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Abstract

This paper introduces a new shape-matching methodol-
0gy, combinative matching, to combine interlocking parts
for geometric shape assembly. Previous methods for ge-
ometric assembly typically rely on aligning parts by find-
ing identical surfaces between the parts as in conventional
shape matching and registration. In contrast, we explicitly
model two distinct properties of interlocking shapes: ‘iden-
tical surface shape’ and ‘opposite volume occupancy.” Our
method thus learns to establish correspondences across re-
gions where their surface shapes appear identical but their
volumes occupy the inverted space to each other. To facili-
tate this process, we also learn to align regions in rotation
by estimating their shape orientations via equivariant neu-
ral networks. The proposed approach significantly reduces
local ambiguities in matching and allows a robust combi-
nation of parts in assembly. Experimental results on ge-
ometric assembly benchmarks demonstrate the efficacy of
our method, consistently outperforming the state of the art.

1. Introduction

Geometric shape assembly, the task of reconstructing a tar-
get object from multiple fractured parts, plays a crucial role
in diverse fields such as archaeology [25, 27, 35], medical
imaging [16, 23, 50], robotics [9, 37, 49], and industrial
manufacturing [2, 3]. Reliable assembly requires not only
identifying common interfaces where parts align (e.g., mat-
ing surfaces) but also establishing robust feature correspon-
dences that account for how different parts combine with
each other. This combinative process involves challenges in
analyzing parts such as incomplete semantics, shape ambi-
guity, variations in orientation, and complexity in matching.

To address the challenges, prior work [5, 14] has pre-
dominantly relied on aligning parts by finding identical
surfaces between parts as in conventional shape matching
and registration. The methods typically extract visual fea-
tures and maximize similarity for positive matches at in-
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Figure 1. Combinative matching. In contrast to conventional
approaches to matching solely based on shape similarity, our com-
binative matching explicitly models two distinct properties of in-
terlocking shapes, ‘identical surface shape’ and ‘opposite volume
occupancy,” and learns to establish correspondences across regions
where their surface shapes appear identical but their volumes oc-
cupy the inverted space to each other. The figure shows the as-
sembly of source (gray) and target (red & blue) parts, with a true
match shown by green dots (e) connected by line. The color gra-
dient on target points indicates correlation scores with the green
source point, ranging from red (high) to blue (low). Incorporat-
ing the volume occupancy (shown in this example), reduces visual
ambiguities, achieving accurate assembly.

terfaces under the assumption of their high visual resem-
blance. While technically sound, this approach often suf-
fers from local ambiguities, where visually similar shapes
from different parts are incorrectly matched, as shown in
Fig. 1. This conventional matching on pure shape similarity
often results in incorrect matching and pose estimations, as
it overlooks intrinsic properties between matching for reg-
istration and that for assembly'. This naturally raises the
question: What do we miss in matching to address the chal-
lenges of geometric shape assembly?

Drawing inspiration from construction and civil engi-
neering, where male and female components combine to
form stable structures, techniques such as mortise and
tenon joints, tongue and groove connections, and dovetail

'In this manuscript, we use term “matching” to denote local pairwise-
compatibility test, reserving “assembly” for global placement of all parts.
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joints [13, 24, 29] demonstrate how stability and preci-
sion are achieved not merely through visual resemblance
but through combinative properties between parts. Un-
like surfaces designed to mirror each other, as in general
scene/object alignment or registration tasks [11, 31], the
mating parts in geometric assembly [34] are to be combined
with each other, requiring attention to their mutual relation-
ship. Let us assume two corresponding points on the mat-
ing surfaces of two interlocking parts. The two points share
identical surface shapes in their vicinities, but have opposite
volume occupancy, i.e., the volume around one point occu-
pies the inverted volume around the other point and vice
versa. This observation reveals two distinct properties of
interlocking shapes: identical surface shape and opposite
volume occupancy. Reliable shape assembly thus needs to
reflect both of the two properties in matching.

