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ABSTRACT

Neural operators, such as Fourier Neural Operators (FNO), form a principled ap-
proach for learning solution operators for partial differential equations (PDE) and
other mappings between function spaces. However, many real-world problems re-
quire high-resolution training data, and the training time and limited GPU memory
pose big barriers. One solution is to train neural operators in mixed precision to
reduce the memory requirement and increase training speed. However, existing
mixed-precision training techniques are designed for standard neural networks,
and we find that their direct application to FNO leads to numerical overflow and
poor memory efficiency. Further, at first glance, it may appear that mixed precision
in FNO will lead to drastic accuracy degradation since reducing the precision of
the Fourier transform yields poor results in classical numerical solvers. We show
that this is not the case; in fact, we prove that reducing the precision in FNO still
guarantees a good approximation bound, when done in a targeted manner. Specifi-
cally, we build on the intuition that neural operator learning inherently induces an
approximation error, arising from discretizing the infinite-dimensional ground-truth
input function, implying that training in full precision is not needed. We formalize
this intuition by rigorously characterizing the approximation and precision errors
of FNO and bounding these errors for general input functions. We prove that the
precision error is asymptotically comparable to the approximation error. Based on
this, we design a simple method to optimize the memory-intensive half-precision
tensor contractions by greedily finding the optimal contraction order. Through
extensive experiments on different state-of-the-art neural operators, datasets, and
GPUs, we demonstrate that our approach reduces GPU memory usage by up to
50% and improves throughput by 58% with little or no reduction in accuracy.

1 INTRODUCTION

Real-world problems in science and engineering often involve solving systems of partial differential
equations (PDEs) (Strang, 2007). These problems typically require a fine grid for numerical solvers to
guarantee convergence, e.g., climate modeling and 3D fluid dynamics simulations, and the full-scale
solutions to these real-world systems are out of reach even for the world’s largest supercomputers
(Schneider et al., 2017).

To overcome the computational challenges of numerical solvers, fast surrogates using machine
learning have been developed. Among them, neural operators are a powerful data-driven technique
for solving PDEs (Li et al., 2020a; 2021a; Kovachki et al., 2023; Lu et al., 2021). Neural operators
learn maps between function spaces, and they can be used to approximate the solution operator of
a given PDE. The input and output functions in neural operators can be at any resolution or on any
mesh, and the output function can be evaluated at any point in the domain; therefore, neural operators
are discretization convergent: once the neural operator is trained, it can be evaluated, without any
retraining, at any resolution, and it converges to a unique limit under mesh refinement (Kovachki
et al., 2023). By learning from discretized data from input and solution functions, the trained models
can perform inference orders of magnitude faster than traditional PDE solvers (Kovachki et al., 2023).
In particular, the Fourier Neural Operator (FNO) and its extensions have been successful in solving
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Figure 1: Top: example data points from each dataset: Navier-Stokes, Darcy Flow, Spherical
Shallow Water, Shape-Net Car CFD, and Ahmed-body CFD. Bottom: performance of our method
compared to full-precision and AMP on each dataset. For each dataset, we plot test error (y-axis)
and GPU memory (x-axis), and we annotate the maximum throughput (proportional to the area
of each ball). All data are measured on the same hardware (RTX 3090 Ti) and the same virtual
environment. Memory decreases by up to 50%, while L2 loss increases by at most 0.28%.

PDE-based problems with significant speedups (Li et al., 2021a; 2023; Bonev et al., 2023; Kossaifi
et al., 2023; Liu et al., 2022; Gopakumar et al., 2023).

Despite their successes, training of neural operators is still compute- and memory-intensive when
faced with extremely high-resolution and large-scale problems. For conventional deep learning
models, there is a wealth of knowledge on automatic mixed precision (AMP) training in order
to reduce memory usage and increase computational throughput (Rakka et al., 2022). We find
that their direct application to neural operators results in poor memory efficiency and numerical
overflow; when applied to FNO, most memory-intensive operations are in the spectral domain, which
is complex-valued and not handled well by the standard AMP, as seen in Figure 1.

Conventional wisdom may suggest that reducing precision in FNO without drastic accuracy degra-
dation is not feasible. The presence of the Fourier transform in FNO appears to be a limitation
in reducing precision since it suffers from numerical instabilities on high-frequency modes under
reduced precision. Hence, numerical solvers, such as pseudo-spectral solvers, do indeed require
very high precision to ensure numerical stability (Trefethen, 2000), and time-stepping leads to an
accumulation of round-off errors under low precision that quickly explode. However, we show both
theoretically and empirically that this is not the case for FNO and other operator learning approaches.

Our approach: In this work, we devise the first mixed-precision training method for neural operators
and also derive approximation bounds that guarantee the expressivity of mixed-precision operators.
We use the intuition that the Fourier transform within neural operators is already approximated by the
discrete Fourier transform, since the training dataset is a discrete approximation of the ground-truth
continuous signal. Intuitively, since we already incur approximation error from discretization, there
is no need to run the discrete Fourier transform in full precision. Building on this, we show that, in a
single FNO layer, the round-off error due to lower precision is small. Therefore, the overall round-off
error remains small since a full FNO architecture is only made up of a few layers—much smaller
than the number of steps in a classical pseudo-spectral solver where errors accumulate and explode.

We make the above intuitions concrete, and we develop the following theoretical approximation
bounds: we characterize the precision error and resolution error of the FNO block, proving asymptotic
bounds of n−2/d and ϵ, respectively, for mesh size n, dimension d, and dynamic range ϵ. Therefore,
we justify using mixed precision since its error is comparable to the discretization error already
present in FNO.

Motivated by these theoretical results, we introduce a mixed-precision training method by optimizing
the memory-intensive half-precision tensor contractions. We devise a simple and lightweight greedy
strategy to find the optimal contraction order, which considers vectorization for each intermediate
tensor. Unfortunately, naïvely training neural operators in mixed precision leads to prohibitive
numerical instability due to overflows in the FNO block. To address this issue, we study numerical
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stabilization techniques for neural operators, finding that tanh pre-activation before each FFT
consistently avoids numerical instability. Further, we incorporate additional vectorization steps for
complex-valued inputs, not present in standard packages designed for real-valued networks.

We carry out extensive experiments to show a significant reduction in memory usage and improved
throughput without sacrificing accuracy; see Figure 1. We consider three variants of FNO: tensorized
(TFNO) (Kossaifi et al., 2023), spherical (SFNO) (Bonev et al., 2023), and geometry-informed
(GINO) (Li et al., 2023). Across different datasets and GPUs, our method results in up to 58%
improvement in training throughput and 50% reduction in GPU memory usage with little or no
reduction in accuracy.

Furthermore, we show that our method is discretization convergent via zero-shot super-resolution
experiments. Finally, we propose a precision schedule training routine, which transitions from
mixed to full precision during training; we show this method achieves better than the baseline
full-precision accuracy. Our mixed-precision training routine is lightweight and easily added to
new neural operators. We release our codebase and all materials needed to reproduce our results at
https://github.com/neuraloperator/neuraloperator.

We summarize our main contributions below:

• We introduce the first mixed-precision training routine for neural operators, which optimizes the
memory-intensive tensor contraction operations in the spectral domain, and we propose using
tanh pre-activations to minimize numerical instability.

• We theoretically ground our work by characterizing the precision and discretization errors of the
FNO block, showing that these errors are comparable, proving that, done right, mixed-precision
training of neural operators leads to little or no performance degradation.

• We empirically verify the superiority of our mixed-precision training approach on three state-of-
the-art neural operators, TFNO, GINO, and SFNO, across four different datasets and GPUs. Our
method uses half the memory and increases training throughput up to 58% across different
GPUs with little or no reduction in accuracy (< 0.1%).

• We provide an efficient implementation of our approach in PyTorch, which we open-source, along
with all data needed to reproduce our results.

