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Abstract

Traditional corner case analysis in semiconductor circuit design typically involves the
use of predetermined semiconductor process parameters, including Fast, Typical, and Slow
corners for PMOS and NMOS devices, frequently yielding overly conservative designs due
to the utilization of fixed, and potentially non-representative, process parameter values
for circuit simulations. Identifying the worst cases of circuit FoMs within typical semi-
conductor process variation ranges presents a considerable challenge, especially given the
complexities associated with accurately sampling rare semiconductor events. In response,
we introduce NPC-NIS, a model specifically developed for estimating rare cases in semi-
conductor circuit analysis, leveraging a learnable importance sampling strategy. We model
the distribution of process parameters that exhibit the worst FoMs within a realistic range.
This adaptable framework dynamically identifies and addresses rare semiconductor cases
within typical process variation ranges, enhancing our circuit design optimization capabili-
ties under realistic conditions. Our empirical results validate the effectiveness of the Neural
Importance Sampling (NIS) approach in identifying and mitigating rare semiconductor sce-
narios, thereby contributing to the development of more robust and reliable semiconductor
circuit designs and connecting traditional semiconductor corner case analysis with real-
world semiconductor applications.
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1. Introduction

Traditional semiconductor design, focused on optimizing performance, power, and area, en-
counters notable constraints when utilizing corner case analysis (Weste and Harris, 2015).
The current methods, which use set semiconductor process parameters for simulation, often
impose strict and potentially unrealistic conditions for design scenarios. These fixed corners
ensure designs work under extreme scenarios but don’t typically represent most real-world
process variations, leading to overly safe and pessimistic designs. Moreover, as more process
variables are included, the complexity of simulations grows, demanding prohibitive compu-
tational resources and time. This creates a clear need for a method that acknowledges
real and varied process changes and allows for efficient simulation, particularly in high-
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dimensionality situations, avoiding the computational struggles and restrictions of existing
strategies.

Park et al. (2023) proposed a method for density estimation in yield and high-sigma
analysis with fewer simulations to manage high-dimensional data without the necessity
for complex training of relationships between input and output pairs of SPICE simulations.
Studies such as those by Amrouch et al. (2020) on Negative Capacitance FinFET technology,
Pond et al. (2017) on Monte Carlo analysis of photonic integrated circuits, and Rakka et al.
(2020) on hybrid Importance Sampling methodologies have provided valuable insights into
the performance of technologies under process variations. While these studies contribute
significantly to the field, they focus on different aspects of variability and do not specifically
target the challenges of corner case analysis and the development of a learnable sampling
method.

Importance Sampling (IS) has been widely utilized in simulations to mitigate integration
bias, particularly in enhancing the sampling of extreme distributions. This research pioneers
the incorporation of Neural Importance Sampling (NIS) into process variation modeling,
aiming to increase the sampling of corner processes within a typical range, and demonstrates
that this method is equivalent to policy gradient. Moreover, it introduces a unique approach
that, instead of defining process corners, which can result in pessimistic designs, adapts to
individual circuit contexts. Specifically, in scenarios where we lack knowledge of the true
worst combinations of process variables for circuit Figures of Merit (FoMs), the traditional
brute-force simulation becomes increasingly impractical as the dimensionality of process
variables escalates into the thousands, thus encountering the Curse of Dimensionality (CoD).

2. NPC-NIS: Navigating Process Corners with Neural Importance
Sampling

Unlike traditional corner models which define Fast and Slow corners for PMOS and NMOS
devices and perform estimation over those given parameters, NPC-NIS does not explicitly
define the boundary for worst-case process parameters. There are multiple reasons for this.
First, traditional corner values do not necessarily guarantee the worst performance of circuits
as extreme cases of certain parameters do not necessarily imply the worst case. Second,
traditional corner models perform very pessimistic estimations where the probability of
fabrication over those points is extremely unlikely. Third, corner definitions require also
domain expert knowledge, making it difficult for new engineers to learn necessary corner
values.

FoM is calculated as a weighted sum of normalized performance metrics as shown in
Equation 1:

f(x) =
n∑

i=1

wi
SPICE(x)i − ymin

i

ymax
i − ymin

i

(1)

where SPICE is a SPICE circuit simulator . Above FoM is used as a performance metric
where ymin and ymax are obtained from 10,000 randomly sampled circuit designs and used
for metric normalization. wi is a weighting factor that determines whether a metric has to
be maximized or minimized for the better FoM. Hereby we assume that all metrics need to
be minimized (e.g. power consumption, delay).
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2.1 Adaptive Importance Sampling

We define our objective function as

µ = Ex∼p[1{f(x)>γ}] = P[f(x) > γ] (2)

where γ is a failure threshold, i.e. any fabrication with metrics above this threshold
level is considered a failure, and p ∼ N (µ,Σ) is a probability distribution of each process
variable.

Monte-Carlo (MC) simulation performs the modeling of this probability by estimating
an empirical estimation such that

µ̂ =
1

N
ΣN
i=11{f(xi)>γ} (3)

We define our weight function as

k(x) =
p(x)

qθ(x)
=

N (µ,Σ)

qθ(x)
(4)

Here the nominator of the weight function is the pdf of a Gaussian distribution, which
we define as a normal distribution over each process variable. This term k(x) is used to
compensate for the sampling due to the shift of sampling distribution.

