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Abstract

Graph neural networks (GNNs) often suffer performance degradation as their layer count
grows, typically due to the well-known problems of over-smoothing and over-squashing. In
this work, we identify an additional factor contributing to this degradation, which we term
the K-skewed-traversal problem: certain hop distances are disproportionately emphasized
during aggregation, with this emphasis intensifying as the number of layers grows. To ad-
dress this, we introduce an algorithm called Hop-wise Graph Attention Network (HGAT)
that ensures uniform aggregation across hops to eliminate the K-skewed-traversal problem,
and employs a hop-wise attention mechanism to adaptively prioritize specific hop distances.
We theoretically prove that HGAT removes this skewness by balancing contributions from
different hop distances before applying hop-wise attention. Moreover, in our extensive em-
pirical evaluatiorﬂ we observe notable improvement in terms of solution quality compared
to the state-of-the-art GNN models, particularly as the number of layers increases.

1 Introduction

Graph neural networks (GNNs) (Gori et al., [2005} [Scarselli et al., [2009) have become increasingly popular
because they can effectively model graph-structured data, capturing complex relationships between nodes.
These networks can model many real-life interactions, information, or data across various fields such as social
networks (Fan et al., 2019)), biological networks (Bongini et al., 2023)), chemical systems (Wu et al. [2023)),
multi-agent systems (Kortvelesy et al.l 2023]), etc. The advent of GNNs has accelerated the exploitation of
complex graph data structures, leading to significant advancements in these areas.

Currently, several methods exist in the GNN literature, including GCN (Kipf & Welling} |2017)), GraphSAGE
(Hamilton et all 2017b), and GAT (Velickovi¢ et al., [2018). They are the pioneers of the message-passing
GNN. They are called message-passing GNN because all of these methods share a common mechanism: each
node integrates its neighbors’ features with its own to capture local patterns, thereby leveraging the graph’s
structure for feature learning (Xie et al., [2020). They differ only in how they perform this integration.

It is worth noting that most GNN problems require interactions not only between a node and its immediate
neighbors but also between nodes that are not directly connected. For example, in molecular graphs, a
chemical property can depend on the interaction of atoms located on opposite sides of the molecule (Ra-
makrishnan et al,[2014; |Gilmer et al., 2017)), necessitating distant integration across the graph. To facilitate
this, GNNs integrate features from both neighboring and distant nodes by stacking several layers of the
network. The more layers stacked, the broader the range of information a node can integrate. However,
observations show that GNNs do not learn much from more than a few layers, a limitation we refer to
as the problematic-radius problem. The well-demonstrated reasons for the problematic-radius problem are
over-smoothing (Li et al., [2018; |Chen et al.l [2020; Wu et al.l |2021)) and over-squashing (Alon & Yahav), [2021
Di Giovanni et all 2023]). Over-smoothing occurs when node representations become indiscernible as the
number of layers increases. Also, as the number of layers increases, the number of nodes from where a node
integrates information grows exponentially. This exponentially growing information is summarized into a
fixed-length vector, causing over-squashing. As a result, a node receives weaker information from distant
nodes, and stronger information from nearby nodes.

IThe implementation is available at https://drive.proton.me/urls/XSGJ8SIIGW#0bIyDVkZDqTi
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Beyond over-smoothing and over-squashing, we identify another problem in traditional GNNs that con-
tributes to the problematic-radius problem. We call this the K-skewed-traversal problem. This problem
arises by stacking several GNN layers to integrate information from multiple hops. Depending on their
sub-graph structures, GNNs can randomly assign different priorities to nodes. For instance, a GNN might
prioritize a node’s second-hop neighbors over its first-hop neighbors, while another node might experience
the opposite priority. Also, this skewness among a node’s neighbors’ priorities grows with the increase in
hop counts. As a consequence of these arbitrary and increasingly skewed priorities, GNNs struggle to learn
common patterns among nodes, and consequently, adding more layers yields little benefit.

Notably, the K-skewed-traversal problem is not a deliberate design choice, but rather an unintended byprod-
uct of the standard aggregation process in models like GCN, GraphSAGE, and GAT. For example, in GCN
and GraphSAGE, this problem arises from unintentional biases in their aggregation processes. In GAT, which
introduces attention, the issue manifests even before the attention parameters have been learned, since the
initial node representations are already skewed when the attention weights are applied. These biases are
not explicitly encoded rules or optimizations; rather, they intrinsically arise from the normal computation
in traditional GNNs.

In light of the above background, this paper aims to demonstrate the susceptibility of traditional GNNs
to the K-skewed-traversal problem, especially in deep architectures. We analyze the origins of this issue
and empirically demonstrate its impact on node representations. To address this, we propose a novel algo-
rithm, the Hop-wise Graph Attention Network (HGAT), which mitigates the K-skewed-traversal problem by
ensuring that nodes from all hops receive equal attention. Additionally, HGAT incorporates a hop-wise atten-
tion mechanism that adaptively prioritizes specific hop distances, thereby enhancing the network’s ability to
learn informative and balanced representations from neighbors across multiple layers. Finally, we empirically
demonstrate that HGAT outperforms state-of-the-art GNNs in node classification accuracy, particularly as
the number of layers increases.

The remainder of this paper is structured as follows. We provide a detailed description of the K-skewed-
traversal problem with worked examples in the section that follows. Section [3] details the proposed HGAT
methodology. Next, we offer the theoretical analysis in Section [ We then present the empirical results of
our method compared to the state-of-the-art in Section [f] Finally, Section [6] concludes.

2 Problem Formulation

In this section, we introduce a Generalized GNN Framework (GGNNF), which unifies the mechanisms of
GCN, GraphSAGE, and GAT. We then highlight the K-skewed-traversal problem that arises from this
framework and proceed to mathematically formulate the issue.

