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Abstract

Lexical normalization research has sought to001
tackle the challenge of processing informal ex-002
pressions in user-generated text, yet the ab-003
sence of comprehensive evaluations leaves it004
unclear which methods excel across multiple005
perspectives. Focusing on unsegmented lan-006
guages, we make three key contributions: (1)007
creating a large-scale, multi-domain Japanese008
normalization dataset, (2) developing normal-009
ization methods based on state-of-the-art pre-010
trained models, and (3) conducting experiments011
across multiple evaluation perspectives. Our012
experiments show that both encoder-only and013
decoder-only approaches achieve promising re-014
sults in both accuracy and efficiency.015

1 Introduction016

User-generated text (UGT) is invaluable textual017

content produced by users’ activities on web018

platforms such as review sites and social media.019

UGT’s informality—its frequent use of colloquial020

expressions—poses substantial challenges to accu-021

rate analysis in natural language processing ap-022

plications. Consequently, researchers have ex-023

plored lexical normalization (LN), the task of con-024

verting non-standard word forms into standard025

ones. LN has been actively studied particularly for026

space-delimited languages such as European lan-027

guages (Baldwin et al., 2015; van der Goot et al.,028

2021). In this study, we investigate LN for unseg-029

mented languages, focusing primarily on Japanese.030

Major issues in existing LN research are sum-031

marized as a lack of comprehensive evaluation,032

leaving unclear which methods excel under dif-033

ferent evaluation aspects. Specifically, (i) com-034

parative evaluations of recent model architectures035

are absent, and (ii) multi-perspective analyses—036

examining required training data size, inference037

cost, and domain-specific accuracy across diverse038

domains—have not been conducted. These issues039

are common to LN research but are particularly040

severe for underexplored unsegmented languages. 041

This study addresses these gaps through three key 042

contributions: (1) dataset construction, (2) method 043

development based on cutting-edge pre-trained 044

models, and (3) comprehensive experiments. 045

First, we introduce the Japanese Multi-Domain 046

Lexical Normalization Dataset (JMLN), a large col- 047

lection of 21,402 sentences drawn from a variety 048

of UGT sources. JMLN’s size exceeds existing 049

Japanese LN datasets (Higashiyama et al., 2021b; 050

Kondo et al., 2025), and its domain diversity sur- 051

passes that of any current LN datasets. These prop- 052

erties enable both the development of methods suit- 053

able for Japanese and multi-perspective evaluation. 054

Second, we develop LN methods based on 055

three modern Transformer (Vaswani et al., 2017) 056

architectures—encoder-only, encoder-decoder, and 057

decoder-only—including a novel encoder-based in- 058

filling approach, as well as variants of generative 059

approaches. While these boundary-aware meth- 060

ods are tailored for unsegmented languages, they 061

remain broadly applicable. 062

Third, we evaluate these methods on JMLN and 063

an existing Thai dataset. Multi-perspective experi- 064

ments on JMLN yield in-depth insights into meth- 065

ods’ characteristics and trade-offs, while experi- 066

ments on the Thai dataset further validate cross- 067

lingual applicability and generalizability. 068

Our evaluation reveals three main findings. First, 069

compact encoder-only models deliver the highest 070

inference throughput, and decoder-only models ex- 071

cel in normalization recall—while both yield high 072

normalization precision. Second, training mod- 073

els on 4k–8k sentences yields reasonable preci- 074

sion of around 0.7, and cutting-edge decoder-only 075

models deliver superior recall even with fewer in- 076

stances. Third, domains rich with unknown infor- 077

mal words exhibit low performance, especially the 078

typo-correction domain.1 079

1Our dataset and code will be available at {URL}.
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2 Related Work080

Text normalization has been studied for some rep-081

resentative purposes: mapping dialectal variants to082

standard language (Kuparinen et al., 2023), mod-083

ernizing historical writings (Bollmann, 2019), and084

verbalizing semiotic expressions for text-to-speech085

(TTS) synthesis (Zhang et al., 2019). Specifically,086

lexical normalization (LN) refers to the normaliza-087

tion task of converting UGT at the lexical level.088

To date, research on UGT normalization can089

be broadly divided into three categories based on090

the dominant methodologies of each period: rule-091

based and statistical methods (Aw et al., 2006;092

Choudhury et al., 2007; Han and Baldwin, 2011),093

pre-Transformer neural methods (Chrupała, 2014;094

Ikeda et al., 2016; Lusetti et al., 2018; Lourent-095

zou et al., 2019), and Transformer-based methods096

(Muller et al., 2019; Samuel and Straka, 2021; Bu-097

cur et al., 2021; Bikaun et al., 2024).098

To achieve robust word segmentation (WS)099

for UGT, previous studies have often addressed100

LN jointly with WS, as exemplified by research101

on Japanese (Sasano et al., 2013; Kaji and Kit-102

suregawa, 2014; Saito et al., 2014, 2017; Hi-103

gashiyama et al., 2021a), Chinese (Wang et al.,104

2013; Qian et al., 2015), and Thai (Haruechaiyasak105

and Kongthon, 2013). Some recent studies have106

adopted Transformer masked language models107

(MLMs) (Ueda et al., 2023; Pankam et al., 2023).108

Decoder-only Transformer models have recently109

made remarkable advances and have been applied110

to text normalization for TTS (Zhang et al., 2024b;111

Shen et al., 2024) and other sequence transduction112

tasks (Kaneko and Okazaki, 2023; Shi et al., 2024).113

However, these models remain underexplored in114

UGT normalization, resulting in a lack of compar-115

ative evaluation of state-of-the-art models for this116

task.117

Regarding evaluation domains, many studies118

have focused on building short message and so-119

cial media datasets for European (Choudhury et al.,120

2007; Han and Baldwin, 2011; Baldwin et al.,121

2015; Plank et al., 2020; van der Goot et al., 2021)122

and Asian languages (Kaji and Kitsuregawa, 2014;123

Limkonchotiwat et al., 2021; Nguyen et al., 2024;124

Kondo et al., 2025), which has led to extensive125

model development and evaluation in these do-126

mains. Some studies have focused on other do-127

mains (Higashiyama et al., 2021b; Bikaun et al.,128

2024). However, cross-domain evaluation research129

covering three or more domains remains scarce.130

3 Japanese Dataset Construction 131

For our primary target language, Japanese, exist- 132

ing datasets (Kaji and Kitsuregawa, 2014; Osaki 133

et al., 2017; Higashiyama et al., 2021b; Kondo 134

et al., 2025) have limited domain diversity and 135

size—covering one or two domains with approxi- 136

mately 1,000 to 6,000 sentences/posts. In this study, 137

we have constructed JMLN, as a large-scale dataset 138

sourced from a variety of UGT. 139

Data Sources and Size We sampled original 140

texts from various sources: Q&A site, blog site, 141

review site, recipe site, video site, online forum, 142

and social media platform, as well as Wikipedia 143

edit history and conversation transcriptions (de- 144

tails in Appendix A.2). The constructed dataset 145

includes 21,402 sentences with 8,885 normaliza- 146

tion instances, i.e., non-standard and standard form 147

pairs (details in Appendix A.1). The large data 148

size and domain diversity of our dataset are ad- 149

vantages over existing Japanese datasets, enabling 150

multi-perspective evaluations, as shown in §6. 151

Basic Designs We followed Higashiyama et al. 152

(2021b)’s annotation criteria; annotation informa- 153

tion includes word boundaries based on the short 154

unit word criterion (Maekawa et al., 2014) and 155

word attributes such as part-of-speech, lemma, pre- 156

defined word categories (details in Appendix A.3), 157

and standard forms of non-standard words.2 158

Annotation Process As data preparation, the first 159

author extracted sentences with a reasonable length 160

(10–300 characters) from each original 14 datasets 161

and divided the sentences into two candidate sets: 162

a random (Rand) set and a manually curated (Cur) 163

set. Then, four experienced annotators, including 164

an annotator manager, at a data annotation company 165

performed the annotation process as follows. 166

•Sentence selection: From the Rand-set of each 167

original dataset, annotators sequentially se- 168

lected sentences unless they contained ethi- 169

cally problematic contents or were unclear in 170

meaning. From each Cur-set, annotators inten- 171

tionally selected sentences containing UGT- 172

specific category words (Appendix A.3). 173

•Word information annotation: Annotators anno- 174

tated the selected sentences with word infor- 175

mation by modifying auto-analyzed results 176

2Non-standard forms are those with distinctive ortho-
graphic features whose frequency in the reference corpus falls
below a threshold, whereas standard forms are those whose
frequency exceeds a threshold. See details in Appendix A.4.
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by a morphological analyzer, MeCab (Kudo177

