gk in (40). Note that when the same
conditions in Theorem 6.1 hold and (42) holds, Lemmas B.3, B.4, B.6 hold. To start with, using (42),
we have

∥Gk∥F ≤ ∥Ḡk∥F + ∥ξk∥F ≤ Σk. (57)

Estimating A. We first introduce ξk = Gk − Ḡk into A and get that

A = −
t∑

k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
. (58)

With ηk = ρk, we can use the inequality in Lemma B.5 to derive that for all t ∈ [T],

A ≤
t∑

k=1

(√
Gk

4
√
H

− 1

)
ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
6σ2ρ0

√
H√

mnϵ1
log

(
T

δ

)
. (59)

Estimating B. B is essentially the error brought by the proxy step-size Ak. We will first calculate

the gap of 1/
√
w

(k)
ij and 1/

√
a
(k)
ij as follows,∣∣∣∣∣∣ 1√

w
(k)
ij

− 1√
a
(k)
ij

∣∣∣∣∣∣ = 1√
w

(k)
ij

√
a
(k)
ij

∣∣∣∣√w
(k)
ij −

√
a
(k)
ij

∣∣∣∣ ≤ 1√
w

(k)
ij

√
a
(k)
ij

√∣∣∣w(k)
ij − a

(k)
ij

∣∣∣. (60)

We then apply (60) and Young’s inequality,

B ≤
t∑

k=1

n∑
i=1

m∑
j=1

ηk

∣∣∣ḡ(k)ij g
(k)
ij

∣∣∣√
w

(k)
ij

√
a
(k)
ij

√∣∣∣w(k)
ij − a

(k)
ij

∣∣∣
≤ 1

4

t∑
k=1

n∑
i=1

m∑
j=1

ηk ·

(
ḡ
(k)
ij

)2
√
a
(k)
ij

+ 4

t∑
k=1

n∑
i=1

m∑
j=1

ηk ·

∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

·

 g
(k)
ij√
w

(k)
ij

2

. (61)

Thus, plugging (48) from Lemma B.6 into (61), then using Lemma B.4 and ηk = ρk =
ρ0/k

1−c/2, β2,1 = 1/2, β2,k = 1− 1/kc, k ≥ 2, we derive that

B ≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 12

t∑
k=1

ηk

√
(1− β2,k)Gk

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
48ρ0
mnϵ21

t∑
k=1

Σ2
kG

3/2
k

k

≤ 1

4

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
48ρ0Σ

2
tG

3/2
t (1 + log t)

mnϵ21
, (62)

where we apply Σk ≤ Σt,Gk ≤ Gt, k ≤ t and Lemma A.1 in the last inequality.

22

Estimating C. Using the setup of ηk and β2,k, Lemma B.4 and Lemma A.1, we have

C ≤ L

2

t∑
k=1

ρ20
k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 2Lρ20
mnϵ21

t∑
k=1

Σ2
kGk

k
≤ 2Lρ20Σ

2
tGt(1 + log t)

mnϵ21
. (63)

An induction argument to bound Dk. The induction is established based on the events in (42)
and Lemma B.5. Hence, the desired result will hold with probability at least 1− 3δ. First, it’s easy to
verify that G2

1 ≤ 2L(f(X1)− f∗) ≤ H2 from Lemma A.2. Let us suppose that for some t ∈ [T],

Dk ≤ H, consequently with ϵ1 = c0/
√
mn, Σk ≤ ΣH , Gk ≤ H, ∀k ∈ [t], (64)

where the specific defitions of H,ΣH and H are in (5). Then, we move to the case of t+ 1. We first
subtract f∗ on both sides of (56) and use Lemma A.2 to derive that

∥Ḡt+1∥2F
2L

≤ f(Xt+1)− f∗ ≤ f(X1)− f∗ +A+B+C. (65)

Note that the estimations in (59), (62) and (63) are established based on the probability events in (42)
and Lemma B.5. Then, using (64), ρ0 defined in (6) and ϵ1 = c0√

mn
into these estimations, we have

A ≤ −3

4

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
6σ2λ0

Lc0
log

(
T

δ

)
,

B ≤ 1

4

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
48λ0(1 + log T)

Lc20
,

C ≤ 2Lρ20Σ
2
HH(1 + log t)

mnϵ21
≤ 2λ2

0(1 + log T)

Lc20
. (66)

Then, plugging (66) into (65), it leads to

∥Ḡt+1∥2F
2L

≤ f(X1)− f∗ − 1

2

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
6σ2λ0

Lc0
log

(
T

δ

)
+

2λ0(24 + λ0)(1 + log T)

Lc20
. (67)

With both sides multiplying 2L, we derive that

∥Ḡt+1∥2F ≤ 2L(f(X1)− f∗)− L

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
12σ2λ0

c0
log

(
T

δ

)
+

4λ0(24 + λ0)(1 + log T)

c20

≤ H2 − L

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≤ H2, (68)

where H is defined in (5). The induction is complete, and we prove the desired result.

