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Abstract

Transformer-based models have emerged as powerful tools for multivariate time
series forecasting (MTSF). However, existing Transformer models often fall short
of capturing both intricate dependencies across variate and temporal dimensions
in MTS data. Some recent models are proposed to separately capture variate and
temporal dependencies through either two sequential or parallel attention mecha-
nisms. However, these methods cannot directly and explicitly learn the intricate
inter-series and intra-series dependencies. In this work, we first demonstrate that
these dependencies are very important as they usually exist in real-world data. To
directly model these dependencies, we propose a transformer-based model UniTST
containing a unified attention mechanism on the flattened patch tokens. Addition-
ally, we add a dispatcher module which reduces the complexity and makes the
model feasible for a potentially large number of variates. Although our proposed
model employs a simple architecture, it offers compelling performance as shown
in our extensive experiments on several datasets for time series forecasting.

1 Introduction

Recently, Transformers are utilized an important build block in several existing time series foundation
models [1, 18, 4], and they have garnered much attention in the community of multivariate time series
forecasting (MTSF) [16, 15, 19, 23, 24, 2, 6]. In this work, we focus on multivariate time series
forecasting, and especially how to model inter-series and intra-series dependencies1.

For MTSF, there are two main types of methods: variate-independent and variate-dependent. For
example, the variate-independent model PatchTST [16] treats different variates independently and
aggregates information from several adjacent time points as patches to model intra-variate relation-
ships but overlooks cross-variate relationships. In contrast, the variate-dependent iTransformer [15]
employs "variate-wise attention" on variate tokens to model variate dependencies, but it lacks the
capability to model intra-variate temporal dependencies within individual variates. Concurrently,
several approaches [23, 2, 21] utilize both variate-wise attention and time(patch)-wise attention to
capture inter-variate and intra-variate dependencies, either sequentially or parallelly. Yet, they may
raise the difficulty of modeling the diverse time and variate dependencies as the errors from one stage
can affect the other stage and eventually the overall performance.

Additionally, either two parallel or sequential attention mechanisms cannot explicitly model the direct
dependencies across different variates and different times, which we show in Figure 1. Regardless of
how previous works apply time-wise attention and variate-wise attention parallelly or sequentially,

1The extended version of this work is available at: https://arxiv.org/abs/2406.04975
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Figure 1: Comparison between our model and previous models. Previous models apply time-wise
attention and variate-wise attention modules either sequentially or parallelly, which cannot capture
cross-time cross-variate dependencies (i.e., green links) simultaneously like our model.

they would still lack the green links to capture cross-time cross-variate dependencies (aka inter-series
intra-series dependencies) simultaneously as in our model.

To mitigate the limitations of previous works, in this paper, we propose a time series transformer with
unified attention (UniTST) as a fundamental backbone for multivariate forecasting. Technically, we
flatten all patches from different variates into a unified sequence and adopt the attention for inter-
variate and intra-variate dependencies simultaneously. To mitigate the high memory cost associated
with the flattening strategy, we further develop a dispatcher mechanism to reduce complexity from
quadratic to linear. Our contributions are summarized as follows:

• We point out the limitation of previous transformer models for multivariate time series forecasting:
their lack of ability to simultaneously capture both inter-variate and intra-variate dependencies.

• To mitigate the limitation, we propose UniTST as a simple, general yet effective transformer for
modeling multivariate time series data, which flattens all patches from different variates into a
unified sequence to effectively capture inter-variate and intra-variate dependencies.

• Despite the simple designs used in UniTST, we empirically demonstrate that UniTST achieves state-
of-the-art performance on real-world benchmarks for both long-term and short-term forecasting
with improvements up to 13%.

Paper Outline We discuss more on related work in Appendix A, and in Appendix B, we introduce
the preliminary of MTSF, followed by a comprehensive discussion on the limitations of previous
works and our motivations with evidence in real-world data. In Section 2 and 3, we present our
proposed method UniTST and provide experimental results on 13 real datasets. Additionally, in the
ablation study (Appendix B), we also examine the effectiveness of our model from different aspects.

2 Methodology

In Figure 2, we illustrate our proposed UniTST with a unified attention mechanism for modeling
inter-variate and intra-variate dependencies for multivariate time series forecasting.