2.1 Generalized GNN Framework (GGNNF)

Motivated by the representation generation algorithm used in GraphSAGE, we propose a Generalized GNN
Framework (GGNNF') to unify the representation generation mechanism of the state-of-the-art GNN methods
GCN, GraphSAGE, and GAT. Although these methods vary slightly in their approaches, they share a
common underlying procedure: each node’s representation is generated by aggregating information from
its neighbors’ previous representations and concatenating this with its own previous representation. Here,
the representation of a node is a mapping of that node to a point in vector space, encoding the structural
and feature-based information of the original node. This shared procedure allows us to generalize their
mechanisms, as shown in Algorithm [}

Algorithm (1] takes as input a graph G(V, ) and the feature vectors x, of all nodes v € V. The algorithm
begins by initializing each node’s representation h? with its input feature x, (Line 1). The outer loop (Line
2) iterates over the layers from 1 to K, where K represents the farthest hop distance from which a node
gets information. Within this loop, each node v aggregates information from its first-hop neighbors N (v)
using an aggregation function AGGREGAT E}, producing the aggregated neighborhood vector hj‘?\/(v) for
the k-th layer (Line 4). This aggregated neighborhood information is concatenated with the node’s previous
representation h®*~! using the CONCAT function. GraphSAGE proposes several aggregator architectures for
AGGREGATE), —such as mean, LSTM, and pooling—and uses literal vector concatenation for CONCAT'.
In GGNNF, we treat these as abstract placeholders, not fixed operations, allowing them to be defined as
needed.The concatenated vector is then passed through a fully connected layer, where it is multiplied by



Under review as submission to TMLR

Algorithm 1 Representation generation of GGNNF

Require: Graph G(V, €); input features {x,, Vv € V}; depth K; weight matrices W*, vk € {1,..., K}; non-
linearity o; differentiable aggregator functions AGGREGAT Ey,Vk € {1,..., K}; neighborhood function
N:iv—2Y

Ensure: Vector representations z, for all v € V

1: hY « x,, Vv € V;
2: fork=1... K do
3: for v eV do

4: hjk\,(v) — AGGREGATEk({hﬁ_l,Vu eNW)})
5: hj < o(W". CONCAT (hi~", h}/ ()

6: end for

7: h? « h/||nk|,

8: end for

9: z, +— hE Vo ey

a weight matrix W¥, followed by a non-linear activation function o, which generates the node’s updated
representation h* for the current layer (Line 5). The new representation is then normalized (Line 7). After
all K layers have been processed, the final output z, is the representation of node v, computed for all nodes
in the graph (Line 9).

Each GNN method in GGNNF aggregates neighborhood features and concatenates them with the node’s
own features, but the aggregation mechanisms differ slightly across models. Below, we outline how each
model fits into the GGNNF framework:

GCN: The AGGREGATE), and CONCAT operations are both replaced by summation, leading to the
following simplified update rule, which replaces Lines 4 and 5:

e B )

E o o(WF.
By o (W Y UN W)

GraphSAGE: Rather than aggregating all neighbors, GraphSAGE randomly samples a subset of neighbors
for each node (uniformly at random) and aggregates only those neighbors’ features. This modification
replaces Line 4 with:

hf\/(v) — AGGREGATE,({h"~! Vu € {u1,uz,us,...,u < Uniform(N(v))}})

Here, [ represents the size of the independent random sample taken from the neighborhood of node v.

GAT: Every node and its neighborhood nodes’ features are aggregated according to a learned attention
value a,,, independently specified for every pair of the nodes v and v, where v is the node of interest and u
is a node in its neighborhood. To stabilize the learning process, multi-head attention (Vaswani et al.| [2017)
is applied, where M such independent attention mechanisms are executed in parallel (Velickovi¢ et al., 2018)).
This technique allows the model to capture diverse relational aspects by combining multiple attention scores.
Thus, Lines 4 and 5 are replaced with the following statement:

1 M
LSS
m=1ueN (v)Uv

Here, a7}, represents the m-th attentlon head’s learned attention value between the node of interest v and
a nelghbormg node u, while W*™ denotes the k-th weight matrix for the m-th attention head.

The shared procedure among GCN, GraphSAGE, and GAT enables us to unify them under the GGNNF. This
framework allows for a comprehensive investigation of all three methods, as we discuss in the following section.
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2.2 The K-skewed-traversal Problem

We now explain how the GGNNF described above results in the K-skewed-traversal problem. We categorize
GCN and GAT as deterministic GGNNF models (because of fixed neighborhood aggregation) and Graph-
SAGE as a randomized GGNNF model (due to its random sampling in neighborhood aggregation). We
analyze these two cases separately.

2.2.1 Deterministic GGNNF

To illustrate how GGNNF generates the nodes’ representation of a graph, let’s consider the graph depicted
in Figure To capture interactions from nodes that are, for example, two hops away, we stack two
layers of a deterministic GGNNF, generating representations h? for every node v. Focusing on node a, its
representation h? is computed using its neighbor nodes’ previous layer representation (hi and h!), along
with its own previous layer representation (h}). Node b’s representation hj, in turn, depends on its neighbor
nodes’ previous layer representation (h? and hg) and its own previous layer representation (hg)7 and so
on. We can visualize this iterative process through a computation graph, motivated by Hamilton et al.
(2017al), where the node’s final representation is placed at the root, and the nodes’ representations that the
parent nodes’ representations computationally depend on are placed as its children. The computation graphs
demonstrate which nodes are structurally consulted in forming a target node’s representation, regardless of
how their features are combined through an aggregation function. While the aggregation vary across models,
our analysis is independent of them. What matters is the computation graph itself—i.e., which nodes appear

in the aggregation paths and how frequently.
ha
\
hé/hé \hé
JIN /1IN /1N
h) hy h? h) h) hj h? h} h?

g—e—c—a—hb—d—
b d f (b) The computation graph of h? for the graph in

(a) An example graph. Figure

Figure 1: An example graph and the computation graph of a node in that graph produced by deterministic
GGNNF.