B.4 Proof of Theorem 6.1

The final convergence bound is established based on the probabilistic events in Lemma B.2 and
Proposition B.1, which thereby holds with probability at least 1− 4δ. As a consequence of (68),

L

T∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≤ H2 − ∥ḠT+1∥2F ≤ H2. (69)

Moreover, using Lemma B.4, Proposition B.1 and ϵ1 = c0/
√
mn, we have√

a
(k)
ij ≤

√
Σ2

k +
√
mnϵ1 ≤ ΣH +

√
c0, ∀k ∈ [T]. (70)

23

Thereby, with ρk = ρ0/k
1−c/2, we have

T∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≥
T∑

k=1

ρk
∥∥Ḡk

∥∥2
F

maxi,j

√
a
(k)
ij

≥ ρ0
ΣH +

√
c0

T∑
k=1

∥∥Ḡk

∥∥2
F

k1−c/2
. (71)

Combining with (71) and (69), and using
∑T

k=1 1/k
1−c/2 ≥ T c/2, we derive that

min
k∈[T]

∥Ḡk∥2F ≤
H2
(
ΣH +

√
c0
)

ρ0LT c/2
.

B.5 Proof of Corollary 1

Here, we let ρk = ρ0/
√
T , k ∈ [T], β2,1 = 1/2 and β2,k = β2 = 1 − 1/T, k = 1, 2, · · · , T

be a constant. We still suppose that the probability event in (42) holds. Then, all the lemmas
in Section B.2 still hold as they only require β2,1 = 1/2, β2,k ∈ [0, 1). Also, the estimation for
A in (59) remains unchanged. Following the similar deduction in (61) and applying β2,1 = 1/2,
β2,k = β2 = 1− 1/T, k ≥ 2 and ρk = ρ0/

√
T , we have

B ≤ 1

4

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
48ρ0Σ

2
tG

3/2
t

mnϵ21

(√
1

2T
+

t∑
k=2

1

T

)

≤ 1

4

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
96ρ0Σ

2
tG

3/2
t

mnϵ21
. (72)

Following the similar deduction in (63), and using ρk = ρ0/
√
T ,

C ≤ 2Lρ20
mnϵ21

t∑
k=1

Σ2
kGk

T
≤ 2Lρ20Σ

2
tGt

mnϵ21
. (73)

Thereby, with the similar induction argument, we can derive that with proabability at least 1− 4δ,
(69) and the following results hold

Dt = max
k∈[t]

∥Ḡk∥F ≤ H, Σt ≤ ΣH , Gt ≤ H, ∀t ∈ [T], (74)

when H,H and ΣH are as in (5) and

0 < ρ0 ≤ λ0

L
min

{
1√
H
,

1

2Σ2
HH3/2

,
1

ΣH

√
H

}
. (75)

Hence, we will derive the convergence rate based on the probabilistic events in (42), (74) and (69),
which thereby holds with probability at least 1− 4δ. Since β2,1 = 1/2, β2,k ∈ [0, 1), ϵ1 = c0/

√
mn

and (74) holds, we can get that √
a
(k)
ij ≤ ΣH +

√
c0, ∀k ∈ [T].

Following the same result in (71), and using ρk = ρ0/
√
T , we have for any k ∈ [T],

T∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≥
T∑

k=1

ρk
∥∥Ḡk

∥∥2
F

maxi,j

√
a
(k)
ij

≥ ρ0
ΣH +

√
c0

T∑
k=1

∥∥Ḡk

∥∥2
F√

T
. (76)

Then, combining (69), we get the desired result that

1

T

T∑
k=1

∥∥Ḡk

∥∥2
F
≤

H2
(
ΣH +

√
c0
)

ρ0L
√
T

.