Embedding the patches from different variates as the tokens Given the time series with N
variates X ∈ RN×T , we divide each univariate time series xi into patches as in Nie et al. [16], Zhang
and Yan [23]. With the patch length l and the stride s, for each variate i, we obtain a patch sequence
xi
p ∈ Rp×l where p is the number of patches. With N variates, the tensor containing all patches is

denoted as Xp ∈ RN×p×l. With each patch as a token, the 2D token embeddings are generated using
a linear projection with position embeddings: H = Embedding(Xp) = XpW +Wpos ∈ RN×p×d
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Figure 2: Framework Overview. We flatten the patches from all variates into a sequence as the input
of the Transformer Encoder and replace the original self-attention with the proposed unified attention
with dispatchers to reduce the memory complexity.

where W ∈ Rl×d is the learnable projection matrix and Wpos ∈ RN×p×d is the learnable position
embeddings. With 2D token embeddings, we denote H(i,k) is the token embedding of the k-th
patches in the i-th variate, resulting in N × p tokens.

Self attention on the flattened patch sequence Considering any two tokens, there are two
relationships: 1) they are from the same variate; 2) they are from two different variates. These
represent intra-variate and inter-variate dependencies, respectively. To capture both intra-variate and
inter-variate dependencies among tokens, we flatten the 2D token embedding matrix H into a 1D
sequence with N × p tokens. We use this 1D sequence X ′ ∈ R(N×p)×d as the input and feed it to a
vanilla Transformer encoder. The multi-head self-attention (MSA) mechanism is directly applied to
the 1D sequence:

O = Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V, (1)

with the query matrix Q = X ′WQ ∈ R(N×p)×dk , the key matrix K = X ′WK ∈ R(N×p)×dk , the
value matrix V = X ′WV ∈ R(N×p)×d, and WQ,WK ∈ Rd×dk , WV ∈ Rd×d. The MSA helps
the model to capture dependencies among all tokens, including both intra-variate and inter-variate
dependencies. However, the MSA results in an attention map with the memory complexity of
O(N2p2), which is very costly when we have a large number of variates N .

Dispatchers In order to mitigate the complexity of possible large N , we further propose a dispatcher
mechanism to aggregate and dispatch the dependencies among tokens. We add k(k << N) learnable
embeddings as dispatchers and use cross attention to distribute the dependencies. The dispatchers
aggregate the information from all tokens by using the dispatcher embeddings D as the query and
the token embeddings as the key and value: D′ = Attention(DWQ1 , X

′WK1 , X
′WV1), where the

complexity is O(kNp).

After that, the dispatchers distribute the dependencies information to all tokens by setting the
token embeddings as the key and the dispatcher embeddings as the key and value: O′ =
Attention(X ′WQ2

, D′WK2
, D′WV2

), where the complexity is also O(kNp). Therefore, the overall
complexity of our dispatcher mechanism is O(kNp), instead of O(N2p2) if we directly use self-
attention on the flattened patch sequence. With the dispatcher mechanism, the dependencies between
any two patches can be explicitly modeled through attention, no matter if they are from the same
variate or different variates.

After stacking several layers of transformer blocks, the token representations are generated as ZN×D.
The prediction is generated with a linear projection: X̂ = ZWo ∈ RN×S . After that, we use the
Mean-Squared Error (MSE) loss is used as the objective function.
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3 Experiments

We conduct extensive experiments to compare our model with representative time series models for
both short-term and long-term time series forecasting on 13 datasets. The detail of experimental
setting (e.g., baseline and dataset choices) and hyperparameter setting are discussed in Appendix E.2

Table 1: Averaged Results for multivariate long-term forecasting with prediction lengths {96, 192,
336, 720} and fixed lookback length 96. Full results are listed in Appendix E.3, Table 4.

Models UniTST iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(Ours) [2024] [2023] [2023] [2023] [2023] [2023] [2023] [2022] [2022] [2022] [2021]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.166 0.262 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

ETTm1 0.379 0.394 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

ETTm2 0.280 0.326 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

ETTh1 0.442 0.435 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

ETTh2 0.363 0.393 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

Exchange 0.351 0.398 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Traffic 0.439 0.274 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

Weather 0.242 0.271 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

Solar-Energy 0.225 0.260 0.233 0.262 0.369 0.356 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381 0.885 0.711

1st Count 7 8 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Long-term forecasting We evaluate models with MSE (Mean Squared Error) and MAE (Mean
Absolute Error) and summarize the long-term forecasting results in Table 1 with the best in red
and the second underlined. Overall, we can see that UniTST achieves the best results compared
with 11 baselines on 7 out of 9 datasets for MSE and 8 out of 9 datasets for MAE. Particularly,
iTransformer, as the previous state-of-the-art model, performs worse than our model in most cases
of ETT datasets and ECL dataset (which are both from electricity domain). This may indicate that
only model multivariate correlation without considering temporal correlation is not effective for
some datasets. In contrast, our proposed model UniTST can better capture temporal relationships
both within a variate and across different variates, which leads to better prediction performance.
Besides, although Crossformer is claimed to capture cross-time and cross-variate dependencies, it still
performs much worse compared with our approach. The reason is that their sequential design with
two attention modules cannot simultaneously and effectively capture cross-time and cross-variate
dependencies, while our approach can explicitly model these dependencies at the same time.