To this end, we introduce a new shape-matching method-
ology for geometric assembly, dubbed combinative match-
ing, which learns to match interlocking regions of parts.
Unlike conventional matching for registration and assem-
bly [11, 14, 31, 45-47], which commonly relies on shape
similarity, combinative matching establishes correspon-
dences across regions where their surface shapes appear
identical but their volumes occupy the inverted space to
each other. Specifically, we train our model to learn:
(1) shape orientations for consistent directional alignment,
(2) surface shape descriptors for identical-shape match-
ing, and (3) volume occupancy descriptors for inverted-
volume matching. These three objectives jointly help the
model reduce local ambiguities, enhance its understanding
of interlocking structures, and improve the overall accu-
racy of assembly. Central to this approach is the use of
equivariant and invariant descriptors, allowing both occu-
pancy and shape descriptors to recognize orientation rela-
tionships through equivariance, while maintaining robust-
ness to absolute pose through invariance. Experimental
results validate that our multi-faceted matching enables a
robust, interlocking-aware geometric assembly, addressing
the limitations of conventional matching.

2. Related Work

Shape assembly from parts. A common approach to re-
constructing a target shape from its parts involves point
cloud registration [11, 31, 46], i.e., object or scene align-
ment tasks, which focus on localizing overlapping inter-
faces and establishing dense feature correspondences to pre-
dict alignment poses. Shape assembly can be viewed as
a challenging registration problem under extremely low-
overlap conditions, i.e., surface overlap. Existing as-
sembly approaches can be broadly divided into two cat-
egories: (1) first category includes methods that rely on
direct pose regression using global embeddings for each
part [5, 10, 15, 18, 33, 42, 43]. While efficient, these meth-

ods often lack fine-grained local detail, leading to inaccu-
racies. Addressing this limitation, (2) methods such as Jig-
saw [21] and PMTR [14] employ dense feature matching
to identify reliable correspondences, predicting poses based
on the dense matches rather than direct regression, similar
to those used in registration approaches [11, 31, 46]. The
dense matching methods [11, 14, 21, 31, 46] are built on the
assumption that mating interfaces exhibit high visual resem-
blance, leading to employ training objectives that maximize
feature similarity for positive matches. However, unlike
general scene alignment, the assembly task requires more
than resemblance-based matching alone: Mating interfaces
are shaped to interlock rather than mirror each other, de-
manding a deeper, context-aware understanding of struc-
tural complementarity beyond naive feature similarity.

Civil engineering and construction. A combinative de-
sign plays an essential role in creating durable assem-
blies as demonstrated by civil engineering techniques such
as mortise and tenon joints [19, 28, 29, 44], tongue and
groove connections [4, 24, 26], dovetail joints [13], rab-
bet joints [41, 48, 51], and bridle joints [1]. These meth-
ods share two key properties of combining parts: surface
resemblance that ensures that mating parts align smoothly,
and volumetric complementarity that reflects the design in-
tention for parts to interlock in a structurally sound manner.
Although existing shape assembly methods [14, 21] incor-
porate visual resemblance learning in their objectives, they
typically lack the necessary learning to model the volumet-
ric aspects of interlocking parts, which is essential for com-
binative matching for reliable assembly.

Equivariance and invariance learning. Equivariance and
invariance are essential properties in feature learning, espe-
cially for tasks involving spatial transformations, where un-
derstanding the relative pose relationship between parts is
critical. Equivariance ensures transformations applied to the
input are reflected in the output, allowing models to retain
key orientation information [7, 30? ] and individual point
orientations [12, 22], resulting in structure-aware represen-
tations. Invariant descriptors, on the other hand, are widely
used for maintaining consistent feature representations re-
gardless of transformations. In geometric matching tasks,
many efforts [38, 39, 45, 47] incorporate these descriptors to
achieve rotation-invariant matching and alignment, demon-
strating strong empirical performance. Inspired by comple-
mentary geometric design in civil engineering, our study
goes further beyond invariance-based simple visual match-
ing, underscoring that capturing structural complementar-
ity requires equivariant learning to enable models to under-
stand the relative orientations of parts and their interdepen-
dency. Our experiments show that leveraging both equivari-
ance and invariance enhances the model’s ability to capture
essential features for combinative matching.