24

C Proof detail for stochastic Adafactor with update clipping

C.1 Proof preliminary

We follow the notation definitions of Dk,Σk and Gk in (40). Next, we define

G̃k =
Gk

max{1, ∥Uk∥F /(dk
√
mn)}

. (77)

Since RMS(Uk) = ∥Uk∥F /
√
mn, the update rule for Adafactor becomes

Xk+1 = Xk − ρk
G̃k√
Wk

. (78)

C.2 Bounding gradient magnitude

Before proving the main convergence result, we still need to control the gradient magnitude through
an induction argument in the following proposition. The proof detail, however, is different from the
one for Proposition B.1. We will rely on some techniques in the analysis of algorithms with standrad
clipping.
Proposition C.1. Following the conditions and notations of Theorem 7.1, it holds that with probability
at least 1− 3δ,

Dk ≤ I, Σk ≤ ΣI , Gk ≤ I, ∀k ∈ [T].

Proof. Using the inequality in Lemma A.2 and (78), we have

f(Xk+1) ≤ f(Xk) + ⟨Ḡk,Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2F

= f(Xk)− ρk

〈
Ḡk,

G̃k√
Wk

〉
+

Lρ2k
2

∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F

.

Subtracting f∗ on both sides and summing up both sides over k ∈ [t], we have for any t ≥ 1,

f(Xt+1)− f∗ ≤ f(X1)− f∗ +

t∑
k=1

−ρk

〈
Ḡk,

G̃k√
Wk

〉
︸ ︷︷ ︸

D

+

t∑
k=1

Lρ2k
2

∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F︸ ︷︷ ︸
E

. (79)

Introducing Ak defined in (41), we further have the following decomposition,

D = −
t∑

k=1

ρk

〈
Ḡk,

G̃k√
Ak

〉
+

t∑
k=1

ρk

〈
Ḡk,

(
1√
Ak

− 1√
Wk

)
⊙ G̃k

〉
︸ ︷︷ ︸

D.1

= −
t∑

k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+D.1

−
t∑

k=1

ρk

〈
Ḡk,

G̃k√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

D.2

+

t∑
k=1

ρk

〈
Ḡk,

Ḡk√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

D.3

. (80)

First, based on (42) and (77), we have
∥Gk∥F ≤ ∥Ḡk∥F + ∥Gk − Ḡk∥F ≤ Σk, ∥G̃k∥F ≤ ∥Gk∥F ≤ Σk. (81)

Also, we use Assumption (A4) and EZk
[∥Gk − Ḡk∥F] = E[∥Gk − Ḡk∥F | Xk] to get that[

EZk

(
∥Gk − Ḡk∥F

σ

)]2
≤ EZk

[
∥Gk − Ḡk∥2F

σ2

]
≤ log

[
EZk

[
exp

(
∥Gk − Ḡk∥2F

σ2

)]]
≤ log e.

Hence, we get that

∥EZk
[G̃k]∥F ≤ EZk

∥G̃k∥F ≤ EZk
∥Gk∥F

≤ EZk
∥Ḡk∥F + EZk

∥Gk − Ḡk∥F ≤ Dk + σ < Σk. (82)

25

Estimating E. Under (42), we can use G̃k defined in (77), Lemma B.4 and (81) to verify that∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F

≤ ∥G̃k∥2F
mini,j w

(k)
ij

≤ ∥Gk∥2F
mini,j w

(k)
ij

≤ 4Σ2
kGk

mnϵ21
. (83)

Using ρk = ρ0/k
1−c/2 ≤ ρ0/

√
k,Σk ≤ Σt,Gk ≤ Gt, ∀k ≤ t and (83), we derive that

E ≤ Lρ20
2

t∑
k=1

1

k

4Σ2
kGk

mnϵ21
≤ 2Lρ20Σ

2
tGt

mnϵ21

t∑
k=1

1

k
≤ 2Lρ20Σ

2
tGt(1 + log t)

mnϵ21
, (84)

where the last inequality applies Lemma A.1.

Estimating D.1 We can follow the similar deduction in (60) and (61) to derive that

D.1 ≤
t∑

k=1

n∑
i=1

m∑
j=1

ρk

∣∣∣ḡ(k)ij g̃
(k)
ij

∣∣∣
∣∣∣∣∣∣ 1√

w
(k)
ij

− 1√
a
(k)
ij

∣∣∣∣∣∣
≤

t∑
k=1

n∑
i=1

m∑
j=1

ρk

∣∣∣ḡ(k)ij g̃
(k)
ij

∣∣∣√
w

(k)
ij

√
a
(k)
ij

√∣∣∣w(k)
ij − a

(k)
ij

∣∣∣
≤ 1

4

t∑
k=1

n∑
i=1

m∑
j=1

ρk ·

(
ḡ
(k)
ij

)2
√
a
(k)
ij

+ 4

t∑
k=1

n∑
i=1

m∑
j=1

ρk ·

∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

·

 g̃
(k)
ij√
w

(k)
ij

2

. (85)