Short-term forecasting We also conduct experiments for short-term forecasting on PEMS datasets
as in SCINet [12] and iTransformer [15]. Generally, From Table 2, we can see that our model
outperforms other baselines on all prediction lengths and all PEMS datasets, which demonstrates the
superiority of capturing cross-channel cross-time relationships for short-term forecasting. Addition-
ally, we observe that PatchTST usually underperforms iTransformer by a large margin, suggesting that
modeling channel dependencies is necessary for PEMS datasets. The worse results of iTransformer,
compared with our model, indicate that cross-channel temporal relationships are important and should
be captured on these datasets.

Table 2: Averaged results on the PEMS forecasting task with 4 prediction lengths {12, 24, 48, 96}.
The input length is set to 96 for all baselines. Full results are listed in Appendix E.3, Table 5.

Models UniTST iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(Ours) [2024] [2023] [2023] [2023] [2023] [2023] [2023] [2022] [2022] [2022] [2021]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PEMS03 0.097 0.204 0.113 0.221 0.495 0.472 0.180 0.291 0.169 0.281 0.326 0.419 0.147 0.248 0.278 0.375 0.114 0.224 0.213 0.327 0.147 0.249 0.667 0.601

PEMS04 0.098 0.208 0.111 0.221 0.526 0.491 0.195 0.307 0.209 0.314 0.353 0.437 0.129 0.241 0.295 0.388 0.092 0.202 0.231 0.337 0.127 0.240 0.610 0.590

PEMS07 0.093 0.191 0.101 0.204 0.504 0.478 0.211 0.303 0.235 0.315 0.380 0.440 0.124 0.225 0.329 0.395 0.119 0.234 0.165 0.283 0.127 0.230 0.367 0.451

PEMS08 0.130 0.221 0.150 0.226 0.529 0.487 0.280 0.321 0.268 0.307 0.441 0.464 0.193 0.271 0.379 0.416 0.158 0.244 0.286 0.358 0.201 0.276 0.814 0.659

1st Count 14 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0

4 Conclusion

In this work, we first point out the limitation of previous works on time series transformers for
multivariate forecasting: their lack of ability to effectively capture inter-series and intra-series
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dependencies simultaneously. To mitigate this limitation of previous works, we propose a simple yet
effective transformer model UniTST with a dispatcher mechanism to effectively capture inter-series
and intra-series dependencies. The experiments on 13 datasets for time series forecasting show that
our model achieves superior performance compared with many representative baselines. Moreover,
we conduct the ablation study and model analyses to verify the effectiveness of our dispatcher
mechanism and demonstrate the importance of inter-series intra-series dependencies.
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Appendices
A Related Work

Recently, many Transformer-based models have been also proposed for multivariate time series
forecasting and demonstrated great potential [13, 19, 9, 23, 24, 10]. Several approaches [19, 9, 24]
embed temporal tokens that contain the multivariate representation of each time step and utilize
attention mechanisms to model temporal dependencies. However, due to the vulnerability to the
distribution shift, these models with such channel mixing structure are often outperformed by simple
linear models [22, 5]. Subsequently, PatchTST [16] considers channel independence and models
temporal dependencies within each channel to make predictions independently. Nonetheless, it
ignores the correlation between variates, which may hinder its performance.

To model variate dependencies, in the past two years, several works have been proposed [15, 23, 2, 6,
21, 20]. iTransformer [15] models channel dependencies by embedding the whole time series of a
variate into a token and using "variate-wise attention". Crossformer [23] uses the encoder-decoder
architecture with two-stage attention layers to sequentially model cross-time dependencies and then
cross-variate dependencies. CARD [2] employs the encoder-only architecture utilizing a similar
sequential two-stage attention mechanism for cross-time, cross-channel dependencies and a token
blend module to capture multi-scale information. Leddam [21] designs a learnable decomposition
and a dual attention module that parallelly model inter-variate dependencies with "channel-wise
attention" and intra-variate temporal dependencies with "auto-regressive attention". In summary, these
works generally model intra-variate and inter-variate dependencies separately (either sequentially or
parallelly), and aggregate these two types of information to get the outputs. In contrast, our model
has a general ability to directly capture inter-variate and intra-variate dependencies simultaneously,
which is more effective. We provide more discussion on the comparison between our model and
previous models in Section D.

