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ABSTRACT

Training generally capable Reinforcement Learning (RL) agents in complex en-
vironments is a challenging task that involves designing appropriate distributions
of environments. Recent research has highlighted the potential of the Unsuper-
vised Environment Design (UED) framework, which generates environments at
the frontier of the agent’s capabilities through adaptive curriculum learning using
a regret-based objective. Regret-based approaches have been used for either con-
trolled (e.g., PAIRED) or random (e.g., PLR) generation of environments. While
regret-based approaches have shown great promise in generating feasible environ-
ments, they can produce difficult environments that are challenging for the agent to
learn from. This is because regret represents the best-case learning potential of an
environment, without indicating how much the agent can actually learn from it. To
that end, we propose an alternative objective that employs marginal benefit, focus-
ing on the improvement in the agent policy associated with the environment. This
new objective generates environments at a suitable pace for the agent’s learning
and thus achieves rapid convergence. More importantly, we provide a closed-loop
controlled environment generation approach (similar to PAIRED) that employs
Marginal Benefit and a new notion of environment diversity. Finally, we provide
detailed experimental results and ablation analysis to showcase the effectiveness
of our new methods.

1 INTRODUCTION

The advancements in Reinforcement Learning (RL) have led to significant successes in various
applications, such as game playing (Mnih et al., 2015; Silver et al., 2016), robot control (Levine
et al., 2016; Akkaya et al., 2019), and many others. However, training RL agents with general
capabilities remains a major challenge due to the millions of experiences required to train an RL
agent in each environment, which is both time-consuming and expensive.

One promising approach to address this problem is to train an agent in a ”shallow” manner on a
sequence of tasks or environments (Dennis et al., 2020; Jiang et al., 2021b; Parker-Holder et al.,
2022; Li et al., 2023). In this method, instead of extensively training on each environment with
millions of experiences, the student agent is exposed to a limited number of experiences in each
individual environment. This adaptive curriculum of environments, tailored to the student’s policy,
has been demonstrated to produce more robust agents in fewer training steps (Portelas et al., 2020a;
Jiang et al., 2021b). This methodology is referred to as Unsupervised Environment Design (UED).

Protagonist Antagonist Induced Regret Environment Design (PAIRED (Dennis et al., 2020)) intro-
duced a self-supervised RL paradigm in which the RL teacher employs regret, obtained from the
student’s performance to generate new environments. This approach leverages regret as a measure
of learning potential to create environments that are at the edge of the capabilities of the student.
However, computing the regret value, which is approximated by the difference between the ex-
pected payoffs of the student (protagonist) and the expert (antagonist), is computationally expensive
owing to costly interactions between the three agents and the environment. Furthermore, PAIRED
suffers from catastrophic forgetting of past environments due to learning on new environments. To
address these concerns, subsequent works such as PLR (Jiang et al., 2021b) and ACCEL (Parker-
Holder et al., 2022) introduced multiple changes: (1) They eliminated RL-based generation and
instead employed a random generation of environments; (2) They used an approximate version of
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regret, namely Generalized Advantage Estimate (GAE). (3) They employed the replay of past envi-
ronments to prevent catastrophic forgetting. (4) They edited the generated environments to ensure
thorough training on a challenging sequence of environments (as an RL generator would do).

In this paper, we first provide an alternative measure for the fundamental measure used by the teacher
to generate environments (either through RL or random methods), i.e., regret or its variant, GAE.
While regret represents the learning potential of an environment, it fails to indicate whether all that
potential can be achieved by a student and if so in how many steps. Therefore, we propose an al-
ternative measure for environment generation called marginal benefit. Marginal benefit quantifies
the actual improvement obtained by the student due to ”training” on an environment. In order to
be sample efficient in large scale problems, we believe RL based controlled generation of environ-
ments is more suitable if the approach is scalable. Therefore, we provide an approach for RL based
controlled generation of environments using marginal benefit as the measure.

Contributions: Towards operationalizing the ideas of utilizing marginal benefit-based measure and
RL based controlled generation, we make the following key contributions:

• We define the marginal benefit measure for an environment and use it in a teacher (RL-based or
random) to generate environments. More importantly, we propose an RL-based teacher that is
more scalable compared to the original RL generator UED algorithm, PAIRED.

• To facilitate generality in training with marginal benefit, we define a new notion of ”diversity”
in environments and propose a mechanism to intentionally train on ”diverse” environments with
high marginal benefit.