The computation graph for h? is shown in Figure This graph reveals that node a (0-hop) is integrated 3
times, nodes b and ¢ (1-hop) are integrated 2 times each, and nodes d and e (2-hop) are integrated once each.
This uneven integration of neighbors at different hop distances can be measured using the average integration
count (AIC), which quantifies on average how frequently nodes from each hop distance contribute to the final
representation of a node. To formulate AIC, consider a node i of node v’s k hop distance is integrated ¢
times. The set of all nodes from node v’s k hop distance is given by the hop function H(k,v), where H(k,v)
contains all nodes whose shortest path to v is exactly k, equivalently the set of nodes that can be reached
in hops k from node v. Therefore the average integration count of the £ hop nodes in K layered GGNNF is

>
e = i
different hops. The higher the disparity in AIC values across hops, the greater the skewness, which can
severely affect the GNN’s ability to learn effective node representations. Table [I] shows how AIC values
differ for node a across different hops.

This metric provides a quantitative measure of the skewness in node integration across

Next, to examine the effect of the sub-graph structure on AIC, we add a new node h connected to nodes
a and b. The updated graph and the corresponding computation graph for h? are shown in Figure [2a) and
Figure respectively. The updated computation graph shows that node a (0-hop) is now integrated 4
times, while nodes b, h, and ¢ (1-hop) are integrated 3, 3, and 2 times, respectively, and nodes d and e
(2-hop) are still integrated once each. The variation of AIC for the same node a in graphs with different
sub-graph structures indicates that AICs change as the sub-graph structure changes, as shown in Table

Additionally, we analyze the effect of increasing the number of deterministic GGNNF layers on AIC. We
extend the original two-layer GGNNF to three layers, producing the final representation h? for the original
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Figure 2: Produced graph by adding another node to Figure and the computation graph of a node in
that graph produced by deterministic GGNNF.

Table 1: Comparison of AIC values (A¥%=2) for node a with constant K = 2 and varying k, for the graphs
of Figure [Ta] and Figure [2a] produced by the deterministic GGNNF.

Different & K =2 in original graph of Figure K =2 in modified graph of Figure

k=0 3 4
k=1 2 2.67
k=2 1 1

graph in Figure whose computation graph is depicted in Figure [3| Here, node a (0-hop) is integrated 7
times, nodes b and ¢ (1-hop) are integrated 6 times each, nodes d and e (2-hop) are integrated 3 times each,
and nodes g and f (3-hop) are integrated once each. The increased skewness is evident in the third column
of Table [2] showing that adding more layers exacerbates the imbalance in AICs.
2 / hg \ 2
h:/:g\h3 h‘ hi/:g\hi
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Figure 3: The computation graph for h? of the graph in the Figureproduced by the deterministic GGNNF.

2.2.2 Randomized GGNNF

Instead of aggregating features from all neighboring nodes, GraphSAGE selects a random subset of neighbors
through uniform sampling and aggregates features only from this subset. This modification replaces Line 4
of the Algorithm [I| with:

hﬁ/(v) < AGGREGATEL({h"~! Vu € {u1,uz,us,...,u e Uniform(N(v))}})

Here, [ represents the size of the independent random sample taken from the neighborhood of node v. In
this section, we analyze the implications of this sampling strategy on the node representation process.

To illustrate how randomized GGNNF generates the nodes’ representation of a graph for GraphSAGE, let’s
consider the graph depicted in Figure [Ta] again. To capture interactions from nodes that are, for example,
two hops away, we stack two layers of a randomized GGNNF, generating representations h? for every node v.
Also, consider that [, the independent random sample taken from the neighborhood of node v, is 1. Focusing
on node a, its representation h2 is computed using its neighbor nodes’ previous layer representation (h;
and hl) each with probability %, along with its own previous layer representation (hl) with probability 1.
Node b’s representation h}, in turn, depends on its neighbor nodes’ previous layer representation (h? and
hg) each with probability % and its own previous layer representation (hg) with probability 1, and so on.
We can visualize this iterative process through a randomized computation graph, where the node’s final
representation is placed at the root, and the nodes’ representations that the parent nodes’ representations
computationally depend on are placed as its children, with corresponding probabilities.

The computation graph for h? is shown in Figure 4l This graph reveals that node a (0-hop) is integrated
2 times (expected value), nodes b and ¢ (1-hop) are integrated 1 times each (expected value), and nodes d
and e (2-hop) are integrated % times each (expected value). Table [3{shows how AIC values differ for node a
across different hops.
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Table 2: Comparison of AIC values (A¥¥) for node a with varying k& and K on the same original graph of
Figure [Ta} produced by the deterministic GGNNF

Different k K=2 K =3
k=0 3 7
k= 2 6
k= 1 3
k=3 - 1

g hO hO hO hO hU hO ho

e

Figure 4: The computation graph of h? for the graph in Figure [la| produced by the randomized GGNNF.

Next, to examine the effect of the sub-graph structure on AIC, we add a new node h connected to nodes
a and b, as shown in Figure The corresponding computation graph for h2 is shown in Figure The
updated computation graph shows that node a (0-hop) is now integrated % times (expected value), while
nodes b, h, and ¢ (1- hop) are integrated 2 3 9,

e (2-hop) are integrated i and & times (expected value), respectively. The variation of AIC for the same
node a in graphs with different sub-graph structures indicates that AICs change as the sub-graph structure

changes, as shown in Table [3]

and % times (expected value), respectively, and nodes d and

Table 3: Comparison of AIC values (A¥%=2) for node a with constant K = 2 and varying k, for the graphs
of Figure [Ta] and Figure [2a] produced by the randomized GGNNF

Different k. K =2 K=3

k=0 1.5 1.44
k=1 1 .76
k=2 .25 .14

Additionally, we analyze the effect of increasing the number of layers on AIC. We extend the original two-
layer randomized GGNNF to three layers, producing the final representation h? for the original graph in
Figure whose computation graph is depicted in Figure @ Here, node a (0-hop) is integrated % times
(expected value), nodes b and ¢ (1-hop) are integrated 12 times each (expected value), nodes d and e (2-
hop) are integrated % times each (expected value), and nodes g and f (3-hop) are integrated % times each
(expected value). The increased skewness is evident in the third column of Table 4] showing that adding
more layers exacerbates the imbalance in AICs.