B Preliminary and Motivation

In multivariate time series forecasting, given historical observations X:,t:t+L ∈ RN×L with L time
steps and N variates, the task is to predict the future S time steps, i.e., X:,t+L+1:t+L+S ∈ RN×S .
For convenience, we denote Xi,: = x(i) as the whole time series of the i-th variate and X:,t as the
recorded time points of all variates at time step t.

To illustrate the diverse cross-time and cross-variate dependencies from real-world data, we use the
following correlation coefficient between x

(i)
t:t+L and x

(j)
t+L:t+2L to measure it,

Definition 1 (Cross-Time Cross-Variate Correlation Coefficient).

R(i,j)(t, t′, L) =
Cov(x

(i)
t:t+L,x

(j)
t′:t′+L)

σ(i)σ(j)
=

1

L

L∑
k=0

x
(i)
t+k − µ(i)

σ(i)
·
x
(j)
t′+k − µ(j)

σ(j)
, (2)

where µ(·) and σ(·) are the mean and standard deviation of corresponding time series patches.

Figure 3: Correlation between
patches from different variates. x-
axis: patch indices in variate 10,
y-axis: patch indices in variate 0.

Utilizing the above correlation coefficient, we can quantify and
further understand the diverse cross-time cross-variate correla-
tion. We visualize the correlation coefficient between different
time periods from two different variates in Figure 3. We split
the time series into several patches and each patch denotes a
time period containing 16 time steps. In Figure 3, we can see
that, first, given a pair of variates, the inter-variate dependencies
are quite different for different patches. Looking at the column
of Patch 20 in variate 10, it is strongly correlated with patch
3, 5, 11, 20, 24 of variate 0, while it is very weakly correlated
with all other patches from variate 0. It suggests that there is
no consistent correlation pattern for different patch pairs of two
variates (i.e., not all the same coefficient at a row/column in the
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correlation map) and inter-variate dependencies are actually at the fine-grained patch level. Therefore,
previous transformer-based models have a deficiency in directly capturing this kind of dependencies.
The reason is that they either only capture the dependencies for the whole time series between two
variates without considering the fine-grained temporal dependencies across different variates [15] or
use two separate attention mechanisms [23, 2, 21] which are indirect and unable to explicitly learn
these dependencies. In Appendix C, we provide more examples to demonstrate the ubiquity and the
diversity of these cross-time cross-variate correlations.

C Diverse Cross-Time and Cross-Variate Dependencies

We further illustrate the cross-time cross-variate correlations on Exchange, Weather, ECL datasets in
Figure 4. We can see that correlation patterns for different datasets are quite different. Additionally,
even for a specific dataset with different variate pairs, the correlations of cross-variate patch pairs are
also very diverse. For example, for Exchange, with variate pairs (1,3), the patches at the same time
step are usually strongly correlated. In contrast, with variate pairs (3,4), the patches can sometimes
even have zero correlation coefficient. Moreover, in Figure 4, for a specific dataset with a specific pair
of variates (i.e., in a subfigure), we have similar observations as we discussed in Sec B that there is no
consistent correlation pattern for different patch pairs of two variates and inter-variate dependencies
are at the fine-grained patch level. These examples further demonstrate the ubiquity and the diversity
of these cross-time cross-variate correlations in real data. This also justifies the motivation of this
paper – propose a better method to explicitly model cross-time and cross-variate (intra-variate and
inter-variate) dependencies.
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Figure 4: Diverse cross-time cross-variate dependencies commonly exist in real-world data.

D Discussion and Comparison with Previous Models

Our proposed model is an encoder-only transformer model containing a unified attention mechanism
with dispatchers. The model explicitly learns both intra-variate and inter-variate temporal dependen-
cies among different patch tokens through attention, which means that it can directly capture the
correlation between two time series at different periods from different variates. In contrast, these de-
pendencies cannot be directly and explicitly captured by previous works which claim that they model
variate dependencies [15, 23, 2, 21]. For example, iTransformer [15] captures variate dependencies
using the whole time series of a variate as a token. It loses the ability to capture the fine-grained
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temporal dependencies across channels or within a channel. Crossformer [23] and CARD [2] both
propose to use a sequential two-stage attention mechanism to first capture dependencies on time
dimensions and then capture dependencies on variate dimensions. This sequential manner does
not directly capture cross-time cross-variate dependencies simultaneously, which makes them less
effective as shown in their empirical performance. In contrast, our proposed model uses a more
unified attention on a flattened patch sequence with all patches from different channels, allowing
direct and explicit modeling cross-time cross-variate dependencies. In addition, Yu et al. [21] propose
a dual attention module with an iTransformer-like encoder to inter-variate dependencies and an
auto-regressive self-attention on each channel to capture intra-variate dependencies separately. In this
way, it also cannot directly capture cross-variate temporal dependencies between two patch tokens at
different time steps from different variates (e.g., H(i,k), while our model is able to directly capture
these dependencies.