2 BACKGROUND AND RELATED WORK

Neural Operators. Many real-world scientific and engineering problems rely on solving partial
differential equations (PDEs). As such, there is a recent focus on using machine learning-based
methods to solve PDEs (Gupta et al., 2021; Bhatnagar et al., 2019; Lu et al., 2019; Adler & Öktem,
2017). However, most of these methods use standard neural networks and are therefore limited to
a mapping between fixed input and output grid. In other words, they operate on a fixed, regular
discretization and cannot learn the continuous mapping between function spaces. Neural operators
are a new technique that addresses this limitation by directly learning maps between function spaces
(Li et al., 2021b; 2020a;b; Kovachki et al., 2023). The input and output functions to neural operators
can be in any resolution or mesh, and the output function can be evaluated at any point in the domain;
therefore, neural operators are discretization convergent: once the neural operator is trained, it can be
evaluated, without any retraining, at any resolution, and it converges to a unique limit under mesh
refinement (Kovachki et al., 2023).

FNO and extensions. The Fourier neural operator, inspired by spectral methods, is a highly successful
neural operator (Li et al., 2021a; Gopakumar et al., 2023; Renn et al., 2023; Wen et al., 2022). Let
A : {a : DA → RdA} and U : {u : DU → RdU } denote the input and output function spaces,
respectively. In this work, we consider the case where DA = DU ⊂ Rd for d ∈ N. Given a dataset of
pairs of initial conditions and solution functions {aj , uj}Nj=1, which are consistent with an operator
G(aj) = uj for all 1 ≤ j ≤ N , the goal is to learn a neural operator Gθ that approximates G. The
primary operation in FNO is the Fourier convolution operator, (Kvt)(x) = F−1(R · TK(Fvt))(x),
∀x ∈ D, where F and F−1 denote the Fourier transform and its inverse, R denotes a learnable
transformation, TK denotes a truncation operation, and vt denotes the function at the current layer
of the neural operator. We use the discrete Fast Fourier Transform (FFT) and its inverse (iFFT) to
implement this operator on discrete data.
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Building on FNO, Kossaifi et al. (2023) introduced the Tensorized Fourier Neural Operator (TFNO).
Building on tensor methods, which have proven very successful in deep learning Panagakis et al.
(2021; 2024), TFNO computes a tensor factorization (Kolda & Bader, 2009) of the weight tensors in
the spectral domain, acting as a regularizer that boosts performance while decreasing parameter count.
Additionally, two FNO-based neural operators have recently been proposed to improve performance
in non-regular geometries. The Spherical Fourier Neural Operator (SFNO) (Bonev et al., 2023) is an
extension of FNO to the spherical domain, which is achieved by the use of the spherical convolution
theorem (Driscoll & Healy, 1994). The Geometry-Informed Neural Operator (GINO) (Li et al., 2023)
is a highly efficient FNO-based architecture for solving PDEs with varying, irregular geometries. The
architecture consists of an FNO, along with graph neural operators to transform the irregular grid
inputs into and from regular latent grids on which FNO can be efficiently applied (Li et al., 2020a).

Mixed-Precision Training. Mixed-precision training of neural networks consists of reducing
runtime and memory usage by representing input tensors and weights (and performing operations)
at lower-than-standard precision. For example, PyTorch has a built-in mixed-precision mode called
automatic mixed precision (AMP), which places all operations at float16 rather than float32,
with the exception of reduction operations, weight updates, normalization operations, and specialized
operations (Paszke et al., 2019). bfloat16 and TF32 are common mixed-precision methods, yet
they do not support discrete Fourier transforms, which are essential to FNOs (Kalamkar et al., 2019;
Dean et al., 2012). There is a variety of work targeted at quantization for inference, yet these works
do not reduce memory during training (Goel et al., 2020).

While well-studied for standard neural nets, mixed-precision training has not been studied for FNO
(Zhao et al., 2022; De Sa et al., 2018; Micikevicius et al., 2017; Jia et al., 2018). The most similar
work to ours is FourCastNet (Pathak et al., 2022), a large-scale climate model that uses mixed
precision with Adaptive Fourier Neural Operators (Guibas et al., 2021). However, mixed precision is
not applied to the FFT or complex-valued multiplication operations, a key challenge the current work
addresses. Very recently, another work studies the method of quantization for FNO at inference time
(Dool et al., 2023). However, unlike our work, they only study methods that improve memory usage
at inference time, not training time. Another paper has appeared recently, which proposes to apply
mixed precision to PINNs and DeepONet (Hayford et al., 2024).

3 GUARANTEED APPROXIMATION BOUNDS

In this section, to motivate our mixed-precision neural operator training routine in Section 4, we
theoretically show that the inherent discretization error in the FNO block, from computing the
discrete Fourier transform instead of the Fourier transform, is comparable to the precision error, from
computing the FNO block in half precision rather than in full precision. We present our results in
terms of a forward Fourier transform, and we give the full details and discussion in Appendix A.

We start by formally defining the discretization error of the FNO block. Let D denote the closed
unit cube [0, 1]d for dimension d ∈ N, subdivided into n = md cubes Q1, . . . , Qn with sidelength
1/m and for each j, let ξj denote the point with the minimum value in each dimension, in Qj . Let
v : D → D denote an intermediate function within the FNO. Recall from the previous section that the
primary operation in FNO is the Fourier convolution operator, (Kvt)(x). We say the discretization
error of F(v) is the absolute difference between the Fourier transform of v, and the discrete Fourier
transform of v via discretization of v on Q = ({Q1, . . . , Qn}, {ξ1, . . . , ξn}). Formally, given Fourier
basis function φω(x) = e2πi⟨ω,x⟩,

Disc(v,Q, ω) =
∣∣∣ ∫

D

v(x)φω(x)dx−
n∑

j=1

v(ξj)φω(ξj)|Qj |
∣∣∣. (1)

In other words, if we knew the true (infinite-dimensional) input function, we could run FNO using
the (continuous) Fourier transform. However, for real-world applications, we only have access to a
discretization of the input, for example, on a 128× 128 grid, so we incur a discretization error. We
bound the discretization error as follows. For the full proof details, see Appendix A.
Theorem 3.1. For any M > 0 and L ≥ 1 let K ⊂ C(D) be the set of L-Lipschitz functions, bounded
by ||v||∞ ≤ M . Then for all n,Q, there exist ω, c1, c2 > 0 such that

c1
√
d ·Mn−2/d ≤ sup

v∈K
(Disc(v,Q, ω)) ≤ c2

√
d(|ω|+ L)Mn−1/d.
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Intuitively, we bound the Riemann sum approximation of the true integral by showing that in the case
where the function v is bounded and Lipschitz, then each of the n intervals contributes n−(1+1/d) error,
up to parameters of the function. Note that the discretization error upper bound also scales linearly
for the frequency ω, although we empirically show in Section 4 that the energy is concentrated in the
lower frequency modes. The lower bound is satisfied when v(x) = x1 · · ·xd. Furthermore, note that
given a function v, if n is not large enough, the discretization error can become arbitrarily large due
to aliasing. For example, the function v(x) = M sin (2π(n+ ω)x) has discretization error Ω(M).

Next, we say that the precision error of F(v) is the absolute difference between F(v) and F(v),
computing the discrete Fourier transform in half precision. Specifically, we define an (a0, ϵ, T )-
precision system as a mapping q : R → S for the set S = {0}∪{a0(1+ ϵ)i}Ti=0 ∪{−ai(1+ ϵ)i}Ti=0,
such that for all x ∈ R, q(x) = argminy∈S |x− y|. This represents a simplified version of the true
mapping used by Python from R to float32 or float16 (we give further justification of this
definition in Appendix A). Then, we define

Prec(v,Q, q, ω) =
∣∣∣∑

i

v(ξi)φω(ξi)|Qi| −
∑
i

q(v(ξi))q(φω(ξi))|Qi|
∣∣∣. (2)

Now, we bound the precision error as follows.
Theorem 3.2. For any M > 0 and L ≥ 1 let K ⊂ C(D) be the set of L-Lipschitz functions, bounded
by ||v||∞ ≤ M . Furthermore let q be an (a0, ϵ, T )-precision system. Then for all n,Q, ω, there
exists c > 0 such that

sup
v∈K

(Prec(v,Q, q, ω)) ≤ c · ϵM.