Complementary matching for assembly. A recent work



by Lu et al. [21] presents the concept of a primal-dual de-
scriptor to reflect viewpoint-dependent characteristics for
surface matching. Similarly to our motivation, they intend
to capture the essence of complementary geometry arising
from fracture assembly. However, focusing on the charac-
teristics of a local surface from two different directions, in-
ward and outward, they separate a descriptor into primal
and dual ones, and train them to align by intercrossing in
matching, i.e., encouraging the primal descriptor of one part
to resemble the dual descriptor of the other part in match-
ing. Despite a similar motivation, the primal-dual match-
ing method implements the geometric complementarity of
mating parts simply by switching two distinct descriptors in
matching, and train them to resemble in the primal-dual pair
between mating parts; there is no clear distinction between
the primal and dual descriptors in terms of their roles and
effects. This is clearly different from our approach that dis-
tinguishes the descriptor for surface shape, which is to be
identical between mating parts, from that for volumetric oc-
cupancy, which is to be opposite between mating parts. As
will be discussed in our experimental section and supple-
mentary, the primal-dual descriptors fail to capture the in-
terlocking properties of mating parts, and our combinative
matching clearly outperforms in matching performance.

3. Proposed Approach

Problem setup. Following previous shape assembly meth-
ods [5, 10, 14, 15, 18, 21, 33, 42, 43], our method adopts
a self-supervised learning approach: Given a holistic tar-
get object, we decompose it into multiple parts, each repre-
sented as a point cloud and each undergoing a random rigid
transformation. The model takes this set of randomly trans-
formed point clouds as input and predicts a corresponding
set of transformation parameters, which are then applied to
each part to reconstruct the original target object. Model
performance is evaluated by measuring the distances be-
tween the ground-truth and predicted assembly configura-
tions, as well as the accuracy of transformation parameters.

3.1. Combinative Matching

In this section, we introduce Combinative Matching, a novel
approach that addresses the dual requirements of geomet-
ric assembly: identical surface shape and opposite volume
occupancy. To ensure consistent assembly despite random
transformations, our method first aligns local orientations
between surface points, establishing a common reference
frame. Within this frame, shape descriptors align to match
identical surface shapes, whereas occupancy descriptors are
inversely aligned to ensure opposite volume occupancy, en-
abling parts to interlock properly (Fig. 2).

Orientation alignment. For robust assembly, we require
that surface points from different parts share a consistent
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Figure 2. Main concept of our combinative matching.

orientation reference. This alignment ensures that subse-
quent shape and occupancy features can be compared mean-
ingfully. To this end, we employ an equivariant network
fa, which takes a point cloud P € RV*3 or Q € RM*3
and predicts orientations F} = f;(P) € RN*3%3 and

= fa(Q) € RM*33 with (FQ),, (Fh); € SO@Q),
where [NV and M are the numbers of sampled points for the
respective parts. The training loss for orientation alignment
is defined as the difference between aligned orientations:

Z (%), R" — (FQ),; R, (1)
(i,5)€C

where C is the set of indices for positive matches, RP and
RQ are the ground-truth rotations of parts P and Q, and
| - || is the Frobenius norm. By minimizing this loss, the
network learns to predict orientations that can be used to
extract rigid transformation-invariant occupancy and shape
descriptors in the subsequent matching steps, enabling sta-
ble assembly regardless of initial part positions.

Surface shape matching. For identical-shape matching,
we require shape descriptors that capture identical surface
characteristics. For this purpose, given the learned sur-
face shape embeddings F¥ = f(P) € RV*% and FQ =
£:(Q) € RM*d and a set of all indices for all points on the
mating surface Z, we employ the standard circle loss [36]
without modification as follows:

— 2 _ g0 \2
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where dj; = ||1A7‘fZ — F?j ||2 represents the L2 distances be-
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Figure 3. Overall architecture. Here, we show core components of (a) feature embedding network, (b) surface shape matching branch,
(c) volume occupancy matching branch, and (d) transformation estimation. We refer the readers to Sec. 3.2 for details of each component.

tween shape features in the embedding space, where F de-
notes the L2-normalized features, and &£, (%), £,(¢) are pos-
itive/negative correspondences for index 7, and Ay, A, are
margin hyperparameters. This formulation encourages pos-
itive pairs to achieve distances close to the threshold A,
while guiding negative pairs toward distances around A,
following the conventional design for distinguishing identi-
cal surface geometries.

