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Abstract
Message-Passing Neural Networks (MPNNs)
have become a cornerstone for processing and an-
alyzing graph-structured data. However, their ef-
fectiveness is often hindered by phenomena such
as over-squashing, where long-range dependen-
cies or interactions are inadequately captured and
expressed in the MPNN output. This limitation
mirrors the challenges of the Effective Receptive
Field (ERF) in Convolutional Neural Networks
(CNNs), where the theoretical receptive field is
underutilized in practice. In this work, we show
and theoretically explain the limited ERF prob-
lem in MPNNs. Furthermore, inspired by re-
cent advances in ERF augmentation for CNNs,
we propose an Interleaved Multiscale Message-
Passing Neural Networks (IM-MPNN) architec-
ture to address these problems in MPNNs. Our
method incorporates a hierarchical coarsening
of the graph, enabling message-passing across
multiscale representations and facilitating long-
range interactions without excessive depth or pa-
rameterization. Through extensive evaluations
on benchmarks such as the Long-Range Graph
Benchmark (LRGB), we demonstrate substantial
improvements over baseline MPNNs in captur-
ing long-range dependencies while maintaining
computational efficiency.

1. Introduction
Graph Neural Networks (GNNs) have emerged as power-
ful tools for solving a wide range of problems modeled
as graphs. Applications span diverse domains, including
combinatorial optimization (Cappart et al., 2023), particle
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Figure 1: Measuring the contribution of each node to the
output of the central node in a graph with a maximal distance
of 10 hops from the center. A brighter color marks a larger
contribution. We can see a decay akin to Luo et al. (2016).
(a)-(c) are MPNNs (GCN) with 10, 20, and 30 MP layers,
while (d)-(f) are IM-MPNNs with a GCN backbone with 10
MP layers and 1, 2, and 3 scales.

physics (Shlomi et al., 2020), and social network analysis
(Fan et al., 2019). Among the GNN frameworks, message-
passing Neural Networks (MPNNs) are particularly preva-
lent. The core idea of MPNNs lies in local message-passing,
where nodes aggregate features from their immediate neigh-
bors, followed by an aggregation operation that updates
node representations layer by layer. However, the effective-
ness of MPNNs is often hindered by the phenomenon of
over-squashing (Alon & Yahav, 2021), where information
from distant nodes is ineffectively aggregated, leading to
limited expressiveness for long-range interactions.

While over-squashing was initially attributed to bottleneck
edges (Alon & Yahav, 2021), more recent analyses empha-
size the role of inter-node distances (Di Giovanni et al.,
2023). This perspective aligns closely with challenges ob-
served in Convolutional Neural Networks (CNNs), where
the Effective Receptive Field (ERF) is often smaller than the
theoretical receptive field (Luo et al., 2016). In this work, we
further analyze this phenomenon and show that the contribu-
tion of node v to the output of node u decays exponentially
by the travel distance between them (see Figure 1).

In CNNs, the ERF issue can be mitigated by increasing the
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Figure 2: IM-MPNN architecture for scales=3. The input is first passed through an encoding stage (PE, SE, Graph features,
etc.). Then, the graph is coarsened S times. MP protocols (GCN, GINE, GatedGCN, etc.) are performed on the S +1 scales
of the graph separately. Scale-mix layers pass the information between consecutive scales, matching each graph node with
its parent and child from the coarsening process. The process is repeated L times. The coarse graphs are unpooled, and the
node features are concatenated to the parent node in the original graph. A GNN head is used according to the task.

kernel size (Ding et al., 2022). However, adapting such ap-
proaches to GNNs is nontrivial due to the irregular structure
and complexity of the graph’s node connectivity. In recent
work, Finder et al. (2024) proposed an alternative approach
to increase the ERF of CNNs. That method involves small
kernel convolutions over multiple scales of the image.

We draw inspiration from such multiscale methodologies
in CNNs and propose an Interleaved Multiscale Message-
Passing Neural Networks (IM-MPNN) architecture to ad-
dress the limitations of limited effective receptive fields in
GNNs. Our approach introduces hierarchical coarsening
of the graph, each reduces the graph’s resolution while pre-
serving critical structural information. Message-passing
operations are performed at each scale, enabling the model
to capture long-range dependencies through fewer layers.
To further enhance information flow, we implement inter-
scale mixing operations, where nodes receive aggregated
features from both higher- and lower-resolution represen-
tations. Finally, the features from all scales are combined
and projected back to the original graph for downstream
tasks. Our architecture is given in Figure 2, and is detailed
in Section 4.

Our Main Contributions are as follows:

• We formalize the concept of effective receptive fields for
MPNNs, drawing parallels to similar challenges in CNNs.

• We propose IM-MPNN – an architecture that leverages
hierarchical coarsening and scale mixing to expand the
receptive field of GNNs without increasing computational
complexity significantly.

• Through experiments on benchmarks such as the Long-
Range Graph Benchmark (LRGB), we demonstrate the
superior performance of IM-MPNN in capturing long-
range dependencies and mitigating over-squashing.

By integrating multiscale representations with message-
passing, IM-MPNN offers a principled way to address
fundamental limitations of traditional GNN architectures,
paving the way for more expressive and scalable graph mod-
els. Our code is available at https://github.com/
BGU-CS-VIL/IM-MPNN

2. Related Work
In this section, we overview several topics related to our
work. Specifically, we discuss the over-squashing phe-
nomenon in MPNNs and its connection to their receptive
field, as well as review hierarchical MPNN models.

Over-squashing in MPNNs. Over-squashing in MPNNs,
which hampers information transfer across distant
nodes (Alon & Yahav, 2021), has prompted various mit-
igation strategies. Graph rewiring methods like SDRF (Top-
ping et al., 2022) densify graphs as a preprocessing step,
while approaches such as GRAND (Chamberlain et al.,
2021b), BLEND (Chamberlain et al., 2021a), DRew (Gut-
teridge et al., 2023), and aAsyn (Chen et al., 2024) dy-
namically adjust connectivity based on node features.
Transformer-based models (Dwivedi & Bresson, 2021;
Rampášek et al., 2022) bypass over-squashing with all-to-all
message-passing. Another direction uses non-local dynam-
ics to enable dense communication, as in FLODE (Maskey
et al., 2023), which leverages fractional graph shifts,
QDC (Markovich, 2024) with quantum diffusion kernels,
and G2TN (Toth et al., 2022), which captures diffusion
paths, or weight space constraints (Gravina et al., 2024).
While effective in mitigating over-squashing, these methods
often increase computational complexity due to dense prop-
agation operators. Moreover, they are often limited by their
reliance on the original graph resolution, i.e., its number of
nodes and edges.
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The Receptive Field of MPNNs. We argue that the re-
lation to the receptive field can be mitigated by looking
at a coarser version of the graph. E.g., when considering
a single hop on the 2nd coarsened scale of a graph, it is
related to a receptive field of about four hops. However,
all the nodes along the way were used only once for the
aggregation function, and therefore, the “exponential” in-
crease in information is mitigated along this path. An earlier
study by Nicolicioiu & Duta (2019) focuses on analyzing
the ERF in GCNs and Self-Attention layers and showing it
on synthetic examples. In contrast, our work addresses the
limitations of the ERF in GCNs by introducing IM-MPNN,
a hierarchical multiscale framework that explicitly mitigates
over-squashing and enhances long-range dependency mod-
eling. Furthermore, we extend the evaluation to diverse
benchmarks like LRGB, demonstrating both theoretical and
practical improvements.