et al., 2004) with UniDic (Den, 2009).3178

•Standard form annotation: We adopted the179

separated steps for standard form (SForm)180

annotation—assigning an SForm ID for each181

non-standard word and associating a set of182

valid standard forms with each SForm ID,183

where the later step for all sentences was per-184

formed by the annotation manager.185

Inter-Annotator Agreement During the annota-186

tion process, manager A selected a total of 240 sen-187

tences from Cur-sets, and then two annotators—B188

and either C or D—independently annotated those189

sentences with boundaries and attributes. Inter-190

annotator agreement (IAA) for non-standard word191

recognition on these sentences, as measured by192

F1 score, was 0.836 (See Appendix A.6).4 The193

datasets’ high annotation consistency and large size194

suggest its usefulness, and this is further demon-195

strated by the experiments in §6, where the evalu-196

ated models achieve high normalization accuracy.197

4 Task Definition198

Following previous studies (Sasano et al., 2013;199

Baldwin et al., 2015), we define LN as a task of200

boundary-aware span extraction and conversion,201

in which a system not only generates a normalized202

text but also identifies the original spans of each203

informal words (or phrases). This task can be per-204

formed on any LN dataset, provided that informal-205

to-formal alignments are annotated.5 Unlike the206

text-to-text conversion task (Ikeda et al., 2016), the207

boundary-aware task enables fine-grained evalua-208

tion at the normalization span level and offers bet-209

ter interpretability of system outputs. An example210

input-output pair for our task is shown in Figure 1.211

Formally, an LN system takes as input a source212

sentence, namely, a sequence of n character (or213

subword) tokens x = x0:n = [x0, . . . , xn−1], and214

is required to predict the set of non-standard word215

spans and their standard forms S = {(b, e, s)}.216

Here, (b, e) (0≤ b≤ e≤n) indicates a span of an217

non-standard word xb:e with length e − b in the218

source sentence, and s indicates its standard form.219

Each standard form s is a string with length ≥ 0,220

3cwj-3.1.0 (https://clrd.ninjal.ac.jp/unidic/)
4Plank et al. (2020) and van der Goot et al. (2020) used

Cohen’s kappa to evaluate IAA in informal word classification,
based on whether each given word is normalized or not. This
metric is not directly applicable to unsegmented languages.

5Otherwise, a non-trivial alignment processing is needed.
We provide an alignment examples in Appendix A.5.

x : つ い っ た み て る

Encoder

ツ イ ッ タ ー

Linear for boundary

yb : B I I E S B E

Linear for length

yl : 5 5 5 5 -1 -1 -1

h

x' : M M M M M み て る S …

Encoder

MLM head

h'

1. Detection step 2. Infilling step

5

S = {(0, 5, ツイッター)}

Input

Output

Figure 1: Flow of our detect&infill approach for an input
text “ついったみてる,” which means “(I’m) looking
at Twitter.” “M” and “S” represent the MASK and SEP
token, respectively. The original characters “ついった”
follow the SEP token, but are omitted in the Figure.

where length = 0 indicates that the non-standard 221

word should be deleted in the normalized sentence. 222

When b = e, a zero-length span indicates some 223

token(s) should be inserted into the position b. 224

5 Methods 225

We present boundary-aware LN methods based 226

on three Transformer architectures: encoder-only, 227

encoder-decoder, and decoder-only. Our encoder- 228

based infilling approach is a novel method for un- 229

segmented languages, and comparing multiple ap- 230

proaches across different architectures offers a valu- 231

able, novel evaluation. 232

5.1 Infilling Approach 233

Among encoder-based methods, including text edit- 234

ing (Ueda et al., 2023) and MLM infilling (Muller 235

et al., 2019), the latter directly leverage the capa- 236

bilities of pretrained MLMs to insert any token 237

from the vocabulary. As a representative study, 238

Muller et al. (2019) proposed a two-step approach 239

for space-delimited text, which predicts the in- 240

filling lengths and infilling tokens from subword- 241

tokenized text. While we follow the two-step 242

detect-and-infill framework, we propose a solu- 243

tion tailored to unsegmented languages. Our 244

method jointly predicts word boundaries and in- 245

filling lengths from the input character sequence, 246

thereby identifying non-standard word spans and 247

their corresponding normalized spans, without the 248

explicit alignment step (Muller et al., 2019). 249

As shown in Figure 1, the detailed workflow 250

of our approach is as follows. In the detection 251
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step, the encoder takes as input a character token252

sequence x0:n and output the sequence of token253

hidden representations h0:n. Then, a linear layer254

for boundary prediction and that for length predic-255

tion predict a chunk boundary tag sequence yb
0:n256

and a length value sequence yl
0:n, respectively. A257

series of boundary tags6 (e.g., yb0:4 = [B, I, I, E])258

identifies a chunk corresponding a standard or non-259

standard word. A positive length value (e.g., “5”)260

for the specified non-standard word chunk (e.g.,261

x0:4) indicates the numbers of tokens comprising262

standard forms that should be filled in the later263

step, the value “0” indicates that the chunk should264

be removed, and the value “-1” indicates that the265

chunk has no need for normalization. Notably, we266

estimate a length value per character token, so an267

non-standard word chunk of m characters yields268

m redundant length values (e.g., yl0:4 = [5, 5, 5, 5]).269

We determine a single length value by taking a270

majority vote within the chunk. Thus, the combina-271

tion of two sequences specifies non-standard word272

spans and the lengths of their standard forms.273

In the infilling step, the encoder takes as input274

the source text x′, in which tokens in non-standard275

word spans are replaced by the MASK tokens, and276

the MLM head predicts appropriate tokens for the277

masked positions from the hidden representations278

h′. We apply input extension to the masked source279

text by concatenating the original characters of the280

specified non-standard tokens, with SEP tokens in-281

serted between them, similarly to existing sequence282

transduction methods (Qiang et al., 2021; He et al.,283

2023).284

We refer to the above method as the FULL-SEG285

approach.7 During training, the model is optimized286

using the sum of cross-entropy losses over multiple287

subtasks from both steps.288

5.2 Generative Approaches289

Encoder-decoder models have been extensively290

used in normalization research for text-to-text291

conversion, which we refer to the plain full-text292

(PLAIN) approach. To eliminate the informal-to-293

formal alignment step required for this approach,294

Bikaun et al. (2024) generates outputs in which non-295

standard words and their corresponding normalized296

forms are each surrounded by distinct special to-297

kens. We introduce two generative approaches for298

encoder–decoder and decoder-only models, one299

6We adopt the BIESO tagging schema in our experiments.
7We report preliminary experiments on additional variants

in the Appendix B

Approach Target Text

PLAIN ツイッターみてる
STRUCT [[ついった> >ツイッター]]みてる
SPAN ついった> >ツイッター> > 0

Table 1: Expected output text of each generative ap-
proach for an input text “ついったみてる.”

of which—STRUCT—is essentially equivalent to 300

Bikaun et al. (2024)’s method. Because few studies 301

compare multiple generative approaches to LN— 302

and none include decoder-only models—it is valu- 303

able to evaluate and contrast these methods across 304

both architectures. 305

As shown in Table 1, the structured full-text 306

(STRUCT) approach generates a full normalized 307

text with specifying the substrings before and after 308

normalization and their spans, using symbols “[[,” 309

“> >,” and “]].” The other normalization span-only 310

(SPAN) approach generates not full-text but only 311

substrings before and after normalization using a 312

symbol “> >.” The number (≥ 0) succeeding the 313

normalized substring represents how many times 314

the same original substring occurred before that 315

of interest in the original text, which is used for 316

specifying the exact span of the original substring. 317

A symbol “||” is used to separate multiple normal- 318

ization instances within the input text. Only “NONE” 319

is output when no normalization is necessary. 320

Encoder-Decoder The model is trained to gener- 321

ate the target text from each input source text via 322

the standard sequence-to-sequence training. 323

Decoder-only The model takes as input a prompt 324

with an instruction and a source text, like “Instruc- 325

tion: \n{inst}\n\nInput: \n{src}\n\nOutput: \n”, 326

and is trained to generate the target text “{tgt} 327

EOS” via the standard instruction tuning. Here, 328

{inst}, {src}, and {tgt} are placeholders, and 329

EOS represents the end of text token. We use En- 330

glish instruction texts explaining the corresponding 331

content for STRUCT and SPAN as described above; 332

the exact wording is provided in Appendix C.4. 333

6 Experiments 334

We set the following experimental questions (EQs): 335

1. Across different model architectures, back- 336

bone models, and normalization approaches, 337

which methods excel in normalization accu- 338

racy (precision and recall), and which meth- 339

ods are efficient in terms of inference cost? 340
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Lang Dataset Set #Sent #Norm

ja JMLN

train 13,196 5,879
dev 1,880 791
test-C 3,786 1,705
test-R 2,540 510

th VISTEC-2021 train 40,000 130,790
test 10,000 32,819

Table 2: Dataset statistics: The number of sentences
(#Sent) and normalization instances (#Norm).

