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Abstract
High-dimensional inference addresses scenarios
where the dimension of the data approaches, or
even surpasses, the sample size. In these settings,
the regularized M -estimator is a common tech-
nique for inferring parameters. (Negahban et al.,
2009) establish a unified framework for estab-
lishing convergence rates in the context of high-
dimensional scaling, demonstrating that estima-
tion errors are confined within a restricted set,
and revealing fast convergence rates. The key as-
sumption underlying their work is the convexity
of the loss function. However, many loss func-
tions in high-dimensional contexts are nonconvex.
This leads to the question: if the loss function is
nonconvex, do estimation errors still fall within a
restricted set? If yes, can we recover convergence
rates of the estimation error under nonconvex sit-
uations? This paper provides affirmative answers
to these critical questions.

1. Introduction
Recently, the emerging trends of high feature dimensionality
have been studied in (Mitchell et al., 2004; Fan et al., 2009;
Zhai et al., 2014; Liu & Tsang, 2015; 2017; Liu et al., 2017b;
2019b;a; Liu & Tsang, 2016). For example, quintillion
bytes of data are generated by the Web on a daily basis
(Zikopoulos et al., 2012; Zhai et al., 2014; Liu et al., 2017a;
2018; Liu & Shen, 2019; Gong et al., 2023b;a; 2021). This
surge in data has led to situations where the dimensionality
of features (d) approaches or even surpasses the size of the
sample size (n). In such regimes, classical “large n, fixed
d” theory often fails to provide useful predictions, and the
performance of standard methods will also be significantly
degraded. Thus, it is imperative to develop new theory as
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well as new methods in high-dimensional regimes.

The regularization M -estimator technique has gained signif-
icant attention as a means of estimating model parameters
within high-dimensional contexts (Liu, 2023). (Negahban
et al., 2009) introduce a comprehensive framework for the
regularized M -estimator. This framework not only consol-
idates and extends prior findings but also introduces fresh
insights into consistency and convergence rates within the
high-dimensional situation. Their work is further document-
ed in the seminal textbook on high-dimensional statistics
authored by (Wainwright, 2019). Specifically, (Negahban
et al., 2009) develop two pivotal properties of the regular-
ized M -estimator: Firstly, they establish the decomposabil-
ity property of the regularizer; Secondly, they introduce
the concept of restricted strong convexity for the loss func-
tion. When the loss function is convex and the regularizer
exhibits decomposability, their analysis reveals that the er-
ror vector between any global optimum of the regularized
M -estimator and the unknown ground truth parameter falls
within a tightly constrained set. Additionally, in cases where
the loss function demonstrates convexity and complies with
the conditions of restricted strong convexity, and the reg-
ularizer is decomposable, one of their principal theorems
establishes the convergence rates for the estimation error
under high-dimensional scaling.

The principal premise underpinning their primary findings
relies on the convexity of the loss function. However, in
high-dimensional settings, many loss functions exhibit non-
convex characteristics. For example, mixture models and
high-dimensional sparse linear regression models with noisy
and/or missing data are nonconvex, which will be described
in details in subsequent sections. This motivates us to ask
the following questions:

1. When the loss function is nonconvex, do estimation
errors still fall within a constrained set?

2. If yes, can we recover the convergence rates of the
estimation error under nonconvex regimes?

This paper provides affirmative answers to these questions.

Contributions. This paper advances the theory of regu-
larized M -estimator with decomposable regularizers from
convex to nonconvex. Our main results show that the esti-
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mation errors still lie in a restricted set and we can recover
the convergence rates of the estimation error when the loss
function is nonconvex. Moreover, we apply our main results
to two nonconvex models: corrected linear regression and
`1-penalized Lasso estimator. Our key technical analysis of
two examples is to prove that with high probability, a form
of the restricted strong convexity (RSC) condition and dual
norm bound hold.

Related Work. (Loh & Wainwright, 2015) is a seminal
work, which presents the nonconvex results of regularized
M -estimator. (Loh & Wainwright, 2015) focus on the non-
convex regularizers, which are defined in Assumption 1 of
(Loh & Wainwright, 2015). Specially, nonconvex SCAD
and MCP regularizers are studied by (Loh & Wainwright,
2015). This work focuses on the decomposable regularizers,
which are defined in Definition 2.1 of our paper. Becasue
the definitions of nonconvex regularizers and decomposable
regularizers are totally different, the main results of (Loh
& Wainwright, 2015) can not be extended to decomposable
regularizers.