As demonstrated in our examples, the K-skewed-traversal problem can arise even in simple topologies like
straight-line graphs. Naturally, this issue persists—and often intensifies—in more complex graph structures
due to their irregular neighborhood patterns. We include examples with more diversified and realistic graph
structures in Appendix [A] to further illustrate the generality of the problem and strengthen our empirical
justification.

Based on the analysis above on both deterministic and randomized GGNNF, we formulate the follow-
ing propositions, which hold for any graphs for the GGNNF framework, rather than solely for the spe-
cific examples shown. These propositions illustrate how the K-skewed-traversal problem manifests in any
graph structures:

Proposition 1. GGNNFs prioritize certain hop neighbors over others when producing node representations.
For a node, AICs of different hops, produced by a K layered GGNNF are not necessarily the same, i.e.
Yo €V :Vki ko €[0,K]: (ky # kp) = —O(AME = Ak2K)
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Figure 5: The computation graph for h? of the graph in Figure [2a| produced by randomized GGNNF, shows
the effect of changing sub-graph structure on the average integration count.
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Figure 6: The computation graph for h? of the graph in the Figure [la] produced by randomized GGNNF.

Consequently, when a node integrates information from nodes of multiple hops, GGNNFs give some hops
higher priority than others.

Proposition 2. This priority is influenced by the nodes’ sub-graph structure.

For two different nodes, AICs of the same hop, produced by a K layered GGNNF are not necessarily the
same, i.e.

Vu,v €V :Vk €[0,K]: (u#v) = -O(AME = ARK)
It means that the priorities depend on the nodes’ sub-graph structure: a GGNNF may prioritize a node’s first
hop neighbors over the second hop’s, whereas the same GGNNF may prioritize the opposite for another node.
Proposition 3. Increasing the number of GGNNF layers exacerbates the skewness in prioritizing different

hop neighbors.

For a node, increasing the number of GGNNF layers does not reduce AIC for any hop, i.e.
Yo eV:Vke[0,min(K,L)]: (K >L) = (AMK > ARL)

It means that the skewness among the priorities of a node’s different hop neighbors does not decrease with
the increase in the number of layers stacked in the GGNNF.

These propositions describe the fundamental properties of the K-skewed-traversal problem in any graphs
which are not restricted to specific cases but are inherent to GGNNF models.

The objective of this paper is to develop a method that effectively addresses the K-skewed-traversal problem
in GGNNF. To achieve this, we aim to ensure that each hop distance contributes uniformly to the node
representation, maintaining an Average Integration Count (AIC) of 1 across all layers:

Yo e V,Vk € [0,K]: ARK =1

This uniform integration approach eliminates skewed prioritization across different hop distances. Addi-
tionally, we aim to adaptively adjust the importance of each hop during training, with the overall goal
of enhancing representation learning and significantly improving performance, particularly in deep GNN
architectures.

3 The Hop-wise Graph Attention Network (HGAT) Algorithm

Now, we introduce an algorithm that resolves the K-skewed-traversal problem in GGNNF. We introduce the
Hop-wise Graph Attention Network (HGAT) Algorithm, which ensures uniform aggregation across different



Under review as submission to TMLR

Table 4: Comparison of AIC values (A¥X) for node a with varying & and K on the same original graph of
Figure [Ta} produced by the randomized GGNNF

Different k K=2 K=3

k=0 1.5 2.5
k=1 1 1.875
k=2 .25 .75
k=3 - 125

hop distances (See Theorem [1)) and incorporates a learnable hop-wise attention mechanism. This approach
allows the algorithm to adaptively attend to specific hop distances, improving node representations for
downstream tasks such as node classification or link prediction.

3.1 Algorithm Description

In GGNNF, nodes aggregate information from their neighbors across multiple hops. However, this process
often results in a skewed AIC, especially in deep GNN architectures. This skewed aggregation can degrade
the quality of the node representations, leading to poor results.

To address this, HGAT performs two core components: Uniform Aggregation Across Hops (Phase 1) followed
by Hop-wise Attention Mechanism (Phase 2).

Uniform Aggregation Across Hops (Phase 1): The core idea is to treat each hop separately during
aggregation. To create a node’s representation, we take its hop neighbors from 0 up to K separately and
compute hop-specific summaries (each hop gets its own summary) by aggregating the features of nodes
at that hop distance. This step prevents the skewed aggregation seen in GGNNF, ensuring each hop’s
information is integrated equally.

Hop-wise Attention Mechanism (Phase 2): The hop-wise summaries are then combined using atten-
tion weights learned during training. This mechanism allows the network to prioritize specific hop distances,
resulting in better node representations.

Algorithm 2 Representation generation of HGAT

Require: Graph G(V,&); input features {x,,Vv € V}; depth K; weight matrices W¥, Vk € {0,..., K};
non-linearity o; differentiable aggregator functions AGGREGATEy,Vk € {1,..., K}; hop function H :
(k,v) — set of node v’s k’th hop neighborhood

Ensure: Vector representations z, for all v € V

1: hg — Xy, VU €V
2: for v €V do
3: for k=0...K do

4: ct «+ AGGREGATE(x,,Yv € H(k,v)) > Mean or sum aggregation

5: nf « o(Wk.ck) > Compute hop-wise summary

6: end for

7: for k=0...K do

8: A 27’“ > Learn attention weights
2o

9: end for

10 hE « YK A\nk

11: end for

12: z, + hE Vo ey > Compute final node representation

Algorithm [2] describes the forward propagation process in HGAT, which generates node representations
while resolving the K-skewed-traversal problem. Algorithm [2| works as follows. For every node v in the
graph G(V, &), the initial representation h¥ is set to its input features x, in Line 1, as a preparation for
Uniform Aggregation Across Hops (Phase 1). The for loop of Lines 2-11 iterates over every node v. Within
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an : summary of node v’s K-hop neighbors