Once again, we show that each interval contributes ϵ/n error up to the function’s parameters. Taken
together, Theorem 3.1 and Theorem 3.2 show that asymptotically, the discretization error can be as
large as Mn−2/d (up to constants), while the precision error is always bounded by ϵM . For example,
for float16 precision (ϵ = 10−4), our theory suggests that the precision error is comparable to the
discretization error for three-dimensional meshes up to size 1 000 000. Given this motivation, we
present our mixed-precision training pipeline in the next section.

4 EMPIRICAL STUDY OF OUR MIXED-PRECISION NEURAL OPERATOR

We empirically study our proposed mixed-precision pipeline for FNO training and demonstrate
significant memory usage reduction and large increases in training throughput on various GPUs.
We then study failure modes of a naïve application of mixed precision and present our empirically
justified pre-activation-based stabilizer solution. Finally, we perform extensive experiments and
ablations on our end-to-end training method across different architectures and datasets.

4.1 DATASETS AND EXPERIMENTAL SETUP

We summarize each of the four datasets we use; see Appendix B.2 for detailed descriptions.

Navier-Stokes. We consider the Navier-Stokes equations for a viscous, incompressible fluid in
vorticity form on the unit torus. We use the same dataset as Kossaifi et al. (2023), with a Reynolds
number of 500, composed of 10 000 training samples and 2000 test samples with resolution 128×128.
Darcy Flow. We consider the steady-state 2D Darcy Flow equation, which models fluid flow through
a porous medium. We use the same dataset as Li et al. (2021a), with 5000 training samples and 1000
test samples at resolution 128 × 128. Spherical Shallow Water Equations. We use the dataset
from Bonev et al. (2023), which generates random initial conditions on the sphere at resolution
256× 512. At each epoch, 120 training samples and 20 validation samples are generated on the fly.
Shape-Net Car and Ahmed-body. Our final two datasets are 3D real-world car dataset generated by
prior work (Umetani & Bickel, 2018; Li et al., 2023), which consists of mesh points that represent a
unique 3D car, and the goal is to predict the full 3D pressure field. We use 611 water-tight shapes
from car surfaces from Shape-Net (Chang et al., 2015), with 500 samples for training and the rest for
the test set. For Ahmed-body, we have 500 for training and 51 for test. The spatial resolution for both
is 64× 64× 64.

Experimental Setup. We run the Navier Stokes and Darcy flow experiments on the TFNO archi-
tecture (Kossaifi et al., 2023). For the Spherical SWE, we use SFNO (Bonev et al., 2023) to handle
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the spherical geometry, and for Shape-Net Car and Ahmed-body, we use GINO (Li et al., 2023) to
handle the large-scale, irregular geometry. All models have the FNO as backbone. We use the official
implementation and default hyperparameters for all models.

4.2 MIXED-PRECISION MODULE FOR COMPLEX-VALUED TENSOR CONTRACTION

Figure 2: Overview of our Mixed-FNO pipeline.

Now we introduce our theoretically
and empirically motivated mixed-
precision pipeline for the FNO block.
We start by profiling FNO training
workloads, identifying the complex-
valued tensor contraction within the
FNO block as the computational bot-
tleneck, accounting for 4 out of the
5 most time-consuming GPU ker-
nels in the entire training pipeline
(see Appendix B.4 for the full pro-
filing results). Furthermore, exist-
ing mixed-precision tools such as Py-
torch’s Automatic Mixed Precision
(AMP) (Paszke et al., 2019) leave
the operator in full precision since it
only autocasts real-valued modules in
FNO.

We introduce a simple and lightweight
workaround: we break down each ten-
sor contraction into sub-expressions
consisting of at most two terms and perform each of these contractions by temporarily converting
tensors to reals. To optimize the memory usage, we use a simple greedy algorithm to select the
next einsum step that minimizes the intermediate tensor size (see Figure 2). The complex-valued
operations, including the forward FFT, tensor contraction, and inverse FFT, are done in half-precision.
This completes the half-precision FNO block as AMP manages non-FNO, real-valued operations.

Our simple half-precision FNO block module achieves up to 38.6% reduction in memory and up to
50% reduction in memory when combined with Pytorch’s native AMP; see Figure 3. Note that the
reduction from AMP + Half-Prec FNO is greater than the sum of its parts due to lack of the additional
casting to and from half-precision. The memory usage reduction can then be used to train on a larger
batch size, thereby improving the overall training throughput and efficiency. On three different Nvidia
GPUs, RTX 3090 Ti, V100, and RTX A6000, we demonstrate a consistent improvement in training
throughput, in terms of numbers of training samples processed per second, from 1.23X to 1.58X over
the baseline in Figure 4.

4.3 NUMERICAL STABILITY VIA PRE-ACTIVATION

Mixed-precision training is prone to underflow and overflow because its dynamic range is signifi-
cantly smaller than that of full precision (Rakka et al., 2022). Notably, for all four of the datasets
in our study, naïvely running FNO in mixed precision results in training failure due to NaN outputs.
Furthermore, we empirically show that many common solutions, including loss scaling, gradient
clipping, normalization, and delaying updates, all fail to address the numerical instability of mixed-
precision FNO (see Appendix B.6). To mitigate this overflow issue, we find that pre-activation before
each forward FFT is a very effective method for overcoming numerical instability. We also find
that the tanh pre-activation is the highest-performing operation that we considered according to
Appendix B.6. Unlike other functions, tanh minimizes changes to small inputs, as it is approxi-
mately the identity function near 0 and is smoothly differentiable. Furthermore, tanh preserves the
discretization-convergent property of FNO. The strong performance of tanh is also predicted by
our theoretical results in Section 3, since it decreases the L∞ norm and the Lipschitz constant of the
input function. In Appendix B.6, we further show that the tanh pre-activation minimally alters the
frequency-domain signal in both amplitude and phase. Finally, we demonstrate through an ablation
that tanh has negligible impact on the model’s final error (See Appendix Table 5).

6



Published as a conference paper at ICLR 2024

Navier Stokes Darcy Flow ShapeNet Car Spherical SWE Ahmed Body
Dataset

0

2500

5000

7500

10000

12500

15000

17500

20000

GP
U 

M
em

or
y 

Co
ns

um
pt

io
n 

(M
B)

0.0%-5.6%

-38.6%
-50.3%

0.0%
-11.8%

0.0%

-25.0%

0.0%
-14.0%-11.7%

-28.7%

0.0%

-30.8%

-3.5%

-45.9%

0.0%

-24.5%
-17.9%

-38.4%

Comparison of GPU Memory Consumption, All Datasets

Full FNO AMP Mixed FNO w/o AMP (Ours) Mixed FNO (Ours)

Figure 3: GPU memory usage reduction across different variants of neural operators on diverse
tasks. We use an Nvidia RTX 3090 Ti GPU. Our method reduces memory by up to 50%, representing
a super-linear combination of the two other methods because it avoids additional casting to and from
full precision during the forward pass.

RTX 3090Ti V100
Hardware

0

25

50

75

100

125

150

175

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t (

sa
m

pl
es

/s
)

1.00X

1.16X 1.12X

1.41X

1.00X
1.13X

1.32X

1.58X

Throughputs on Different GPUs, Navier Stokes
Full FNO
AMP
Mixed FNO w/o AMP (Ours)
Mixed FNO (Ours)

RTX 3090Ti RTX A6000
Hardware

0

1

2

3

4

5

6
Tr

ai
ni

ng
 T

hr
ou

gh
pu

t (
sa

m
pl

es
/s

)

1.00X
1.12X

1.00X

1.23X 1.00X
1.07X

1.00X

1.33X
Throughputs on Different GPUs, Spherical SWE

Full FNO
AMP
Mixed FNO w/o AMP (Ours)
Mixed FNO (Ours)

Figure 4: Training throughput and runtime as a function of the method, on different GPUs.
For mixed-precision FNO + AMP, we consistently observe an improvement of training throughput up
to 1.58X over the baseline with the TFNO model on Navier Stokes, and up to 1.33X with the SFNO
model on Spherical Shallow Water Equations (SWE). Our method also improves upon using only
AMP in throughput by over 1.3X on Navier-Stokes and by over 1.2X on Spherical SWE. Batch sizes
are selected to fully utilize each GPU.