2. Problem Formulation
Let Z be a random variable with distribution P taking values
in a set Z . Suppose that we observe a collection of n sam-
ples Zn1 = (Z1, . . . , Zn), where each sample Zi is drawn
in an independent and identically distributed (i.i.d.) manner
from P. Consider a loss function Ln : Rd × Zn → R.
The value Ln(θ;Zn1 ) measures the fit between a parameter
vector θ ∈ Rd and the observed data Zn1 . Its expectation
defines the population cost function:

L̄(θ) := E[Ln(θ;Zn1 )]

Suppose that the cost function has an additive decomposition
of the form Ln(θ;Zn1 ) = 1/n

∑n
i=1 L(θ;Zi), where L :

Rd ×Z → R is the cost defined on a single sample. Then,
the population cost function does not depend on the sample
size n. The target parameter vector θ∗ ∈ Rd is defined as
the minimum of the population cost function:

θ∗ = arg min
θ∈Rd

L̄(θ)

Our goal is to estimate the unknown parameter θ∗ from
the observed samples Zn1 . In order to do so, we combine
the empirical cost function with a regularizer or penalty
function Φ : Rd → R. The regularized M -estimator is
based on solving the following optimization problem:

θ̂ ∈ arg min
θ∈Rd
{Ln(θ;Zn1 ) + λnΦ(θ)} (1)

where λn > 0 is a user-defined regularization parameter.
For ease of notation, we adopt Ln(θ) as a shorthand for
Ln(θ;Zn1 ) in the sequel. We also adopt the same notation

for the derivatives of the empirical cost function. Through-
out the paper, we assume that the loss function is differen-
tiable, and that the regularizer Φ is a norm.

2.1. Decomposable Regularizers

The decomposability of the regularizer is introduced by
(Negahban et al., 2009; Wainwright, 2019) to analyze the
estimation error bound for convex loss functions. We as-
sume that the space Rd is endowed with an inner product
〈·, ·〉, and we use || · || to denote the norm induced by this
inner product.

The notion of a decomposable regularizer is defined in terms
of a pair of subspaces M ⊆ M̄ of Rd. We define the or-
thogonal complement of the space M̄ as M̄⊥ := {v ∈
Rd|〈u, v〉 = 0,∀u ∈ M̄}. The definition of the decompos-
ability is provided as below:

Definition 2.1 (Decomposability). Given a pair of sub-
spaces M ⊆ M̄, a norm-based regularizer Φ is decompos-
able with respect to (M, M̄⊥) if

Φ(α+ β) = Φ(α) + Φ(β),∀α ∈M,∀β ∈ M̄⊥ (2)

The `1 norm is the canonical example of a decomposable
norm. There are some other norms that also share this
property, such as the group Lasso norm and the nuclear
norm.

Given a vector θ ∈ Rd and a subspace S of Rd, we use θS to
denote the projection of θ onto S: θS := arg minθ̃∈S ||θ̃ −
θ||2. Consider any norm Φ : Rd → R, its dual norm is
defined as Φ∗(v) := supΦ(u)≤1〈u, v〉. We define G(λn) :=
{Φ∗(∇Ln(θ∗)) ≤ λn/2}.

The decomposability plays an important role in the M -
estimation. The following Proposition introduced by (Wain-
wright, 2019) shows that the error vector θ̂ − θ∗ between
any global optimum of the optimization problem (1) and the
unknown parameter θ∗ lie in a very restricted set.

Proposition 2.2. Let Ln : Rd × Zn → R be a convex
function, let the regularizer Φ : Rd → [0,∞) be a norm,
and consider a subspace pair (M, M̄⊥) over which Φ is
decomposable. Then conditioned on the event G(λn), the
error ∆̂ = θ̂ − θ∗ belongs to the set

Cθ∗(M, M̄⊥) := {∆ ∈ Rd|Φ(∆M̄⊥) ≤ 3Φ(∆M̄)

+4Φ(θ∗M⊥)}
(3)

This key property of decomposability is based on the con-
vexity of the loss function, which prompts us to ask the first
question:

Whether the results of Proposition 2.2 still hold if
the loss function is nonconvex?
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This paper provides an affirmative answer to this question.

2.2. Restricted Strong Convexity

Given any differentiable loss function, the first-order Taylor-
series error is defined as:

En(∆) := Ln(θ∗ + ∆)− Ln(θ∗)− 〈∇Ln(θ∗),∆〉

This error term is always guaranteed to be nonnegative if
the loss function is convex. The strong convexity is used
to ensure that a function is not too flat and is defined as
En(∆) ≥ κ/2||∆||2 for all ∆ ∈ Rd. (Wainwright, 2019)
show that the strong convexity cannot hold for a generic
high-dimensional problem. However, for decomposable
regularizers, Proposition 2.2 shows that the error vector
must lie within a restricted set, and (Wainwright, 2019) use
this fact to define the notion of restricted strong convexity
as follows.

Definition 2.3 (Restricted Strong Convexity (Wainwright,
2019)). For a given norm || · || and regularizer Φ(·), the
loss function satisfies a restricted strong convexity (RSC)
condition with radius R > 0, curvature κ > 0 and tolerance
τ2
n if

En(∆) ≥ κ/2||∆||2 − τ2
nΦ2(∆),∀∆ ∈ B(R) (4)

where B(R) is the unit ball defined by the given norm || · ||.