2. How many training instances are required to341

achieve reasonable performance, and does this342

requirement vary by methods?343

3. What domains and other instance characteris-344

tics are particularly challenging to normalize?345

To address these EQs, we evaluated various LN346

methods using our Japanese dataset and an existing347

Thai dataset. Specifically, experiments in §7.1–7.3,348

§7.4, and §7.5–7.6 correspond to EQ1, EQ2, and349

EQ3, respectively.350

As evaluation metrics, we use precision and re-351

call at the normalization-span level for individ-352

ual non-standard words, as well as the F0.5 score,353

which emphasizes precision over recall (see details354

in Appendix C.1).355

6.1 Datasets356

Table 2 shows the statistics of two experimental357

datasets: JMNL and Thai VISTEC-2021 (Limkon-358

chotiwat et al., 2021).8 For JMLN, we divided the359

Cur-set for each domain (01–14) into train, dev,360

and test-C sets, and merged the all train, dev, and361

test-C sets into unified train, dev, and test-C sets362

across all domains, respectively.9 For VISTEC-363

2021, we followed the provided training/test split364

and regarded randomly-sampled 5% sentences in365

the training set as a dev set.366

6.2 Models367

As the backbone of LN systems, we used the368

following Japanese or multilingual pre-trained369

models in Japanese experiments: BERT (Devlin370

et al., 2019), RoBERTa (Liu et al., 2019), and De-371

BERTa (He et al., 2021) as character-level encoder-372

only models, T5 (Raffel et al., 2020) and mT5 (Xue373

et al., 2021) as encoder-decoder models, and Llama374

3.1/3.2 (Grattafiori et al., 2024), Qwen2.5 (Qwen375

Team, 2025), Lllama-3.1-Swallow (Fujii et al.,376

8https://github.com/mrpeerat/OSKut
9We created the unified Rand-set across all registers simi-

larly, but omit experimental results on this set.

2024), TinySwallow (Shing et al., 2025) and 377

Sarashina2/2.2 (Intuitions, 2024a,b) as decoder- 378

only models. Similarly, we used the follow- 379

ing pre-trained models in the Thai experiments: 380

RoBERTa (Yasuoka, 2023) as a character-level 381

encoder-only model, T5 and mT5 as encoder- 382

decoder models, and Llama 3.1/3.2, Qwen2.5, Ty- 383

phoon 2 (Pipatanakul et al., 2024), OpenThaiGPT 384

1.5 (Yuenyong et al., 2025), and SeaLLMs 3 (Zhang 385

et al., 2024a) as decoder-only models. Specific 386

model instances are listed in Appendix C.2. 387

We fine-tuned each model, with applying 388

LoRA (Hu et al., 2022) or QLoRA (Dettmers et al., 389

2023) to some decoder-only models, and selected 390

the model checkpoint with the best F0.5 score on 391

the dev set. We fine-tuned all models twice and re- 392

port mean scores for two runs. The hyperparameter 393

settings are listed in Appendix C.3. 394

7 Results and Analysis 395

7.1 Normalization Accuracy for Japanese 396

We evaluated LN methods with three type of ar- 397

chitectures on the JMLN test-C set. Table 3 398

shows the performance of encoder-only models, 399

and encoder-decoder and decoder-only models 400

with both STRUCT and SPAN approaches.10 401

The observed results are as follows. (1) Among 402

encoder-only models, the large models outper- 403

formed base models, while different backbone 404

models showed similar performance. (2) Among 405

generative methods, the SPAN approach basically 406

achieved performance comparable to or better 407

than the STRUCT approach in many cases.11 (3) 408

Within the same model series—T5, mT5, Llama- 409

3.2, Qwen2.5, and Sarashina2.2—performance im- 410

proved with increasing model size up to 8B (See 411

Figure in Appendix D.1). However, in our pre- 412

liminary experiment on the dev set, we observed 413

no salient additional gains from the 13B–15B 414

models. (4) Performance within groups of sim- 415

ilarly sized models was not equivalent; certain 416

series—specifically Sarashina2.2 series, followed 417

by Swallow, demonstrated saliently superior per- 418

formance. (5) These strong decoder-only models 419

outperformed models with the other two architec- 420

10The PLAIN approach yielded performance similar to the
other two approaches on the dev set, as shown in §D.3.

11The only exception is the Qwen2.5 model series; the
models generated many nonsensical text flagments—such as
“str1> >str2> >0,” where “str1” did not appear in the original in-
put text—until reaching the maximum output length, resulted
in low precision and long inference time.
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Backbone Size FULL-SEG Approach STRUCT Approach SPAN Approach
P R F0.5 P R F0.5 P R F0.5

E BERT-base 91M 0.713 0.529 0.667 – – – – – –
E RoBERTa-base 100M 0.718 0.523 0.669 – – – – – –
E DeBERTa-base 100M 0.729 0.506 0.670 – – – – – –

E BERT-large 310M 0.762 0.570 0.714 – – – – – –
E RoBERTa-large 320M 0.755 0.550 0.702 – – – – – –
E DeBERTa-large 330M 0.750 0.568 0.705 – – – – – –
S T5-base 250M – – – 0.701 0.459 0.634 0.689 0.508 0.643
S mT5-base 580M – – – 0.606 0.406 0.551 0.655 0.427 0.592

S T5-large 780M – – – 0.728 0.509 0.670 0.704 0.525 0.659
S mT5-large 1.2B – – – 0.600 0.421 0.553 0.718 0.467 0.648
D Llama-3.2-1B 1.2B – – – 0.654 0.489 0.612 0.626 0.480 0.590
D Sarashina2.2-1B 1.4B – – – 0.722 0.612 0.697 0.761 0.585 0.717
D Qwen2.5-1.5B 1.5B – – – 0.623 0.459 0.580 0.338 0.516 0.363
D TinySwallow-1.5B 1.5B – – – 0.605 0.556 0.593 0.667 0.569 0.645

D Qwen2.5-3B 3.1B – – – 0.598 0.537 0.583 0.376 0.537 0.400
D Llama-3.2-3B 3.2B – – – 0.680 0.522 0.641 0.666 0.530 0.633
D Sarashina2.2-3B 3.4B – – – 0.774 0.668 0.751 0.781 0.660 0.754

D Sarashina2-7B 7.3B – – – 0.743 0.649 0.722 0.744 0.657 0.724
D Qwen2.5-7B 7.6B – – – 0.717 0.558 0.678 0.379 0.589 0.408
D Llama-3.1-8B 8.0B – – – 0.738 0.538 0.687 0.719 0.549 0.677
D ↪→Swallow-8B 8.0B – – – 0.749 0.605 0.715 0.741 0.602 0.708

Table 3: JMLN test results of Japanese LN models (E: encoder, S: seq2seq, D: decoder). “↪→” indicates the continual
pre-trained model derived from the base model listed in the previous row. The best score within each size group is
shown in bold. For each backbone model, the better of the STRUCT and SPAN approaches is underlined. Scores
where the SPAN approach shows a +5%, +10%, or -10% increase/decrease compared to the STRUCT approach are
highlighted with ■ blue, ■ light blue, and ■ pink backgrounds, respectively.

tures in recall.421

In conclusion, encoder-only models demon-422

strated high performance despite its small size, and423

Sarashina2.2-3B model achieved the highest perfor-424

mance overall, indicating that the high capability425

of the backbone model was beneficial for this task.426

7.2 Normalization Accuracy for Thai427

On the Thai VISTEC test set, we evaluated LN428

methods, with only the SPAN approach for genera-429

tive methods. Table 4 shows the results.430

Similarly to the Japanese results, performance431

improved with increasing model size within the432

same model series. Additionally, continually pre-433

trained models focusing on Thai outperformed434

their base models. Overall, the small encoder-only435

RoBERTa-base exhibited the best precision, while436

all encoder-decoder and decoder-only models sur-437

pass it in recall. This introduces a precision-recall438

trade-off in model selection.439

7.3 Inference Throughput440

For selected models with high normalization accu-441

racy, we measured their inference throughput using442

the JMLN test set, on both an NVIDIA V100 GPU443

with 32 GiB memory and an H200 GPU with 140444

Backbone Size P R F0.5

E RoBERTa-base 88M 0.713 0.529 0.666

S T5-base 250M 0.645 0.618 0.640
S mT5-base 580M 0.642 0.629 0.639

S mT5-large 1.2B 0.660 0.609 0.649
D Llama-3.2 1.2B 0.628 0.628 0.628
D ↪→ Typhoon2 1.2B 0.644 0.634 0.642
D SeaLLMs3 1.5B 0.462 0.689 0.495
D Qwen2.5 1.5B 0.472 0.702 0.505

D Qwen2.5 3.1B 0.457 0.706 0.492
D Llama-3.2 3.2B 0.641 0.647 0.642
D ↪→ Typhoon2 3.2B 0.656 0.668 0.658

D SeaLLMs3 7.6B 0.465 0.705 0.499
D Qwen2.5 7.6B 0.461 0.709 0.496
D ↪→ ThaiGPT1.5 7.6B 0.653 0.672 0.657
D Llama-3.1 8.0B 0.653 0.659 0.655
D ↪→ Typhoon2 8.0B 0.661 0.678 0.664

Table 4: VISTEC test results of Thai LN models.