2.2 Neural Importance Sampling

An optimal proposal distribution q∗(x) can be represented as

q∗(x) =
1{f(x)>γ}p(x)

µ
(5)

However, this is in practice impossible due to the requirement of the knowledge of µ. As
a result, we approximate q∗(x) by a tractable approximator qθ(x) parameterized by θ.
Multiple models are possible for having the proposal for NIS, we use normalizing flow
(Papamakarios et al., 2021) as our function class for estimating it.

Based on the analysis, we perform the cross-entropy method (CEM) by minimizing
the KL divergence between the optimal and parametrized distributions to get the optimal
parameter θ = argminθ DKL(q

∗||qθ).
We define our policy objective function

J(θ) = Ex∼qθ [k(x)1{f(x)>γ} log qθ(x)] (6)

3. Experiment

We perform experiments over 5-ring oscillators (RO) with SPICE simulator. We compare
NPC-NIS with MC simulations and Gaussian importance sampling (GIS). We adaptively
learn the mean and variance of Gaussian samples by performing gradient descent with
the same loss function as NIS and assume no correlation between each individual process
parameter to reduce the number of parameters.

We ensure that NPC-NIS and GIS are well-trained by tuning hyperparameters over
grids and picking the best-performing parameters.
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Algorithm 1 NPC-NIS

Require:
θ0: initial parameter values
Ntotal: total number of iterations
B: batch size for sampling
γ: threshold level
ρ: quantile level

0: for i < Ntotal do
0: Sample {xi}Bi=1 from qθk
0: Estimate f(xi) for each xi
0: Sort {f(xi)}Bi=1 such that f(xi) ≤ f(xi+1)
0: Compute γk = max(γ, f(xρ))
0: Update θk by θk+1 = θk +∇θJ(θ)
0: i = i+ 1
0: end for=0

3.1 Sampling Range

We define our ranges for process parameters as shown in Table 1. To simulate a more
realistic fabrication scenario, we define min/max points as our 5-sigma points with typical
values as means.

Table 1: Process variable ranges for NMOS and PMOS.

Process Variable Symbol Unit NMOS Range PMOS Range

Oxide Thickness tox nm 1.53–2.07 1.55–2.09
Threshold Voltage Vth0 V 0.498–0.747 −0.704–−0.470
Velocity Saturation vsat m/s 104,000–156,000 72,000–108,000

Mobility µ0 m2/Vs 0.0343–0.0637 0.0147–0.0273
Subthreshold Swing Nfactor – 1.44–1.76 1.62–1.98

4. Results

We compare NPC-NIS with Monte Carlo simulation (MC) and Gaussian Importance Sam-
pling (GIS) over the proportion of points sampled at different sigma intervals after running
10,000 simulations with each batch size of 10.

Table 2 shows the number of points between each sigma quantile, where each quantile
value is determined by performing 5×107 random simulations. The performance shows that
NPC-NIS is able to sample more points at high-σ points (≥ 3σ) in comparison to every
other model. In particular, it was able to sample points at 6σ regions, which is a particularly
challenging task when the probability of sampling a point at 6σ equals 1.973× 10−7%.

Table 3 shows the cumulative number of points sampled at each σ region, and the
result shows that NPC-IS samples at extreme corners more efficiently at every cumulative
σ interval.

4



Table 2: Counts of points lying on each inidivudal sigma region where each
sigma region is defined by quantiles from 5× 107 simulations by running 10,000
simulations

Type 0− 1σ 1− 2σ 2− 3σ 3− 4σ 4− 5σ 5− 6σ 6− 7σ

MC 2919 5479 844 52 2 0 0
GIS 658 2392 1901 1608 1229 290 0
NPC-NIS 638 2336 1868 1662 1272 362 1

Table 3: Cumulative counts of points belonging to each σ region

Type 1σ 2σ 3σ 4σ 5σ 6σ

MC 6377 898 54 2 0 0
GIS 7420 5028 3127 1519 290 0
NPC-IS 7501 5165 3297 1635 363 1

5. Discussion

If one is familiar with policy gradient (Williams, 1992), one can see that the objective is
very similar to policy gradient where

J(θ) = Ex∼qθ [k(x)1{f(x)>γ}] (7)

Policy gradient performs gradient ascent by

∇θJ(θ) = Ex∼qθ [k(x)1{f(x)>γ}∇ log qθ] (8)

and we perform
θt+1 = θt +∇J(θt) (9)

This form is equivalent to neural importance sampling where for us qθ is defined as a normal-
izing flow generative network. This connection helps us to bring in all useful improvements
based on policy gradient into neural importance sampling to stabilize the training of the
proposal distribution for which rare events are more sampled. Furthermore, we would like to
introduce trust region (TR) into future work to make training of our proposal distribution
more stable.

6. Conclusion

We introduced NPC-NIS, a model that employs Neural Importance Sampling (NIS) to
adeptly handle the complexities of process variation modeling, particularly by sampling
process parameters that induce circuits to reach their extreme Figures of Merit (FoMs)
without adhering to predefined worst-case corners. Instead of conventional strategies that
often lead to conservative designs due to their reliance on fixed process corners, NPC-NIS
adopts a more flexible and individualized approach, enabling efficient sampling across wide
1-6 sigma regions and demanding minimal simulation iterations. Consequently, NPC-NIS
contributes a notable advancement in connecting traditional semiconductor corner case
analysis with tangible, real-world semiconductor applications.
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