The following results involve the subspace Lipschitz con-
stant.

Definition 2.4 (Subspace Lipschitz Constant). For any sub-
space S of Rd, the subspace Lipschitz constant with respect
to the pair (Φ, || · ||) is given by

Ψ(S) := sup
u∈S\{0}

Φ(u)

||u|| (5)

Consider the following assumptions:

Assumption 2.5. The loss function is convex, and satisfies
the local RSC condition (4) with curvature κ, radius R and
tolerance τ2

n with respect to an inner-product induced norm
|| · ||.
Assumption 2.6. There is a pair of subspaces M ⊆ M̄ such
that the regularizer decomposes over (M, M̄⊥).

Based on these assumptions, (Wainwright, 2019) present
the key bounds for the general models. We first define the
quantity involved in the bounds:

ε2
n(M̄,M⊥) := 9

λ2
n

κ2
Ψ2(M̄) +

8

κ
{λnΦ(θ∗M⊥)

+16τ2
nΦ2(θ∗M⊥)}

(6)

Theorem 2.7 (Bounds for general models). Under Assump-
tions 2.5 and 2.6, consider the regularized M -estimator (1)
conditioned on the event G(λn),

(i) Any optimal solution satisfies the bound

Φ(θ̂ − θ∗) ≤ 4{Ψ(M̄)||θ̂ − θ∗||+ Φ(θ∗M⊥)} (7)

(ii) For any subspace pair (M̄,M⊥) such that τ2
nΨ2(M̄) ≤

κ/64 and εn(M̄,M⊥) ≤ R, we have

||θ̂ − θ∗||2 ≤ ε2
n(M̄,M⊥) (8)

The proof of Theorem 2.7 in (Wainwright, 2019) shows that
(7) does not depend on the convexity of the loss function,
while (8) depends on the convex assumption of the loss
function, which prompts us to ask the second question:

Can we recover the convergence rates of the error
||θ̂ − θ∗||2 (8) if the loss function is nonconvex?

This paper provides an affirmative answer to this question.

3. Main Results
This section turns to the statements of our main statistical
guarantees, which applies to any vector θ̃ ∈ Rd that satisfies
the first-order necessary conditions to be a local minimum
of (1):

〈∇Ln(θ̃) + λn∇Φ(θ̃), θ − θ̃〉 ≥ 0, θ ∈ Rd (9)

Such vectors θ̃ satisfying the condition (9) are also known
as stationary points.

Our main statistical results are based on the weaker RSC
condition (Loh & Wainwright, 2015) than (4), which shows
below:

〈∇Ln(θ∗ + ∆)−∇Ln(θ∗),∆〉 ≥ κ/2||∆||2

−τ2
nΦ2(∆),∀∆ ∈ B(R)

(10)

For any vector θ̂ ∈ Rd satisfies the first-order necessary con-
ditions (9), we define G̃(λn) := {Φ∗(∇Ln(θ̂)) ≤ λn/2}.
Theorem 3.1. Let the regularizer Φ : Rd → [0,∞) be a
norm, and consider a subspace pair (M, M̄⊥) over which
Φ is decomposable. Consider any vector θ̂ ∈ Rd satisfies
the first-order necessary conditions (9), conditioned on the
event G̃(λn), the error ∆̂ = θ̂ − θ∗ belongs to the set

Cθ∗(M, M̄⊥) := {∆ ∈ Rd|Φ(∆M̄⊥) ≤ 3Φ(∆M̄)

+4Φ(θ∗M⊥)}
(11)
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Remark. Theorem 3.1 shows that the results of the Propo-
sition 2.2 in (Wainwright, 2019) still hold for any stationary
points.

The proof of Theorem 3.1 uses the following Lemma.

Lemma 3.2. For any decomposable regularizer and param-
eters θ∗ and ∆, we have

Φ(∆ + θ∗)− Φ(θ∗) ≥ Φ(∆M̄⊥)− Φ(∆M̄)− 2Φ(θ∗M⊥)
(12)

The proof of Lemma 3.2 can be found in (Wainwright,
2019).

Proof. (of Theorem 3.1) Suppose vector θ̂ ∈ Rd satisfies
the first-order necessary conditions (9). Since θ∗ is feasible,
(9) implies that

〈∇Ln(θ̂) + λn∇Φ(θ̂), θ∗ − θ̂〉 ≥ 0 (13)

Rearranging (13) yields

〈∇Ln(θ̂), ∆̂〉+ 〈λn∇Φ(θ̂), ∆̂〉 ≤ 0 (14)

Applying the Hölder’s inequality with the regularizer and
its dual, we have

〈∇Ln(θ̂), ∆̂〉 ≥ −Φ∗(∇Ln(θ̂))Φ(∆̂)