GeniePath (Liu et al., 2019) introduces an adaptive path
layer comprising two complementary functions: one for
breadth exploration, which learns the importance of neigh-
borhoods of varying sizes, and another for depth exploration,
which filters signals aggregated from neighbors at different
hops. This design allows the model to adaptively select the
most relevant receptive field for each node, enhancing its
ability to capture complex dependencies. Similarly, Ma et al.
(2021) propose a structural adaptive receptive field mecha-
nism that enables the network to adjust its receptive field in
response to the underlying graph topology. By learning the
optimal receptive field for each node, the model effectively
balances the trade-off between capturing local and global
information, thereby improving performance on tasks re-
quiring an understanding of both. Ma et al. (2023) extend
this idea by learning discrete adaptive receptive fields for
GCNs, further enhancing their ability to model heteroge-
neous graphs with varying local structures.

Hierarchical MPNNs. Hierarchical approaches to GNNs
aim to leverage multiscale representations of graph data to
enhance the modeling of both local and global structures.
Gao & Ji (2019) developed the Graph U-Net architecture,
which employs hierarchical pooling and unpooling opera-
tions to capture multiscale features while preserving struc-
tural information, making it well-suited for tasks requiring
both fine-grained and high-level graph representations (e.g.,
Yang et al., 2024). Collectively, these hierarchical methods
provide a robust foundation for addressing the limitations of
traditional GNNs in terms of scalability and expressiveness.
Zhong et al. (2023) proposed a framework for hierarchical
GNNs that combines localized node feature aggregation
with hierarchical graph pooling to better handle large-scale
and complex graphs. Similarly, Vonessen et al. (2024) in-
troduced the concept of hierarchical support graphs, which
builds a layered representation of the graph to facilitate

. . . . . .
v−3 v−2 v−1 v0 v1 v2 v3

Figure 3: An infinitely-long linear graph.

efficient and scalable message-passing, and Eliasof et al.
(2023a) develop a wavelet based multiscale approach for the
compression of node features in GNNs. Lastly, in the con-
text of beyond MPNNs, Luo (2023) and Zhang et al. (2022)
introduced a hierarchical encoding mechanism for graph
transformers, effectively capturing multi-scale graph struc-
ture using hierarchical distances to improve the expressive
power of transformers.

3. Message-Passing Effective Receptive Field
In this section we formulate the effective receptive field
of MPNNs. In particular, we draw inspiration from the
analysis provided by Luo et al. (2016), where a CNN with n
convolutional layer with kernel size k×k is considered, and
it is shown that for k ≥ 2 the contribution of each pixel in
the theoretical receptive field of a certain output decays as
a squared exponential with respect to its distance from the
output unit. Here, we provide evidence of a similar effect
on graphs processed with MPNNs.

Notations. Throughout this paper we consider a graph
G = (V, E) where V is a set of n nodes, and E ⊆ V × V is
a set of m edges. Additionally, the graph can be described
using its adjacency matrix A ∈ Rn×n, which is a binary
matrix whose (i, j)-th entry is one if (i, j) ∈ E , and zero
otherwise. We denote the graph Laplacian as L = D −
A, where D is the graph degree matrix. The i-th node is
associated with a hidden feature vector x(ℓ)

i ∈ Rc with c
features, which provides a representation of the node at
the ℓ-th hidden layer of the network. The term x(ℓ) =

[x
(ℓ)
0 , . . . ,x

(ℓ)
n−1]

⊤ is an n × c matrix that represents the
nodes features of the ℓ-th hidden layer.

3.1. Linear Graph Analysis

We start by analyzing the case of a linear, sequence-like
graph without self-loops, as illustrated in Figure 3. Without
loss of generality, we theoretically analyze the contribution
of distant nodes to the central node v0, center after applying
a stack of graph convolutions with uniform weights.

Formally, given an infinitely-long linear graph with nodes
V = {. . . , v−3, v−2, v−1, v0, v1, v2, v3, . . . }, and examine
the feature value xℓ

0 of node v0 after ℓ convolution applica-
tions. At ℓ = 0, the feature of v0 is initialized as:

x0
0 = v0. (1)
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At ℓ = 1, the feature of v0 is influenced by its neighbors:

x1
0 = v−1 + v1. (2)

At ℓ = 2 and ℓ = 3, the feature of v0 depends on contribu-
tions propagated through its neighbors:

x2
0 = x1

−1 + x1
1 = v−2 + 2v0 + v2. (3)

x3
0 = x2

−1 + x2
1 = v−3 + 3v−1 + 3v1 + v3. (4)

As the process continues, the contribution of all nodes to
the feature xℓ

0 after ℓ convolutions follows Pascal’s triangle:

xℓ
0 =

∑ℓ
i=0

(
ℓ
i

)
v2i−ℓ, (5)

where
(
ℓ
i

)
are the binomial coefficients.

To analyze the relative contribution of nodes, we normalize
the coefficients by 1

2ℓ
, so that the feature x corresponds

to a probabilistic distribution. In particular, this yields the
binomial distribution:

X ∼ B
(
ℓ, 1

2

)
, (6)

where the probability mass function of X describes the
distribution of contributions to any node from node v0.

Using this binomial distribution, the cumulative contribution
of the left-most k nodes from v0 (i.e., v−ℓ, ..., v−ℓ+k−1) is:

P (X ≤ k) =
∑k

i=0

(
ℓ
i

)
1
2ℓ
. (7)

Using Hoeffding’s inequality, we get the upper bound:

P (X ≤ k) ≤ exp
(
−2

(
1
2 − k

ℓ

)2
ℓ
)
. (8)

That is, the relative contribution of nodes to the feature of v0
at the limit decreases exponentially with their distance from
v0. This decay is quantified by the binomial distribution’s
tail bound, indicating that distant nodes have exponentially
smaller influence.