: summary of node v’s k-hop neighbors

summary of node v’s 1-hop neighbors

summary of node v’s 0-hop neighbors

Figure 7: HGAT creates separate summaries of a node’s every neighboring hops, including the node itself,
and integrates these summaries to generate node representations.

this, the for loop in Lines 3-6 creates K + 1 separate hop-specific summaries for every node. The k’th
summary of node v is created by

(i) Aggregating the features of all nodes in the k-hop neighborhood of v in Line 4:
c” « AGGREGATE(x,,Yv € H(k,v))

(ii) Transforming it using a weight matrix W* followed by a non-linear activation function ¢ in Line 5:

n® « o(WF.ch)
The creation of the separate hop-specific summaries is depicted in Figure[7] The aggregation function in Line
4 can be any differentiable operation, such as mean or sum. The version of HGAT that uses mean aggregation
is referred to as HGAT-mean, while the version that employs sum aggregation is called HGAT-sum.

To generate hop-specific summaries, k-hop neighborhoods are computed using breadth-first search (BFS) (or

depth-limited DFS) up to depth k. The time complexity for computing the k-hop neighborhood of a node
DFFl_1

is approximately ———= where D is the average node degree. This process is easily parallelizable, since the
k-hop neighborhood of each node can be computed independently of others. In practice, we precompute
these neighborhoods before model training, ensuring scalability for moderately sized graphs. The creation
of the hop-wise summaries concludes Uniform Aggregation Across Hops (Phase 1).

Once the hop-wise summaries n* are computed for each hop, the algorithm proceeds to the Hop-wise At-

tention Mechanism (Phase 2). In this phase, the attention weights )\; determine the contribution of n*
to the final node representation. These weights are learned during training and Line 8 constrains them to
sum to 1 using the softmax function, ensuring balanced importance across different hops and preventing
extreme values.

ek

K .
im0 €M
Line 10 computes the final node representation as a weighted sum of the hop-wise summaries. The weights,
determined by the attention mechanism, control the contribution of each hop-wise summary—higher atten-

tion weights result in a greater influence of the corresponding summary on the weighted sum. The weighted
sum of the hop-wise summaries is computed as:

A —

K
hi <> \enf
k=0

Overall, HGAT explicitly addresses the limitations of existing GGNNF architectures by eliminating the
skew in hop contributions and allowing the model to learn which hops are most important. By treating
each hop separately and applying a learnable attention mechanism, HGAT ensures that all neighborhood
information is utilized effectively, regardless of the hop distance. This not only results in more balanced node
integration but also allows the algorithm to adaptively focus on the most relevant features during training.
As a consequence, HGAT enhances the expressive power of GNNs, particularly in deep architectures. The
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Figure 8: The computation graph produced during Uniform Aggregation Across Hops (Phase 1) of HGAT.

next section demonstrates how Uniform Aggregation Across Hops (Phase 1) mitigates the K-skewed-traversal
problem by ensuring equal contribution from each hop, thereby establishing a foundation for the Hop-wise
Attention Mechanism (Phase 2).

4 Theoretical Analysis

Theorem 1. HGAT ensures AIC value of 1 in Uniform Aggregation Across Hops (Phase 1) before it applies
Hop-wise Attention Mechanism (Phase 2).

Yo e V,VEk € [0,K]: ARK =1

Proof. Let’s consider a node v for which we are generating a representation integrating information up to K-
hops, meaning we are interested in calculating h€ the final representation of node v. This representation h€

is computed from the hop-wise summaries n, nl ... . n¥* ... nX~! nX where n* represents the summary

) Moo

of nodes at the k-th hop. The computation graph is shown in Figure [§

AIC of node v for the nodes in its k-th hop for a K layer HGAT is AkK A node i of node v’s k hop distance
is integrated ¢!, times. The set of all nodes from node v’s k hop distance is given by the hop function H (k,v).
To compute the hop-wise summary n¥, we aggregate the features of all nodes at the k-hop distance from
node v.

AIC ARE is calculated as:
> 4
Afj’K _ i€ H (k,v)
[H (,v)|

The hop-wise summary, n¥ is calculated by taking the summation or average of v’s k-th hop neighbors,

unlike GGNNF where each neighboring node can contribute multiple times randomly (See Section [2| and
Section [3[ for detailed analysis). Consequently, each node ¢ within k-th hop neighborhood contributes to the
summary exactly once in Phase 1, meaning ¢! = 1. Thus, the sum simplifies to:

o1
K i€H (k) |H (k,v)| _
! |H(k,v)]  [H(k,v)]|

O

This theorem demonstrates that AIC for each hop in Uniform Aggregation Across Hops (Phase 1) is 1. Con-
sequently, this phase effectively mitigates the K-skewed-traversal problem inherent in GGNNF models by
ensuring that each hop distance contributes uniformly before applying the Hop-wise Attention Mechanism
(Phase 2). This prevents HGAT’s attention weights from being applied to already skewed node representa-
tions.

5 Experimental Evaluation

This section evaluates the proposed Hop-wise Graph Attention Network (HGAT) on standard node classifi-
cation tasks, comparing its performance with GCN, GraphSAGE, and GAT (the detailed reason for selecting

10
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these datasets is discussed in Section . The primary objectives of the experiments are to (i) demonstrate
the effectiveness of the hop-wise attention mechanism, and (ii) validate the method’s ability to mitigate the
K-skewed-traversal problem.

We conduct experiments on three widely-used benchmark citation network datasets: Cora (Yang et al., [2016)),
Citeseer (Yang et all [2016), and Pubmed (Yang et al| [2016) provided by PyTorch Geometric framework
(Fey & Lenssenl 2019)). These datasets consist of nodes representing documents and edges denoting citations
between them. The features for each node are bag-of-words representations of the documents, and the task is
to classify each node into one of several predefined classes. Table [5| provides key statistics of these datasets.