GiB memory (See detailed settings in Appendix 445

C.6). Table 5 shows the results. 446

We observed: (1) Encoder-only models were 447

the fastest, followed by T5, the smaller Sarashina 448

model, and finally the larger Sarashina model. (2) 449

The SPAN approach yielded modest gains over 450

STRUCT, except for T5 on the H200. Since instruc- 451

tion text occupies a large proportion of total out- 452
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Model V100 H200 V100 H200

FULL-SEG

BERT-large 508.8 1420.9 – –
RoBERTa-large 561.4 1407.2 – –
DeBERTa-large 395.0 1038.3 – –

STRUCT SPAN

T5-large 136.0 312.3 159.0 208.4
Sarashina2.2-1B 66.5 202.1 75.4 243.1
Sarashina2.2-3B 32.6 118.1 36.0 117.4
Sarashina2-7B 17.8 73.3 19.8 83.4

Table 5: Throughput: the number of sentences pro-
cessed per second, measured on a V100 and H200 GPU.

put tokens, more concise instruction prompts can453

improve throughput; however, it is necessary to ex-454

plore prompts that preserve normalization accuracy.455

(3) Sarashina models exhibited substantially lower456

throughput on the V100 than on the H200. Their457

low throughput on the V100 is a critical drawback,458

but they run much faster on the H200. Thus, when459

high-spec GPUs are available, Sarashina models460

are viable options in accuracy-critical scenarios.461

7.4 Investigation of Training Data Size462

We generated size-N training sets by sampling463

random N ∈{500, 1k, 2k, 4k, 8k, 12k} sentences464

from the entire JMLN training set, and we then fine-465

tuned each of DeBERTa, T5, and Sarashina models466

twice for each size-N training set. As shown in467

Figure 2, the results are as follows.468

First, a general trend across all models is that pre-469

cision and recall improve as the data size increases.470

From sizes 8k to 12k the gains are more gradual,471

but performance is not yet saturated. Within the472

evaluated range, more data yields better results;473

however, even a 4k to 8k-size dataset can achieve474

reasonable precision around 0.70 when creating475

large amounts of annotated data is impractical.476

Second, in model-specific comparisons, preci-477

sion and recall follow different patterns. Precision478

shows no clear differences across models. In con-479

trast, recall is consistently highest for Sarashina2-480

7b, followed by Sarashina2.2-1b, and lower for481

DeBERTa and T5; this indicates that the Sarashina-482

series models generalize well in terms of coverage,483

even when the training data size is small.484

7.5 Results Across Domains485

As shown in Table 6, we evaluated performance486

of selected models—DeBERTa-large, T5-large487

(SPAN), and Sarashina-2.2-3B (SPAN)—for each488
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Figure 2: JMLN test results for each training data size.

domain test set of JMLN. 489

First, to explore what makes a domain difficult, 490

we examined an indicator: the proportion of non- 491

standard surface tokens in the test set that are not 492

found among the training set’s non-standard sur- 493

faces (Surf-Outside-Train rate). We then computed 494

the Pearson correlation coefficients r between the 495

indicator and the average F0.5 scores across the 496

three models, obtaining a strong negative correla- 497

tion (r = −0.78). Notably, for 9 out of 10 domains 498

with a Surf-Outside-Train rate below 0.5 had aver- 499

age F0.5 scores above 0.7, whereas all 4 domains 500

with a rate above 0.5 had average scores below 0.7. 501

Next, model performance comparisons revealed 502

the following. (1) In all domains, all models ex- 503

hibited higher precision than recall, showing a de- 504

sirable characteristic because invalid normaliza- 505

tions would degrade downstream task performance. 506

(2) Across most domains, Sarashina-2.2 achieved 507

higher recall than the other models, resulting its 508

superior overall performance. Notably, this model 509

achieved recall over 0.5 across typical UGT do- 510

mains (01–11). (3) All models exhibited very low 511

recall below 0.3 in domain 11—a specialized do- 512

main data originated from Tanaka et al. (2020)’s 513

typo correction dataset. Training with the task- 514

specific dataset would improve performance, but 515

we leave this for future. 516

7.6 Error Analysis 517

For the three models evaluated in §7.5, we analyzed 518

output patterns on the JMLN dev set. Specifically, 519

we counted predictions, true positives (TP), false 520

positives (FP), and false negatives (FN) for each 521

model, and measured (i) the proportion of predicted 522

normalized forms appearing in the UniDic lexicon 523

(Norm-In-Lex rate) and (ii) the proportion of origi- 524
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Data Register Surf-Out-Train Avg-3M DeBERTa-L T5-L Sarashina2.2-3B
F0.5 P R P R P R

01 BJ-OC Q&A site 0.59 0.595 0.654 0.416 0.572 0.369 0.717 0.578
02 BJ-OY Blog 0.48 0.713 0.720 0.543 0.741 0.551 0.802 0.662
03 RC-BLG Blog 0.37 0.775 0.801 0.691 0.793 0.664 0.803 0.728
04 RC-REV Reviews 0.43 0.790 0.868 0.731 0.790 0.593 0.808 0.741
05 RK-ICB Reviews 0.52 0.680 0.808 0.458 0.693 0.500 0.764 0.521
06 RK-TRV Reviews 0.40 0.715 0.763 0.490 0.820 0.433 0.795 0.663
07 RK-RCP Recipes 0.35 0.792 0.815 0.684 0.817 0.663 0.834 0.734
08 AM Reviews 0.32 0.798 0.862 0.728 0.776 0.655 0.832 0.748
09 NC-VID Video desc. 0.39 0.645 0.627 0.538 0.783 0.677 0.730 0.629
10 NC-PED Forum 0.27 0.795 0.850 0.747 0.666 0.492 0.808 0.772
11 TW Social media 0.60 0.633 0.613 0.511 0.600 0.464 0.763 0.677
12 JW Wiki hist. 0.69 0.312 0.528 0.140 0.197 0.095 0.509 0.280
13 NU Conv. trans. 0.17 0.758 0.845 0.745 0.683 0.596 0.800 0.745
14 SK Conv. trans. 0.43 0.718 0.771 0.550 0.728 0.457 0.830 0.664

All 0.44 0.721 0.750 0.568 0.754 0.562 0.781 0.660

Table 6: JMLN test results of representative three models for each domain. “Surf-Out-Train” indicates the Surf-
Outside-Train rate for each domain test set. Avg-3M indicates the average of F0.5 scores of the three models.
(Surf-Outiside-Train rate values above 0.5 and Avg-3M values below 0.7 are highlighted by underlining.)

DeBERTa T5 Sarashina2.2

#Predictions 614.5 598.5 676.5
Norm-In-Lex rate 0.875 0.928 0.921

#TPs 469.0 449.0 535.5
Surf-In-Train rate 0.806 0.806 0.716

#FPs 145.5 149.5 141.0
Surf-In-Train rate 0.289 0.183 0.238

#FNs 322.0 342.0 255.5
Surf-In-Train rate 0.258 0.290 0.302

Table 7: Models’ prediction statistics on JLMN dev set
(DeBERTa: large, T5: large, Sarashina: 3B).

nal surface forms for TP, FP, and FN instances that525

matched any non-standard forms in the training526

set (Surf-In-Train rate). Table 7 shows the results527

averaged over two runs per model.528

DeBERTa exhibited a notably lower Norm-In-529

Lex rate than the other models (0.921–0.928) and530

the gold standard (0.947). By manually inspect-531

ing error cases, we found that DeBERTa’s restored532

tokens within spans sometimes formed nonsensi-533

cal words.12 Both suggest that the model’s inde-534

pendent prediction at each MASK position makes it535

especially prone to such errors.536

Regarding the Surf-In-Train rate, all models ex-537

hibited similar trends. For TPs, approximately 70–538

80% of the original surface forms were known (i.e.,539

appeared in the training set), indicating that many540

correct predictions relied on the seen normaliza-541

tion instances. For both FPs and FNs, only ap-542

12E.g., かど (orig. ヶド, gold けど/けれど, “but”) and
だじりん (orig. だぁりん, goldダーリン, “darling”).

proximately 20–30% were known, indicating that 543

the majority of errors involved unseen expressions. 544

This suggests considerable room for improving gen- 545

eralization in normalizing unseen cases. These re- 546

sults align with the findings in §7.5. 547

8 Conclusion 548

This paper presented our multi-domain Japanese 549

LN dataset, LN methods based on three Trans- 550

former architectures for unsegmented languages, 551

and multi-perspective experiments and analysis. 552

The answers to the three evaluation questions 553

(§6) are summarized as follows. (1) Compact 554

encoder-only models achieved high precision and 555

offered the best inference throughput, while cutting- 556

edge decoder-only models delivered high precision, 557

notably high recall, and reasonable throughput on a 558

high-spec GPU. (2) Normalization accuracy consis- 559

tently increased with training data size, yet even 4k– 560

8k training sentences yielded reasonable precision 561

around 0.7. Sarashina-series models, in particular, 562

achieved superior recall with fewer training sen- 563

tences. (3) Domains with higher rates of unknown 564

non-standard tokens correlated with decreased per- 565

formance across models. Typo correction emerged 566

as the most challenging category, reflecting the dif- 567

ficulty posed by diverse typo patterns. 568

In future work, we will evaluate the impact of LN 569

on downstream tasks and explore the development 570

of a general-purpose decoder model with robust 571

normalization capabilities. 572
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Limitations573