3.2. Characterizing the ERF on Graphs

Building on the linear graph case presented above, we now
provide a qualitative analysis of the ERF in diffusion pro-
cesses on graphs, which are the core mechanism of many
GNN architectures that mimic the behavior of the diffusion
ordinary differential equation (ODE), as studied by Nt &
Maehara (2019); Chamberlain et al. (2021b); Eliasof et al.
(2023b); Choi et al. (2023) and others, as thoroughly re-
viewed by Han et al. (2024). Such methods rely on the fact
that diffusion-based GNNs can be thought of as a discretiza-
tion of the diffusion ODE in time

∂x

∂t
= −Lx, x(t = 0) = x0, t ∈ [0, T ], (9)
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Figure 4: The spread of a point source in time according to
Equation (12), for d = 2. For κ = 0.005, at time t = 1 the
ERF is about 0.3, while for t = 5, it grew to about 0.6 only.
The ERF is more spread for a higher value of κ.

where L is the graph Laplacian , x are node features that
evolve through time (the equivalent of layers), x0 are the
initial node features, and the integration time T typically
corresponds to the number of layers used in the network.

Specifically, the interpretation proposed in models that rely
on Equation (9), assumes that the graph Laplacian L dis-
cretizes the continuous negative Laplacian −∆, under some
geometry in dimension d, i.e., node coordinates p ∈ Rn×d,
up to a constant denoted by κ. The coordinates p can be
induced from a given graph Laplacian, e.g., by considering
the Laplacian eigenvectors (Belkin & Niyogi, 2001).

Then, Equation (9) is a discretization of the continuous
partial differential equation (PDE)

∂x(t)

∂t
= κ∆x(t), x(t = 0) = x0, t ∈ [0, T ], (10)

where x(t) is a continuous feature vector in time t with
associated coordinates function p (i.e., x is a discrete version
of the continuous map x on the coordinates p).

Similarly to the discussion in Section 3.1, we focus on the
distribution of node features in time and space when the
initial condition is given by a point source located at around
p0 ∈ Rd, while all other coordinates have an initial feature
of zero. Explicitly, this initial condition is given by:

x(t = 0) = x0 = δ(p0), (11)

where δ(·) is Dirac’s function. In this case, the solution of
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Equation (10) in an infinite domain Rd (Pattle, 1959) is

x(p, t) =
1

(4κπt)d/2
exp

(
−∥p− p0∥22

4κt

)
. (12)

From Equation (12), we gain two key insights: (i) the co-
efficient multiplying the exponential term in Equation (12)
shows that the signal decays in time, i.e., the node features
norm decays over time; and (ii) the spatial behavior around
the source point p0 decays exponentially. That is, we see that
regardless of the dimension d, the influence of the source
point on other points in space decays exponentially as we
move away from the source p0. Furthermore, we note that,
as t grows in the denominator inside the exponential term,
which is equivalent to a deeper network since layer number
ℓ takes the role of time t, features continue to spread, but
at a slow rate. In other words, the typical ERF in standard
MPNNs is limited and behaves according to Equation (12).
In Figure 4, we illustrate this behavior.

4. Interleaved Multiscale Message-Passing
Following our analyses in Section 3 on the limited ERF of
MPNNs, we introduce IM-MPNN—an approach to improve
ERF through the lens of interleaved multiscale MPNNs. We
start by discussing our design principles, motivated by the
understandings from Section 3, followed by a description of
our method, and a complexity analysis.

4.1. Design Principles

In this section we outline the main design choices on which
we build our IM-MPNN, which we present in Section 4.
Specifically, we discuss: (i) the contribution of multiscale
feature processing with MPNNs; and (ii) the interleaving of
different scales.

Multiscale Processing. The analysis in Section 3.2
showed that MPNNs suffer from an exponentially-decaying
ERF. We propose to alleviate this problem by consider-
ing coarser representations of the input graph, obtained via
graph pooling such as Graclus (Dhillon et al., 2007, more
information in Appendix A). Different types of pooling
procedures can also be considered (e.g., Ying et al., 2018).

We note that when considering different graph Lapla-
cians Ln1 ,Ln2 , . . . ,Lnk

of different scales with resolutions
(number of nodes) n1 > n2 > . . . > nk, we obtain equiv-
alent representations of the continuous Laplacian (up to
discretization differences), each with a different constant κ.
To understand this equivalence, let us consider a 2D mesh
grid, where each node is connected to its four neighbors,
and whose grid step-size is h, which determines the grid
resolution, i.e., the number of nodes. In this case, the graph

Laplacian is expressed by the kernel

L̂ =

 0 −1 0
−1 4 −1
0 −1 0

 , (13)

with no dependency on h. The continuous Laplacian is
typically discretized with a grid constant 1/h2, to yield
a discrete operator ∆h, i.e., ∆ ≈ ∆h = − 1

h2 L̂. Using
a coarser grid with a step size 2h, for example, yields
∆ ≈ ∆2h = − 1

4h2 L̂. That means that if we coarsen the
grid by a factor of two, the effective discrete Laplacian op-
erator coefficients decrease by a factor of four. Hence, the
value of κ in Equation (12) multiplies by four, resulting in a
spatial distribution of Equation (12) that spreads faster for
the coarser representation as also illustrated in Figure 4.

Interleaving Scales. The discussion above showed how
utilizing coarser scales helps in expanding the ERF. How-
ever, in many tasks, ERF is not the only property that is
needed for a GNN to obtain favorable performance. By
using coarser scales (via pooling), we also lose informa-
tion in our feature maps–mostly information that is given
in high-frequency feature maps. Hence, to obtain the best
performance we must combine both high and low-resolution
maps and graph operation to capture and fuse high- and low-
frequency information, and have a high ERF. We obtain this
by applying network layers that use multiple graph levels in
each block and fuse the information between them.

4.2. Interleaved Multiscale Message-Passing Networks

We now describe our IM-MPNN, which involves three main
parts: (i) an MPNN backbone; (ii) pooling and unpooling
layers; and (iii) an interleaving mechanism.

MPNN Backbone. Our IM-MPNN offers a generalist ap-
proach for enhancing the ERF of existing and future MPNNs
by utilizing interleaved multiscale representations of input
graphs. Therefore, we consider the following general update
rule for node features x(ℓ):

x(ℓ+1) = MPNN(ℓ)(x(ℓ);A), (14)

where MPNN(ℓ) denotes the MPNN backbone used at the
ℓ-th layer. In our experiments in Section 5, we demonstrate
the effectiveness of our IM-MPNN on several backbones.