Applying Lemma B.6, Gk ≤ Gt, ∀k ≤ t, and (83) into (85), we further derive that

D.1 ≤ 1

4

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 12

t∑
k=1

ρk

√
(1− β2,k)Gk

∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F

≤ 1

4

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
48Σ2

tG
3/2
t

mnϵ21

t∑
k=1

ρk
√
1− β2,k. (86)

Using ρk = ρ0/k
1−c/2, β2,k = 1− 1/kc and Lemma A.1, we further have

D.1 ≤ 1

4

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
48ρ0Σ

2
tG

3/2
t (1 + log t)

mnϵ21
. (87)

Estimating D.2. Since Ak is independent from Zk, it leads to

D.2 = −
t∑

k=1

ρk

〈
Ḡk√
Ak

, G̃k − EZk

[
G̃k

]〉
.

Let φk := −ρk

〈
Ḡk√
Ak

, G̃k − EZk

[
G̃k

]〉
and the filtration Fk := σ (Z1, · · · ,Zk). Note that ρk,

Ḡk and Ak are measurable with Fk−1. Since ξk is measurable with Fk, we could prove that {φk}k≥1

is a martingale difference sequence by showing that

E [φk | Fk−1] = −ρk

〈
Ḡk√
Ak

,EZk

[
G̃k − EZk

[G̃k]
]〉

= 0.

Using (82), we derive that

∥G̃k − EZk
[G̃k]∥2F ≤

(
∥G̃k∥F + ∥EZk

[G̃k]∥F
)2

≤ (∥Gk∥F +Σk)
2

≤
(
∥Gk − Ḡk∥F +Dk +Σk

)2 ≤ 2∥Gk − Ḡk∥2F + 8Σ2
k. (88)

26

Let ω′
k = 4Σkρk

∥∥∥ Ḡk√
Ak

∥∥∥
F

which is measurable with Fk−1. We thus derive from the Cauchy-Schwarz
inequality and (88) that

E
[
exp

(
φ2
k

(ω′
k)

2

)
| Fk−1

]
≤ E

exp

∥∥∥ Ḡk√

Ak

∥∥∥2
F
∥G̃k − EZk

[G̃k]∥2F∥∥∥ Ḡk√
Ak

∥∥∥2
F
· 16Σ2

k

∣∣∣Fk−1


≤ E

[
exp

(
2∥Gk − Ḡk∥2F + 8Σ2

k

16Σ2
k

) ∣∣∣Fk−1

]
≤ E

[
exp

(
∥Gk − Ḡk∥2F

σ2

)1/8 ∣∣∣Fk−1

]
· exp(1/2)

≤ E
[
exp

(
∥Gk − Ḡk∥2F

σ2

) ∣∣∣Fk−1

]1/8
· exp(1/2) ≤ e,

where the last inequality uses Jensen’s inequlity and Assumption (A4). Then, using Lemma B.1 and
(42), it leads to that for any λ > 0, with probability at least 1− 2δ,

D.2 =

t∑
k=1

φk ≤ 12λ

t∑
k=1

Σ2
kρ

2
k

∥∥∥∥ Ḡk√
Ak

∥∥∥∥2
F

+
1

λ
log

(
1

δ

)

= 12λ

t∑
k=1

n∑
i=1

m∑
j=1

ρkΣ
2
k√

a
(k)
ij

· ρk

(
ḡ
(k)
ij

)2
√
a
(k)
ij

+
1

λ
log

(
1

δ

)
. (89)

Using ρk = ρ0/k
1−c/2, c ∈ [0, 1], (42) and Lemma B.4, we derive that with probability at least 1− δ,

ρk√
a
(k)
ij

≤ ρ0
k1−c/2

· 2
√
Gk√

mnϵ1
≤ 2ρ0

√
Gk√

mnϵ1
. (90)

Plugging (90) into (89) and re-scaling δ, it leads to that for any λ > 0, with probability at least 1−2δ,

D.2 ≤ 24λρ0√
mnϵ1

t∑
k=1

ρkΣ
2
k

√
Gk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
1

λ
log

(
T

δ

)
, ∀t ∈ [T].