4.4 ERROR COMPARISON WITH FULL-PRECISION

Having resolved the critical issue of numerical stability, we demonstrate that our mixed-precision
approach achieves errors within 1% of the full-precision baseline across the four datasets. Additionally,
we propose a precision-scheduling technique that transitions from mixed to full precision during
training, which performs better than full precision in zero-shot super-resolution inference.

Mixed- vs. Full-Precision Training Curves. Figure 5 illustrates that our mixed-precision approach
achieves test errors on par with full precision throughout the training process, remaining within 1% of
the full-precision baseline. We ensure apples-to-apples comparison by keeping all hyperparameters
constant across the two precision settings. These hyperparameter configurations are originally
optimized for full precision training, so we show that they are directly transferable to mixed precision.

Precision Scheduling and Zero-Shot Inference. An important property of neural operators is
their discretization convergence, meaning that they can be trained on one resolution and tested on a
higher resolution (zero-shot super-resolution) (Kovachki et al., 2023). To achieve the best result, we
propose a precision schedule, in which the first 25% of training is in mixed-precision, the middle 50%
applying only AMP, and the final 25% in full precision. This follows a simple intuition: in the early
stages of training, it is okay for gradient updates to be coarser, since the gradient updates are larger
overall. However, in the later stages of training, the average gradient updates are much smaller, so
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Figure 5: Test H1 error curves for FNO on the Navier-Stokes (top left) and Darcy flow (top
right) datasets. Test L2 error curves for GINO on the Shape-Net Car (bottom left) and for SFNO
on the Shallow Water Equation (bottom right) datasets. Each plot shows the mean of three random
seeds and standard deviation as error bars. We compute and report the average difference between
training curves in the legend. We also annotate the difference in final test errors with the memory
savings of our mixed precision approach.

128x128 256x256 512x512 1024x1024

H1 L2 H1 L2 H1 L2 H1 L2

Full FNO 0.00557 0.00213 0.00597 0.00213 0.00610 0.00213 0.00616 0.00213
Mixed FNO (Ours) 0.00624 0.00236 0.00672 0.00228 0.00688 0.00226 0.00693 0.00226
Precision schedule (Ours) 0.00503 0.00170 0.00542 0.00170 0.00555 0.00170 0.00558 0.00170

Table 1: Zero-shot super resolution. We test zero-shot super-resolution by training each model on
128× 128 resolution for 19 hours. Mixed precision has a small decrease in accuracy compared to
full precision, and using a precision schedule achieves significantly better accuracy.

full precision is more important. We use the Navier-Stokes dataset, trained on 128× 128 resolution
(the same setting and model as Figure 5), and tested on 256 × 256, 512 × 512, and 1024 × 1024
resolutions; see Table 1. We find that half-precision has a small decrease in accuracy compared to
full precision, and using a precision schedule achieves significantly better generalization.

4.5 COMPARISON AGAINST U-NETS

Despite being orignally designed for computer vision tasks, U-Nets have recently been used as
PDE surrogates (Ronneberger et al., 2015). Here, we compare FNOs against the U-Net baseline
on the Darcy Flow and Navier-Stokes datasets. As shown in Table 2, FNO outperforms UNet: our
mixed-precision approach yields higher memory reduction compared to AMP applied to U-Nets.

4.6 ABLATION STUDIES

Here, we perform ablations of our mixed-precision procedure on different parameterizations of FNOs,
regularization via reducing frequency modes, and training with other numerical systems.

Decomposition of FNO Weights. On the Navier-Stokes and Darcy Flow datasets, we adopt a
Canonical-Polyadic (CP) factorization of the FNO weights using Kossaifi et al. (2019) to ensure
better final error. For a generic problem, FNO weights are usually not factorzied and are saved in
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Model Navier-Stokes Darcy Flow

Error Memory Reduction Error Memory Reduction

Full FNO 0.003 50.4% 0.01 25.8%Mixed FNO (Ours) 0.004 0.007

Full U-Net 0.111 20.9% 0.024 24.9%U-Net + AMP 0.111 0.022

Table 2: Comparison of L2 error and memory reduction with U-Nets. FNO consistently shows
better final error, and our mixed-precision approach yields significantly more memory reduction on
Navier-Stokes than AMP applied to U-Nets.
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Figure 6: For Navier-Stokes (Left) and Darcy Flow (Right), our method accelerates training, whether
with CP factorized weights or Dense unfactorized weights, without losing more than 1% in error.

their original, dense form. As shown in Figure 6, we experiment with both scenarios and show that
our mixed-precision approach improves runtime without sacrificing accuracy.

Number of Frequency Modes. Recall that in the FNO architecture, after the FFT, we truncate to a
fixed fraction of frequency modes to improve generalization, typically 1/3 to 2/3. We run an ablation
study on the number of frequency modes used in the FNO architecture. We run frequency modes
{16, 32, 64, 128} on the Darcy flow dataset in full and half precision; see Figure 14. We find that
using two few frequency modes hurts accuracy substantially while using too many frequency modes
increases runtime substantially. There is not a significant difference between half-precision and full
precision for all frequencies. In addition, we show in Appendix B.10 that for synthetic data, the
precision error from half precision is higher for higher frequencies relative to the amplitude.

Other Mixed Precision Options. We also experimented with BrainFloat16 (BF16) and Tensor-
Float32 (TF32). However, PyTorch does not support BF16 for discrete Fourier transforms, which are
essential to FNOs. Even when applied to the rest of the network, BF16 suffers from error degradation
on Navier Stokes, possibly due to having fewer precision bits than FP16. On the other hand, TF32 is
not as efficient as our approach, even on optimized hardware such as the A100 GPU. Moreover, we
simulated FP8 training via clipping. See Appendix B.11 for additional details.

5 CONCLUSIONS AND FUTURE WORK

In this work, we introduced the first mixed-precision training method for neural operators. We
derived approximation bounds for mixed-precision neural operator and rigorously characterized
the approximation and precision errors of FNO-based operators, proving that the precision error
is comparable to the approximation error. Using this insight, we show, in practice, a significant
reduction of memory usage and improvement in throughput, without sacrificing accuracy, solving
critical issues from standard neural net-based training methods. Through extensive experiments on
different state-of-the-art neural operators, datasets, and hardware, we demonstrate that our approach
reduces GPU memory usage by up to 50% with little or no reduction in accuracy.

Overall, half-precision FNO makes it possible to train on significantly larger data points with the
same batch size. Going forward, we plan to apply this to real-world applications that require
super-resolution to enable larger-scale training.
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A ADDITIONAL DETAILS FROM SECTION 3

In this section, we give the full proofs, details, and discussions from Section 3.

First, for convenience, we restate the definition of the discretization error. Let D denote the closed
unit cube [0, 1]d for dimension d ∈ N, subdivided into n = md cubes Q1, . . . , Qn with sidelength
1/m. For each j, let ξj denote the point with the minimum value in each dimension, in Qj . Let
v : D → D denote an intermediate function within the FNO. Recall from the previous section that the
primary operation in FNO is the Fourier convolution operator, (Kvt)(x). We say the discretization
error of F(v) is the absolute difference between the Fourier transform of v, and the discrete Fourier
transform of v via discretization of v on Q = ({Q1, . . . , Qn}, {ξ1, . . . , ξn}). Formally, given Fourier
basis function φω(x) = e2πi⟨ω,x⟩,

Disc(v,Q, ω) =
∣∣∣ ∫

D

v(x)φω(x)dx−
n∑

j=1

v(ξj)φω(ξj)|Qj |
∣∣∣.

A.1 DETAILS FOR RESOLUTION AND PRECISION BOUNDS

In this section, we give the full details for Theorem 3.1 and Theorem 3.2.

Theorem 3.1 (restated). For any M > 0 and L ≥ 1 let K ⊂ C(D) be the set of L-Lipschitz
functions, bounded by ||v||∞ ≤ M . Then for all n,Q, there exist ω, c1, c2 > 0 such that

c1
√
d ·Mn−2/d ≤ sup

v∈K
(Disc(v,Q, ω)) ≤ c2

√
d(|ω|+ L)Mn−1/d.