Pooling and Unpooling. The second component of IM-
MPNN involves the pooling and unpooling operations,
which are essential to obtain a multiscale representation of
input graphs and their features. Given a graph G = (V, E),
we define the pooling operation to be an aggregation of
node pairs in a pairing set P . That is, the node pairing P
represents node pairs {vi, vj}, that are aggregated into a
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Figure 5: Coarsening of a graph according to a given pairing
(edges marked in red).
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Figure 6: Scale-mix. Each node receives information from
its parents’ and children’s nodes of consecutive scales.

new node v′q in the pooled graph. More formally, the pooled
graph G′ = (V ′, E ′) is given by

V ′ = {v′q | v′q = {vi, vj} ∈ P},
E ′ = {(v′q, v′p) | ∃vi ∈ v′q, vj ∈ v′q, (vi, vj) ∈ E},

(15)

i.e., the edges in the pooled graph represent edges that ex-
isted in the original graph between components of node
pairs in the pooled graph. Note that the procedure described
in Equation (15) denotes a single pooling step, between
two consecutive scales. Overall, we denote the transition
between the s-th and the s+ 1-th scales as follows:

xs+1,As+1 = POOL(xs,As;P s), (16)

where xs+1 ∈ Rns+1×c,As+1 ∈ Rns+1×ns+1 , and ns+1 =
|P s| < ns. That is, the POOL function takes the node fea-
tures and adjacency matrix at the s-th level, and decreases
the number of nodes to ns according to P and some ag-
gregation function (e.g., mean), and returns a coarsened
representation of the node features and the adjacency matrix.
In practice, we use the Graclus algorithm (Dhillon et al.,
2007) to find pairs of nodes to be averaged, as follows:

xs+1
{vi,vj} =

1

2
(xs

i + xs
j). (17)

Analogously, the unpooling layer applies the opposite oper-
ation. Using the same node pairing P s of the corresponding

pooling operation, we revert the graph to the previous size:

x̂s, Âs = UNPOOL(xs+1,As+1;P s), (18)

where x̂s ∈ Rns×c, Âs ∈ Rns×ns . In practice, we dis-
tribute the feature at a pooled node in xs+1 to its two corre-
sponding nodes in the finer representation in x̂s.

We note that it is possible to stack several pooling and
unpooling layers, as we do in our IM-MPNN, illustrated
in Figure 2. To be specific, we coarsen the graph S times.
The repeated pooling yields a set of graphs {Gs}Ss=0, where
G0 = G is the original input graph, and GS is the coarsest
graph. We denote vs as a node from Gs, and As as the
adjacency matrix of Gs. Note that each node vs ∈ Vs, s > 0
is a coarsening of several nodes vs−1

1 , vs−1
2 , . . . , vs−1

k ∈
Vs−1, creating a relationship between nodes at consecutive
scales, as shown in Figure 5.

Multiscale Interleaving. As illustrated in Figure 2, the
S scales of the input graph G are maintained throughout
the network, each with its own message-passing layer and a
separate set of weights. That is, Equation (14) for scale s
reads the following update rule:

x̃(s,ℓ) = MPNN(s,ℓ)(x(s,ℓ),As). (19)

However, without further modifications, those graphs will
be processed separately. Therefore, we define a multiscale
interleaving mechanism, where relevant nodes of consecu-
tive scales share information. Specifically, let us consider a
node vsq=(i,j) from the s-th scale, and its related node vs+1

(p,q)

from the (s+1)-th scale, and vs−1
i , vs−1

j from the (s−1)-th
scale, as illustrated in Figure 6. We define:

x
(s,ℓ+1)
q=(i,j) =

x̃
(s,ℓ)
q=(i,j) +W

(s,ℓ)
l2h

1

2
(x̃

(s−1,ℓ)
i + x̃

(s−1,ℓ)
j ) +W

(s,ℓ)
h2l x̃

(s+1,ℓ)
(p,q) ,

(20)
where W (s,ℓ)

l2h ,W
(s,ℓ)
h2l are learnable weights for the lower-to-

higher and higher-to-lower information passing.

Lastly, before the final head (classifier), we cast all the infor-
mation back to the original graph nodes, by concatenating
the features of the coarse nodes into their source node, which
can be done by recursive unpooling and concatenating

z(L,s) = [x(L,s), UNPOOL(z(L,s+1),As+1;P s)], (21)

for s = S − 1, . . . , 0, where we start from z(L,S) = x(L,S).

4.3. Complexity of IM-MPNN

As described, a single IM-MPNN layer is constructed out
of two steps, the first being an MPNN operation on each
scale, and then a scale-mix operation. An MPNN operation
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Table 1: Multiscale version of different GCNs for
PascalVOC-SP and COCO-SP, increasing scales while re-
ducing the width to stay within 500k params budget.

Method scales PascalVOC-SP COCO-SP
Test F1 ↑ Test F1 ↑

GCN – 0.2078±0.0031 0.1338±0.0007

IM-GCN 1 0.2672±0.0045 0.1655±0.0013

IM-GCN 2 0.2846±0.0084 0.1787±0.0016

IM-GCN 3 0.2910±0.0058 0.1896±0.0009

IM-GCN 4 0.2929±0.0058 0.1960±0.0023

GINE – 0.2718±0.0054 0.2125±0.0009

IM-GINE 1 0.2757±0.0013 0.2289±0.0009

IM-GINE 2 0.2873±0.0055 0.2387±0.0016

IM-GINE 3 0.2909±0.0074 0.2475±0.0017

IM-GINE 4 0.2975±0.0088 0.2472±0.0037

GatedGCN – 0.3880±0.0040 0.2922±0.0018

IM-GatedGCN 1 0.4180±0.0062 0.3294±0.0021

IM-GatedGCN 2 0.4297±0.0043 0.3453±0.0017

IM-GatedGCN 3 0.4332±0.0045 0.3501±0.0033

IM-GatedGCN 4 0.4317±0.0078 0.3414±0.0061

complexity is O(|V |+ |E|), however, each of the operations
is performed over a downscaled graph with a factor of 2.
Hence, the time complexity of performing MPNN on all the
scales (including the 0-th scale) is

S∑
s=0

O
(
|V |
2s

+
|E|
2s

)
= O (2 (|V |+ |E|)) . (22)

The scale-mix operation incorporates a calculation that in-
volves 4 nodes for every node on every scale, hence the time
complexity is given by

S∑
s=0

O
(
|V |
2s

)
= O (2|V |) . (23)

Hence, the time complexity of IM-MPNN is O (|V |+ |E|).

5. Experimental Results
Objectives. We evaluate IM-MPNN and compare it with
various methods. Specifically, we seek to address the follow-
ing questions: (i) How effective is IM-MPNN at propagating
information to distant nodes? And how well it predicts graph
properties related to long-range interactions? (Section 5.2)
(ii) How does IM-MPNN perform on real-world long-range
benchmarks? (Sections 5.1, 5.3 and 5.4) (iii) How well does
IM-MPNN perform with different message-passing proto-
cols? (Sections 5.1 and 5.4). Additional experiments are
available in Appendix E.

Baselines. We evaluate IM-MPNN with several message-
passing protocols with linear complexity (similar to the

Table 2: Multiscale version of different GCNs for Peptides-
func and Peptides-struct, increasing scales while reducing
the width to stay within 500k params budget.