Table 5: Statistics of the dataset used in our experiment

Dataset Nodes Edges Features Classes

Cora 2,708 10,556 1,433 7
Citeseer 3,327 9,104 3,703 6
Pubmed 19,717 88,648 500 3

5.1 Impact of the K-skewed-traversal Problem on the Datasets

To assess how the working procedure of the GGNNF introduces skewness in these datasets, we measure
AIC of all nodes in each dataset. Since it is impractical to inspect AICs for all nodes simultaneously, we

ey ALK
uev Y

summarize the results by calculating the mean (u  v.x = T) and standard deviation (o xx =
Zuev(Aﬁ’Ki'uAk’K)z . . k K .
T ) of the integration counts, where A7** represents AIC of node v at hop k with K
layers GNN.

Table@ shows the mean and standard deviation of AICs on varying hops k with static GNN layers (K = 4) to
see the effect of the number of hops on AICs. The varying mean of the AIC illustrates that AICs of different
hops are not necessarily the same, the effect stated in the Proposition [I Moreover, the standard deviation
of a specific hop k shows that AIC varies from node to node with the same hop k and the same GGNNF
layers K, as the sub-graph structure of the node of interest changes, the effect stated in the Proposition

Additionally, Table m shows the mean and standard deviation of AICs on varying GGNNF layers (K) with
static hop £ = 2. The increasing AIC demonstrates that increasing the GGNNF layer will increase AIC of
a node’s specific hop, the effect stated in the Proposition [3]

5.2 Experimental Results

We now present our comparative empirical evaluation on the Cora, Citeseer, and Pubmed datasets. We split
the datasets into three categories. The training set is created by randomly selecting 20 nodes per class. The
remaining nodes are randomly divided into a validation set containing 500 nodes and a test set with the
remaining nodes. We optimize hyperparameters separately for each method, train for 600 epochs at every K,
and report the best test accuracy observed across all epochs. All experiments are carried out on a machine
equipped with an NVIDIA GeForce RTX 3090 GPU (24 GB of RAM), an AMD Ryzen 9 5950X 16-Core
(4.9 GHz processor), and 98GB RAM.

The results of our comparative empirical evaluation on the Cora, Citeseer, and Pubmed datasets are sum-
marized in Figures [Ob] and respectively. These figures illustrate how the node classification accuracy
of each method changes as the number of GNN layers increases. To complement these plots with precise
numerical values, detailed accuracy results for each dataset and method across all depth settings are provided

in Tables [§ P} and [1I0]in Appendix [B]

Across all datasets, we observe a general trend: while all methods perform similarly with a lower number
of GNN layers, the baseline methods (GCN, GraphSAGE-mean, GraphSAGE-sum, and GAT) experience
significant drops in accuracy as the number of layers increases. In contrast, our proposed method, HGAT-
mean and HGAT-sum, shows a much more gradual decrease in accuracy. For example, on the Cora dataset
(Figure , GCN’s accuracy drops by approximately 50% on average after 15 layers, while HGAT-mean
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Table 6: Impact of varying hops (k) on the mean and standard deviation of the AICs (with static GGNNF

layers K = 4)
Cora Citeseer Pubmed

qu-,K O-AS’K MAﬁ,K O'Aﬁ,K ,uAE,K O'AE‘K
k=0 133.77 692.13 75.51 318.60 255.93 949.40
k=1 119.76 142.88 63.99 123.95 177.46 264.00
k=2 58.68 52.51 33.46 52.59 88.62 114.61
k=3 9.82 6.13 7.28 9.43 15.51 16.29
k=4 1.77 0.95 1.31 1.33 2.58 1.57

Table 7: Impact of varying GGNNF layers (K) on the mean and standard deviation of the AICs (with static

layer k = 2)
Cora Citeseer Pubmed
H gk K O gk K Mgk K O gk K H gk, K O yk,K
K=2 1.08 0.34 0.92 0.52 1.09 0.18
K=3 5.19 2.66 3.91 3.23 5.07 3.86
K=14 58.68 52.51 33.46 52.59 88.62 114.61

maintains a much smaller 35% average drop and HGAT-sum always maintains steady accuracy. This is
because HGAT maintains uniform contribution from each hop, solving the K-skewed-traversal problem that
other methods fail to address. Figure 0b] shows that in the Citeseer dataset, baseline methods experience
steep declines in accuracy after around 12 layers, while HGAT-mean maintains a steady and gradual decrease
but higher than other baseline methods, preserving higher classification performance. HGAT-sum maintains
higher accuracy than the baseline methods but lower than the HGAT-mean, preserving steady accuracy.
Here, the reason for HGAT’s higher accuracy as the number of layers increases is stated above. As seen in
Figure in the Pubmed dataset, HGAT-mean maintains a higher accuracy in contrast to baseline methods,
whose performance drastically deteriorates after 10 layers, while HGAT-sum maintains steady accuracy even
after around 10 layers, for the same reasons mentioned.

—— HGAT-mean GraphSAGE-mean —— HGAT-mean GraphSAGE-mean —— HGAT-mean GraphSAGE-mean
HGAT-sum GraphSAGE-sum HGAT-sum GraphSAGE-sum HGAT-sum GraphSAGE-sum
GCN —— GAT GCN — GAT GCN — GAT
08— t 0.7 2= e~
SN T
?\7(\ \ — 0.7
o7 \\\ o6l A . \(\ \ \
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(a) Node classification accuracy for (b) Node classification accuracy for (c) Node classification accuracy for
different methods in Cora. different methods in Citeseer. different methods in Pubmed.

Figure 9: Node classification accuracy for different methods in Cora, Citeseer, and Pubmed datasets.

Notably, HGAT performs substantially better than the state-of-the-art methods, its slight decrease in ac-
curacy as the number of layers increases is due to the well-known issues in deep GGNNF architectures:
over-smoothing and over-squashing, which are also present in the state-of-the-art methods. However, the
decline in HGAT is far less pronounced than that observed in the state-of-the-art methods.