Dataset Size The experimental results in §7.1—574

high precision up to 0.78—indicates that our575

dataset is large enough to train high-accuracy mod-576

els. However, results in §7.4 show no clear satura-577

tion even at the maximum training size, suggesting578

that additional data could further improve perfor-579

mance. Given the cost limits of manual annotation,580

a promising direction is to explore methods for581

generating high-quality synthetic data.582

Language Coverage We evaluated our methods583

only on Japanese and Thai datasets, but they are584

readily applicable to other unsegmented and space-585

delimited languages. Validation on additional lan-586

guages remains future work.587

Inference Throughput Settings To ensure fair588

comparison, we measured throughput using a sin-589

gle GPU via the Hugging Face Transformers (Wolf590

et al., 2020) library. However, throughput could be591

improved through multi-GPU parallelism, model592

quantization, or adoption of high-performance in-593

ference engine, such as vLLM (Kwon et al., 2023).594

Encoder-Only Architecture Variants An595

state-of-the-art encoder-only model, Modern-596

BERT (Warner et al., 2024), might achieve597

performance on par with or exceeding the models598

we evaluated. Due to computational and time599

constraints, this remains future investigation.600

Word-Level Evaluation Metrics Our word-601

level normalization metrics treat any span mis-602

match as an error—even if the predicted normal-603

ization is semantically valid—which we observed604

especially in decoder-only model outputs (see Ap-605

pendix D.5 for examples). Such span differences606

have little impact on most downstream applica-607

tions, so the practical usefulness of the outputs608

may exceed the scores reported. To complement609

word-level metrics, we also provide sentence-level610

exact-match accuracy and the chrF score (Popović,611

2015) in Appendix D.2 and D.2.612

Ethics Statement613

License of Resources MeCab is available under614

GPL, LGPL, and BSD License. UniDic (“unidic-615

cwj-3.1.0”) is available under GPL v2.0, LGPL616

v2.0, and New BSD License. sacreBLEU is avail-617

able under Apache License 2.0 (we used this soft-618

ware for preliminary experiments shown in Ap-619

pendix D). The licenses for the datasets and pre-620

trained models are listed in Appendices C.2 and 621

A.2 (Table 19). Our use of these resources for 622

academic research aligns with their intended use. 623

We will release our JMLN dataset for academic re- 624

search in information science; it will include only 625

annotation information and not the original texts. 626

Human Annotators The annotation work was 627

performed by annotators at a professional data an- 628

notation company. The payment amount to the 629

company was based on the estimate submitted by 630

the company. The actual annotators and the pay- 631

ment amount to each annotator were determined 632

by the company. The annotation work was per- 633

formed by four annotators, including an annotation 634

manager, all of whom are native Japanese speakers. 635

Under the contract for the annotation work, it was 636

agreed that the intellectual property rights to the 637

deliverables would be transferred to the authors’ 638

institution. 639

Potential Risks Appropriate normalization can 640

facilitate NLP applications while preserving the 641

core meaning of the original texts. However, it 642

may diminish subtle nuances and intentions in the 643

original text; for example, casual expressions may 644

be rendered formal, dialectal expressions may be 645

replaced by semantically similar standard language 646

forms, or incorrect normalization may produce an 647

entirely different meaning. 648
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A JMLN Dataset1241

A.1 Data Statistics1242

The detailed dataset statistics are shown in Table 81243

and Table 9.1244

ID Name #Sent #Word #Norm

01 BJ-OC 1,441 28,631 928
02 BJ-OY 1,785 29,092 1,445
03 RC-BLG 2,312 37,135 766
04 RC-REV 1,541 31,283 310
05 RK-ICB 1,251 21,548 251
06 RK-TRV 1,610 29,240 289
07 RK-RCP 2,479 29,834 1,104
08 AM 1,769 28,055 477
09 NC-VID 918 11,908 262
10 NC-PED 947 14,858 387
11 TW 1078 14,701 858
12 JW 540 18,817 503
13 NU 507 9,176 509
14 SK 684 11,935 286

Total 18,862 316,216 8,375

Table 8: Statistics of the JMLN Cur-sets.

ID Name #Sent #Word #Nrom

01 BJ-OC 200 3,981 33
02 BJ-OY 201 3,821 56
03 RC-BLG 200 2,903 57
04 RC-REV 200 3,872 27
05 RK-ICB 200 2,942 16
06 RK-TRV 200 3,139 18
07 RK-RCP 200 2,763 25
08 AM 200 2,932 12
09 NC-VID 150 2,418 23
10 NC-PED 182 2,672 46
11 TW 207 3,127 99
13 NU 200 2,940 82
14 SK 200 2,182 16

Total 2,540 39,692 510

Table 9: Statistics of the JMLN Rand-sets.

A.2 Data Sources and Licenses1245

To construct our JMLN dataset, we used following1246

datasets and text sources as shown in Table 10:1247

• (01–02) BCCWJ (Maekawa et al., 2014):1248

available under a usage contract;131249

• (03–04) Recruit Dataset: available under a1250

usage contract;141251

• (05–07) Rakuten Dataset: available under a1252

usage contract;151253

13https://clrd.ninjal.ac.jp/bccwj/en/index.html
14https://www.nii.ac.jp/dsc/idr/recruit/
15https://alaginrc.nict.go.jp/rakuten-dataset.

html

• (08) Multilingual Amazon Reviews Corpus 1254

(Keung et al., 2020): previously available un- 1255

der a proprietary license (now unavailable);16 1256

• (09–10) Niconico Dataset: available under 1257

specific terms of use;17 1258

• (11) Twitter (now X) posts: obtained via the 1259

Twitter streaming API (copyright retained by 1260

each post’s author); 1261

• (12) Japanese Wikipedia Typo Dataset 1262

(Tanaka et al., 2020): available under CC-BY- 1263

SA 3.0 license;18 1264

• (13) Nagoya University Conversation Corpus 1265

(Fujimura et al., 2012): available under CC 1266

BY-NC-ND 4.0 license;19 1267

• (14) Japanese and Chinese Skype Conversa- 1268

tion Corpus: available under specific terms of 1269

use.20 1270

A.3 Word Category Definition 1271

We extended the UGT-specific Japanese word cate- 1272

gories defined by Higashiyama et al. (2021b) and 1273

assigned each word in the annotation sentences to 1274

every category that it matches. As shown in Ta- 1275

ble 11, the categories are divided into vocabulary 1276

types and variant-form types, with the latter applied 1277

non-standard word forms. 1278

A.4 Standard/Non-Sandard From Definition 1279

As stated in Higashiyama et al. (2021b), “there are 1280

no trivial criteria to determine which variant forms 1281

of a word are standard forms” (and non-standard 1282

forms) “because most Japanese words can be writ- 1283

ten in multiple ways.” Thus, we followed their 1284

definition on standard and non-standard forms. In 1285

brief, the definitions can be summarized as follows: 1286

standard forms are those variants whose relative fre- 1287

quencies in the reference corpus exceed a set thresh- 1288

old, while non-standard forms are identified per 1289

variant category based on falling below category- 1290

specific frequency thresholds or exhibiting distinc- 1291

tive orthographic features. Example non-standard 1292

forms for each category is shown in Table 11. For 1293

more detailed definitions, see §4.2 of their paper. 1294

16https://registry.opendata.aws/
amazon-reviews-ml/

17https://www.nii.ac.jp/dsc/idr/nico/
18https://nlp.ist.i.kyoto-u.ac.jp/EN/?JWTD
19https://mmsrv.ninjal.ac.jp/nucc/
20http://nakamata.info/database/
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ID Data name Source dataset Text register Year

01 BJ-OC BCCWJ: Yahoo! Chiebukuro Q&A posts/responces 2004–2005
02 BJ-OY BCCWJ: Yahoo! Blog Blog posts 2008–2009
03 RC-BLG Recruit: beauty salon blogs Blog posts 2012–2014
04 RC-REV Recruit: beauty salon reviews Reviews (beauty salon) 2012–2014
05 RK-ICB Rakuten Ichiba Reviews (EC site) 2019
06 RK-TRV Rakuten Travel Reviews (hotel site) 2017–2019
07 RK-RCP Rakuten Recipe Recipes 2017
08 AM Multilingual Amazon Reviews Corpus Reviews (EC site) 2000–2015
09 NC-VID Niconico Dataset: Video meta data Video descriptions 2018
10 NC-PED Niconico Dataset: Forum data Forum posts/replies 2008–2014
11 TW Twitter Social media posts 2020–2022
12 JW Japanese Wikipedia Typo Dataset Encyclopedia edit history –2021
13 NU Nagoya University Conversation Corpus Conv. transcriptions 2001–2003
14 SK Skype Conversation Corpus Conv. transcriptions 2012

Table 10: Data sources of JMLN. The Year column indicates the years of original text publication.

Example Standard forms Translation

Vocabulary type

Neologisms/Slang コピペ – copy and paste
Proper names ドラクエ – Dragon Quest
Onomatopoeia キラキラ – glitter
Interjections おお – oops
Dialect words ほんま – truly
Foreign words ＥＡＳＹ – easy
Ancient words* [行く]べし – should [go]
Character endings* [行く]にゃ – †
Blend words* おはこんばんにちは – ‡
Emoticons/AA （＾−＾） –

Variant-form type

Character type variants カワイイ かわいい,可愛い cute
Alternative representations 大きぃ 大きい big
Sound change variants おいしーい おいしい,美味しい tasty
Typographical errors つたい つらい,辛い tough

Table 11: Word categories extended from Higashiyama et al. (2021b). New categories are marked with “*.” “[]”
indicates the context. †“[行く]にゃ” is a kitten-style sentence ending and might be expressed as “[I go,] meow” or
“[Goin’]nya.” ‡“おはこんばんにちは” is a coined blend of “good morning,” “good afternoon,” and “good evening,”
and might be expressed as “Good morn-noon-evening.”