Proof. Let φr
ω(x) = sin(2π⟨ω, x⟩) denote the real part of the Fourier base of v at frequency ω.

Define

Discr(v,Q, ω) =

∣∣∣∣∣∣
∫
D

v(x)φr
ω(x)dx−

n∑
j=1

v(ξj)φ
r
ω(ξj)|Qj |

∣∣∣∣∣∣ . (3)

Recall that as defined above, Q = ({Q1, . . . , Qn}, {ξ1, . . . , ξn}), where the n = md hypercubes of
side length 1/m subdivide D. First we prove the upper bound. We have:
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Discr(v,Q, ω) =

∣∣∣∣∣∣
∫
D

v(x)φr
ω(x)dx−

n∑
j=1

v(ξj)φ
r
ω(ξj)|Qj |

∣∣∣∣∣∣ (4)

=

∣∣∣∣∣∣
∫
D

v(x)φr
ω(x)dx−

n∑
j=1

∫
Qj

v(ξj)φ
r
ω(ξj)dx

∣∣∣∣∣∣ (5)

=

∣∣∣∣∣∣
n∑

j=1

∫
Qj

(v(x)φr
ω(x)− v(ξj)φ

r
ω(ξj)) dx

∣∣∣∣∣∣ (6)

=

∣∣∣∣∣∣
n∑

j=1

∫
Qj

(v(x)(φr
ω(x)− φr

ω(ξj)) + (v(x)− v(ξj))φ
r
ω(ξj)) dx

∣∣∣∣∣∣ (7)

≤
n∑

j=1

∫
Qj

(|v(x)| · |φr
ω(x)− φr

ω(ξj)|+ |v(x)− v(ξj)| · |φr
ω(ξj)|) dx (8)

≤
n∑

j=1

∫
Qj

(
M ·

(
|ω|

√
d

m

)
+

(
L ·

√
d

m

)
· 1

)
dx (9)

=

n∑
j=1

∫
Qj

(√
d

m
(M |ω|+ L)

)
dx (10)

= n ·
(

1

md

)√
d (M |ω|+ L)n−1/d (11)

=
√
d (M |ω|+ L)n−1/d. (12)

Bounding Discc(v,Q, ω), the complex part of the Fourier base, follows an identical argument.
Setting c = 2 concludes the proof of the upper bound, which is true for all ω.

For the lower bound, recall that D = [0, 1]d and that for each j, ξj is set to the minimum value in
each dimension, in Qj . Setting v(x) = x1 · · ·xd and ω = 1, we will show that

∣∣∣∣∣∣
∫
D

v(x) sin(2πx)dx−
n∑

j=1

v(ξj) sin(2πξj)

∣∣∣∣∣∣ = d

3 · 2dπd−2
· n1/2d.

First, in one dimension,
∫ 1

0
x1 sin(2πx1)dx1 = 1

2π . Therefore, for d dimensions, we have

∫
D

v(x) sin(2πx)dx =

(∫ 1

0

x1 sin(2πx1)dx1

)d

= (2π)−d.
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Next, let ξj,k denote the kth component of ξj , for 1 ≤ k ≤ d and 1 ≤ j ≤ n. We have

n∑
j=1

(v(ξj) sin(2πωξj)|Qj |) =
1

md

 n∑
j=1

(
d∏

k=1

v(ξj,k) sin(2πωξj,k)

) (13)

=
1

md

 m∑
j=1

j · sin(2πj/m)

m

d

(14)

= m−2d

 m∑
j=1

(j · sin(2πj/m))

d

(15)

= m−2d
(
−m

2
cot
( π

m

))d
(16)

≥ 2−d ·m−d

(
−m

π
+

1

3
· π

m

)d

(17)

= (2π)−d ·
(m+ π2

3m )d

m−d
(18)

≥ (2π)−d

(
1 + d · π

2

3
·m−2

)
. (19)

(20)

Finally, since n = md, we have∣∣∣∣(2π)−d − (2π)−d

(
1 + d · π

2

3
·m−2

)∣∣∣∣ = d

3 · 2dπd−2
· n1/2d,

which concludes the proof.

Note that the upper bound is true for all ω, while the lower bound is shown for ω = 1. It is an
interesting question for future work to show the lower bound for ω > 1.

Now we bound the precision error of F(v). Recall from Section 3 that the precision error of F(v) is
the absolute difference between F(v) and F(v), computing the discrete Fourier transform in half
precision. Specifically, we define an (a0, ϵ, T )-precision system as a mapping q : R → S for the set
{0} ∪ {a0(1 + ϵ)j}Tj=0 ∪ {−aj(1 + ϵ)j}Tj=0, such that for all x ∈ R, q(x) = argminy∈S |x− y|.
This represents a simplified version of the true mapping used by Python from R to float32
or float16. Recall that these datatypes allocate some number of bits for the mantissa and for
the exponent. Then, given a real number x · 2y, its value in float32 or float16 would be
(x + ϵ1) · 2(y+ϵ2) = x · 2y + ϵ2x · 2y + ϵ1 · 2y + ϵ1ϵ22

y = (1 + ϵ1/x + ϵ2)x · 2y. Therefore, our
definition above is a simplified but reasonable approximation of floating-point arithmetic.

Now, we define

Prec(v,Q, q, ω) =
∣∣∣∑

j

v(ξj)φω(ξj)|Qj | −
∑
j

q(v(ξj))q(φω(ξj))|Qj |
∣∣∣.

Now we bound the precision error of F(v).

Theorem 3.2 (restated). For any M > 0 and L ≥ 1 let K ⊂ C(D) be the set of L-Lipschitz
functions, bounded by ||v||∞ ≤ M . Furthermore let q be an (a0, ϵ, T )-precision system. Then for all
n,Q, ω, there exists c > 0 such that

sup
v∈K

(Prec(v,Q, q, ω)) ≤ c · ϵM.
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Proof. Let φr
ω(x) = sin(2π⟨ω, x⟩) denote the real part of the Fourier base of v at frequency ω.

Define

Precr(v,Q, q, ω) =

∣∣∣∣∣∣
n∑

j=1

v(ξj)φ
r
ω(ξj)|Qj | −

n∑
j=1

q(v(ξj))q(φ
r
ω(ξj))|Qj |

∣∣∣∣∣∣ (21)

We prove the upper bound as follows. We have

Precr(v,Q, q, ω) =

∣∣∣∣∣∣
n∑

j=1

v(ξj)φ
r
ω(ξj)|Qj | −

n∑
j=1

q(v(ξj))q(φ
r
ω(ξj))|Qj |

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
n∑

j=1

(v(ξj)φ
r
ω(ξj)− q(v(ξj))q(φ

r
ω(ξj)))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1n
n∑

j=1

(v(ξj)(φ
r
ω(ξj)− q(φr

ω(ξj))) + (v(ξj)− q(v(ξj)))q(φ
r
ω(ξj)))

∣∣∣∣∣∣
≤ 1

n

n∑
j=1

(|v(ξj)| · |φr
ω(ξj)− q(φr

ω(ξj))|+ |v(ξj)− q(v(ξj))| · |q(φr
ω(ξj))|)

≤ 1

n

n∑
j=1

(M · (ϵ · 1) + (ϵ ·M) · 1)

=
1

n
· n (2ϵM)

= 2ϵM.

Bounding Precc(v,Q, q, ω), the complex part of the Fourier base, follows an identical argument.
Setting c = 4 concludes the proof.

A.2 GENERAL BOUNDS

Now, we give results similar to Theorem 3.1 and Theorem 3.2, but with a general function f , rather
than for F(v), a function v times the Fourier basis function.

Theorem A.1. For any M > 0 and L ≥ 1 let K ⊂ C(D) be the set of L-Lipschitz functions, bounded
by ||f ||∞ ≤ M . Then for all n,Q, ω, we have

2−d+1 · d · n−1/d ≤ sup
f∈K

(Disc(f,Q, ω)) ≤ L
√
d · n−1/d.