Worth noting that our proposed model is a more general case to directly capture intra-variate and
inter-variate dependencies at a more fine-grained level (i.e., patch level from different variates at
different times). Moreover, our model employs simple architectures that can be easily implemented
while the empirical results shows the effectiveness of our model in Section 3.

E More on Experiments

E.1 Datasets

Following Liu et al. [15], we conduct experiments on 13 real-world datasets to evaluate the perfor-
mance of our model including (1) a group of datasets – ETT [9] contains 7 factors of electricity
transformer from July 2016 to July 2018. There are four datasets where ETTm1 and ETTm2 are
recorded every 15 minutes, and ETTh1 and ETTh2 are recorded every hour; (2) Exchange [19]
contains daily exchange rates from 8 countries from 1990 to 2016. (3) Weather [19] collects the
every 10-min data of 21 meteorological factors from the Weather Station of the Max Planck Biogeo-
chemistry Institute in 2020. (4) ECL [19] records the electricity consumption data from 321 clients
every hour. (5) Traffic [19] collects hourly road occupancy rates measured by 862 sensors of San
Francisco Bay area freeways from January 2015 to December 2016. (6) Solar-Energy [8] records the
solar power production of 137 PV plants in 2006, which are sampled every 10 minutes. (7) a group
of datasets – PEMS records the public traffic network data in California and collected by 5-minute
windows. We use the same four public datasets (PEMS03, PEMS04, PEMS07, PEMS08) adopted
in SCINet [12] and iTransformer [15]. We provide the detailed dataset statistics and descriptions in
Table 3.

We also use the same train-validation-test splits as in TimesNet [20] and iTransformer [15]. For the
forecasting setting, following iTansformer [15], we use the fixed lookback length as 96 in all datasets.
In terms of the prediction lengths, we use the varied prediction lengths in {96, 192, 336, 720} for
ETT, Exchange, Weather, ECL, Traffic, Solar-Energy. For PEMS datasets, we use the prediction
lengths as {12, 24, 48, 96} for short-term forecasting.

E.2 Experimental Setting

We conduct all the experiments with PyTorch [17] and utilize a single NVIDIA A100 GPU with
40GB memory. We describe the hyperparameter choices used in our experiments in the following.
For the optimizer, we use ADAM [7] with the learning rate in {10−3, 5× 10−4, 10−4}. The batch
sizes are selected from {16, 32, 64, 128} depending on the dataset sizes. The maximum number of
training epochs is set to 100 as in Nie et al. [16]. Meanwhile, we also use the early stop strategy
to stop the training when the loss does not decrease in 10 epochs. The number of layers of our
Transformer blocks is selected from {2,3,4}. The hidden dimension of D is set from {128, 256, 512}.

For the experimental results of our model, we report the averaged results with 5 runs with different
seeds. For the results of previous models, we reuse the results from iTransformer paper [15] as we
are using the same experimental setting.
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Table 3: Detailed dataset statistics. # variates denotes the variate number of each dataset. Dataset
Size denotes the total number of time points in (Train, Validation, Test) split respectively. Frequency
indicates the sampling interval of data points.

Dataset Name # variates Prediction Length Dataset Size Frequency Information

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily Economy

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min Energy

PEMS03 358 {12, 24, 48, 96} (15617, 5135, 5135) 5min Transportation

PEMS04 307 {12, 24, 48, 96} (10172, 3375, 3375) 5min Transportation

PEMS07 883 {12, 24, 48, 96} (16911, 5622, 5622) 5min Transportation

PEMS08 170 {12, 24, 48, 96} (10690, 3548, 3548) 5min Transportation

E.3 Full Results of Forecasting

Due to the space limitation, we only display the averaged results over 4 prediction lengths for datasets
on long-term forecasting. Here, we provide the full results of long-term forecasting in Table 4. In
summary, our model achieves the best results on 24 and 26 out of 36 settings with different prediction
lengths among other baselines. Additionally, we also provide the full results of short-term forecasting
in Table 5.