Setting λ = (
√
mnϵ1)/(96Σ

2
I

√
Iρ0) where ΣI , I are as in Theorem 7.1, we then derive that with

probability at least 1− 2δ,

D.2 ≤ 1

4

t∑
k=1

ρkΣ
2
k

√
Gk

Σ2
I

√
I

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
96Σ2

I

√
Iρ0√

mnϵ1
log

(
T

δ

)
, ∀t ∈ [T]. (91)

Estimating D.3. First, since Ak is independent from Zk and EZk
[Gk] = Ḡk, we have

D.3 =

t∑
k=1

ρk

〈
Ḡk,

EZk
[Gk]√
Ak

− EZk
[G̃k]√
Ak

〉

≤
t∑

k=1

ρk

∥∥∥∥ Ḡk√
Ak

∥∥∥∥
F

·

∥∥∥∥∥∥∥∥∥EZk

[
Gk − Gk

max{1, ∥Uk∥F /(dk
√
mn)}

]
︸ ︷︷ ︸

Ωk

∥∥∥∥∥∥∥∥∥
F

. (92)

Then, we will estimate EZk
Ωk under the event in (42) and consequently (14) that we restate here:

max
l∈[k]

∥Gl∥F ≤ Σk, ∀k ∈ [T]. (93)

We note that EZk
Ωk is a random variable depending only on {Z1, · · · ,Zk−1} and Zk can be

replaced by any Z ′
k that is i.i.d., and we shall use the similar notations such as ξ′k, Ω′ and U ′

k for the

27

correspoding variables with Zk replaced by Z ′
k. Then, we define the indicator functions Ŝk,1 and

Ŝk,2 as follows,

Ŝk,1 = χ{∥ξ′
k∥

2
F≤σ2 log(eT

δ)}, Ŝk,2 = χ{∥ξ′
k∥

2
F>σ2 log(eT

δ)}.

Using Hölder’s inequality and (82), we derive that,

EZ′
k

[
∥Ω′

k∥F Ŝk,2

]
≤
√
EZ′

k
∥Ω′

k∥2F ·
√
EZ′

k
[Ŝ2

k,2]

≤
√
EZ′

k
∥G′

k∥2F ·
√

EZ′
k
[Ŝ2

k,2] ≤ Σk

√
δ

T
,

where the last inequality uses the following result since Assumption (A4) holds and Z ′
k is independent

from Z1, · · · ,Zk−1,

EZ′
k
[Ŝ2

k,2] = P
(
∥ξ′k∥2F > σ2 log

(
eT

δ

)
| Z1, · · ·Zk−1

)
≤ δ

T
.

We next define the indicator functions Sk,1, Sk,2 and S̃k,1 as follows,

Sk,1 = χ{∥U ′
k∥F≥dk

√
mn}Ŝk,1, Sk,2 = χ{∥U ′

k∥F<dk
√
mn}Ŝk,1, S̃k,1 = χ{

∥G′
k∥F≥ dkmnϵ1

2
√

Gk

}Ŝk,1.

Under (93) and the event of Ŝk,1, we can use the similar deduction in Lemma B.4 to derive that

∥U ′
k∥F =

∥∥∥∥∥ G′
k√
W ′

k

∥∥∥∥∥
F

≤ ∥G′
k∥F

mini,j

√
(w

(k)
ij)′

≤ ∥G′
k∥F · 2

√
Gk√

mnϵ1
, ∥G′

k∥F ≤ Σk. (94)

Consequently, we have Sk,1 ≤ S̃k,1 from (94). Note that when Sk,2 = 1, it’s equivalent to Ω′
k =

0n×m. Then, we derive that∥∥∥EZ′
k
[Ω′

kŜk,1]
∥∥∥
F
=
∥∥∥EZ′

k
[Ω′

kSk,1] + EZ′
k
[Ω′

kSk,2]
∥∥∥
F
=
∥∥∥EZ′

k
[Ω′

kSk,1]
∥∥∥
F

≤ EZ′
k
[Sk,1 ∥Ω′

k∥F] ≤ EZ′
k

[
S̃k,1 ∥Ω′

k∥F
]
≤ EZ′

k

[
S̃k,1 ∥G′

k∥F
]
,

where the last inequality applies ∥Ω′
k∥F ≤ ∥G′

k∥F from (92). Note that when S̃k,1 = 1, dkmnϵ1
2
√
Gk

≤
∥G′

k∥F ≤ Σk. Using that Gk and Σk are indepedent from Z ′
k, and noting that α > 1, we have

EZ′
k

[
S̃k,1 ∥G′

k∥F
]
≤ EZ′

k

[
S̃k,1 ∥G′

k∥
α
F ∥G′

k∥
1−α
F

]
≤ Σα

k

(
2
√
Gk

dkmnϵ1

)α−1

.