≥ −λn
2

(Φ(∆̂M̄) + Φ(∆̂M̄⊥))
(15)

where the final step uses the assumed bound Φ∗(∇Ln(θ̂)) ≤
λn/2 and the triangle inequality. Using the convexity of the
regularizer, we have

Φ(∆̂ + θ∗)− Φ(θ∗) ≤ 〈∇Φ(∆̂ + θ∗), ∆̂〉 (16)

Combining (16) with Lemma 3.2, we obtain

〈λn∇Φ(θ̂), ∆̂〉 = 〈λn∇Φ(∆̂ + θ∗), ∆̂〉
≥ λn(Φ(∆̂ + θ∗)− Φ(θ∗))

≥ λn(Φ(∆̂M̄⊥)− Φ(∆̂M̄)− 2Φ(θ∗M⊥))

(17)

Combining (14), (15) and (17) yields

0 ≥ λn(Φ(∆̂M̄⊥)− Φ(∆̂M̄)− 2Φ(θ∗M⊥))

− λn
2

(Φ(∆̂M̄) + Φ(∆̂M̄⊥))

=
λn
2

(Φ(∆̂M̄⊥)− 3Φ(∆̂M̄)− 4Φ(θ∗M⊥))

(18)

This completes the proof of Theorem 3.1.

Theorem 3.3. Let the regularizer Φ : Rd → [0,∞) be a
norm, and consider a subspace pair (M, M̄⊥) over which
Φ is decomposable. Suppose the loss function satisfies the
RSC condition (10). Consider any vector θ̂ ∈ Rd satisfies
the first-order necessary conditions (9), conditioned on the
event G̃(λn), for any subspace pair (M̄,M⊥) such that
τ2
nΨ2(M̄) ≤ κ

128 , we have

||θ̂ − θ∗||2 ≤ ε2
n(M̄,M⊥) (19)

Remark. Theorem 3.3 shows that the convergence rates
of the error ||θ̂ − θ∗||2 (8) in (Wainwright, 2019) still hold
for any stationary points. The main results (Theorem 1) of
(Loh & Wainwright, 2015) build on the class of nonconvex
regularizers and nonconvex loss functions. Specially, they
focus on the nonconvex SCAD and MCP regularizers, while
our Theorem 3.3 is based on the decomposable regularizers.
Moreover, Theorem 1 of (Loh & Wainwright, 2015) uses `1
and `2 norms to measure the error, while our Theorem 3.3
applies for any norms.

Proof. Let ∆̂ = θ̂− θ∗. Combining the RSC condition (10)
and first-order necessary condition (9) yields

κ/2||∆̂||2 − τ2
nΦ2(∆̂)

≤ 〈∇Ln(θ̂)−∇Ln(θ∗), ∆̂〉
(10)

= 〈∇Ln(θ̂), ∆̂〉 − 〈∇Ln(θ∗), ∆̂〉

≤ 〈λn∇Φ(θ̂), θ∗ − θ̂〉 − 〈∇Ln(θ∗), ∆̂〉
(14)

≤ λn(Φ(θ∗)− Φ(θ̂))− 〈∇Ln(θ∗), ∆̂〉
(the convexity of Φ)

≤ λn(Φ(∆̂M̄) + 2Φ(θ∗M⊥)− Φ(∆̂M̄⊥))− 〈∇Ln(θ∗), ∆̂〉
(Lemma 3.2)

≤ 3λn
2

Φ(∆̂M̄) + 2λnΦ(θ∗M⊥)

(20)

where the final step of (20) uses the Hölder’s inequality,
assumed bound Φ∗(∇Ln(θ∗)) ≤ λn/2 and the triangle
inequality. (7) implies that

Φ2(∆̂) ≤ 32Ψ2(M̄)||∆̂||2 + 32Φ2(θ∗M⊥) (21)

The definition 2.4 of subspace Lipschitz constant implies
that

Φ(∆̂M̄) ≤ Ψ(M̄)||∆̂|| (22)

Combining (20), (21) and (22), we have

(κ/2− 32τ2
nΨ2(M̄))||∆̂||2 − 3λn

2
Ψ(M̄)||∆̂||

−(32τ2
nΦ2(θ∗M⊥) + 2λnΦ(θ∗M⊥)) ≤ 0

(23)
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using the assumed bound 32τ2
nΨ2(M̄) ≤ κ/4, we have

κ

4
||∆̂||2 − 3λn

2
Ψ(M̄)||∆̂||

− (32τ2
nΦ2(θ∗M⊥) + 2λnΦ(θ∗M⊥)) ≤ 0

(24)

Note that the left-hand side of (24) is a 2-degree polynomial
in ||∆̂||. To be non-positive, it requires (19) to hold, which
concludes the proof.

The remainder of this paper is devoted to illustrations of the
consequences of Theorem 3.3 for various nonconvex loss
functions.

4. Examples
This section illustrates the application of Theorem 3.3 to
two nonconvex models: corrected linear regression and `1-
penalized Lasso estimator.