Data Number F1 agreement score
Sent Word Cate VForm Word POS Lem Cate Cateb VForm VFormb

01 BJ-OC 20 327/325 30/30 19/18 99.08 98.77 98.16 83.33 83.33 86.49 86.49
02 BJ-OY 20 359/358 52/48 17/15 99.58 96.79 95.40 86.00 94.00 75.00 81.25
03 RC-BLG 32 1424/1424 133/124 45/43 99.86 99.02 98.81 81.71 91.83 63.64 84.09
04 RC-REV 41 2802/2802 129/137 22/22 100.0 99.04 98.75 96.24 96.24 100.0 100.0
05 RK-ICB 20 600/601 27/27 15/14 99.75 98.58 98.58 85.19 96.30 82.76 89.66
06 RK-TRV 25 748/748 23/29 11/14 100.0 99.20 98.93 84.62 84.62 80.00 80.00
07 RK-RCP 22 442/442 43/39 26/20 99.32 98.64 97.96 87.80 92.68 82.61 82.61
08 AM 20 675/675 85/86 32/34 100.0 99.56 95.56 91.23 99.42 90.91 96.97
09 NC-VID 20 353/358 55/50 20/10 97.33 95.08 93.67 70.48 83.81 46.67 53.33
10 NC-PED 20 443/446 63/63 24/24 98.31 97.19 94.26 77.78 85.71 62.50 66.67

Total 240 8173/8179 640/633 231/214 99.66 98.65 97.82 85.78 92.22 76.85 83.60

Table 12: Statistics on inter-annotator agreement. The “Number” columns show counts of annotated sentences
(Sent), words, word categories (Cate), variant forms (VForm) for each annotator (formatted as “value1/value2”).
The “F1 agreement score” columns report F1 scores for word segmentation (Seg), parts-of-speech (POS), lemmas
(Lem), Cate, and VForm. Binary agreement on the presence or absence of a category/variant-form assignment is
indicated by “b.”
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A.5 Standard Form Annotation1295

The annotation process first identifies word bound-1296

aries and then assigns each word to (a category1297

and) a standard form ID, as in the example below1298

(meaning “Super tired today.”); for simplicity, the1299

example displays the standard-form string instead1300

of the ID. This approach makes it possible to obtain1301

explicit mappings between non-standard words and1302

their standard forms.1303

Original text 今日はスゴクツカレタ～
Segmented text 今日 |は |スゴク |ツカレタ～
Standard forms – | – |すごく |疲れた

1304

However, when only sentence-level normal-1305

ization is provided, aligning standard and non-1306

standard forms is not straightforward. In our exam-1307

ple, the contiguous span mapping from “スゴク1308

ツカレタ～” to “すごく疲れた” (“super tired”)1309

is easily identified, but determining precise word-1310

level alignments remains challenging.1311

A.6 Inter-Annotator Agreement1312

Table 12 shows the detailed statistics on inter-1313

annotator agreement. Sentences in domains 01–071314

were annotated by Annotators B and C, and those in1315

domains 08–10 were by B and D. Notably, after we1316

fixed annotation disagreements for these sentences1317

through discussions, the sentences were integrated1318

into our final dataset.1319

B Encoder-based Approach Variants1320

In addition to the FULL-SEG approach, we intro-1321

duce two variant approaches based on the encoder-1322

base detect&infill method: PART-SEG and FULL-1323

SEG-POS. Experimental results on these variants1324

are reported in D.2.1325

Full/Partial Word Segmentation In the bound-1326

ary prediction subtask, we employ full or partial1327

word segmentation (FULL-SEG and PART-SEG),1328

depending on whether the training sentences are1329

annotated with full word boundaries or only with1330

non-standard word boundaries. Unlike the former1331

case described in §5, in the latter case boundary1332

tags for tokens within standard words should be1333

assigned O. For example, the tag sequence should1334

be [B, I, I, E, O, O, O] for the input text in Figure 1.1335

Word Feature Prediction In the detection step,1336

we can optionally employ multi-task learning for1337

word feature prediction. Specifically, we adopt1338

part-of-speech (POS) tag prediction for each token1339

using an additional linear layer if POS annotation 1340

is available. We refer to this approach as FULL- 1341

SEG-POS. 1342

C Detailed Experimental Settings 1343

C.1 Definition of Evaluation Metrics 1344

Assume each input sentence x has a sequence of 1345

gold normalization instances Nx = {(bi, ei, Si)}i, 1346

where each instance (bi, ei, Si) consists of a span 1347

(bi, ei) and a set Si = {si,k}Ki
k=1 of one or 1348

more standard forms for the corresponding non- 1349

standard word. A system is required to output 1350

a set of predicted normalization instances N̂x = 1351

{(b̂j , êj , ŝj)}j , where each ŝj is a single predicted 1352

standard form. 1353

We count a predicted instance as a TP if its span 1354

(b̂j , êj) matches the span (bi, ei) of a gold instance 1355

and its predicted form ŝj belongs to the correspond- 1356

ing gold set Si over all test sentences. Precision 1357

P , recall R, and the F0.5 score over the test set are 1358

then defined as follows: 1359

P =
TP

TP + FP
, 1360

R =
TP

TP + FN
, 1361

F0.5 = (1 + 0.52)
PR

0.52P +R
. 1362

C.2 Pretrained Models 1363

We list all pre-trained models used in our ex- 1364

periments in Table 19. We selected these mod- 1365

els based on their strong performance on general 1366

benchmarks; however, for Thai encoder-only and 1367

encoder-decoder models, few alternative candi- 1368

dates were available. 1369

C.3 Model Hyperparameters 1370

The hyperparameter values used in the experiments 1371

are listed in Table 13. 1372

We conducted hyperparameter search for some 1373

important parameters within our computational 1374

budgets. Based on F0.5 score for the JMLN dev 1375

set, we chose the best value of learning rate from 1376

the search space of {1e-5, 2e-5, 3e-5, 4e-5, 5e-5} 1377

for encoder-based models using RoBERTa-large, 1378

chose the best value of learning rate from {1e-4, 1379

2e-4, 3e-4, 4e-4, 5e-4} and that of beam search 1380

width during inference from {1, 2, 3} for encoder- 1381

decoder and decoder-based models using T5-large 1382

and Sarashina2-7b, respectively. We also chose 1383

the best value of LoRA rank from {4, 8, 16} for 1384

decoder-only models using Sarashina2-7b. 1385
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Hyperparameter Value

Training epochs ja: 30; th: 20
Batch size ja: 16; th: 32
Learning rate 3e-5
Learning rate scheduler linear
Warmup ratio 0.1
Gradient norm clipping threshold 1.0
Optimizer AdamW

Training epochs ja: 30; th: 15
Batch size ja: 32; th: {4, 16}
Learning rate 2e-4
Learning rate scheduler constant
Warmup ratio 0.1
Gradient norm clipping threshold 1.0
Optimizer AdaFactor
Beam width for inference 2

Training epochs 10
Batch size 8
Learning rate 2e-4
Learning rate scheduler cosine
Warmup ratio 0.03
Weight decay 0.001
Gradient norm clipping threshold 0.3
Optimizer paged_adamw_32bit
bf16 True
LoRA rank 8
LoRA alpha 16
LoRA dropout 0.05
LoRA target modules all linear layers
Quantization bit {none, 4bit}
Beam width for inference 1

Table 13: Hyperparameter settings for encoder-only
(top), encoder-decoder (middle), and decoder-only mod-
els (bottom). Batch sizes of 4 and 16 were used for
the Thai mT5-large model and the other Thai encoder-
decoder models. For models with 7B parameters
or more, 4-bit quantization were applied during fine-
tuning.

C.4 Prompts for Decoder-only Models1386

We used the instruction prompts in Table 31387

as {inst} in the full prompt text: “Instruc-1388

tion: \n{inst}\n\nInput: \n{src}\n\nOutput: \n”.1389

These are common to both Japanese and Thai1390

models, and the {lang} placeholder is specified1391

by either language name.1392

C.5 Computational Budget for Fine-tuning1393

In our experiments, we used NVIDIA V100 GPUs1394

with 32GiB memory, A100 GPUs with 80GiB1395

memory, and H200 GPUs with 140GiB memory. In1396

total, the models were fine-tuned for 42 GPU hours1397

on V100s, 2700 GPU hours on A100s, and 1411398

GPU hours on H200s. Encoder-only and encoder-1399

decoder models were fine-tuned on a single GPU,1400

whereas decoder-only models were fine-tuned us-1401

ing eight GPUs.1402

Instruction text

If no informal {lang} word forms exist in the input text,
output the text as is. Otherwise, identify informal word
forms and normalize them into their corresponding stan-
dard forms. Provide the full normalized text where the
original word forms are replaced with the standard forms.

If no informal {lang} word forms exist in the input text,
output the text as is. Otherwise, identify informal word
forms and normalize them into their corresponding stan-
dard forms. Provide the full normalized text, embedding
the original and normalized word forms in the format
"[[before> >after]]". Ensure that the concatenated string
of the text outside the brackets and the "before" parts is
identical to the input text.