From the above analysis, we derive that under (93),∥∥∥EZ′
k
[Ω′

k]
∥∥∥
F
≤ Σk

√
δ

T
+Σα

k

(
2
√
Gk

dkmnϵ1

)α−1

. (95)

Under (93), we can use Lemma B.4 to get that,∥∥∥∥ Ḡk√
Ak

∥∥∥∥
F

≤ ∥Ḡk∥F

mini,j

√
a
(k)
ij

≤ 2Dk

√
Gk√

mnϵ1
. (96)

Combining with (92), (95) and (96), and using ρk = ρ0/k
1−c/2, c ∈ (0, 1], dα−1

k ≥ kc/2 and Lemma
A.1, we derive that under (93),

D.3 ≤
t∑

k=1

2ρkDk

√
Gk√

mnϵ1

(
Σk

√
δ

T
+Σα

k

(
2
√
Gk

dkmnϵ1

)α−1
)

≤ 2ρ0Dt

√
Gt√

mnϵ1

(
Σt

√
δ +Σα

t

(
2
√
Gt

mnϵ1

)α−1
)
(1 + log T), (97)

where the last inequality further uses Dk ≤ Dt,Σk ≤ Σt,Gk ≤ Gt when k ≤ t.

28

An induction argument. The induction argument is based on the probability events in (42) and
(91), thereby the desired result holds with probability at least 1− 3δ. First, we can easily verify that
D2

1 ≤ 2L(f(X1)− f∗) ≤ I2 from Lemma A.2. Let us suppose that for some t ∈ [T],

Dk ≤ I, consequently, Σk ≤ ΣI , Gk ≤ I, ∀k ∈ [t]. (98)

Since (42) holds and consequently (93) holds, we can plug the estimations (84), (87), (91) and (97)
into (80) and (79), and use (98) to get that

f(Xt+1)− f∗ ≤ f(X1)− f∗ − 1

2

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
48ρ0Σ

2
II3/2(1 + log T)

mnϵ21

+
96ρ0Σ

2
I

√
I√

mnϵ1
log

(
T

δ

)
+

2ρ0I
√
I√

mnϵ1

ΣI

√
δ +Σα

I

(
2
√
I

mnϵ1

)α−1
 (1 + log T)

+
2Lρ20Σ

2
II(1 + log T)

mnϵ21
. (99)

Recalling the condition for ρ0 in (10) and ϵ1 = c0/
√
mn, then using ∥Ḡt+1∥2F ≤ 2L(f(Xt+1)−f∗)

from Lemma A.2,

∥Ḡt+1∥2F
2L

≤ f(X1)− f∗ − 1

2

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
2
√
δ(1 + log T)

c0

+
(48λ0 + 2λ2

0)(1 + log T)

Lc20
+

96λ0

Lc0
log

(
T

δ

)
+

2αλ0(1 + log T)

L(mn)(α−1)/2cα0
.

With both sides multiplying 2L, we obtain that

∥Ḡt+1∥2F ≤ I2 − L

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≤ I2, (100)

where I is defined in (9). Then, the induction is complete, and we prove the desired result.

C.3 Proof of Theorem 7.1

The final convergence bound is established based on the probabilistic events in Lemma B.2 and
Proposition C.1, which thereby holds with probability at least 1− 4δ. As a consequence of (100),

L

T∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≤ I2 − ∥ḠT+1∥2F ≤ I2. (101)

Moreover, using Lemma B.4 and Proposition C.1, we have a(k)ij ≤ Σ2
k+min{m,n}ϵ1 ≤ Σ2

I+
√
mnϵ1

for all k ∈ [T]. With ϵ1 = c0/
√
mn and ρk = ρ0/k

1−c/2, we have

T∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≥
T∑

k=1

ρk
∥∥Ḡk

∥∥2
F

maxi,j

√
a
(k)
ij

≥ ρ0√
Σ2

I + c0

T∑
k=1

∥∥Ḡk

∥∥2
F

k1−c/2
. (102)

Using
∑T

k=1 1/k
1−c/2 ≥ T c/2, we derive that

min
k∈[T]

∥Ḡk∥2F ≤
I2
√

Σ2
I + c0

ρ0LT c/2
≤ I2

ρ0LT c/2

(
I + σ

√
log

(
eT

δ

)
+

√
c0

)
.

C.4 Proof of Corollary 2

Here, we let ρk = ρ0/
√
T , k ∈ [T], β2,1 = 1/2 and β2,k = β2 = 1 − 1/T, k = 2, 3, · · · , T .