• We demonstrate the effectiveness of our methods through extensive experiments on a wide range
of benchmark problems. We are able to achieve SOTA results through RL-based generation.

2 BACKGROUND

In this section, we provide a brief background on UED and discuss relevant methods for UED.

2.1 UNSUPERVISED ENVIRONMENT DESIGN, UED

In UED, we train a student to perform well across a set of in-distribution and out-of-distribution envi-
ronments. To accomplish this, UED utilizes a teacher agent that provides a sequence of environment
parameter values to train the student to generalize well to unseen levels. The UED problem is for-
mally described as an Underspecified Partially Observable Markov Decision Process (UPOMDP):

⟨S,A,Ω,θ, T,R,O, γ⟩

S, A and Ω are the set of states, actions, and observations, respectively. R : S → R is the reward
function, and γ is the discount factor. The crucial element is θ, which denotes the set of all pos-
sible environment configurations. A particular parameter configuration, θ ∈ θ (can be a vector or
sequence of values) defines a level and can impact the reward model, transition dynamics, and the
observation function, i.e. R : S×θ → R, T : S×A×θ → S and O : S×θ → Ω. The UPOMDP is
underspecified because training with all values of θ (∈ θ) is infeasible, as θ can be infinitely large.
The goal of the student policy π in a UPOMDP is to maximize its discounted expected rewards
for any given θ ∈ θ. In the model-free setting, where transition and observation functions are not
known a priori, this objective is formulated as:

max
π

V θ(π) = max
π

Eπ

[ H∑
t=0

rθt · γt
]

where rθt is the reward obtained by the student policy π in a level with environment parameter θ
at time step t. Consequently, the student needs to be trained on a series of θ values that maximize
its generalization capability across all possible levels from θ. To achieve this objective, the teacher
agent is employed. The goal of the teacher policy is to generate a distribution over the next set of en-
vironment parameter values to train the student, i.e.,Λ : Π → ∆(θ) to achieve good generalization
performance, where Π is the set of possible policies of the teacher.
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2.2 EXISTING METHODS

Dennis et al. (2020) first formalized the UED and introduced the Protagonist Antagonist Induced
Regret Environment Design (PAIRED) algorithm, which is a three-agent game: the protagonist πP

(student), the antagonist πA (expert) and the environment generator G (teacher). The environment
generator G learns to control the distribution of environmental parameters θ by maximizing regret,
which is approximated by the difference between the cumulative reward obtained by the protagonist
and the antagonist under the same environment with parameters θ:

REGRETθ(πP , πA) = V θ(πA)− V θ(πP ) (1)

Both the protagonist and antagonist are trained to maximize their own cumulative reward in the
current environment θ. Note that the environment generator (teacher) is discouraged from generating
levels that can not be solved because they will have a maximum regret of 0. This teacher-student-
expert framework co-evolves the policies, creating an adaptive curriculum learning approach where
the teacher constantly creates an emergent class of levels that get progressively more difficult along
the borderline of the student’s ability, allowing agents to learn a good policy that enables zero-shot
transfer. More specifically, if Π is the strategy set of the protagonist and antagonist, and θ is the
strategy set of the teacher, then if the learning process reaches a Nash equilibrium, the resulting
student policy π provably converges to a minimax regret policy, defined as

π = argmin
πP∈Π

{argmax
θ,πA∈θ,Π

{REGRETθ(πP , πA)}} (2)

However, this framework struggles because of teacher efficiency, as it uses a RL generator and re-
quires expensive interactions with the environment to collect millions of samples to train Protagonist
and Antagonist agents separately.

As an alternative regret-based UED approach, Jiang et al. (2021b) proposed Prioritized Level Replay
(PLR), where a student policy is challenged by two co-evolving teachers, Generator and Curator. In
PLR, Generator randomly creates new environments, while Curator prioritizes the replay probabil-
ity for each environment based on the estimated learning potential. By adapting the sampling of
the previously encountered levels to train, PLR is an active learning strategy that improves sam-
ple efficiency and generalization. In addition, PLR uses Generalized Advantage Estimation (GAE)
(Schulman et al., 2015) to approximate the regret compared to the more expensive regret definition
used in PAIRED. Specifically, the regret Fgae(θ) of the environment θ is defined as:

Fgae(θ) =
1

T

T∑
t=0

max{
T∑

k=t

(γΛ)k−tδk, 0} (3)

where Λ and γ are the exponential weight discount and MDP discount factor respectively. δ is the
TD-error at timestep t. The agent trained by PLR shows good generalization ability in terms of
empirical results, and PLR has further been deployed at large scale domains (Bauer et al., 2023).
However, PLR is still limited as it is unable to exploit any previously discovered level structure and
can only curate randomly sampled levels. Moreover, the random search will be heavily affected by
the high-dimensional design space, making it highly unlikely to sample levels at the frontier of the
agent’s current capabilities.