Method scales Peptides-func Peptides-struct
Test AP ↑ Test MAE ↓

GCN – 0.6860±0.0050 0.2460±0.0007

IM-GCN 1 0.6822±0.0088 0.2453±0.0009

IM-GCN 2 0.6936±0.0074 0.2473±0.0018

IM-GCN 3 0.6942±0.0083 0.2498±0.0025

IM-GCN 4 0.6907±0.0053 0.2473±0.0006

GINE – 0.6621±0.0067 0.2473±0.0017

IM-GINE 1 0.6745±0.0022 0.2477±0.0007

IM-GINE 2 0.6884±0.0027 0.2464±0.0008

IM-GINE 3 0.6948±0.0034 0.2489±0.0009

IM-GINE 4 0.6959±0.0021 0.2477±0.0015

GatedGCN – 0.6765±0.0047 0.2477±0.0009

IM-GatedGCN 1 0.6713±0.0051 0.2456±0.0010

IM-GatedGCN 2 0.6714±0.0046 0.2469±0.0009

IM-GatedGCN 3 0.6830±0.0037 0.2454±0.0014

IM-GatedGCN 4 0.6773±0.0041 0.2455±0.0006

complexity of IM-MPNN) and measure the improvement
over them: (i) GCN (Kipf & Welling, 2016), (ii) Gat-
edGCN (Bresson & Laurent, 2017), (iii) GINE (Hu et al.,
2020), (iv) and GAT (Veličković et al., 2018).

5.1. Long Range Graph Benchmark

Setup. We test our method on Long Range Graph Bench-
mark (Dwivedi et al., 2022) following the improved evalua-
tion (Tönshoff et al., 2023). The benchmark is constructed
of several datasets with long-range dependencies and, there-
fore, can be difficult for MPNNs. We take the same reported
MPNN architecture, namely GCN (Kipf & Welling, 2016),
GINE (Hu et al., 2020), and GatedGCN (Bresson & Lau-
rent, 2017), and modify the architecture using our multiscale
approach with different scales. Since an additional scale in-
troduces more parameters, we reduce the channel dimension
in order to stay within a budget of 500k parameters.

Results. We see a significant increase in scores, of up
to 41% relative improvement on both Pascalvoc-SP and
COCO-SP, see Table 1. While peptide-func and peptide-
struct (Table 2) are less affected by different configurations,
we still see a slight advantage in using our multiscale archi-
tecture.

5.2. Graph Transfer

Setup. We consider a graph transfer task (Di Giovanni et al.,
2023), where the goal is to transfer a label from a source to
a target node with a distance of k hops, using a network of
depth k. We note that this task can be effectively solved only
by non-dissipative methods that preserve source information.
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Figure 7: Graph transfer results over three graph types (ring, crossed-ring, and cliquepath). The network depth (i.e. number
of layers) is the same as the distance between the source and the target node. We see that adding more scales to IM-GCN
improves the ability of the network to transfer information across long distances.

We consider three graph distributions, i.e., ring, crossed-ring,
and clique-path, with distances k = {2, . . . 65}. Increasing
k increases the task complexity. When using IM-GCN, we
decrease the number of channels according to the number
of scales for a fair comparison. Appendix C.1 provides
additional details about the task and the datasets.

Results. Figure 7 reports the results on the graph trans-
fer tasks. Overall, compared to GCN, IM-GCN show an
increase in the ability to transfer information over long dis-
tances. E.g., for CliquePath, where GCN start failing at
around k = 7 while IM-GCN with scales=3 still have 100%
accuracy at around k = 37.

5.3. City-Networks

Setup. We evaluate IM-MPNN on the City-Networks
benchmark (Liang et al., 2025), a recently introduced large-
scale dataset based on real-world city road networks de-
signed to test long-range dependencies in graph learning
(see Appendix C.3 for details). Derived from real-world
city road maps (Paris, Shanghai, Los Angeles, and London)
using OpenStreetMap data, the graphs feature between 100k
and 570k nodes with significantly larger diameters (over
100–400) compared to traditional datasets. Following the
original setup, we train each model for 20k epochs using
AdamW with a learning rate of 10−3 and a weight decay
of 10−5, and do not perform any additional hyperparameter
tuning across runs to maintain consistency with the baseline
protocol.

Results. The results are reported in Table 3. When using
IM-GCN, we see a significant increase in accuracy com-
pared to the GCN baseline of between +10% and +16.5%,
when using the IM-MPNN version of the network.

Table 3: Results of test accuracy (↑) on City-Networks.

Method scales Paris Shanghai Los Angeles London

GCN – 47.3±0.2 52.4±0.3 45.9±1.0 43.8±0.3

IM-GCN 1 54.4±0.2 63.4±0.8 59.8±0.2 53.8±0.3

IM-GCN 2 54.9±0.2 65.8±0.4 61.6±0.2 57.1±0.1

IM-GCN 3 55.3±0.3 66.7±0.3 62.2±0.2 58.4±0.1

IM-GCN 4 54.9±0.2 67.8±0.1 62.4±0.3 58.9±0.1

5.4. Heterophilic Node Classification

Setup. We evaluate IM-MPNN on five heterophilic node
classification benchmarks introduced by Platonov et al.
(2023): Roman-Empire, Amazon-Ratings, Minesweeper,
Tolokers, and Questions. The datasets span a variety of
domains, from natural language and e-commerce to crowd-
sourcing and synthetic grids, each exhibiting weak ho-
mophily and requiring models to reason beyond local neigh-
borhoods. We follow the original experimental setup, train-
ing models with the AdamW optimizer for up to 300 epochs
on the official splits, without additional hyperparameter tun-
ing. Additional details are provided in Appendix C.4.

Results. We benchmark IM-MPNN with results from
Platonov et al. (2023); Finkelshtein et al. (2024); Behrouz
& Hashemi (2024); Müller et al. (2024) and find it achieves
competitive performance, often surpassing state-of-the-art
methods. Our results are reported in Table 4, with additional
comparisons in Table 6. Notably, the competitive perfor-
mance on larger graphs and complex heterophilic scenarios
while retaining the linear complexity of standard MPNNs,
further highlights its effectiveness compared to Graph Trans-
formers and heterophily-designated GNNs.
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Table 4: Mean test set score and standard deviation are averaged over four random initializations on heterophilic datasets.
First, second, and third best results per task are color-coded. Additional comparisons are provided in Table 6.