E.4 Model Analysis

Ablation study We conduct the ablation study to verify the effectiveness of our dispatcher module
by using the same setting (e.g., the number of layers, hidden dimensions, batch size) for comparing
the our model with and without dispatchers. In Table 6, we can see that adding dispatchers helps to
reduce GPU usage. In ECL and Traffic, the version without dispatchers even leads to out-of-memory
(OOM) issues. Moreover, we observe that the memory reduction becomes more significant when the
number of variates increases. On ETTm1 with 7 variates, the memory only reduces from 2.56GB
to 2.33GB, while on ECL and Traffic, it reduces from OOM (more than 40GB) to 13.32GB and
22.87GB, respectively.

The effect of different lookback lengths We also investigate how different lookback lengths would
change the forecasting performance. With increased lookback lengths, we compare the forecasting
performance of our model with that of several representative baselines in Figure 5. The results
show that, when using a relatively short lookback length (i.e., 48), our model generally outperforms
other models by a large margin. It suggests that our model has a more powerful learning ability to
capture the dependencies even with a short lookback length, while other models usually require longer
lookback lengths to provide good performance. Moreover, by increasing the lookback length, the
performances of our model and PatchTST usually improve, whereas the performance of Transformer
remains almost the same on ECL dataset.

The effect of different patch sizes As we use patching in our model, we further examine the effect
of different patch sizes. The patch size and the lookback length together determine the number of
tokens for a variate. In Figure 6, we demonstrate the performance by varying different patch sizes
and lookback lengths. With lookback length of 64, the performance of using patch size 64 is much
worse than that of patch size 8 It indicates that, when the number of tokens of a variate is extremely
small (i.e., only 1 token for lookback length 64), the performance is not satisfactory as no enough
fine-grained information. This could also be the reason why iTransformer may be not ideal in some
cases - it use exactly a single token for a variate. Additionally, we also observe that, generally, for
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Table 4: Full results of the long-term forecasting task. We compare extensive competitive models
under different prediction lengths following the setting of TimesNet [2023]. The input sequence
length is set to 96 for all baselines. Avg means the average results from all four prediction lengths.

Models UniTST iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(Ours) [2023] [2023] [2023] [2023] [2023] [2023] [2023] [2022] [2022] [2022] [2021]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.313 0.352 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.359 0.380 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.395 0.404 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.449 0.440 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.379 0.394 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

E
T

T
m

2 96 0.178 0.262 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.243 0.304 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.302 0.341 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.398 0.395 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.280 0.326 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

E
T

T
h1

96 0.383 0.398 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.434 0.426 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.471 0.445 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.479 0.469 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

Avg 0.442 0.435 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

E
T

T
h2

96 0.292 0.342 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.370 0.390 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.382 0.408 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.409 0.431 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.363 0.393 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

E
C

L

96 0.139 0.235 0.148 0.240 0.201 0.281 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.155 0.250 0.162 0.253 0.201 0.283 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.170 0.268 0.178 0.269 0.215 0.298 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.338
720 0.198 0.293 0.225 0.317 0.257 0.331 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361

Avg 0.166 0.262 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

E
xc

ha
ng

e 96 0.080 0.198 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.173 0.296 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.314 0.406 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.838 0.693 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941

Avg 0.351 0.398 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Tr
af

fic

96 0.402 0.255 0.395 0.268 0.649 0.389 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.426 0.268 0.417 0.276 0.601 0.366 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.449 0.275 0.433 0.283 0.609 0.369 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.489 0.297 0.467 0.302 0.647 0.387 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

Avg 0.441 0.274 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

W
ea

th
er

96 0.156 0.202 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.207 0.250 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.263 0.292 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.340 0.341 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.241 0.271 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

So
la

r-
E

ne
rg

y 96 0.189 0.228 0.203 0.237 0.322 0.339 0.234 0.286 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344 0.242 0.342 0.215 0.249 0.884 0.711
192 0.222 0.253 0.233 0.261 0.359 0.356 0.267 0.310 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380 0.285 0.380 0.254 0.272 0.834 0.692
336 0.242 0.275 0.248 0.273 0.397 0.369 0.290 0.315 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389 0.282 0.376 0.290 0.296 0.941 0.723
720 0.247 0.282 0.249 0.275 0.397 0.356 0.289 0.317 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388 0.357 0.427 0.285 0.295 0.882 0.717

Avg 0.225 0.260 0.233 0.262 0.369 0.356 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381 0.885 0.711

1st Count 24 26 4 3 1 4 3 4 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
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Table 5: Full results of the PEMS forecasting task. We compare extensive competitive models under
different prediction lengths following the setting of SCINet [2022]. The input length is set to 96 for
all baselines. Avg means the average results from all four prediction lengths.