In contrast, the significant performance degradation in the state-of-the-art methods is further exacerbated
by the proposed K-skewed-traversal problem, which we demonstrate arises in deep GGNNF architectures.
This problem intensifies the decline by prioritizing different hop neighbors unevenly, leading to inefficient
learning from multi-hop nodes.
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On the other hand, HGAT effectively addresses the K-skewed-traversal problem by ensuring uniform ag-
gregation across hops and incorporating a hop-wise attention mechanism that balances the contributions
of neighbors at various hop distances. However, all three issues—over-smoothing, over-squashing, and the
K-skewed-traversal problem remain prevalent in the state-of-the-art methods.

These results demonstrate HGAT’s robustness in mitigating the K-skewed-traversal problem that arises from
deep GGNNF architectures. By maintaining a more balanced integration of information from different hop
distances, HGAT achieves superior performance on node classification tasks across multiple datasets.

6 Conclusions and Future Work

In this work, we identify a new problem inherent in traditional Graph Neural Networks (GNNs) named the
K-skewed-traversal problem and introduce the Hop-wise Graph Attention Network (HGAT) algorithm to
address it. Through our experiments on benchmark datasets, HGAT demonstrates significant improvements
in node classification accuracy in deep GNN architectures, by mitigating the skewed priority given to different
hop neighbors. The introduction of the hop-wise attention mechanism ensures an adaptive integration of
information from various hop distances, allowing HGAT to maintain high performance as the network depth
increases. These results highlight the potential of HGAT to enhance the effectiveness of GNNs in real-world
applications, particularly in scenarios requiring deep architectures. In the future, we would like to explore the
adaptation of HGAT to other tasks within graph learning such as edge prediction, graph classification, etc.
We also want to explore whether HGAT can be extended for larger and more complex graph structures e.g.
heterogeneous graphs. In general, the advances presented in this paper contribute to the ongoing development
of robust and scalable GNN models, paving the way for their broader application across various fields.
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A Graph Examples lllustrating the K-skewed-traversal Problem

In addition to Figures [Ta] and [2a] we present a range of additional graph examples to further illustrate
the K-skewed-traversal problem. When generating a node’s representation, GGNNF processes a subgraph
centered on the node, with radius defined by the depth K. These K-radius subgraphs can vary significantly
in structure and shape depending on the target node’s location and neighborhood within the overall graph.
Figure illustrates how GGNNF computes each node’s representation from its surrounding sub-graph
(centered at the target node) up to radius K. This results in different sub-graphs for different nodes,
depending on their neighborhoods.

Figure 10: GGNNF computes each node’s representation using its surrounding sub-graph, centered on the
target node and extending up to radius K. Thus it encounters different sub-graph for different nodes.

Figure [11] illustrates, for deterministic GGNNF, how nodes at different hop distances contribute to a target
node’s representation, making the skew visually apparent. The same type of analysis and visualization
applies to randomized GGNNF as well. The figure compares node contributions for K = 2 (left) and K = 3
(right) using the same sub-graph. Across all examples, we observe uneven contributions from different hop
distances, confirming Proposition Increasing K increases contributions from multiple hops, confirming
Proposition [3] Additionally, the contribution of each node varies with changes in the subgraph structure,
aligning with the claim in Proposition 2] These examples demonstrate that the K-skewed-traversal problem
occurs across a variety of graph topologies, and that its severity can change with both the number of layers
K and the node’s local sub-graph structure.

B Detailed Results

To complement the plots in Figures[Ja] [0b] and [0, we provide full numerical accuracy values for each dataset
and method across different layer depths (K) in Tables 8] [9]
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0-th hop node, also the target node
1-th hop node
2-th hop node
3-th hop node

4-th hop node
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(a) Both examples show the disparity of contribution of different nodes validating Proposition Additionally,
comparing left one with right one shows contribution is increased as the number of layers increased from K = 2 to
K = 3, validating Proposition

@)—C—Q@—O—O

(b) Both examples show the disparity of contribution of different nodes validating Proposition Additionally,
comparing left one with right one shows contribution is increased as the number of layers increased from K = 2 to
K = 3, validating Proposition [3] Furthermore, in K = 3, hop 1 is contributing more than hop 0, which is different

from previous three graphs.

(c) Both examples show the disparity of contribution of different nodes validating Proposition Additionally,
comparing left one with right one shows contribution is increased as the number of layers increased from K = 2 to
K = 3, validating Proposition [3] Furthermore, in K = 3, hop 1 is contributing more than hop 0, which is different

from previous three graphs.
®
@
@

(d) Both examples show the disparity of contribution of different nodes validating Proposition Additionally,
comparing left one with right one shows contribution is increased as the number of layers increased from K = 2 to
K = 3, validating Proposition@

C0000

Figure 11: Left one showing individual node’s contribution on generating target node’s representation for
K = 2, right one for K = 3 for the same sub-graph. These comparison shows the validity of K-skewed-
traversal.
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Table 8: Node classification accuracy (%) of HGAT-mean, HGAT-sum, GCN, GraphSAGE-mean,
GraphSAGE-sum and GAT on the Cora dataset across different numbers of layers (K). Note: Bold values
indicate the best performance at each depth (K ).