If no informal {lang} word forms exist in the input text,
output exactly "NONE". Otherwise, identify every infor-
mal word form and normalize it into its corresponding
standard form. For each occurrence, output a record in the
format "before> >after> >count". Here, count is the count
of how many times the identical original string has already
appeared earlier in the input text. If multiple informal
forms are found, output each record in the order they occur
and separate them with "||".

Figure 3: Instruction prompts for decoder-only mod-
els with PLAIN (top), STRUCT (middle), and SPAN ap-
proaches (bottom).

C.6 Throughput Calculation Setting 1403

In the experiments reported in §7.3, we used the fol- 1404

lowing settings. For each model checkpoint (from 1405

one of two runs), we conducted a single warm-up 1406

inference followed by three inference passes over 1407

all 3,786 JMLN test sentences (a total of 11.1k 1408

characters), which were sorted by increasing token 1409

count according to its tokenizer. These evalua- 1410

tions were run at multiple batch sizes; we selected 1411

the batch size that yielded the highest throughput 1412

(shown in Table 14) and reported the mean through- 1413

put of the three runs. Models were cast to float16 1414

on the V100 and to bfloat16 on the H100. All 1415

inference was performed using the Hugging Face 1416

Transformers (Wolf et al., 2020) library. 1417

Model V100 H200 V100 H200

FULL-SEG

BERT-large 64 128 – –
RoBERTa-large 64 128 – –
DeBERTa-large 64 128 – –

STRUCT SPAN

T5-large 256 256 256 256
Sarashina2.2-1B 128 256 256 256
Sarashina2.2-3B 128 128 64 128
Sarashina2-7B 64 128 32 128

Table 14: Batch size yielding the best throughput for
each method.
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C.7 Word Coverage Indicators1418

For analyses in experiments reported in §7.5 and1419

§7.6, we introduced three word coverage-based1420

indicators. Below, we provide further explanations1421

on them.1422

The Surf-Outside-Train rate is defined as “the1423

proportion of non-standard surface tokens in the1424

test set that are not found among the training1425

set’s non-standard surfaces.” Assume that the non-1426

standard surface tokens appearing in the entire1427

training set are [“u”, “u”, “r”, “thx”], while those1428

appearing in the entire test set are [“u”, “r”, “cuz”].1429

In this case, the rate is 1/3 = 0.33.1430

The Surf-In-Train rate is defined as “the propor-1431

tion of original surface forms for examples that1432

matched any non-standard forms in the training1433

set.” Assume the same training set above and non-1434

standard surface examples of interest are [“u”, “r”,1435

“cuz”], the rate is 2/3 = 0.671436

The Norm-In-Lex rate is defined as “the propor-1437

tion of predicted normalized forms appearing in1438

the UniDic lexicon.” Assume the set of normalized1439

strings produced by the model is {“you”, “are”, “be-1440

caus”}, and an external lexicon contains only “you”1441

and “are” from that set; the rate is 2/3 = 0.67.1442

D Detailed Experimental Results1443

D.1 Accuracy Across Model Series1444

For the experiment reported in Table3 (§7.1), we1445

extracted results for different model size within1446

each model series and plotted them in Figure 4.1447

Performance improved with increasing model size1448

across model series.1449

D.2 Comparison of Encoder Approaches1450

As a preliminary experiment, we compared variants1451

of encoder-based methods—PART-SEG, FULL-1452

SEG, and FULL-SEG-POS, introduced in Ap-1453

pendix B—on the JMLN dev set. We also report1454

the F1 scores for word segmentation, POS tagging,1455

and length prediction (Lenp: tokens in positive1456

non-standard words; Lenn: other tokens), as well1457

as additional normalization metrics: sentence-level1458

exact match accuracy (S-Accp: accuracy for sen-1459

tences containing at least one positive non-standard1460

word; S-Accn: accuracy for other sentences) and1461

the chrF score (Popović, 2015) implemented in1462

sacreBLEU (Post, 2018).21 Table 16 shows the1463

21We calculated chrF scores with the default options
(signature: nrefs:1|case:mixed|eff:yes|nc:6|nw:0|
space:no|version:2.5.1).
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Figure 4: Plot of F0.5 scores in Table3 for each
model series—T5, mT5, Llama-3.2, Qwen2.5, and
Sarashina2.2. The scores for the STRUCT and SPAN
approaches are shown with solid and dotted lines, re-
spectively.

results. 1464

The encoder-only models (3 backbone 1465

models×2 model size) with the FULL-SEG 1466

approach obtained +0.01–0.05 F0.5 gains from the 1467

PART-SEG counterpart, indicating the importance 1468

of learning full word segmentation tasks. Adding 1469

POS tagging task showed no clear improvements. 1470

D.3 Comparison of Generative Approaches 1471

As a preliminary experiment, we compared the 1472

three generative approaches—PLAIN, STRUCT, 1473

and SPAN— using T5, Sarashina2/2.2, and Swal- 1474

low models on the JMLN dev set. The STRUCT 1475

and SPAN approaches outperformed or matched 1476

the PLAIN approach for T5 and Sarashina2/2.2 1477

models (e.g., -0.009 to +0.034 S-Accp points), but 1478

underperformed for Swallow (e.g., -0.076 S-Accp 1479

points). 1480

D.4 Results for Each Category 1481

Table 15 shows the JMLN test performance (re- 1482

call) of the three models evaluated in §7.5 for each 1483

domain. Consistent with the domain-specific eval- 1484

uation results in §7.5, Sarashina achieved the high- 1485

est recall across all categories. All three models 1486

showed the same recall order across the four cat- 1487

egories, and the consistently lowest recall of the 1488

fourth category, i.e., typos, once again highlights 1489

the difficulty of correcting them. 1490

D.5 Prediction Examples 1491

Table 18 shows model outputs on the JMLN dev set 1492

for the three models evaluated in §7.5; in addition 1493
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Category # DeBERTa T5 Sara2.2

Char type var. 534 0.395 0.375 0.563
Alter rep. 271 0.550 0.500 0.703
Sound change 794 0.796 0.739 0.812
Typos 178 0.087 0.076 0.219

Table 15: JMLN test recall of representative models
(DeBERTa-large, T5-large, and Sarashina2.2-3b) for
each category.

to error type classification (TP, FP, and FN) based1494

on the gold standard evaluation, the first author also1495

assessed the validity of each output (✓: valid, △:1496

questionable, ✗: invalid).1497

In example (a), all three methods produced se-1498

mantically valid normalized strings at the phrase1499

level; however, only DeBERTa was classified as a1500

TP, as it correctly matched the gold span. Similarly,1501

in examples (b) and (c), Sarashina produced plausi-1502

ble normalized strings, but due to mismatches with1503

the gold annotation, the outputs were classified as1504

FPs. In example (d), Sarashina normalized the in-1505

put to a synonym (i.e., “darling” to “husband”);1506

while the result was semantically appropriate, it1507

falls outside the scope of the task, which requires1508

normalization to variant surface forms of the same1509

word. In examples (e) and (f), Sarashina produced1510

normalized strings that were semantically unrelated1511

to the original input. DeBERTa generated invalid,1512

non-word outputs in examples (b) and (d), while T51513

did so in example (c). Example (g) shows that all1514

three models produced different but erroneous out-1515

puts, suggesting that normalization becomes par-1516

ticularly challenging when multiple non-standard1517

words appear in sequence, making boundary and1518

word identification more difficult.1519
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Backbone Approach Seg POS Lenp Lenn Norm
F1 F1 F1 F1 P R F0.5 S-Accp S-Accn chrF

Leave-As-Is – – – – – 0 – 0 1 95.29

BERT-B
None – – 0.644 – 0.676 0.510 0.635 0.487 0.982 96.69
Seg 0.980 – 0.656 0.978 0.721 0.546 0.678 0.518 0.979 96.82

SEG-POS 0.978 0.963 0.636 0.976 0.649 0.532 0.621 0.508 0.970 96.56

RoBERTa-B
None – – 0.630 – 0.662 0.515 0.626 0.488 0.976 97.04
Seg 0.982 – 0.669 0.980 0.726 0.537 0.678 0.502 0.981 97.22
S&P 0.982 0.971 0.677 0.981 0.713 0.566 0.678 0.525 0.973 97.27

DeBERTa-B
None – – 0.637 – 0.678 0.516 0.638 0.489 0.977 97.12
Seg 0.982 – 0.656 0.980 0.745 0.516 0.685 0.477 0.989 97.16
S&P 0.983 0.972 0.680 0.982 0.716 0.566 0.680 0.528 0.974 97.26

BERT-L
None – – 0.682 – 0.717 0.570 0.682 0.542 0.979 96.92
Seg 0.984 – 0.704 0.983 0.769 0.588 0.725 0.549 0.979 97.01
S&P 0.980 0.967 0.691 0.979 0.756 0.576 0.712 0.534 0.984 97.04

RoBERTa-L
None – – 0.671 – 0.706 0.557 0.670 0.515 0.980 97.27
Seg 0.983 – 0.701 0.982 0.753 0.571 0.708 0.542 0.980 97.34
S&P 0.985 0.974 0.713 0.983 0.765 0.580 0.719 0.551 0.984 97.49

DeBERTa-L
None – – 0.685 – 0.763 0.556 0.710 0.523 0.985 97.34
Seg 0.986 – 0.718 0.984 0.763 0.593 0.722 0.556 0.980 97.54
S&P 0.985 0.975 0.727 0.983 0.788 0.592 0.739 0.548 0.984 97.50

Table 16: Detailed results of encoder-only models on the JMLN dev sets.