Setting β2,k = 1− 1/T and ρk = ρ0/
√
T , the estimations in (84), (91) and (97) remain unchanged

under (93). Indeed, these estimations can be further tighten by replacing
∑t

k=1
1
k ≤ 1 + log t

29

with
∑t

k=1
1
T ≤ 1. The minor difference comes from the estimation of D.1. Following the similar

deduction in (85) and (86), and using the new setups for ρk and β2,k, we have

D.1 ≤ 1

4

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
48ρ0Σ

2
tG

3/2
t

mnϵ21

(√
1

2T
+

t∑
k=2

1

T

)

≤ 1

4

t∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
96ρ0Σ

2
tG

3/2
t

mnϵ21
. (103)

Thereby, with the induction argument, we can still verify that with probability at least 1− 3δ, (100)
and the following inequalities hold

Dk ≤ I, Σk ≤ ΣI , Gk ≤ I, ∀k ∈ [T], (104)

when

0 < ρ0 ≤ λ0

L
min

{
1

Σ2
I

√
I
,

1

2Σ2
II3/2

,
1

ΣI

√
I
,

1

I(ΣI

√
I)α

}
. (105)

Hence, we establish the convergence rate based on the probabilistic events in Lemma B.2, (104) and
(100), which thereby holds with probability at least 1− 4δ. Since β2,1 = 1/2, β2,k ∈ [0, 1), k ≥ 2
and ϵ1 = c0/

√
mn, we can use Lemma B.4 and Proposition C.1 to get that

a
(k)
ij ≤ Σ2

k +min{m,n}ϵ1 ≤ Σ2
I +

√
mnϵ1, ∀k ∈ [T].

Then, using ρk = ρ0/
√
T , we have

T∑
k=1

ρk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

≥
T∑

k=1

ρk
∥∥Ḡk

∥∥2
F

maxi,j

√
a
(k)
ij

≥ ρ0√
Σ2

I + c0

T∑
k=1

∥∥Ḡk

∥∥2
F√

T
. (106)

Then, combining (101), we get the desired result that

1

T

T∑
k=1

∥Ḡk∥2F ≤
I2
√
Σ2

I + c0

ρ0L
√
T

≤ I2

ρ0L
√
T

(
I + σ

√
log

(
eT

δ

)
+

√
c0

)
.

D Some complementary experiments

All the experiments are conducted using the fairseq implementation of Adafactor 4 and the Hugging
Face implementation of Adam on two NVIDIA GeForce RTX 4090 GPUs. The pretrained models of
BERT-Base/Large and GPT-2 are also downloaded from Hugging Face.

D.1 Experiments on Adafactor without update clipping

We conduct experiments on BERT-Base and BERT-Large using the GLUE/MNLI benchmark, and on
GPT-2 using the BookCorpus dataset. All models are trained with the Adafactor optimizer without
update clipping, under the parameter setting β2,k = 1 − 1/kc and ρk = ρ0/k

c, where the decay
rate c ranges over {0.6, 0.7, 0.8, 0.9, 1.0}. Additionally, we compare the optimal performance under
our setup (with c = 1) against both the default Adafactor configuration proposed by [38], that is,
β2,k = 1− 1/0.8c and ρk = ρ0/

√
k, and the Adam optimizer with β1 = 0.9, β2 = 0.999.

Each experiment is conducted over three epochs with a batch size of 128 for BERT-Base/Large and a
batch size of 8 for GPT-2. The base learning rate ρ0 is selected via a two-stage grid search. First,
we search over the coarse grid {1, 0.1, 0.01, 0.001, 0.0001}. Then, based on the best candidate (e.g.,
0.001), we refine the search by evaluating its surrounding values with a step-size equal to one-tenth
of the candidate value (e.g., 1× 10−4), and choose the best-performing learning rate. All training
loss curves and test accuracy results are presented in Figures 2, Figure 3, and Table 1.

Our results show that both convergence rates and test accuracy consistently improve as the decay
rate c increases from 0.6 to 1.0, with the best performance achieved at c = 1, which aligns well with

4https://github.com/facebookresearch/fairseq/blob/main/fairseq/optim/adafactor.py

30

0 10000 20000 30000 40000
Step t

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 L
os

s

Default
Adam
c=1.0

(a) BERT-Large on GLUE/MNLI

20k 40k 60k 80k 100k 120k 140k
Step t

3.5

3.6

3.7

3.8

3.9

Tr
ai

ni
ng

 L
os

s

Default
c=1.0

(b) GPT-2 on BookCorpus dataset

Figure 2: Training loss of Adafactor (no update clipping) with c = 1 or default setup, and Adam