Proof. First, we define

Discr(f,Q, ω) =

∣∣∣∣∣∣
∫
D

f(x)dx−
n∑

j=1

f(ξj)|Qj |

∣∣∣∣∣∣ . (22)

Recall that Q = ({Q1, . . . , Qn}, {ξ1, . . . , ξn}), where the n = md hypercubes of side length 1/m
subdivide D. Now we prove the upper bound. We have:
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Discr(f,Q, ω) =

∣∣∣∣∣∣
∫
D

f(x)dx−
n∑

j=1

f(ξj)|Qj |

∣∣∣∣∣∣ (23)

=

∣∣∣∣∣∣
∫
D

f(x)dx−
n∑

j=1

∫
Qj

f(ξj)dx

∣∣∣∣∣∣ (24)

=

∣∣∣∣∣∣
n∑

j=1

∫
Qj

(f(x)− f(ξj)) dx

∣∣∣∣∣∣ (25)

≤
n∑

j=1

∫
Qj

|f(x)− f(ξj | dx (26)

≤
n∑

j=1

∫
Qj

(
L ·

√
d

m

)
dx (27)

= n · 1

md

(
L ·

√
d

m

)
(28)

= L
√
d · n−1/d (29)

This concludes the proof of the upper bound.

For the lower bound, recall that for each j, ξj is set to the minimum value in each dimension in Qj .
We set f(x) = x1 · x2 · · · · xd.

First, in one dimension,
∫ 1

0
x1dx1 = 1

2 . Therefore, for d dimensions, we have

∫
D

f(x)dx =

(∫ 1

0

x1dx1

)d

= (2)−d.

Next, let ξj,k denote the kth component of ξj , for 1 ≤ k ≤ d and 1 ≤ j ≤ n. We have

n∑
j=1

(f(ξj)|Qj |) =
1

md

 n∑
j=1

(
d∏

k=1

f(ξj,k)

) (30)

=
1

md

 m∑
j=1

j

m

d

(31)

= m−2d

(
m(m+ 1)

2

)d

(32)

= 2−d

(
1 +

1

m

)d

(33)

≥ 2−d
(
1 + 2dm−1

)d
(34)

(35)

Finally, since n = md, we have∣∣2−d − 2−d
(
1 + 2dm−1

)∣∣ = 2−d+1 · d · n1/d,

which concludes the proof.

Now we similarly bound the precision error of f .
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Theorem A.2. For any M > 0 and L ≥ 1 let K ⊂ C(D) be the set of L-Lipschitz functions, bounded
by ||f ||∞ ≤ M . Furthermore let q be an (a0, ϵ, T )-precision system. Then for all n,Q, ω, there
exists c > 0 such that

1/4 · ϵM ≤ sup
f∈K

(Prec(f,Q, ω)) ≤ ϵM.

Proof. Define

Precr(f,Q, q, ω) =

∣∣∣∣∣∣
n∑

j=1

f(ξj)∥Qj | −
n∑

j=1

q(f(ξj))|Qj |

∣∣∣∣∣∣ (36)

We prove the upper bound as follows. We have

Precr(f,Q, q, ω) =

∣∣∣∣∣∣
n∑

j=1

f(ξj)|Qj | −
n∑

j=1

q(f(ξj))|Qj |

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
n∑

j=1

(f(ξj)− q(f(ξj)))

∣∣∣∣∣∣
≤ 1

n

n∑
j=1

|f(ξj)− q(f(ξj))|

≤ 1

n

n∑
j=1

(ϵM)

= ϵM

This concludes the proof of the upper bound.

For the lower bound, given the definition of an (a0, ϵ, T )-precision system, it follows that there exists
y such that M/2 < y < M and 1/2 · ϵy < |y− q(y)|. Then, for the lower bound we set f(x) = y, and
we have

Precr(f,Q, q, ω) =

∣∣∣∣∣∣
n∑

j=1

f(ξj)|Qj | −
n∑

j=1

q(f(ξj))|Qj |

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
n∑

j=1

(f(ξj)− q(f(ξj)))

∣∣∣∣∣∣
≥

∣∣∣∣∣∣ 1n
n∑

j=1

(
1

2
· ϵy
)∣∣∣∣∣∣

=
1

2
· ϵy

≥ 1

4
· ϵM

This concludes the proof.

A.3 PLOTTING THEORETICAL BOUNDS

In this section, we run additional experiments by plotting our theoretical bounds alongside the true
empirical discretization and resolution errors of the Darcy flow dataset. Specifically, we plot both our
bounds assuming a Fourier basis (Theorem 3.1, Theorem 3.2) and our bounds for general functions
(Theorem A.1, Theorem A.2) compared to the true Darcy flow dataset, measured after 10 epochs,
at the start of the FNO block (just before the forward FFT). The true errors are calculated using the
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Figure 7: Discretization and precision errors of Darcy flow 1D and 3D, compared to our Fourier
basis and general bounds. Note that our bounds are worst-case bounds (we showed there exists a
function from the class of bounded L-Lipschitz functions which achieves at least the desired error),
meaning that the true Darcy flow error may be lower than the worst-case bounds.

definitions of precision and discretization error in the previous section, and we use the true difference
in precision between float32 and float16 when computing the precision error. See Figure 7.
We find that the discretization error is higher than the precision error, as expected by our theory.
Furthermore, the Darcy flow discretization and precision errors are always lower than their respective
upper and lower bounds. Note that the lower bounds in our theorems are worst-case lower bounds
(we showed there exists a function from the class of bounded L-Lipschitz functions which achieves
at least the desired error), which means that the true errors can be lower than the bounds, which is the
case in Figure 7.

B ADDITIONAL DETAILS FROM SECTION 4

In this section, we give additional details on the datasets and experimental setup, as well as additional
experiments.

B.1 AHMED-BODY CFD EXPERIMENT

Similar to Shape-Net Car, we train the Geometry-Informed Neural Operator on the Ahmed-body
dataset, using the same hyperparameters as the original implementation (Li et al., 2023). The memory,
error, and throughput results for Ahmed-body are appended to Figure 1. We add the L2 error curves
here following the format of Figure 5.
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Figure 8: Test L2 error curves for GINO on the Ahmed-body CFD dataset on three random seeds
and standard deviation as error bars.

B.2 DATASET DETAILS

Navier-Stokes. We consider the 2D Navier-Stokes equation for a viscous, incompressible fluid in
vorticity form on the unit torus T2 ∼= [0, 2π)2,

∂tω +∇⊥ϕ · ω =
1

Re
∆ω + f, for x ∈ T2, t ∈ (0, T ]

−∆ϕ = ω,

∫
T2

ϕ = 0, for x ∈ T2, t ∈ (0, T ] (37)

where f ∈ L2(T2,R) is a forcing function and Re > 0 is the Reynolds number, for the initial
condition ω(0, ·) = 0. The goal is to learn the non-linear operator G† : f 7→ ω(T, ·) for T = 5 and
Re = 500. We use the dataset from prior work (Kossaifi et al., 2023), which sets Re = 500 and
generates forcing functions from the Gaussian measure, N (0, 27(−∆+ 9I)−4), and computes the
solution function via a pseudo-spectral solver (Chandler & Kerswell, 2013). There are 10 000 training
and 2000 test samples with resolution 128× 128.

Darcy Flow. We consider the steady-state 2D Darcy Flow equation, which models fluid flow
through a porous medium. Given D = (0, 1)2, the diffusion coefficient a ∈ L∞((0, 1)2;R+), and
the forcing function f ∈ L2((0, 1)2;R), the pressure u satisfies

−∇ · (a(x)∇u(x)) = f(x), for x ∈ D (38)
u(x) = 0, for x ∈ ∂D (39)

We seek to learn the non-linear operator G† : a 7→ u, the mapping from the diffusion coefficient a to
the solution function u. We use the dataset from prior work (Li et al., 2021a), which fixes f ≡ 1 and
generates 5000 training and 1000 test samples with resolution 128× 128.