Volume occupancy matching. A key insight for inter-
locking parts is that their local volumes must occupy op-
posite spaces at the interface. Specifically, if one region
is occupied, the corresponding region in the mating part
should be unoccupied, and vice versa—creating the inter-
locking relationship necessary for proper assembly. We en-
code this idea by learning volume occupancy descriptors
FP = f,(P) € RVX% and FQ = f,(Q) € RM*% that
are invariant to rigid transformations through the orienta-
tion alignment. To ensure that occupancy descriptors from
corresponding regions have opposite values, we define the
occupancy matching loss using a variant of circle loss [36]:

sh — 2 —g" )2
;CQO(,L_EI log( Z e(kI:J Ap)” Z e(A“ (Zk)) ;

J€& (1) ke&q(4)

3)
where s}, = |FP, + }?‘Sj |2 ~ cos(F ,, FSJ) represents
the cosine similarity measures in the occupancy embedding
space. It is worth noting that while conventional circle loss
typically uses distance metrics to bring positive pairs closer
together, our approach leverages cosine similarity to explic-
itly encourage opposite occupancy between positive pairs.
This approach treats occupied-unoccupied pairs as positive
matches, encouraging their descriptors to be opposite, while
penalizing non-matching pairs. Thus, the model learns to
identify complementary volumes that interlock, rather than
matching identical geometries.

Consequently, our Combinative Matching effectively
achieves the two essential desiderata for geometric shape
assembly: matching identical surface shapes at interfaces
and ensuring opposite volume occupancy for proper inter-
locking, invariant to initial part orientations.

3.2. Combinative Matching Network

We now present the proposed framework that achieves com-
binative matching through the proposed objectives, captur-
ing the multi-faceted aspects essential for assembly: orien-
tation, shape, and occupancy. Figure 3 illustrates the overall
architecture, which consists of five parts: (a) feature extrac-
tion and orientation alignment, (b) surface shape matching,
(c) volume occupancy matching, (d) transformation estima-
tion, and (e) training objective.

(a) Feature extraction and orientation alignment. For
effective combinative matching, surface shape descriptors
should ideally be rotation-invariant to ensure robustness
across various orientations, while volume occupancy de-
scriptors must retain direction-aligned information within
their embedding space to enable complementary alignment.
Therefore, prior to applying shape and occupancy match-
ing, we require rotation-invariant features that also encode
orientation-consistent information.

To address these requirements, we design a feature em-
bedding network that can embed both clues of orientation-
consistency and invariance into a unified representation. We
employ VN-EdgeConvs [7], which takes as input a pair of
point clouds P and Q and provides rotation-equivariant fea-
tures Fg,,, FQ, € RF*P*3 for each input where K cor-
responds to NV or M depending on the input point cloud,
P and Q, respectively. Next, an orientation hypothesizer,
implemented with VN-Linear [7], processes the equivari-
ant features, followed by Gram-Schmidt process with cross-
product operation to provide orientations for each point, de-
noted as F5, FQ € R¥*3%3 We obtain rotation-invariant



features by taking the dot-product between the equivariant
features and the orientation matrices: FF == FEqV CFRT2
with the same calculation for Fi?w. To ensure these invariant
features are aligned consistently with orientation informa-
tion, we employ the orientation training objective £4 from
Eq. 1, which encourages the features to encode orientation-
aligned information while maintaining rotation-invariance,
thus ensuring complementary alignment and visual consis-
tency for both shape and occupancy descriptor learning.

(b) Surface shape matching branch. Similar to the way
mating surfaces of male and female parts exhibit compatible
appearance, we require a distinct feature representation that
effectively encodes appearance information to learn shape
compatibility. To achieve this, we introduce a dedicated
branch that takes the rotation-invariant features FF_ FQ

to embed them into surface shape descriptors F¥ FQ €
RA*ds ysing a three-layer MLP, followed by LeakyReLU.
Applying the surface shape matching objective L from
Eq. 2 ensures that matching surfaces with similar appear-
ance are correctly aligned, forming a reliable basis for the

subsequent transformation estimation for assembly.