Model Roman-empire Amazon-ratings Minesweeper Tolokers Questions
Accuracy ↑ Accuracy ↑ AUC ↑ AUC ↑ AUC ↑

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78 73.94±1.06

GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04 75.76±1.66

GPSGCN+Performer (RWSE) 84.72±0.65 48.08±0.85 92.88±0.50 84.81±0.86 76.45±1.51

GPSGAT+Performer (RWSE) 87.04±0.58 49.92±0.68 91.08±0.58 84.38±0.91 77.14±1.49

GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93

Heterophily-Designated GNNs
FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86

JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16

MPNNs
GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27

Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 76.61±1.13

GAT 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47 77.43±1.20

GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71

CO-GNN(Σ, Σ) 91.57±0.32 51.28±0.56 95.09±1.18 83.36±0.89 80.02±0.86

CO-GNN(µ, µ) 91.37±0.35 54.17±0.37 97.31±0.41 84.45±1.17 76.54±0.95

Interleaved Multiscale (Ours)
IM-GCN 83.53±0.57 52.37±0.66 91.80±0.58 84.17±0.71 78.17±0.89

IM-GatedGCN 90.82±0.59 54.01±0.27 97.32±0.83 85.10±0.84 79.27±0.91

IM-GAT 84.48±0.32 51.16±0.55 92.68±0.49 85.21±0.43 77.98±1.01

IM-GAT-sep 89.93±0.34 53.97±0.58 96.15±0.37 85.44±0.40 77.92±0.83

IM-CO-GNN(Σ,Σ) 92.08±0.33 53.11±0.59 95.79±0.96 85.25±1.03 80.49±0.92

IM-CO-GNN(µ, µ) 92.00±0.41 54.43±0.41 97.39±0.35 85.77±1.05 78.92±0.87

6. Conclusion
In this work, we have presented a novel approach, In-
terleaved Multiscale Message-Passing Neural Networks
(IM-MPNN), that effectively addresses the limitations of
MPNNs in capturing long-range dependencies and their lim-
ited effective receptive field (ERF). By enhancing the ERF
of MPNNs while maintaining their linear computational
complexity in graph size, our method introduces hierarchi-
cal coarsening and scale-mixing mechanisms to extend the
receptive field of GNNs without sacrificing efficiency.

Through extensive theoretical and experimental evaluations,
we demonstrated the advantages of our method across di-
verse datasets, including benchmarks with long-range de-
pendencies, heterophilic settings, and large-scale graphs.
Our results consistently highlight the superior performance
of IM-MPNN in both predictive accuracy and computational
efficiency, even when compared to state-of-the-art methods
like Graph Transformers and heterophily-designated GNNs.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
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A. On Graclus
The Graclus algorithm is an efficient, non-parametric graph clustering method commonly utilized for hierarchical pooling in
graph neural networks (GNNs). Originally, Graclus employs a multilevel clustering strategy—consisting of graph coarsening
by iteratively merging node pairs based on edge weights, performing initial clustering on the reduced graph, and refining the
partitions during successive uncoarsening steps. This process efficiently approximates graph partitioning objectives like
normalized cut without computationally intensive eigenvector computations.

In practice, particularly within frameworks such as PyTorch Geometric (PyG), a simplified version of Graclus is used.
PyG’s implementation performs a single-pass greedy clustering, pairing each node with its highest-weight neighbor to
approximately halve the graph size at each pooling step. This variant omits the refinement phase and the broader multilevel
approach of the original algorithm, prioritizing computational efficiency and GPU compatibility. In IM-MPNN specifically,
we further simplify by using this PyG implementation in an unweighted manner, clustering node pairs without considering
edge weights.

It is important to note that IM-MPNN does not rely on the coarsening algorithm and can be easily modified to work with any
alternative for the simplified Graclus clustering.

B. Choosing the Number of Scales
The number of scales used in IM-MPNN is a hyperparameter that requires empirical tuning, analogous to other architectural
parameters such as depth and width. However, intuitive guidance can be drawn from structural and attribute properties of the
input graph. Graphs with larger diameters naturally benefit from additional coarsening levels, as these allow the model to
capture interactions occurring across longer distances by aggregating information into nodes at progressively coarser scales.
Conversely, once nodes at the coarsest scale represent substantial portions of the graph, further increases in the number of
scales typically yield diminishing returns. Another relevant factor is the attribute homophily of the graph: graphs with high
homophily, where nodes predominantly connect to similar nodes, might require fewer scales because local neighborhoods
already provide substantial predictive information. In contrast, heterophilic graphs—where informative node interactions
are more dispersed—could benefit from additional scales, enabling effective aggregation of meaningful signals from more
distant regions.

C. Datasets and Experimental Settings
C.1. Graph Transfer

Dataset. The graph transfer task follows the settings of Di Giovanni et al. (2023). In each graph, a one-hot label is
assigned to a target node at a distance k from the source, and a constant unitary feature vector is assigned to all other
nodes. Graphs were sampled from three different distributions: ring, crossed-ring, and clique-path (see Figure 8 for a visual
exemplification). In ring graphs, the nodes form a cycle of size n, with the source and target placed ⌊n/2⌋ apart. Similarly,
crossed-ring graphs consisting of cycles of size n, but introduced additional edges crossing intermediate nodes, while still
maintaining a source-target distance of ⌊n/2⌋. Lastly, the clique-path graph contains a clique of size ⌊n/2⌋ followed by a
path of length ⌊n/2⌋. The source node is placed in the clique and the target is at the other end of the path. Our experiments
focus on a regression task aimed at assigning the target label of the target to the source node. In all graphs, we refer to the
distance between the source node and the target node as k regardless of the number of nodes in the graph.

(a) Ring (b) Crossed-Ring

S T

(c) Clique-Path

Figure 8: Line, ring, and crossed-ring graphs where the distance between source and target nodes is equal to 5. Nodes
marked with “S” are source nodes, while the nodes with a “T” are target nodes.
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Experimental Setting. We design each model as a combination of three main components. The first is the encoder which
maps the node input features into a latent hidden space; the second is the graph convolution (i.e., IM-MPNN or the other
baselines); and the third is a readout that maps the output of the convolution into the output space. The encoder and the
readout share the same architecture among all models in the experiments.

We use the same hyperparameters given by Di Giovanni et al. (2023), with the only difference being reducing the number
of channels when increasing the number of scales for a fair comparison (i.e., increased width might help against the other
causes of over-squashing). For each model configuration, we perform 3 training runs with different weight initialization and
report the average and standard deviation of the results.

C.2. Long Range Graph Benchmark

Dataset. To assess the performance on real-world long-range graph benchmarks, we considered the Pascalvoc-SP, COCO-
SP, Peptides-func, and Peptides-struct datasets from the Long Range Graph Benchmark (Dwivedi et al., 2022).

The Pascalvoc-SP and COCO-SP datasets are based on Pascal VOC 2011 image dataset (Everingham et al., 2010) and MS
COCO image dataset (Lin et al., 2014), where each image is divided into coherent regions called superpixels based on the
SLIC algorithm (Achanta et al., 2010). Each image is then a graph whose nodes are its superpixels which are connected with
an edge if they share a boundary. The task of both datasets is node classification which predicts the label of the semantic
segmentation of the original datasets. Pascalvoc-SP contains 11,355 graphs, with a total of 5.4 million nodes. COCO-SP
contains 123,286 graphs, with a total of 58.8 million nodes.