Spherical Shallow Water Equations. The spherical Shallow Water Equations on the rotating
sphere are a model for a variety of geophysical flow phenomena such as atmospheric flows, tsunamis
and storm surges. We consider the evolution of two state variables φ, u (geopotential height and
tangential velocity of the fluid column), governed by the equations

∂tφ+∇ · (φu) = 0, for x ∈ S2, t ∈ (0, T ] (40)

∂t(φu) +∇ · F = S, for x ∈ S2, t ∈ (0, T ] (41)
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for initial conditions φ(·, 0) = φ0, u(·, 0) = u0, where S2 is the unit sphere, F the momentum flux
tensor with F ij = φuiuj + 1

2φ
2, and S a source term S = −2Ωx× (φu), which models the Coriolis

force due to the rotation of the sphere with angular velocity Ω. We use the dataset from prior work
(Bonev et al., 2023), which generates random initial conditions on the sphere at resolution 256× 512
and solves the PDE using the spectral solver in the torch-harmonics package (Bonev et al.,
2023).

Shape-Net Car We evaluate on 3D real-world car dataset generated by prior work (Umetani &
Bickel, 2018; Li et al., 2023) using the Reynolds Averaged Navier Stokes (RANS) equations (Wilcox
et al., 1998). Each data point consists of mesh points representing a unique 3D car, and the goal is to
predict the full 3D pressure field, given an inlet velocity of 20m/s.

Ahmed-Body CFD Including another 3D real-world dataset for evaluation, we the dataset from (Li
et al., 2023), which is based on Ahmed-body shapes from (Ahmed et al., 1984), for which steady-state
aerodynamic simulations were run using the GPU-accelerated Open-FOAM solver, with varying inlet
velocity from 10m/s to 70m/s. The input and output data formats are similar to those of Shape-Net
Car, but Ahmed-body has many more mesh points (100k) on the surface.

B.3 MODEL DETAILS

We use the official implementation of each model, with the default hyperparameters, unless
otherwise specified. 1 Furthermore, we release all of our code at https://github.com/
neuraloperator/neuraloperator.

For the case of Shape-Net Car and Ahmed Body on GINO, we note that the default batch size is 1,
in fact, the only allowed batch size is 1, since each car geometry is unique. As shown in Figure 1,
throughput is identical (in fact, our memory saving is enough to have batch size 2, but this is not
possible). Although each individual Shape-Net Car fits in memory, other irregular-geometry datasets
are too large to fit in memory, so sub-sampling is used (Li et al., 2023). Therefore, mixed-precision
GINO allows sampling significantly more mesh points than the full-precision default.

B.4 FNO PROFILING

Using Nvidia’s RTX 3090 Ti, we start by profiling full-precision FNO training on the Navier-Stokes
dataset with the PyTorch profiler. Figure 9 provides an overview of runtime breakdown by PyTorch
modules and by individual GPU kernels. We observe that complex-valued operations are accountable
for the majority of the runtime.

B.5 NUMERICAL STABILITY: POST-FORWARD METHODS

Most commonly, numerical underflows and overflows that occur during mixed-precision training are
handled after the forward pass using loss scaling, gradient clipping, and other methods (Micikevicius
et al., 2017). For experimentation, we implemented the following: (1) automatic loss scaling via
AMP; (2) gradient clipping to a default value (5.0); (3) delayed updates via gradient accumulation
every 3 batches. These methods are compared to our tanh approach and a no-stabilizer baseline on
the Darcy Flow experiment setting. In Figure 10, we show that all three baselines diverge during the
first epoch of training, while tanh remains stable numerically. It is noteworthy that while loss scaling
almost does not diverge, its scale decreases drastically with each update and becomes infinitesimal.
The common problem for global stabilizers is that they do not directly address the numerical overflow
of forward FFT operations within each FNO block. In the next subsection, we discuss local methods
that acts on the FNO block itself.

B.6 NUMERICAL STABILITY: PRE-FFT METHODS

Here, we give additional details and experiments for our study on numerical stability of mixed-
precision FNO.

1https://github.com/neuraloperator/neuraloperator
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Figure 9: For Navier-Stokes, we use the PyTorch profiler to visualize the runtime breakdown of FNO
training by both modules (top) and GPU kernels (bottom). Spectral convolutions (complex-valued
tensor contraction) accounts for most of the runtime, and correspondingly, kernels associated with
complex numbers are 4 amongst the 5 most costly kernels.
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Figure 10: All three global methods diverge during the first epoch of training, with loss scaling
completing the most batches without NaN values (Left). However, the scale quickly becomes
infinitesimal during training (Right).

A simple idea for addressing overflow in FP16 is to scale down all values by adding a fixed pointwise
division operation before the FFT. However, this is an sub-optimal solution because all the values are
scaled down equally, removing the data outliers but simultaneously squashing normal data. This forces
all numbers into a very small range, which half precision cannot distinguish, preventing the model
from converging to an acceptable performance. We find that accuracy deteriorates as the division
factor grows: 101, 102, 103. At 104, the network completely fails to learn due to vanishing gradients.
We also find that adding a normalization layer before the Fourier transform (essentially equivalent
to scaling) does not fix the numerical instability in the long term. Additionally, normalization
layers present extra GPU memory overhead because their statistics have to be tracked for gradient
computation.
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Fourier AMP Pre- Runtime Train
Precision (T/F) Activation per epoch loss

Full F N/A 44.4 0.0457
Full T N/A 42.3 0.0457
Half F N/A N/A N/A
Half T hard-clip 37.1 0.0483
Half T 2σ-clip 40.0 0.0474
Half T tanh 36.5 0.0481

Table 3: Comparison of different pre-activation functions used for numerical stability. tanh
achieves the fastest runtime without significantly compromising on loss. Since our focus now is on
numerical stability, we compare only the average train loss over the 5 final epochs (we compare the
test losses in Section 4.4).
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Figure 11: Impact of pre-activation on frequency domain signals, for a fully-trained full FNO
model (Left) and a mixed FNO model (Right), in terms of mean magnitude and phase differences,
on a minibatch of the Navier-Stokes dataset. Pre-activation only changes a extremely small fraction
of frequencies, and the two signals are well-aligned in phase.

Appendix B.6 compares several pre-FFT stabilization methods that can address numerical instability
with acceptable computational costs. hard-clip forces maximum and minimum values in the
input to a default range. 2σ-clip similarly performs clipping but based on the data’s mean and
standard deviation. Out of these methods, tanh is founded to be the highest-performing. After
adopting tanh as our pre-activation function, we assess its impact on the signal using a trained
model, as shown in Figure 11. We find that the loss of signal information is minimal in amplitude
and phase.

B.7 FNO BLOCK PRECISION ABLATION STUDY

As shown in Figure 2, our FNO block has three complex-valued operations that are performed in
half-precision: the forward FFT, the tensor contraction, and the inverse FFT. We investigate the effect
of altering the precision setting of each on FNO training. This creates a total of eight settings since
each operations have two precision configurations: full or half. In Table 4, we show error, runtime,
and memory results from training for 30 epochs on the Darcy Flow dataset for each setting. The
empirical results demonstrates the acorss-the-board advantage of our approach, which keeps all three
operations in half-precision in the forward pass.

B.8 TANH ABLATION STUDY

A natural question from using pre-activation is to ask how a hyperbolic tangent would affect the full
precision FNO model with no other changes. In Table 5, we answer this question by running the full
precision FNO model on the Navier-Stokes dataset. We find that there is no noticeable change in the
test losses, and the runtime-per-epoch increases by 0.8 seconds, or 1.6%. This concludes that tanh
is a reasonable and practical choice to improve numerical stability for half precision methods.
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Forward FFT Contraction Inverse FFT Runtime per epoch Memory Train Error
(F/H) (F/H) (F/H) (sec) (MB) (L2 loss)

F F F 17.06 8870 9.00
F F H 16.55 8908 8.71
F H F 17.11 8614 8.76
F H H 16.96 8658 8.15
H F F 17.64 7824 9.13
H F H 16.81 8004 7.51
H H F 16.57 7558 8.75
H H H 15.63 7550 7.49

Table 4: Performance of each setting on Darcy Flow trained for 30 epochs. The fully half-precision
setting (our method) is advantageous across all the metrics. Note that the numerical stabilizer is only
used when forward FFT is in half-precision.
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Figure 12: Comparison of the full-precision and mixed-precision (AMP+HALF+TANH) FNO with
different frequency modes, on the Darcy flow dataset.