(c) Volume occupancy matching branch. To capture oc-
cupancy, we introduce another dedicated branch to learn-
ing occupancy descriptors, allowing the model to recog-
nize complementary alignment requirements. This branch
begins by taking the F¥ | Fi?w which encode orientation-
consistency information in their representations and provide
occupancy descriptors FP. FQ € RE*d ysing a three-
layer MLP with parameters distinct from those in shape
matching branch, followed by a Tanh activation. To enforce
correct alignment of complementary surfaces, we apply the
volume occupancy matching objective £, from Eq. 3 which
penalizes similarity between descriptors of complementary
(occupied vs. unoccupied) regions, thereby ensuring corre-
sponding surfaces interlock stably.

(d) Transformation estimation. With the surface shape
and volume occupancy descriptor pairs obtained, we con-
struct a cost matrix C € RV XM that encodes unified corre-
lations across both shape and occupancy characteristics:

C=(F-FQ' —F; -FQ")/Z, (4)

where Z is a normalization constant. In this formulation,
the shape descriptors are learned to be similar for positive
matches, meaning that their dot product reflects a direct
measure of ‘similarity’ while the occupancy descriptors are
trained with the opposite objective, implying their dot prod-
uct instead represents the ‘dissimilarity’. By negating the
dissimilarity, C becomes a similarity measure, integrating
the visual similarity with the volumetric complementarity,
forming a comprehensive, combinative cost matrix.

2We refer the readers to the supplementary for a detailed proof.

To obtain a reliable set of correspondence indices C , We
first apply an Optimal Transport (OT) layer [32] to encour-
age one-to-one correspondence, then collect the top-k cor-
respondences (k = 128), resulting in |C| = 128. Finally, we
estimate the transformation between the pair of point clouds
using weighted SVD [6], formulated as follows:

R*, t* = argmin Z wij|RP; +t — Q;l3,  (5)

R, N

(i,.5)eC
where w;; represents the weight, e.g., the output of OT, for
match (7, ). For multi-part assembly, we adopt the same

transformation estimation method as used in [14], of which
implementation details are provided in the supplementary.

(e) Training objective. Following previous point cloud
matching methods [14, 31, 45], we incorporate a point
matching loss £, [31], cross-entropy loss between ground-
truth and predicted match probabilities. By integrating
orientation, shape, and occupancy losses along with point
matching loss, the final training objective is formulated as:

L= )\d»cd + )\sﬁs + >\0»C0 + 'Cpa (6)

where A\¢g = 0.1, A\; = 0.5, and )\, = 0.5 are weighting co-
efficients, balancing contributions of different matchings.

4. Experiments
4.1. Dataset and Evaluation Metrics

Dataset. For our experiments, we use the large-scale, stan-
dard geometric assembly dataset, Breaking Bad [34], con-
sisting of multiple fractured parts of target objects, catego-
rized into two main subsets: everyday and artifact.
For pairwise shape assembly, we focus specifically on its
2-part subset, while we utilize the entire dataset for multi-
part assembly, which consists of objects with 2 to 20 parts.
Our experiments are conducted on the volume-constrained
Breaking Bad dataset in which the volume of every piece
is at least 1/40 of the total shape volume, reducing extreme
point density imbalance. For vanilla Breaking Bad bench-
mark evaluation results, we refer to the supplementary.

Evaluation Metrics. We use the evaluation metrics used
in PMTR [14] to validate our method: (1) RMSE between
ground truth and predicted rotation and translation parame-
ters, (2) CoRrespondence Distance (CRD), the average dis-
tance between positive matches on mating surfaces, and
(3) Chamfer Distance (CD) between the input and model-
predicted assemblies. Note that CRD provides a more re-
liable measure than RMSE(R,T) as CRD directly assesses
assembly quality while RMSE(R,T) measures relative pose
differences without explicitly considering alignment accu-
racy. Following Lee et al. [14], our evaluation is performed
with relative poses between parts instead of absolute ones
to solely focus on the assembly, not absolute positioning.
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Figure 4. Visualization of learned orientations. We visualize
learned vectors of {x; }icz (left, red arrows) and {y; }:ez (middle,

green arrows). The assembly result is shown on the right.
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Figure 5. Visualization of correlation distribution. A green dot
(e) on the left point cloud marks the source’s i-th point, with cor-
responding true match points marked with green dots and arrows.
Point colors represent correlation score magnitudes for the ¢-th
point’s similarity to each target point, with red and blue indicat-
ing high and low correlation scores, respectively.