Layers | HGAT-mean HGAT-sum GCN  GraphSAGE-mean GraphSAGE-sum GAT
0 0.545 0.517 0.770 0.727 0.758 0.748
1 0.712 0.728 0.769 0.725 0.761 0.755
2 0.762 0.750 0.796 0.770 0.693 0.512
3 0.783 0.710 0.801 0.622 0.434 0.322
4 0.775 0.703 0.777 0.549 0.409 0.278
5 0.768 0.703 0.712 0.341 0.271 0.243
6 0.764 0.689 0.526 0.464 0.395 0.243
7 0.781 0.674 0.692 0.375 0.353 0.243
8 0.772 0.660 0.589 0.637 0.320 0.230
9 0.753 0.664 0.632 0.479 0.162 0.243
10 0.788 0.675 0.677 0.514 0.381 0.265
11 0.750 0.675 0.211 0.156 0.252 0.243
12 0.679 0.668 0.638 0.156 0.222 0.213
13 0.569 0.653 0.359 0.315 0.222 0.243
14 0.550 0.662 0.348 0.315 0.251 0.243
15 0.512 0.666 0.399 0.315 0.315 0.243
16 0.490 0.667 0.363 0.315 0.264 0.243
17 0.492 0.659 0.246 0.315 0.245 0.243
18 0.487 0.660 0.326 0.315 0.255 0.275
19 0.468 0.661 0.314 0.315 0.178 0.230
20 0.486 0.654 0.192 0.315 0.404 0.243
21 0.475 0.664 0.307 0.156 0.200 0.243
22 0.469 0.664 0.226 0.315 0.217 0.243
23 0.456 0.668 0.259 0.315 0.309 0.243
24 0.460 0.660 0.367 0.315 0.243 0.251
25 0.448 0.661 0.311 0.315 0.295 0.243
26 0.461 0.662 0.310 0.315 0.270 0.248
27 0.458 0.665 0.330 0.315 0.326 0.221
28 0.456 0.665 0.310 0.315 0.351 0.230
29 0.448 0.664 0.359 0.315 0.303 0.243
30 0.448 0.661 0.304 0.156 0.293 0.243
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Table 9: Node classification accuracy (%) of HGAT-mean, HGAT-sum, GCN, GraphSAGE-mean,

GraphSAGE-sum and GAT on the Citeseer dataset across different numbers of layers (K).
values indicate the best performance at each depth (K ).

Note:

Layers | HGAT-mean HGAT-sum GCN  GraphSAGE-mean GraphSAGE-sum GAT
0 0.586 0.587 0.661 0.631 0.614 0.638
1 0.676 0.629 0.661 0.631 0.611 0.624
2 0.692 0.574 0.701 0.588 0.592 0.543
3 0.680 0.557 0.661 0.511 0.520 0.343
4 0.684 0.539 0.654 0.361 0.333 0.376
5 0.679 0.520 0.577 0.305 0.397 0.283
6 0.684 0.499 0.569 0.324 0.262 0.239
7 0.678 0.545 0.478 0.238 0.255 0.228
8 0.676 0.492 0.480 0.356 0.318 0.239
9 0.675 0.497 0.383 0.247 0.263 0.236
10 0.665 0.546 0.205 0.345 0.242 0.239
11 0.660 0.463 0.507 0.198 0.301 0.238
12 0.657 0.468 0.471 0.178 0.275 0.227
13 0.654 0.470 0.352 0.207 0.296 0.240
14 0.651 0.462 0.199 0.207 0.286 0.240
15 0.641 0.480 0.201 0.204 0.280 0.232
16 0.639 0.475 0.217 0.207 0.292 0.231
17 0.628 0.469 0.403 0.205 0.243 0.229
18 0.614 0.472 0.200 0.207 0.308 0.230
19 0.600 0.447 0.204 0.207 0.281 0.239
20 0.577 0.482 0.225 0.178 0.232 0.228
21 0.557 0.455 0.198 0.178 0.261 0.238
22 0.540 0.458 0.201 0.207 0.352 0.230
23 0.521 0.466 0.196 0.207 0.223 0.234
24 0.506 0.465 0.229 0.211 0.276 0.233
25 0.499 0.470 0.177 0.207 0.294 0.226
26 0.495 0.480 0.199 0.205 0.339 0.231
27 0.488 0.464 0.204 0.181 0.277 0.229
28 0.488 0.465 0.192 0.211 0.226 0.241
29 0.484 0.475 0.211 0.211 0.304 0.231
30 0.478 0.477 0.185 0.207 0.310 0.231
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Table 10: Node classification accuracy (%) of HGAT-mean, HGAT-sum, GCN, GraphSAGE-mean,

GraphSAGE-sum and GAT on the Pubmed dataset across different numbers of layers (K).
values indicate the best performance at each depth (K ).

Note:

Layers | HGAT-mean HGAT-sum GCN  GraphSAGE-mean GraphSAGE-sum GAT
0 0.456 0.426 0.742 0.729 0.722 0.717
1 0.658 0.540 0.742 0.729 0.722 0.709
2 0.684 0.696 0.750 0.736 0.753 0.505
3 0.749 0.673 0.742 0.562 0.680 0.393
4 0.751 0.706 0.747 0.546 0.703 0.405
5 0.757 0.696 0.685 0.400 0.562 0.291
6 0.760 0.692 0.685 0.665 0.393 0.397
7 0.750 0.688 0.679 0.400 0.400 0.401
8 0.755 0.673 0.644 0.400 0.525 0.400
9 0.751 0.669 0.376 0.393 0.401 0.400
10 0.753 0.677 0.400 0.400 0.396 0.405
11 0.760 0.686 0.400 0.400 0.474 0.400
12 0.733 0.675 0.400 0.400 0.400 0.400
13 0.660 0.669 0.524 0.393 0.424 0.405
14 0.615 0.674 0.393 0.400 0.412 0.402
15 0.617 0.676 0.422 0.400 0.396 0.400
16 0.595 0.675 0.424 0.400 0.412 0.405
17 0.591 0.681 0.400 0.400 0.412 0.405
18 0.583 0.678 0.411 0.400 0.404 0.405
19 0.606 0.674 0.400 0.400 0.398 0.400
20 0.575 0.670 0.400 0.400 0.400 0.399
21 0.595 0.674 0.400 0.400 0.377 0.405
22 0.574 0.687 0.400 0.400 0.405 0.405
23 0.570 0.675 0.376 0.400 0.415 0.405
24 0.573 0.673 0.400 0.400 0.445 0.400
25 0.562 0.678 0.400 0.400 0.415 0.400
26 0.561 0.672 0.400 0.400 0.403 0.399
27 0.556 0.689 0.400 0.400 0.400 0.404
28 0.557 0.671 0.400 0.400 0.400 0.400
29 0.562 0.679 0.400 0.400 0.409 0.397
30 0.572 0.673 0.400 0.400 0.400 0.405
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