The peptides-related graphs represent 1D amino acid chains, with nodes corresponding to the heavy (non-hydrogen) atoms
of the peptides, and edges representing the bonds between them. Peptides-func is a multi-label graph classification dataset
containing 10 classes based on peptide functions, such as antibacterial, antiviral, and cell-cell communication. Peptides-struct
is a multi-label graph regression dataset, focused on predicting 3D structural properties of peptides. The regression tasks
involve predicting the inertia of molecules based on atomic mass and valence, the maximum atom-pair distance, sphericity,
and the average distance of all heavy atoms from the plane of best fit. Both datasets, Peptides-func and Peptides-struct,
consist of 15,535 graphs, encompassing a total of 2.3 million nodes.

For all datasets, we used the official splits as by Dwivedi et al. (2022), and reported the average and standard-deviation
performance across 3 seeds.

Experimental Setting. We employ the same datasets and experimental setting presented by Tönshoff et al. (2023), an
improved hyperparameter tuning for the LRGB dataset. We used the reported hyperparameters, changing the number of
scales while using our IM-MPNN variant, and only modifying the number of channels to accommodate for the change in
the number of parameters in order to stay within the 500K parameter budget. For each model configuration, we perform 3
training runs with different weight initialization and report the average of the results.

C.3. City-Networks Benchmark

Dataset. City-Networks (Liang et al., 2025) is a recently introduced benchmark specifically designed to evaluate the ability
of graph neural networks (GNNs) to capture long-range dependencies. Traditional graph learning benchmarks often involve
graphs with small diameters and relatively limited structural complexity, where most tasks can be solved using information
aggregated from immediate or short-range neighbors. In contrast, City-Networks provides a more challenging setting that
demands explicit modeling of long-range interactions across large graphs.

The dataset is constructed from real-world road networks of four major cities—Paris, Shanghai, Los Angeles, and Lon-
don—using data extracted from OpenStreetMap. Each graph contains between 100,000 and 570,000 nodes, making them
several orders of magnitude larger than common benchmark graphs. Furthermore, these graphs exhibit very large diameters,
typically ranging from 100 to over 400, ensuring that many node pairs are separated by long paths. This structural property
makes City-Networks particularly suitable for assessing how well a GNN can propagate information across extended
distances.

Each node in the dataset is associated with a set of geographic and road-related features, such as spatial coordinates, road
type, and additional local attributes derived from the map data. The labels are not based on external metadata but are
generated using an approximation of node eccentricity—the maximum distance from a node to any other node in the graph.
This task setup emphasizes the need for models to gather and process information from distant nodes, rather than relying
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solely on local neighborhood structures.

Another notable aspect of City-Networks is its transductive nature: models are trained and evaluated on the same graph,
as opposed to inductive settings where generalization to unseen graphs is required. This design choice aligns with the
benchmark’s primary goal of probing long-range information flow within a fixed large structure, rather than testing
generalization across different domains.

Experimental Setting. We follow Liang et al. (2025) training procedure of 20k epochs, batch size of 20k, learning rate
of 10−3, and weight decay of 10−5. The model is evaluated for accuracy every 100 epochs, and the model with the best
validation is saved for final testing. All the scenarios are repeated 5 times, and we report their means and standard deviations.

C.4. Heterophilic Node Classification

Dataset. We evaluate IM-MPNN on the Roman-Empire, Amazon-Ratings, Minesweeper, Tolokers, and Questions tasks
from (Platonov et al., 2023). Roman-Empire is derived from Wikipedia, where nodes represent words and edges connect
syntactically related or sequential words. The task involves classifying words into 18 syntactic roles. The graph is chain-like
with sparse connectivity and long-range dependencies. Amazon-Ratings models an Amazon product co-purchasing network.
Nodes represent products, edges connect frequently co-purchased items, and the goal is to predict average product ratings
(five classes). Node features are fastText embeddings of product descriptions. Minesweeper is a synthetic dataset based
on a 100x100 grid. Nodes represent cells, edges connect neighbors, and 20% of nodes are designated as mines. The task
is to predict mine locations using one-hot-encoded neighboring mine counts as features. Tolokers is based on the Toloka
crowdsourcing platform (Likhobaba et al., 2023). Nodes represent workers (tolokers), edges indicate collaboration, and the
task is to predict whether a worker has been banned, using profile and performance features. Questions originates from the
Yandex Q question-answering platform. Nodes represent users, edges connect those who have interacted by answering each
other’s questions, and the goal is to predict user retention. Node features are derived from user descriptions. A summary of
the dataset statistics is provided in Table 5.

Experimental Setting. We follow the training and evaluation protocols from Platonov et al. (2023), and in particular follow
the same splits. For hyperparameters, we consider learning rates and weight decays in the range of 1e− 5 to 1e− 3 using
the AdamW optimizer, and we consider 2, 3, 4, 8 scales within our IM-MPNN framework.

Additional Comparisons. In addition to the benchmarking provided in Section 5, and in particular in Table 4, we provided
additional comparisons with more baselines in Table 6, showing that also in this case, our IM-MPNN offers similar or better
performance, while maintaining linear complexity with respect to the graph number of nodes and edges. We consider a range
of models, including classical MPNN-based methods such as GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2018), GatedGCN (Bresson & Laurent, 2017), GIN (Xu et al., 2019), GINE (Hu et al., 2020),
and CoGNN (Finkelshtein et al., 2024); heterophily-specific models like H2GCN (Zhu et al., 2020), CPGNN (Zhu et al.,
2021), FAGCN (Bo et al., 2021), GPR-GNN (Chien et al., 2021), FSGNN (Maurya et al., 2022), GloGNN (Li et al., 2022),
GBK-GNN (Du et al., 2022), and JacobiConv (Wang & Zhang, 2022); Graph Transformers such as Transformer (Dwivedi &
Bresson, 2021), GT (Shi et al., 2021), SAN (Kreuzer et al., 2021), GPS (Rampášek et al., 2022), GOAT (Kong et al., 2023),
and Exphormer (Shirzad et al., 2023); Higher-Order DGNs like DIGL (Gasteiger et al., 2019), MixHop (Abu-El-Haija et al.,
2019), and DRew (Gutteridge et al., 2023).

Table 5: Statistics of the heterophilic node classification datasets.

Roman-empire Amazon-ratings Minesweeper Tolokers Questions

N. nodes 22,662 24,492 10,000 11,758 48,921
N. edges 32,927 93,050 39,402 519,000 153,540
Avg degree 2.91 7.60 7.88 88.28 6.28
Diameter 6,824 46 99 11 16
Node features 300 300 7 10 301
Classes 18 5 2 2 2
Edge homophily 0.05 0.38 0.68 0.59 0.84
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Table 6: Mean test set score and standard deviation are averaged over four random weight initializations on heterophilic
datasets (higher is better).