4.1. Corrected Linear Regression

We consider the case of high-dimensional linear regression
with systematically corrupted observations. Suppose that
we observe a collection of n samples (xi, yi) ∈ Rd × R.
We consider the following linear model

yi = 〈xi, θ∗〉+ εi, for i = 1, 2, . . . , n. (25)

where the regression vector θ∗ ∈ Rd is unknown and εi ∈ R
is observation noise, independent of xi. A line of past
work (Rosenbaum & Tsybakov, 2010; Loh & Wainwright,
2012) assume that we instead observe pairs {(zi, yi)}ni=1,
where the zi’s are systematically corrupted versions of the
corresponding xi’s. This setup applies to various corrup-
tion mechanisms, including the additive noise: We observe
zi = xi + wi, where wi ∈ Rd is a random vector indepen-
dent of xi, say zero-mean with known covariance matrix
Σw. We consider a high-dimensional framework that allows
the feature dimensions d to grow and possibly exceed the
sample size n.

We denote the transpose of the vector/matrix by the super-
script ′. || · ||r represents the `r norm (r ≥ 1). Let Σx be
the covariance matrix of the covariates, and consider the
`1-regularized quadratic program

θ̂ ∈ arg min
θ∈Rd
{1

2
θ′Σxθ − 〈Σxθ∗, θ〉+ λn||θ||1} (26)

In practice, we may not know the covariance matrix Σx and
Σxθ

∗. Given a set of samples {(zi, yi)}ni=1, we propose
to use Γ̂ ∈ Rd×d and γ̂ ∈ Rd to estimate Σx and Σxθ

∗,
respectively. The corrected linear regression estimator is
given by

θ̂ ∈ arg min
θ∈Rd
{1

2
θ′Γ̂θ − 〈γ̂, θ〉+ λn||θ||1} (27)

(27) involves different choices of the pair (Γ̂, γ̂) that are
adapted to the cases of noisy and/or missing data.

For the case of noisy or missing data, the most natural
choice of the matrix Γ̂ is not positive semidefinite, hence the
quadratic loss appearing in the problem (27) is nonconvex.
Furthermore, when Γ̂ has negative eigenvalues, the objective
in (27) is unbounded from below. Hence, we make use of
the following regularized estimator:

θ̂ ∈ arg min
||θ||1≤B

{1

2
θ′Γ̂θ − 〈γ̂, θ〉+ λn||θ||1} (28)

Let y = (y1, . . . , yn)′ ∈ Rn and X ∈ Rn×d, with x′i as
its i-th row. Suppose we observe Z = X + W , where
W is a random matrix independent of X , with rows wi
drawn independent and identically distributed (i.i.d.) from a
zero-mean distribution with known covariance Σw. (Loh &
Wainwright, 2012) consider the pair

Γ̂ =
Z ′Z

n
− Σw, and γ̂ =

Z ′y

n
. (29)

Note that when Σw = 0 (corresponding to the noiseless
case), the estimators (29) reduce to the standard Lasso.
When Σw 6= 0, the matrix Γ̂ is not positive semidefinite
in the high-dimensional regime. Since the matrix Z′Z

n has
rank at most n, the subtracted matrix Σw may cause Γ̂ to
have a large number of negative eigenvalues. Let λmin(Σx)
be the minimum eigenvalue of matrix X .

Definition 4.1. We say that a random matrix X ∈ Rn×d is
sub-Gaussian with parameters (Σ, σ2) if:

1. each row x′i ∈ Rd is sampled independently from a
zero-mean distribution with covariance Σ, and

2. for any unit vector u ∈ Rd, the random variable u′xi
is sub-Gaussian with parameter at most σ.

(Wainwright, 2019) have shown the decomposability of
the `1 norm regularizer. The following theorem shows the
estimation error bound for any stationary point θ̂ of the
nonconvex program (28).

Theorem 4.2. Suppose we have i.i.d. observations
{(zi, yi)}ni=1 from a corrupted linear model with addi-
tive noise, where the random matrices X,W ∈ Rn×d
are sub-Gaussian with parameters (Σx, σ

2
x) and (Σw, σ

2
w),

respectively. And let ε be an i.i.d. sub-Gaussian vector
with parameter σε. Let σ2

z = σ2
w + σ2

x. Suppose the
true regression vector θ∗ is supported on a subset S of
cardinality s. Assume n ≥ c′0smax(

(σ2
x+σ2

w)2

λ2
min(Σx)

, 1) log d,

λn = c0B(σ2
x +σzσε +σwσx +σ2

z + ||Σx||2)
√

log d
n . Any

stationary point θ̂ of the nonconvex program (28) satisfies
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the estimation error bounds

||θ̂ − θ∗||

≤ c0B
√
s(σ2

x + σzσε + σwσx + σ2
z + ||Σx||2)

√
log d

λmin(Σx)
√
n

(30)

with probability at least 1 −
c1 exp(−c2nmin(

λ2
min(Σx)

(σ2
x+σ2

w)2 , 1))− c1 exp(−c2 log d).