0 10000 20000 30000 40000
Step t

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 L
os

s

c=1.0
c=0.9
c=0.8

c=0.7
c=0.6

(a) BERT-Base on GLUE/MNLI

0 10000 20000 30000 40000
Step t

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Tr
ai

ni
ng

 L
os

s

Default
Adam
c=1.0

(b) BERT-Base on GLUE/MNLI

Figure 3: Training loss vs steps of Adafactor (no update clipping) with different c

Table 1: The test accuracy after 3 epochs. We use Adafactor (no update clipping) and Adam to train
BERT-Base and BERT-Large on GLUE/MNLI .

c = 0.6 c = 0.7 c = 0.8 c = 0.9 c = 1.0 Default Adam

BERT-Large 74.78% 77.32% 78.90% 80.65% 82.28% 82.35% 83.28%
BERT-Base 70.08% 72.91% 75.56% 79.68% 80.24% 80.64% 82.56%

Theorem 6.1. The training loss at c = 1 is slightly better or comparable to that under the default
Adafactor setting. However, test accuracy is marginally worse, which may be attributed to overfitting
under this configuration.

Furthermore, the best performances of Adafactor (at c = 1) for training BERT-Base and BERT-Large
are comparable to that of Adam, suggesting that the reduced memory overhead in Adafactor does not
necessarily compromise convergence speed or generalization performance.

D.2 Experiments on Adafactor with update clipping

We further test our newly proposed increasing clipping threshold in Theorem 7.1 and compare it with
the standard setting where dk = 1. We fix c = 1 which is the optimal selection in our theory and use
dk = k

c
2(α−1) with α ∈ {2.0, 4.0, 5.0, 7.0, 9.0, 12.0}. The other settings keep the same as the ones

in Section D.1. We report the training loss curves in Figure 4 and test accuracy in Table 2.

Table 2: The test accuracy after 3 epochs. We use Adafactor with different clipping thresholds to
train BERT-Base/Large on GLUE/MNLI.

α = 2.0 α = 4.0 α = 5.0 α = 7.0 α = 9.0 α = 12.0 d = 1

BERT-Large 82.84% 82.88% 82.79% 82.21% 82.78% 82.43% 81.94%
BERT-Base 81.65% 81.61% 81.18% 81.08% 82.01% 81.71% 81.28%

The results indicate that the increasing clipping thresholds lead to a comparable performance to the
constant one as well as Adam. In addition, compared Table 2 with the test accuracy of c = 1 in Table

31

0 2000 4000 6000 8000
Step t

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Tr
ai

ni
ng

 L
os

s

= 2.0
= 4.0
= 5.0
= 7.0

= 9.0
= 12.0

d = 1

(a) BERT-Large on GLUE/MNLI

0 10000 20000 30000 40000
Step t

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Tr
ai

ni
ng

 L
os

s

= 2.0
= 4.0
= 5.0
= 7.0

= 9.0
= 12.0

d = 1

(b) BERT-Base on GLUE/MNLI

Figure 4: Training loss vs steps of Adafactor with different update clipping thresholds

1, it’s clear to see that adding update clipping can enhance the performance, particularly when there
is no learning rate warm up. This finding is also aligned with the experimental results in [38].

32

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See the Abstract and Introduction parts.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 10.

33

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See Theorem 5.1, Theorem 6.1 and Theorem 7.1 and their corresponding
proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 9.

Guidelines:

• The answer NA means that the paper does not include experiments.

34

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Our code is based on Pytorch package which is standard. In addition, we
have clarified the detailed experimental setup in our paper and the experiments are easy to
reproduce.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: : We do not provide error bars, but instead explain how we report the results in
Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We use NVIDIA 4090 GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

36

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.

37

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

38

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

39

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Additional related work
	Problem setup
	A review of Adafactor
	Convergence bound for full-batch Adafactor
	Stochastic Adafactor without update clipping
	Stochastic Adafactor with update clipping
	Summary of proof challenges and techniques
	Experiment
	Conclusion
	Proof detail for Theorem 5.1
	Preliminary
	Technical lemmas
	Non-increasing function value.
	Proof of Theorem 5.1

	Proof detail for Theorem 6.1
	Preliminary
	Technical lemmas
	Bounding gradient magnitude
	Proof of Theorem 6.1
	Proof of Corollary 1

	Proof detail for stochastic Adafactor with update clipping
	Proof preliminary
	Bounding gradient magnitude
	Proof of Theorem 7.1
	Proof of Corollary 2

	Some complementary experiments
	Experiments on Adafactor without update clipping
	Experiments on Adafactor with update clipping