4.2. Implementation Details

We implement our model using PyTorch Lightning [8].
All experiments were conducted on 4 NVIDIA GeForce
RTX 3090 GPUs. We utilize the AdamW [20] optimizer
with an initial learning rate of 1 x 102, employing a co-
sine scheduler set for 90 and 120 epochs on the respective
everyday and artifact subsets. Following previous
work of [14, 21], we uniform-sample approximately 5,000
points on the surface per holistic object, with each part al-
located a subset of points proportional to its surface area.

4.3. Experimental Results and Analyses

Analysis on learned orientation F%, FdQ. We begin by an-
alyzing the learned orientations (FY);, (FdQ)i € SOQ@3) to
observe the types of information captured through com-
binative matching, such as the directionality of occu-
pied/unoccupied regions, magnitudes of local concavity or
convexity, surface normal, and other relevant geometric
properties. For the analysis, we represent each orientation
(Fa)i = [xi,¥4,2] for all i, where x;,y; € R? are or-
thonormal vectors, and z; given by x; x y;. We focus on
visualizing the scaled® vectors x; and y;, omitting z; as it
is redundant for interpretative purposes.

3They are scaled by the magnitudes of the input vectors for the Gram-
Schmidt process, specifically for analysis purposes.

Figure 4 visualizes the vectors {X;};cz and {y; };ez for
both the source FF and target FdQ. Through this visualiza-
tion, we observe several notable patterns: For both x; and
¥, (1) source and target orientations are aligned in parallel,
as enforced by our training objective L4 (Eq. 1). For x;,
we observe that (2) The learned x; vectors are consistently
directed toward the center of the mating surface, (3) staying
parallel to the 2D plane of the mating surface lies, indicat-
ing our model has learned a stable orientation that respects
the geometry of mating surfaces. For y;, we observe that:
(4) vectors on convex regions (where the surface extends
outward into occupied space) point outward, while those on
concave regions (where the surface recedes) point inward.
(5) The magnitudes of y; correlate with the degree of con-
vexity or concavity at each point, indicating an awareness
of surface curvature. These results imply that the learned
orientations not only differentiate between convex and con-
cave structures but also capture complementarity and direc-
tional alignment without any explicit supervisions dedicated
to these aspects from (2) to (5), highlighting the efficacy of
the proposed combinative matching in intuitive learning of
integral properties for ‘combining’ elements.

Analysis on learned correlations. To validate how the pro-
posed combinative matching resolves a limitation of con-
ventional shape-based matching (e.g., local ambiguity), we
compare correlation matrices for shape, occupancy, and
the combined cost matrix: specifically, C; = FYFQT ¢
RN*M G, = FFFQT € RY*M and C. For this analy-
sis, we select a single point on the source’s mating surface
(index 7) and examine its similarity distributions of these
correlations: (Cy);, (Co)i, C; € RM. These distributions
are visualized as heatmaps, with red and blue colors indi-
cating high and low similarities, respectively (we invert the
color for C, to reflect its representation of dissimilarity).
Figure 5 presents the visualized distributions.

Based solely on the surface shape distribution, the best
target match for the i-th source point is located in a broad
area due to the similar appearance of surrounding points,
resulting in local ambiguity. The volume occupancy dis-
tribution, on the other hand, shows large scores are nearly
uniformly spread across the surface, with a slightly higher
score near the true match, indicating it provides comple-
mentary information yet lacks distinct localization. By
combining shape and occupancy information, the local am-
biguity and match confidence uncertainty are resolved; the
score at the true match is significantly higher, enabling pre-
cise alignment of the source point with its correct match on
the target, verifying that the combinative matching effec-
tively enhances precision by resolving the local ambiguity.

Ablation studies. To assess the contributions of key com-
ponents in our method, we conduct ablation studies on
everyday subset. First, Tab. |1 (a) examines the choice
of affinity metric (sP and s" in Eq. 3) and the impact of ori-
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Figure 6. Feature visualization via t-SNE. Mating surface points are displayed in blue (e) for the source and orange () for the target,
while non-mating surface points are colored in skyblue () for the source and yellow () for the target.