Models UniTST iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(Ours) [2023] [2023] [2023] [2023] [2023] [2023] [2023] [2022] [2022] [2022] [2021]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PE
M

S0
3 12 0.059 0.160 0.071 0.174 0.126 0.236 0.099 0.216 0.090 0.203 0.178 0.305 0.085 0.192 0.122 0.243 0.066 0.172 0.126 0.251 0.081 0.188 0.272 0.385

24 0.074 0.180 0.093 0.201 0.246 0.334 0.142 0.259 0.121 0.240 0.257 0.371 0.118 0.223 0.201 0.317 0.085 0.198 0.149 0.275 0.105 0.214 0.334 0.440
48 0.104 0.213 0.125 0.236 0.551 0.529 0.211 0.319 0.202 0.317 0.379 0.463 0.155 0.260 0.333 0.425 0.127 0.238 0.227 0.348 0.154 0.257 1.032 0.782
96 0.151 0.261 0.164 0.275 1.057 0.787 0.269 0.370 0.262 0.367 0.490 0.539 0.228 0.317 0.457 0.515 0.178 0.287 0.348 0.434 0.247 0.336 1.031 0.796

Avg 0.097 0.204 0.113 0.221 0.495 0.472 0.180 0.291 0.169 0.281 0.326 0.419 0.147 0.248 0.278 0.375 0.114 0.224 0.213 0.327 0.147 0.249 0.667 0.601

PE
M

S0
4 12 0.070 0.172 0.078 0.183 0.138 0.252 0.105 0.224 0.098 0.218 0.219 0.340 0.087 0.195 0.148 0.272 0.073 0.177 0.138 0.262 0.088 0.196 0.424 0.491

24 0.082 0.189 0.095 0.205 0.258 0.348 0.153 0.275 0.131 0.256 0.292 0.398 0.103 0.215 0.224 0.340 0.084 0.193 0.177 0.293 0.104 0.216 0.459 0.509
48 0.104 0.216 0.120 0.233 0.572 0.544 0.229 0.339 0.205 0.326 0.409 0.478 0.136 0.250 0.355 0.437 0.099 0.211 0.270 0.368 0.137 0.251 0.646 0.610
96 0.137 0.256 0.150 0.262 1.137 0.820 0.291 0.389 0.402 0.457 0.492 0.532 0.190 0.303 0.452 0.504 0.114 0.227 0.341 0.427 0.186 0.297 0.912 0.748

Avg 0.098 0.208 0.111 0.221 0.526 0.491 0.195 0.307 0.209 0.314 0.353 0.437 0.129 0.241 0.295 0.388 0.092 0.202 0.231 0.337 0.127 0.240 0.610 0.590

PE
M

S0
7 12 0.057 0.153 0.067 0.165 0.118 0.235 0.095 0.207 0.094 0.200 0.173 0.304 0.082 0.181 0.115 0.242 0.068 0.171 0.109 0.225 0.083 0.185 0.199 0.336

24 0.075 0.174 0.088 0.190 0.242 0.341 0.150 0.262 0.139 0.247 0.271 0.383 0.101 0.204 0.210 0.329 0.119 0.225 0.125 0.244 0.102 0.207 0.323 0.420
48 0.107 0.208 0.110 0.215 0.562 0.541 0.253 0.340 0.311 0.369 0.446 0.495 0.134 0.238 0.398 0.458 0.149 0.237 0.165 0.288 0.136 0.240 0.390 0.470
96 0.133 0.228 0.139 0.245 1.096 0.795 0.346 0.404 0.396 0.442 0.628 0.577 0.181 0.279 0.594 0.553 0.141 0.234 0.262 0.376 0.187 0.287 0.554 0.578

Avg 0.093 0.191 0.101 0.204 0.504 0.478 0.211 0.303 0.235 0.315 0.380 0.440 0.124 0.225 0.329 0.395 0.119 0.234 0.165 0.283 0.127 0.230 0.367 0.451

PE
M

S0
8 12 0.073 0.174 0.079 0.182 0.133 0.247 0.168 0.232 0.165 0.214 0.227 0.343 0.112 0.212 0.154 0.276 0.087 0.184 0.173 0.273 0.109 0.207 0.436 0.485