Remark. The bounds of Theorem 4.2 agree with bounds
previously established in Theorem 1 of (Loh & Wainwright,
2012) and Corollary 1 of (Loh & Wainwright, 2015).
Lemma 4.3 (RSC condition). Under the conditions of
Theorem 4.2, there are universal positive constants ci
such that the loss function satisfies the RSC condi-
tion (10) with parameters κ = λmin(Σx) and τ2

n =

c′0λmin(Σx) max(
(σ2

x+σ2
w)2

λ2
min(Σx)

, 1) log d
n

∆′Γ̂∆ ≥ κ/2||∆||22 − τ2
n||∆||21

with probability at least 1 −
c1 exp(−c2nmin(

λ2
min(Σx)

(σ2
x+σ2

w)2 , 1)).

Proof. The loss function of (28) isLn(θ) := 1
2θ
′Γ̂θ−〈γ̂, θ〉.

So we have ∇Ln(θ) = Γ̂θ − γ̂, and 〈∇Ln(θ∗ + ∆) −
∇Ln(θ∗),∆〉 = ∆′Γ̂∆. The conclusion follows easily
from Lemma 1 in Appendix A of (Loh & Wainwright, 2012).

The following Lemma in (Loh & Wainwright, 2012) plays
the key role in the remainder of our proof.
Lemma 4.4. If X ∈ Rn×d1 is a zero-mean sub-Gaussian
matrix with parameters (Σx, σ

2
x), then for any fixed (unit)

vector v ∈ Rd1, we have

P(|||Xv||22 − E||Xv||22| ≥ nt)

≤ 2 exp(−cnmin(
t2

σ4
x

,
t

σ2
x

))
(31)

Moreover, if Y ∈ Rn×d2 is a zero-mean sub-Gaussian ma-
trix with parameters (Σy, σ

2
y), then

P(||Y
′X

n
− cov(yi, xi)||∞ ≥ t)

≤ 6d1d2 exp(−cnmin(
t2

σ2
xσ

2
y

,
t

σxσy
))

(32)

where yi and xi are the i-th rows of X and Y , respectively.
In particular, if n ≥ c′ log d, then

P
(
||Y
′X

n
− cov(yi, xi)||∞ ≥ c0σxσy

√
log d

n

)
≤ c1 exp(−c2 log d))

(33)

Lemma 4.5 (Dual norm bound). Under the conditions of
Theorem 4.2, there are universal positive constants ci such
that

||γ̂ − Γ̂θ̂||∞ ≤ λn/2

with probability at least 1− c1 exp(−c2 log d), where λn =

c0B(σ2
x + σzσε + σwσx + σ2

z + ||Σx||2)
√

log d
n .

Proof. Combining Γ̂ = Z′Z
n − Σw, γ̂ = Z′y

n and y =
Xθ∗ + ε, we have

Φ∗(∇Ln(θ̂))

= ||γ̂ − Γ̂θ̂||∞

= ||Z
′(Xθ∗ + ε)

n
− (

Z ′Z

n
− Σw)θ̂||∞

= ||Z
′Xθ∗

n
+
Z ′ε

n
− (

Z ′Z

n
− Σz + Σz − Σw)θ̂||∞

= ||X
′Xθ∗

n
+
W ′Xθ∗

n
+
Z ′ε

n
− (

Z ′Z

n
− Σz)θ̂

− (Σz − Σw)θ̂||∞

= ||X
′Xθ∗

n
− Σxθ

∗ +
W ′Xθ∗

n
+
Z ′ε

n

− (
Z ′Z

n
− Σz)θ̂ + Σx(θ∗ − θ̂)||∞

≤ ||X
′Xθ∗

n
− Σxθ

∗||∞ + ||W
′Xθ∗

n
||∞

+ ||Z
′ε

n
||∞ + ||(Z

′Z

n
− Σz)θ̂||∞ + ||Σx(θ∗ − θ̂)||∞

(34)

For the first term in the right hand of (34), we note that
cov(xi, xiθ

∗) = Σxθ
∗. Assume n ≥ c′ log d, applying (33)

with (X,Y ) = (X,Xθ∗), we have

P
(
||X
′Xθ∗

n
− Σxθ

∗||∞ ≥ c0σ2
x||θ∗||2

√
log d

n

)
≤ c1 exp(−c2 log d)

(35)

Similarly, we have

P
(
||W

′Xθ∗

n
||∞ ≥ c0σxσw||θ∗||2

√
log d

n

)
≤ c1 exp(−c2 log d)

P
(
||Z
′ε

n
||∞ ≥ c0σzσε

√
log d

n

)
≤ c1 exp(−c2 log d)

P
(
||(Z

′Z

n
− Σz)θ̂||∞ ≥ c0σ2

z ||θ̂||2

√
log d

n

)
≤ c1 exp(−c2 log d)

(36)
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Using the Hölder’s inequality, we have

||Σx(θ∗ − θ̂)||∞ ≤ ||Σx(θ∗ − θ̂)||2 ≤ ||Σx||2||θ∗ − θ̂||2
(37)

Setting B = ||θ∗||1, then we have ||θ∗||2 ≤ ||θ∗||1 = B

and ||θ̂||2 ≤ ||θ̂||1 ≤ B. (34), (35), (36) and (37) imply the
results.