3 ALGORITHM: MBeDED

In this section, we propose the Marginal Benefit and Diversity based Environment Design (MBe-
DED) approach to address UED problems. Our algorithm, MBeDED , relies on the teacher-student
framework, which consists of an environment generator (teacher) and two student agents which help
compute the marginal benefit of a generated environment. Algorithm 1 provides the pseudocode of
the overall algorithm, and Figure 1 provides the overall framework. The MBeDED algorithm incor-
porates two key components that differentiate it from existing research in solving UED problems

• Marginal benefit-based environment generator that can either be controlled (RL based) or random-
ized.

• Diversity guided environment selection
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Algorithm 1 MBeDED
1: Input: Level buffer Λ, replay probability p.
2: Initialize: policy Alice πA, Bob πB , level genera-

tor G and overall replay distribution Preplay;
3: while Not converged do
4: Sample a replay decision, ϵ ∼ U [0, 1]
5: if ϵ ≥ p then
6: Generate θ from G, and create POMDP Mθ

7: Collect Alice’s and Bob’s trajectories τA

and τB in Mθ , and compute V θ(πA) =∑T
t=0 γ

trθt and V θ(πB) =
∑T

t=0 γ
trθt

8: Compute µ using Eq. 4
9: Update πB by letting πB = πA

10: Train πA to maximize V θ(πA)
11: Update G with RL using reward µ(πA, πB)
12: Determine Sθ

13: If Fdiv(, ) of θ is higher than the lowest one
in the Λ, replace that one by θ to Λ and up-
date Preplay according to Eq. 13

14: else
15: Sample θ from Λ according to Preplay , and

create POMDP Mθ

16: Collect Alice’s and Bob’s trajectories τA

and τB in Mθ , and compute V θ(πA) =∑T
t=0 γ

trt and V θ(πB) =
∑T

t=0 γ
trt

17: Update πB by letting πB = πA

18: Train πA to maximize V θ(πA)
19: Update Sθ

20: Update Preplay according to Eq. 13
21: end if
22: end while

Figure 1: Overall framework of MBeDED

Figure 2: Comparison of normalized diversity
scores for level replay buffer. Higher scores in-
dicate higher diversity.

MBeDED incentivizes the teacher to automatically generate challenging levels that push the agent to
its limits by utilizing the concept of marginal benefit. To compute the marginal benefit, two versions
of the student, Alice and Bob, are maintained. Alice represents the student with the latest policy,
while Bob holds a slightly outdated policy. We define Marginal Benefit as the difference in values
between policies of Alice and Bob. For marginal benefit to be positive, the teacher needs to generate
environments that improve the policy. This serves as the incentive for the teacher to keep generating
environments that improve the student policy.

3.1 MARGINAL BENEFIT BASED RL ENVIRONMENT GENERATOR

We first describe the marginal benefit-based RL generator (teacher). The teacher utilizes the
marginal benefit computed from the student policies for the generated environment, to guide the
learning process. To compute the marginal benefit (µ) of a generated environment (θ), we calculate
the difference in the expected value obtained by Alice and Bob on that environment:

µθ(πA, πB) = V θ(πA)− V θ(πB) (4)

Both Alice and Bob will collect their trajectories, denoted as τA and τB respectively, in the current
level θ (Line 6 and 15 in Algorithm 1). The marginal benefit of training on the previous environment
is then computed as the difference between the cumulative rewards they received (Line 7).

There are alternative methods available to compute the marginal benefit, such as using the difference
in the scoring function based on the average magnitude of the Generalized Advantage Estimate
(GAE; (Schulman et al., 2015)) over each of the T time steps. However, in this work, we opted to
compute the marginal benefit as the difference between Bob and Alice’s expected cumulative returns
because of its simplicity and promising results in creating challenging yet solvable environments.
By focusing on improvement in student policy for a generated environment, we adopt a student-
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centric perspective, which allows for generating environments at a suitable pace and provides a
more accurate representation of the student’s actual improvement during training.