Backbone Approach P R F0.5 S-Accp S-Accn chrF

– Leave-As-Is – 0 – 0 1 95.29

T5-base
PLAIN – – – 0.497 0.958 96.54
STRUCT 0.727 0.491 0.663 0.465 0.983 96.94
SPAN 0.707 0.527 0.662 0.509 0.974 97.01

T5-large
PLAIN – – – 0.535 0.950 96.44
STRUCT 0.769 0.558 0.714 0.531 0.984 97.31
SPAN 0.751 0.568 0.705 0.566 0.975 97.28

Sarashina2.2-1B
PLAIN – – – 0.602 0.985 97.92
STRUCT 0.750 0.635 0.724 0.602 0.972 97.72
SPAN 0.770 0.609 0.730 0.593 0.975 97.59

Sarashina2.2-3B
PLAIN – – – 0.656 0.980 98.17
STRUCT 0.792 0.682 0.766 0.651 0.972 97.94
SPAN 0.792 0.677 0.767 0.653 0.979 98.11

Sarashina2-7B
PLAIN – – – 0.646 0.982 98.08
STRUCT 0.766 0.670 0.745 0.658 0.971 97.99
SPAN 0.767 0.662 0.743 0.637 0.965 97.74

Llama-3.1-Swallow-8B
PLAIN – – – 0.638 0.983 98.03
STRUCT 0.771 0.609 0.732 0.584 0.980 97.68
SPAN 0.755 0.602 0.718 0.562 0.974 97.50

Table 17: Detailed results of encoder-decoder and decoder-only models on the JMLN dev sets.
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(a)

RK-ICB: (· · · )効果はわからない〜〜Pos:Unk。
(Not sure about the effect.)

Gold ない〜〜→{ない} (not)
DeBERTa-L ない〜〜→ないInL (not) TP ✓
T5-L わからない〜〜→わからないOOL (not sure) FP&FN ✓
Sarashina2.2-3B わからない〜〜→わからないOOL (not sure) FP&FN ✓

(b)

BJ-OC:かいわれ大根って、(· · · )水で洗ったらそのままだべれるPos:Unkの?
(Can you just was daikon radish sprouts with water and eat it as is?)

Gold だべれる→{食べれる} (can eat)
DeBERTa-L だべれる→食れるOOL (∅) FP&FN ✗
T5-L – FN ✗

Sarashina2.2-3B だべれる→食べられるOOL (can eat) FP&FN ✓

(c)

BJ-OC: (· · · )近鉄の「まわりゃんせ」がおトクNeg:Unkじゃないでしょうか。
(Isn’t Kintetsu Railway’s ‘‘Mawaryanse” pass a good deal?)

Gold –
DeBERTa-L – – –
T5-L トク→とこうInL (∅) FP ✗

Sarashina2.2-3B おトク→お得OOL (good deal) FP ✓

(d)

BJ-OY: (· · · )だぁりんPos:Unkがおごってくれました。
(My darling treated me.)

Gold だぁりん→{ダーリン} (darling)
DeBERTa-L だぁりん→だじりんOOL (∅) FP&FN ✗
T5-L – FN ✗

Sarashina2.2-3B だぁりん→旦那InL (husband) FP&FN △

(e)

BJ-OY: (· · · )ウォルトンでカンツリNeg:Unkと利根川水系でバスをやんべ。
(I’m going kan-tsuri (= fishing at a managed sport) at Walton and bass fishing
in Tone River system.)

Gold –
DeBERTa-L – – –
T5-L – – –
Sarashina2.2-3B カンツリ→キャッチ＆リリースOOL (catch & release) FP ✗

(f)

NU: (· · · )最高気温25度とかっしょうPos:Unk?
(The high is like 25°C or something, right?)

Gold っしょう→{でしょう} (right?)
DeBERTa-L – FN ✗
T5-L – FN ✗

Sarashina2.2-3B かっしょう→夏InL (summer) FP&FN ✗

(g)

TW:あ〜あまぁ〜たPos:Unk初音ミクがトレンド入りしてるよ (· · · )
(Ugh, Hatsune Miku is trending again.)

Gold まぁ〜た→{また} (again)
DeBERTa-L あまぁ〜→あまっInL (extra) FP&FN ✗

T5-L まぁ〜た→まあInL (well...) FP&FN ✗

Sarashina2.2-3B あまぁ〜た→あまったOOL (extra) FP&FN ✗

Table 18: Example original text (fragment) and corresponding model outputs. For each row of gold-standard and
model output, columns 2–5 indicate: (1) original string→normalized string, (2) gloss or the normalized string, (3)
error type, (4) manual validity judgement by the first author (✓: valid, △: questionable, ✗: invalid). Non-standard
words in the original text are underlined; if positive instances, they are marked with a subscript Pos : Unk, and if
negative, with Neg : Unk (Unk indicates that the word did not appear in the training set). Predicted normalized
strings are marked with subscripts InL or OOL, indicating whter the form is included or not included in the UniDic
lexicon.
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ID Pretrained Model Lang Exp Size Hugging Face ID License
ja th

01 BERT-base ja ✓ 91M tohoku-nlp/bert-base-japanese-char-v3 Apache 2.0
02 BERT-large ja ✓ 310M tohoku-nlp/bert-large-japanese-char-v2 Apache 2.0
03 RoBERTa-base ja ✓ 100M ku-nlp/roberta-base-japanese-char-wwm CC BY-SA 4.0
04 RoBERTa-large ja ✓ 320M ku-nlp/roberta-large-japanese-char-wwm CC BY-SA 4.0
05 RoBERTa-base th ✓ 88M KoichiYasuoka/roberta-base-thai-char Apache 2.0
06 DeBERTa-base ja ✓ 100M ku-nlp/deberta-v2-base-japanese-char-wwm CC BY-SA 4.0
07 DeBERTa-large ja ✓ 330M ku-nlp/deberta-v2-large-japanese-char-wwm CC BY-SA 4.0

08 T5-base ja ✓ 250M retrieva-jp/t5-base-long CC BY-SA 4.0
09 T5-large ja ✓ 780M retrieva-jp/t5-large-long CC BY-SA 4.0
10 T5-base th ✓ 250M kobkrit/thai-t5-base N/A
11 mT5-base M ✓ ✓ 580M google/mt5-base Apache 2.0
12 mT5-large M ✓ ✓ 1.2B google/mt5-large Apache 2.0

13 Llama-3.2-1B M ✓ ✓ 1.2B meta-llama/Llama-3.2-1B Llama 3.2
14 Llama-3.2-3B M ✓ ✓ 3.2B meta-llama/Llama-3.2-3B Llama 3.2
15 Llama-3.1-8B M ✓ ✓ 8.0B meta-llama/Llama-3.1-8B Llama 3.1
16 Swallow-8B M→ja ✓ 8.0B tokyotech-llm/Llama-3.1-Swallow-8B-v0.2 Llama 3.1
17 Qwen2.5-1.5B M ✓ ✓ 1.5B Qwen/Qwen2.5-1.5B Apache 2.0
18 Qwen2.5-3B M ✓ ✓ 3.1B Qwen/Qwen2.5-3B Qwen Research
19 Qwen2.5-7B M ✓ ✓ 7.6B Qwen/Qwen2.5-7B Apache 2.0
20 TinySwallow-1.5B M→ja ✓ 1.5B SakanaAI/TinySwallow-1.5B Apache 2.0
21 Sarashina2.2-1B ja&en ✓ 1.4B sbintuitions/sarashina2.2-1b MIT
22 Sarashina2.2-3B ja&en ✓ 3.4B sbintuitions/sarashina2.2-3b MIT
23 Sarashina2-7B ja&en ✓ 7.3B sbintuitions/sarashina2-7b MIT
24 Typhoon2-1B M→th ✓ 1.2B scb10x/llama3.2-typhoon2-1b Llama 3.2
25 Typhoon2-3b M→th ✓ 3.2B scb10x/llama3.2-typhoon2-3b Llama 3.2
26 Typhoon2-8B M→th ✓ 8.0B scb10x/llama3.1-typhoon2-8b Llama 3.1
27 ThaiGPT1.5-7B M→th ✓ 7.6B openthaigpt/openthaigpt1.5-7b-instruct Qwen
28 SeaLLMs-v3-1.5B M→M ✓ 1.5B SeaLLMs/SeaLLMs-v3-1.5B SeaLLMs
29 SeaLLMs-v3-7B M→M ✓ 7.6B SeaLLMs/SeaLLMs-v3-7B SeaLLMs

Table 19: Backbone models used in Japanese and Thai experiments (“Exp”=“ja” and “th”). The “Lang” column
indicates the languages that the model mainly trained on (“M” indicates a multilingual model, and “M→*” indicates
a continually pre-trained model from a multilingual model).
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