Proof. (of Theorem 4.2). We prove the bound (30) via
an application of Theorem 3.3. (Wainwright, 2019) have
shown the decomposability of the `1 norm regularizer with
subspaces

M = M̄ := {θ ∈ Rd|θj = 0 for all j ∈ Sc}

M⊥ := {θ ∈ Rd|θj = 0 for all j ∈ S}

With this choice, note that we have Ψ2(M̄) = s and
the target parameter θ∗ is contained within a subspace
M. Lemma 4.3 shows that the RSC condition (10) holds
with high probability. Lemma 4.5 shows that the even-
t G̃(λn) holds with high probability. The assumption
n ≥ c′0smax(

(σ2
x+σ2

w)2

λ2
min(Σx)

, 1) log d implies τ2
nΨ2(M̄) ≤ κ

128 .
Thus, we complete the proof of Theorem 4.2.

4.2. `1-penalized Lasso Estimator

Suppose that we observe a collection of n samples (xi, yi) ∈
Rd × R. We consider the following Gaussian linear model

y = Xθ∗ + ε (38)

where the regression vector θ∗ ∈ Rd is unknown, ε =
(ε1, . . . , εn)′ ∈ Rn is the noise and εi are drawn independent
and identically distributed (i.i.d.) from Gaussian distribution
N (0, σ∗2) with zero mean and standard deviation σ∗. The
`1-penalized Lasso estimator is defined as

θ̂ ∈ arg min
θ∈Rd
{||y −Xθ||22/2n+ λn||θ||1} (39)

We can see that the standard Lasso estimator (39) does not
provide an estimate of the nuisance parameter σ∗2.

Having a good estimator of σ∗2 plays a vital part in mix-
ture models and the role of the scaling with the variance
parameter is much more important than in homogeneous
regression models. Hence, it is important to take σ∗2 into
the definition and optimization of the penalized maximum
likelihood estimator. We consider the following estimator:

(θ̂, σ̂) ∈ arg min
||θ||1≤B,σ

{log(σ) + ||y −Xθ||22/2n

+λn||θ||1}
(40)

Note that the loss function in (40) is non-convex.

We know that the `1 norm regularizer is decomposable. The
following theorem shows the estimation error bound for any
stationary point (θ̂, σ̂) of the nonconvex program (40).

Theorem 4.6. Suppose we have i.i.d. observations
{(xi, yi)}ni=1 from a Gaussian linear model, where the
random matrix X ∈ Rn×d is sub-Gaussian with param-
eters (Σx, σ

2
x). Suppose the true regression vector θ∗

is supported on a subset S of cardinality s. Assume
n ≥ c′0smax(

σ2
x

λmin(Σx) , 1) log d, λn = c0B(σ2
x + σxσ

∗ +

||Σx||2)
√

log d
n . Any stationary point (θ̂, σ̂) of the noncon-

vex program (40) satisfies the estimation error bounds

||(θ̂ − θ∗, σ̂ − σ∗)||

≤ c0B
√
s(σ2

x + σxσ
∗ + ||Σx||2)

√
log d

λmin(Σx)
√
n

(41)

with probability at least 1 −
c1 exp(−c2nmin(λmin(Σx)

σ2
x

, 1))− c1 exp(−c2 log d).

Lemma 4.7 (RSC condition). Under the conditions of
Theorem 4.6, there are universal positive constants ci
such that the loss function satisfies the RSC condi-
tion (10) with parameters κ = λmin(Σx) and τ2

n =

c′0λmin(Σx) max(
σ2
x

λmin(Σx) , 1) log d
n

1

n
∆′1X

′X∆1 −
∆2

2

(σ∗ + ∆2)σ∗
≥ κ/2||∆||22 − τ2

n||∆||21

with probability at least 1 −
c1 exp(−c2nmin(λmin(Σx)

σ2
x

, 1)).