24 0.096 0.197 0.115 0.219 0.249 0.343 0.224 0.281 0.215 0.260 0.318 0.409 0.141 0.238 0.248 0.353 0.122 0.221 0.210 0.301 0.140 0.236 0.467 0.502
48 0.141 0.239 0.186 0.235 0.569 0.544 0.321 0.354 0.315 0.355 0.497 0.510 0.198 0.283 0.440 0.470 0.189 0.270 0.320 0.394 0.211 0.294 0.966 0.733
96 0.210 0.275 0.221 0.267 1.166 0.814 0.408 0.417 0.377 0.397 0.721 0.592 0.320 0.351 0.674 0.565 0.236 0.300 0.442 0.465 0.345 0.367 1.385 0.915

Avg 0.130 0.221 0.150 0.226 0.529 0.487 0.280 0.321 0.268 0.307 0.441 0.464 0.193 0.271 0.379 0.416 0.158 0.244 0.286 0.358 0.201 0.276 0.814 0.659

1st Count 14 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0

Table 6: The effectiveness of our dispatcher module. OOM indicates the “Out of Memory” error on
GPUs (we a single A100 GPU of memory 40GB).

ETTm1 Weather ECL Traffic
MSE Mem MSE Mem MSE Mem MSE Mem

w/o dispatchers 0.385 2.56GB 0.247 9.17GB OOM OOM OOM OOM
w/ dispatchers 0.379 2.33GB 0.242 5.13GB 0.166 13.32GB 0.439 22.87GB

different lookback lengths, too small or too large patch size can lead to bad performance. The reason
may be that too many tokens or too less tokens would increase the difficulty of training.

8 16 32 64
Patch Size

0.150

0.155

0.160

0.165

0.170

M
SE

Weather
Lookback (64), Predict Length (96)
Lookback (96), Predict Length (96)
Lookback (192), Predict Length (96)
Lookback (336), Predict Length (96)

Figure 6: Performance with different patch
sizes and lookback length.

The number of dispatchers In our model, we pro-
pose to use several dispatchers to reduce the mem-
ory complexity with the number of dispatchers as a
hyper-parameter. Here, we dive deep into the tradeoff
between GPU memory and MSE by varying the num-
ber of dispatchers. In Table 7, we demonstrate the
performance and GPU memory of different numbers
of dispatchers on Weather and ECL with the predic-
tion length as 96. The results show that, with only
5 dispatchers, the performance is usually worse than
with more dispatchers. It suggests that we should
avoid using too few dispatchers as it may affect the
model performance. However, with fewer dispatch-
ers, the GPU memory usage is less as shown in our
complexity analysis in Section 2. For larger datasets
like ECL, increasing the number of dispatchers leads
to more significant memory increase, compared with the smaller dataset (i.e., Weather).

Attention Weights With our dispatcher module, we have two attention weights matrices, one from
patch tokens to dispatchers and one from dispatchers to patch tokens, with the size N × k and k×N ,
respectively. Multiplying these two attention matrices gives us a new multiplied attention matrix with
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Figure 5: Performance with different lookback lengths and fixed prediction length S = 96.

Table 7: The performance and GPU memory usage of varying dispatchers on Weather and ECL.
The number of dispatchers 5 10 20 50

Weather MSE 0.1575 0.1552 0.1573 0.1566
GPU Memory (GB) 2.165 2.191 2.233 2.405

ECL MSE 0.1348 0.1347 0.1343 0.1338
GPU Memory (GB) 12.807 13.389 14.335 16.509

the size N ×N that directly indicates the importance between two patch tokens. We demonstrate
the multiplied attention weights from the first layer and the last layer in Figure 7. As shown, in the
last layer, the distribution is visibly shifted to the left side, meaning that most of the token pairs have
low attention weights, while a few token pairs have high attention weights. It may suggest that the
last layer indeed learns how to distribute the information to important tokens. In contrast, the first
layer has a more even distribution of attention weights, indicating that it distributes information more
evenly to all tokens.
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Figure 8: Patch token pairs with higher top at-
tention weights are more likely from different
variates and different times.

The importance of cross-variate cross-time depen-
dencies With the multiplied attention weights, we
further demonstrate the percentages of patch token
pairs from different variables and different times for
groups of patch tokens pairs with varied attention
weights in Figure 8. We observe that the groups
of patch token pairs with higher attention weights
have a higher percentage of pairs from different vari-
ates and different times. For example, for all token
pairs, the percentage is 87.50, while the percentage
is 89.91 for top 0.5% token pairs with the highest
attention weights. It suggests that more pairs of patch
tokens with high attention weights come from differ-
ent variates and times. Therefore, effectively model-
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Figure 7: The distributions of multiplied attention weights between two patch tokens on Weather.
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ing cross-variate cross-time is crucial for multivariate
time series forecasting.
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