Occupancy  Orientation | CRD | CD| RMSER)| RMSE)./

Affinity  Loss (£g) | (1072) (1073) ©) (10-2)
L2 dist X 042 031 14.88 431
cosine X 031 021 14.58 4.44
L2 dist v 038 030 13.29 3.81
cosine v 028  0.17 12.88 3.78

(a) Ablation study on combinative matching.

Equivariant Shape Occupancy | CRD | CD| RMSER)| RMSE() ./

Embedding Matching ~ Matching | (1072) (107%) ©) (1072)
X v v 0.74 0.53 38.74 11.88
v X v 0.38 0.28 13.17 3.86
v v X 0.35 0.25 14.01 4.24
v v v 0.28 0.17 12.88 3.78

(b) Ablation study on model components.

Table 1. Ablation studies of the proposed approach.

CRD | CD] RMSER),| RMSE(T)/|
Method 1072 (107 © 102
everyday — artifact
NSM [5] 19.95 6.88 84.16 21.74
Wu et al. [43] 19.13 7.98 85.27 22.96
GeoTransformer [31] 1.01 0.78 33.14 9.75
Jigsaw [21] 10.36 2.48 56.98 10.36
PMTR [14] 0.82 0.59 29.63 9.21
Ours 0.74 0.54 25.67 7.73
artifact = everyday
NSM [5] 21.34 8.52 85.46 23.58
Wu et al. [43] 20.70 11.67 85.81 22.96
GeoTransformer [31] 0.80 0.53 41.65 13.23
Jigsaw [21] 11.00 3.04 70.88 10.75
PMTR [14] 0.64 0.44 33.23 10.97
Ours 0.62 0.46 26.91 8.30

Table 2. Transferability experiments on Breaking Bad [34].

entation loss £,. Using L2 distance instead of cosine simi-
larity, or omitting orientation loss during training, results in
consistent performance drops, implying the importance of
both complementarity and orientation learning in assembly.
Second, Tab. 1 (b) evaluates the impact of equivariant net-
work [7] and surface shape & volume occupancy matching
branches. When the equivariant backbone is replaced with a
standard point embedding network, e.g., DGCNN [40], we
observe a substantial drop in CRD, verifying the importance
of learning orientation-awareness and rotation-invariance in
assembly. Consistent accuracy drops in the absence of ei-

ther shape or occupancy matching branch demonstrate that
both branches work synergistically to enhance alignment.

Learned descriptor analysis. In the proposed network, F
and F, are optimized through the opposing objectives: L
clusters mating surface features for positive matches while
separating negative ones, whereas L, penalizes features
for positive matches, each within its respective embedding
space. To examine their clustering behavior, we project the
invariant features Fy,,, shape descriptors F, and occupancy
descriptors F, into a 2D space using t-SNE and visualize
the results in Fig. 6.

For invariant features of mating surface, we observe nei-
ther separation nor adhesion in their embedding space, im-
plying that the invariance property alone does not provide
significant feature distinction. In contrast, the shape de-
scriptors lying on mating surface are tightly clustered as en-
forced by L, supported by the visual resemblance of the
interface. Meanwhile, the occupancy descriptors on mating
surface are more widely dispersed, guided by £,. The re-
sults collectively highlight the efficacy of proposed learning
objectives in shaping the embedding space, reflecting both
visual and volumetric properties of mating surfaces.

4.4. Model generalizability

To demonstrate the generalizability of our approach, we
conduct transferability experiments within the Breaking
Bad dataset [34]. Specifically, we evaluate our model,
trained on the everyday subset, on the artifact sub-
set, and vice versa. The everyday subset primarily con-
sists of common objects relevant to computer vision and
robotics applications, whereas the artifact subset fo-
cuses on archaeological objects, representing a notable do-
main shift between the two subsets.

Table 2 summarizes the transferability results. The
proposed method consistently outperforms state-of-the-art
baselines, achieving higher CRDs across cross-subset eval-
uations. This highlights the robustness of our model in
adapting to different data domains, underscoring its efficacy
in capturing task-oriented features of orientation, shape, and
occupancy generalizable across distinct object categories.