Proof. The loss function of (40) is Ln(θ, σ) := log(σ) +
||y − Xθ||22/2n. So we have ∇Ln(θ, σ) = (−X ′(y −
Xθ)/n, 1/σ). Let ∆ = (∆1,∆2) where ∆1 ∈ Rd and
∆2 ∈ R+. We have

〈∇Ln(θ∗ + ∆1, σ
∗ + ∆2)−∇Ln(θ∗, σ∗),∆〉

=
1

n
∆′1X

′X∆1 −
∆2

2

(σ∗ + ∆2)σ∗
(42)

From Lemma 1 in Appendix A of (Loh & Wainwright,
2012), we know that

1

n
∆′1X

′X∆1

≥ λmin(Σx)

2
||∆1||22

− c0λmin(Σx) max(
σ2
x

λmin(Σx)
, 1)

log d

n
||∆1||21

(43)

holds with probability at least 1 −
c1 exp(−c2nmin(λmin(Σx)

σ2
x

, 1)). Let κ = λmin(Σx)

7
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and Υ = c0λmin(Σx) max(
σ2
x

λmin(Σx) , 1) log d
n . The

following inequality

1

n
∆′1X

′X∆1 −
∆2

2

(σ∗ + ∆2)σ∗

≥ κ

2
||∆1||22 −Υ||∆1||21 −

∆2
2

(σ∗ + ∆2)σ∗

≥ κ

2
||∆1||22 +

κ

2
∆2

2 −
κ

2
∆2

2 −
∆2

2

(σ∗ + ∆2)σ∗
−Υ||∆||21

=
κ

2
||∆||22 − (

κ

2
+

1

(σ∗ + ∆2)σ∗
)∆2

2 −Υ||∆||21

≥ κ

2
||∆||22 − (

κ

2
+

1

(σ∗ + ∆2)σ∗
)||∆||21 −Υ||∆||21

≥ κ

2
||∆||22 − (

κ

2
+

1

σ∗2
+ Υ)||∆||21

(44)

holds with probability at least 1 −
c1 exp(−c2nmin(λmin(Σx)

σ2
x

, 1)).

Lemma 4.8 (Dual norm bound). Under the conditions of
Theorem 4.6, there are universal positive constants ci such
that

||(−X ′(y −Xθ̂)/n, 1/σ̂)||∞ ≤ λn/2

with probability at least 1− c1 exp(−c2 log d), where λn =

c0B(σ2
x + σxσ

∗ + ||Σx||2)
√

log d
n .

Proof. Using y = Xθ∗ + ε, we have

Φ∗(∇Ln(θ̂, σ̂))

= ||(−X ′(y −Xθ̂)/n, 1/σ̂)||∞
= ||(−X ′(Xθ∗ + ε)/n+X ′Xθ̂/n, 1/σ̂)||∞
= ||(X ′X(θ̂ − θ∗)/n−X ′ε/n, 1/σ̂)||∞
= ||((X ′X/n− Σx)(θ̂ − θ∗) + Σx(θ̂ − θ∗)
−X ′ε/n, 1/σ̂)||∞
≤ max{||(X ′X/n− Σx)(θ̂ − θ∗)||∞ + ||X ′ε/n||∞
+ ||Σx(θ̂ − θ∗)||∞, 1/σ̂}

(45)

For the first term in the right hand of (45), we note that
cov(xi, xi(θ̂ − θ∗)) = Σx(θ̂ − θ∗). Assume n ≥ c′ log d,
applying (33) with (X,Y ) = (X,X(θ̂ − θ∗)), we have

P
(
||X
′X(θ̂ − θ∗)

n
− Σx(θ̂ − θ∗)||∞

≥ c0σ2
x||θ̂ − θ∗||2

√
log d

n

)
≤ c1 exp(−c2 log d)

(46)

Similarly, we have

P(||X
′ε

n
||∞ ≥ c0σxσ∗

√
log d

n
) ≤ c1 exp(−c2 log d)

(47)

Using the Hölder’s inequality, we have

||Σx(θ∗ − θ̂)||∞ ≤ ||Σx(θ∗ − θ̂)||2 ≤ ||Σx||2||θ∗ − θ̂||2
(48)

Setting B = ||θ∗||1, then we have ||θ∗||2 ≤ ||θ∗||1 = B

and ||θ̂||2 ≤ ||θ̂||1 ≤ B. Combining (45), (46), (47) and
(48) derives the results.

Proof. (of Theorem 4.6). We prove the bound (41) via an
application of Theorem 3.3. The proof of Theorem 4.2
has shown that Ψ2(M̄) = s and the target parameter θ∗ is
contained within a subspace M. Lemma 4.7 shows that the
RSC condition (10) holds with high probability. Lemma
4.8 shows that the event G̃(λn) holds with high probability.
The assumption n ≥ c′0smax(

σ2
x

λmin(Σx) , 1) log d implies
τ2
nΨ2(M̄) ≤ κ

128 . Thus, we complete the proof of Theorem
4.6.

5. Conclusion
This paper extends the theory of M -estimators with decom-
posable regularizers from convex to nonconvex. Theorem
3.1 recovers the results of the Proposition 2.2 in (Wain-
wright, 2019) for any stationary points. Theorem 3.3 re-
covers the convergence rates of the error ||θ̂ − θ∗||2 (8) in
(Wainwright, 2019) for any stationary points. Moreover, we
use two simple nonconvex examples to illustrate our main
results.
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