B.9 COMPARING THE H1 LOSS

We present additional experiments similar to the results in Section 4, but using the H1 metric instead
of L2. In Figure 12, we plot an ablation study on the number of frequency modes for Darcy flow,
similar to Figure 14 with L2 loss. We see that the overall trends are similar, but test L2 loss is
noisier than test L1 loss; this makes sense, because the training loss is H1. In Figure 13, we plot the
performance-vs-time and Pareto frontier plots for Navier Stokes and Darcy flow, similar to Figure 5
with L2 loss. As before, we see largely the same trends as with H1 loss, but the results are noisier. In
Table 6, we plot the final performance from the models run in Figure 5.

B.10 FREQUENCY MODE ABLATION STUDY

We run an experiment on synthetic data to demonstrate that the error caused by half precision is higher
for higher frequencies, relative to the amplitude. We create a signal based on sine and cosine waves
with frequencies from 1 to 10, with randomly drawn, exponentially decaying amplitudes. Then we

Table 5: Ablation study on full-precision FNO with and without tanh on the Navier-Stokes dataset.
There is no noticeable change in accuracy, showing that tanh is a practical choice to improve
numerical stability in low precision methods.

H1 L2 time-per-epoch (sec)

Full precision 0.0121 0.00470 51.72
Full precision + tanh 0.0122 0.00465 52.56
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Figure 13: Test H1 error curves for FNO on the Navier-Stokes (top left) and Darcy flow (top right)
datasets. Pareto frontier for FNO on the Navier-Stokes (bottom left) and Darcy flow (bottom right)
datasets, for Canonical-Polyadic factorization (CP) or no factorization (Dense). We train each model
for 500 epochs, and we plot the standard deviation across 3 trials for each setting.

Table 6: Results for FNO with full precision, mixed precision, and precision schedule. All results are
the average over 3 seeds trained to 19 hours each (which is the time it takes full precision FNO to
reach 500 epochs).

H1 L2 time-per-epoch (sec)

Full FNO .00536± 2.1e− 5 .00214± 3.5e− 5 121.4
Mixed FNO (Ours) .00645± 6.6e− 5 .00212± 1.4e− 5 80.2
Precision schedule (Ours) .00515± 8.3e− 5 .00812± 4.1e− 5 80.2, 83.8, 121.4

plot the Fourier spectrum in full and half precision, as well as the absolute error of the half-precision
spectrum as a percentage of the true amplitudes. See Figure 15; we find that the percentage error
exponentially increases. Since in real-world data, the energy is concentrated in the lowest frequency
modes, and the higher frequency modes are truncated, this gives further justification for our half
precision method.

B.11 OTHER NUMERIC SYSTEMS

We compare training curves of full FNO, our mixed FNO pipeline, and FNO trained with AMP
using Brain Float 16 (BF16) on the Navier-Stokes dataset in Figure 16. In addition to suffering from

Navier-Stokes Darcy Flow

FNO + TF32 57.44 14.12
Mixed FNO (Ours) 53.72 13.52

Table 7: Training time per epoch on a Nvidia A100 GPU.
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Figure 14: Comparison of the Full-FNO and Mixed-FNO with different frequency modes on the
Darcy Flow dataset. For 16 frequency modes, the half precision error (compared to full precision) is
higher than for 32, 64, or 128 modes.
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Figure 15: Synthetic signal (top), its frequency modes (middle), and the error due to half precision,
as a percentage of the amplitude (bottom). The percentage error increases for higher frequencies.
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Figure 16: BF16 has significantly higher error compared to the other two approaches, possibly due
to reduced bits for precision compared to FP16. FP8 training diverges due to the absence of precision
bits in FP16.

reduced precision, BF16 is not supported for most FFT-related operations in PyTorch, which makes
its application on FNOs extremely difficult.

Furthermore, we compare the efficiency of our mixed precision approach with TensorFloat 32 (TF32)
on an Nvidia A100 GPU, on which TF32 is highly optimized. We report the time per epoch when
training on Navier-Stokes and Darcy Flow datasets in Table 7. Our method is still more efficient in
comparison.

In addition, we simulate 8-bit floating point (FP8) training using our method on the Darcy Flow
dataset via clipping out-of-range values to the maximum and minimum representable under the
E5M2 format, which has a higher dynamic range than the E4M3 format (Micikevicius et al., 2022).
However, the GINO network diverges during training due to less available precision bits as shown in
Figure 16.

Furthermore, the worse result of FP8, is actually predicted Theorem 3.2: while the precision constant
for FP16 corresponds to ϵ = 10−4, it corresponds to ϵ > 10−2 for FP8 (even when using E4M3),
and we can no longer claim that the precision error is lower than the resolution error.

B.12 ABLATION STUDY ON CONTRACT AND VIEW-AS-REAL USAGE

This ablation study shows the benefit of (1) decomposition of einsum into sub-equations and appro-
priate view-as-real usage, (2) our einsum path caching, (3) our greedy tensor contraction procedure,
and (4) both weights and inputs in half-precision.

The results are as follows:

1. The usage of view-as-real is different for different tensor contract implementations:
• Option A: View-as-real on all tensors, and compute a single einsum in one equation

(naive);
• Option B: View-as-real on two tensors at a time, and compute step-by-step einsums

with two-tensor sub-equations (optimized);
• Option C: View-as-real only on high-dimensional einsums, and contracting low-

dimension sub-equations in complex format (ours, optimal).
Results on the Navier-Stokes can be found in Table 8.

2. Re-computing contract paths (naive) vs. Caching contract paths (ours):
Since tensor shapes are static, we avoid repeated path computation in the default contract
implementation. Path computation could take up to 75% of the cost of the contract operation
in the forward pass, which we try to avoid.
Results on the Navier-Stokes and Darcy Flow datasets can be found in Table 9. Our method
reduces time to calculate paths to almost zero during each iteration of einsum in FNOs.

3. Opt-einsum’s FLOP-optimal path (naive) vs. memory-greedy path (ours):
By default, opt-einsum minimizes FLOPs for the contraction, but our method optimizes
memory usage to allow higher-resolution PDEs. Results on Ahmed-body and Shape-Net
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Table 8: Comparison of tensor contraction implementations on the Navier-Stokes dataset
Metric Option A Option B Option C, Ours Reduction from Option A (%)
Time per Epoch (s) 1730 101.7 92.59 94.65
Memory Usage (MB) 10310 5048 4832 53.12
Contract Forward Time (s) 0.178 0.0084 0.0076 95.73

Table 9: Re-computing contract paths vs. Caching contract paths
Dataset Time to calculate paths (s) Time to compute einsums (s) Path/einsum (%)
Navier-Stokes 0.000573 0.000751 76.3
Darcy Flow 0.000441 0.000716 61.6

Car could be found in Table 10. On memory-consuming 3D datasets, our method could save
up to 12%.

4. Approximate only weights in half-precision (naive) vs. inputs and weights both half-
precision (ours):
If only weights were in half-precision, the memory reduction would have been significantly
limited for the contract operation since the inputs are in full-precision. Results on Darcy
Flow and Navier-Stokes can be found in Table 11. Note that in the case of Navier-Stokes,
pytorch uses a much less memory-efficient kernel if inputs were in full-precision. Hence, it
is critical to cast both weights and inputs to half-precision.
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Table 10: FLOP-optimal path vs. memory-greedy path
Dataset Greedy Memory (MB) Default Memory (MB) Reduction (%)
Shape-Net Car 7906 8662 8.72
Ahmed-body 11990 13610 11.91

Table 11: Approximate precision in weights vs. inputs and weights
Dataset Half-Prec Memory (MB) Inputs-Full Memory (MB) Reduction (%)
Darcy Flow 7550 8166 7.54
Navier-Stokes 4832 9380 48.46
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