Model Roman-empire Amazon-ratings Minesweeper Tolokers Questions
Accuracy ↑ Accuracy ↑ AUC ↑ AUC ↑ AUC ↑

MPNNs
GAT 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47 77.43±1.20

GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71

GAT (LapPE) 84.80±0.46 44.90±0.73 93.50±0.54 84.99±0.54 76.55±0.84

GAT (RWSE) 86.62±0.53 48.58±0.41 92.53±0.65 85.02±0.67 77.83±1.22

GAT (DEG) 85.51±0.56 51.65±0.60 93.04±0.62 84.22±0.81 77.10±1.23

Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 76.61±1.13

GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27

GCN (LapPE) 83.37±0.55 44.35±0.36 94.26±0.49 84.95±0.78 77.79±1.34

GCN (RWSE) 84.84±0.55 46.40±0.55 93.84±0.48 85.11±0.77 77.81±1.40

GCN (DEG) 84.21±0.47 50.01±0.69 94.14±0.50 82.51±0.83 76.96±1.21

CO-GNN(Σ, Σ) 91.57±0.32 51.28±0.56 95.09±1.18 83.36±0.89 80.02±0.86

CO-GNN(µ, µ) 91.37±0.35 54.17±0.37 97.31±0.41 84.45±1.17 76.54±0.95

SAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78 73.94±1.06

NAGphormer 74.34±0.77 51.26±0.72 84.19±0.66 78.32±0.95 68.17±1.53

GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04 75.76±1.66

GPS 82.00±0.61 53.10±0.42 90.63±0.67 83.71±0.48 71.73±1.47

GPSGCN+Performer 83.96±0.53 48.20±0.67 93.85±0.41 84.72±0.77 77.85±1.25

GPSGCN+Performer (RWSE) 84.72±0.65 48.08±0.85 92.88±0.50 84.81±0.86 76.45±1.51

GPSGCN+Performer (DEG) 83.38±0.68 48.93±0.47 93.60±0.47 80.49±0.97 74.24±1.18

GPSGAT+Performer (LapPE) 85.93±0.52 48.86±0.38 92.62±0.79 84.62±0.54 76.71±0.98

GPSGAT+Performer (RWSE) 87.04±0.58 49.92±0.68 91.08±0.58 84.38±0.91 77.14±1.49

GPSGAT+Performer 85.54±0.58 51.03±0.60 91.52±0.46 82.45±0.89 76.51±1.19

GT 86.51±0.73 51.17±0.66 91.85±0.76 83.23±0.64 77.95±0.68

GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93

Heterophily-Designated GNNs
CPGNN 63.96±0.62 39.79±0.77 52.03±5.46 73.36±1.01 65.96±1.95

FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05 77.24±1.26

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86

GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19

GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91

H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01 63.59±1.46

JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16

Interleaved Multiscale (Ours)
IM-GCN 83.53±0.57 52.37±0.66 91.80±0.58 84.17±0.71 78.17±0.89

IM-GatedGCN 90.82±0.59 54.01±0.27 97.32±0.83 85.10±0.84 79.27±0.91

IM-GAT 84.48±0.32 51.16±0.55 92.68±0.49 85.21±0.43 77.98±1.01

IM-FAGCN 86.26±0.44 52.81±0.35 95.17±0.84 84.49±0.97 78.17±1.06

IM-GAT-sep 89.93±0.34 53.97±0.58 96.15±0.37 85.44±0.40 77.92±0.83

IM-CO-GNN(Σ,Σ) 92.08±0.33 53.11±0.59 95.79±0.96 85.25±1.03 80.49±0.92

IM-CO-GNN(µ, µ) 92.00±0.41 54.43±0.41 97.39±0.35 85.77±1.05 78.92±0.87
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D. Runtimes
We measure the runtimes of our IM-MPNN and compare it with baseline GNN backbone under different # scales settings
and on three different datasets. The results are reported in Table 7, and show the effectiveness of IM-MPNN – it allows to
achieve improved performance while maintaining a competitive computational demand in terms of runtimes, with a similar
number of parameters.

Table 7: Training and inference runtime per epoch using an Nvidia RTX A6000 GPU.

Method scales PascalVOC-SP COCO-SP Peptides-func
params time/epoch params time/epoch params sec/epoch

GCN – 490K 8.00s 500K 78.95s 486K 2.00s
IM-GCN 1 489K 10.98s 487K 104.22s 488K 2.60s
IM-GCN 2 482K 14.22s 495K 132.64s 495K 3.41s
IM-GCN 3 497K 17.93s 495K 155.41s 489K 4.31s
IM-GCN 4 472K 21.86s 489K 183.94s 478K 5.16s

GINE – 450K 8.03s 409K 76.18s 491K 1.90s
IM-GINE 1 497K 10.74s 484K 105.51s 499K 2.88s
IM-GINE 2 496K 14.04s 484K 130.33s 479K 3.85s
IM-GINE 3 476K 17.23s 484K 155.76s 481K 4.93s
IM-GINE 4 491K 20.83s 499K 182.76s 481K 6.02s

GatedGCN – 473K 12.47s 450K 128.10s 493K 2.97s
IM-GatedGCN 1 477K 15.86s 486K 180.38s 507K 4.82s
IM-GatedGCN 2 491K 20.60s 494K 219.21s 492K 6.98s
IM-GatedGCN 3 475K 26.18s 499K 276.63s 480K 9.03s
IM-GatedGCN 4 495K 31.72s 488K 332.25s 453K 11.20s

Table 8: Runtimes on the Questions dataset using 8-layer network with 256 channels on Nvidia RTX A6000 GPU.

Method milliseconds per epoch

GCN 68.67
CO-GNN 211.43
FAGCN 104.85
GatedGCN 127.90
GAT 113.26
GPS(Performer+GCN) 412.07
GPS(Transformer+GCN) Out of memory
IM-GCN (Ours) 151.74
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E. Additional Experiments
We’ve compared IM-MPNN results on PascalVOC-SP against two methods. The first is U-Net, which is a popular
hierarchical method for node classification. The other is DRew, which is a graph rewiring method that aims to avoid
over-squashing. Table 9 shows the results.

We also provide additional results on OGBN Arxiv. The results are reported in Table 10.

Table 9: Comparison with other methods.

Method PascalVOC-SP
Test F1 ↑

Graph U-Net 0.1801±0.0055

DRew(GatedGCN) 0.3909±0.0051

IM-GatedGCN 0.4332±0.0045

Table 10: ORGB Arxiv results.

Method ORGB Arxiv
Accuracy ↑

GCN 71.74±0.29

GAT 71.95±0.36

IM-GCN 73.89±0.21

IM-GAT 73.87±0.16
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