CRD | CD] RMSER),| RMSE(T)/|
Method 102 (107?) © 102
everyday
NSM [5] 21.71 11.09 83.38 23.71
Wu et al. [43] 20.65 11.66 84.58 22.90
GeoTransformer [31] 0.61 0.51 22.81 7.28
Jigsaw [21] 5.48 1.34 38.73 2.73
PMTR [14] 0.39 0.25 17.14 5.53
Ours 0.28 0.17 12.88 3.78
artifact
NSM [5] 19.44 6.33 83.22 21.41
Wu et al. [43] 19.17 7.97 85.04 20.90
GeoTransformer [31] 0.89 0.70 33.23 10.30
Jigsaw [21] 6.36 1.45 39.71 3.02
PMTR [14] 0.60 0.42 23.28 7.27
Ours 0.49 0.34 18.77 5.57

Table 3. Pairwise shape assembly results. Numbers in bold indi-
cate the best performance and underlined ones are the second best.
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Figure 7. Qualitative comparison for pairwise shape assembly.

4.5. Comparison with State of the Arts

To validate the efficacy of the proposed method, we com-
pare it with recent baselines on pairwise assembly in Tab. 3
and Fig. 7. In terms of CRD and CD, our method outper-
forms all the baselines in both everyday and artifact
subsets, achieving relative CRD improvements of 28% and
18%, respectively, over the previous state of the art [14].
We further evaluate our method on multi-part assembly
with additional metrics, Part Accuracy (PA) [14, 17], and
compare the results in Tab. 4 and Fig. 8, where ours consis-
tently shows superior numbers compared to baselines. The
results confirm that, unlike methods that rely solely on vi-
sual cues [14, 31], our combinative matching enables more
reliable shape assembly, as evident from Figs. 7 and 8. We
refer to the supplementary for additional qualitative results.

5. Limitations and Future Work

While our method demonstrates robust performance in most
assembly scenarios, it still fails in certain challenging sce-
narios, as illustrated in Fig. 9. First, given extremely low
overlap between mating surfaces (a,b), the occupancy cues
become too weak to provide reliable guidance. Second,
when fracture surfaces are visually indistinguishable (b,c),

CRD| CD| RMSER)| RMSET)| PAcgpt PAcp?

Method 102 (10-%) A @ )
everyday
Global [15, 33] 27.79 15.30 55.42 15.31 36.42 37.90
LSTM [42] 27.69 15.23 54.78 15.24 36.74 38.97
DGL [10] 27.90 13.23 55.76 15.33 36.99 39.70
Wu et al. [43] 28.18 19.70 54.98 15.59 35.66 36.28
Jigsaw [21] 14.13 11.82 41.12 11.74 52.48 60.26
PMTR [14] 6.51 5.56 31.57 9.95 66.95 70.56
Ours 5.18 3.65 27.11 8.13 73.88 77.88
artifact
Global [15, 33] 26.42 14.92 54.41 14.48 36.67 36.97
LSTM [42] 28.15 14.61 53.59 15.49 36.67 37.25
DGL [10] 27.48 13.91 54.66 15.10 36.66 37.40
Wu et al. [43] 26.02 15.81 54.35 14.27 36.63 37.02
Jigsaw [21] 16.10 9.53 42.01 17.47 56.93 65.58
PMTR [14] 5.67 4.33 31.58 10.08 66.96 71.61
Ours 4.56 3.04 29.21 8.99 71.02 76.32

Table 4. Multi-part assembly results. Numbers in bold indicate
the best performance and underlined ones are the second best.

cFFPP

Wu et al. Jigsaw PMTR Ours GT
Figure 8. Qualitative comparison for multi-part assembly.
the pairwise matching scores become less discriminative,
often resulting in incorrect part permutations. Integrating

additional information such as texture & color cues, or en-
forcing cycle-consistency, could address such ambiguities.

(a),l\y\‘ (0 ( ,;Q (@

Figure 9. (a-b) Representative failure cases on Breaking Bad. (c)
Visualization of top-k matches on a toy example (k = 128).

6. Conclusion

We have introduced combinative matching that incorporates
the multi-faceted, task-oriented properties, which demon-
strated the superiority over recent baselines by capturing
intrinsic properties of assembly, such as degrees of con-
vexity/concavity and orientation of mating surfaces, even
without explicit supervision. Although this paper explores
learning orientation, shape, and occupancy matching, the
method can be further expanded to incorporate properties
like physical compatibility or functional constraints, paving
the way for more versatile assembly frameworks.
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