In order to generate a challenging environment at a suitable pace, the environment generator
(teacher) is trained to maximize the marginal benefit when creating a new environment (Line 10). A
crucial aspect of this approach is the direct policy copying from Alice to Bob (Line 8 and Line 16),
which avoids the need for costly interactions with the environment to train an optimal antagonist’s
policy at the current level, as required in PAIRED (Dennis et al., 2020)). Then Alice is trained to
maximize the corresponding cumulative reward (Line 9 and Line 17). The self-regulating feedback
loop between Alice and Bob enables the environment generator to establish an adaptive curriculum,
where new levels that could significantly alter Alice and Bob’s behavior are constantly generated.

3.2 DIVERSITY GUIDED ENVIRONMENT SELECTION

The objective of this section is to incorporate diversity into the UED framework to enhance effective
explorations and improve the generalizability of the student agent. Existing algorithms ((Jiang et al.,
2021a;b; Parker-Holder et al., 2022)) that utilize random generation also consider a setup whereby a
level buffer Λ is introduced to store the top K visited levels with the highest learning potential. The
learning potential is estimated by the GAE value of the student agent over the last episode.

The key intuition behind introducing diversity is that while the marginal benefit-induced RL gen-
eration is a good criterion for generating an environment, it may not contribute to generalization if
the level replay buffer Λ contains many similar environments. In Figure 2, we show the normal-
ized diversity score calculated by our proposed diversity measurement. Random-based generation
methods such as Robust PLR encounter fewer similarities due to their inherent randomness. How-
ever, RL-based generation is more likely to consistently produce similar or redundant environments
over time. Specifically, the MBeED approach, which focuses solely on marginal benefit, records
the lowest diversity compared to MBeDED and Robust PLR. Determining the level buffer by the
learning potential alone may result in preserving similar or repeated levels, resulting in low-quality
exploration, and the agent will not learn much from training on these similar environments.

Therefore, we propose to selectively add diverse environments to the level buffer, so as to ensure
that the student agent gets exposure to a wider variety of environments (as shown in Figure 2, MBe-
DED can achieve the same diversity level compared to random generation approaches). To that
end, we introduce a Diversity measure that can be beneficial for UED approaches. One possible
measure of diversity between two levels/environments θ1 and θ2 can be the distance between their
parameters. However, this method fails to capture the stochasticity in the mapping from parameters
to the environment. For example, in the continuous-control BipedalWalker environment, the envi-
ronment design space is an 8-dimensional indirect encoding representing the intensity of four kinds
of obstacles for the student agent. The actual positioning of obstacles is random, meaning that the
same parameter values can yield different environments. Therefore, this simple distance measure is
inadequate for measuring diversity.

Instead, we focus on measuring the diversity (negative similarity) of representative observed states
corresponding to environments when the student policy is executed on the environment.

3.2.1 REPRESENTATIVE OBSERVED STATE VECTOR

We begin by defining the representative observed state vector, Sθ, which corresponds to an environ-
ment given a fixed student policy.

Definition 1 (Representative observed state vector) For an environment θ, given multiple trajecto-
ries collected by the current student policy, we have the set of all visited states, S = {s1, s2, ...sn}.
We define the representative observed state vector, Sθ as

Sθ = {s̃1, s̃2, ....s̃m}, where m ≪ n

and Sθ ⊂ S represents the set of representative states visited in the trajectories.

Sθ consists of two types of states:

• important states: we rank the observed states according to their TD-error, δA = rt+γV (st+1)−
V (st), which is also used in the GAE computation. States with high TD errors are considered
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important as they have a significant impact on training. We select the top m1 states with the
highest TD error and include them in Sθ.

• representative states: In addition to important states, we aim to ensure that Sθ effectively repre-
sents the environment θ. This means that for every observed state in S, there should be a similar
state in Sθ. We add the remaining m2 = m−m1 states to ensure that Sθ provides a comprehen-
sive representation of the level θ.

Formally, the representative score of Sθ is defined as:

Frep(Sθ) =
∑
si∈S

max
sj∈Sθ

{k(si, sj)} (5)

where k(., .) represents the similarity kernel between states. One possible choice for the similarity
kernel is the cosine similarity, defined as:

k(s1, s2) =
s1s

⊤
2

∥s1∥∥s2∥
, (6)

where ∥s∥ represents the norm of observed state s. It is important to note that if k(s1, s2) = 1, it
implies that s1 and s2 are identical.

While finding the important states is simple, determining the Sθ that maximizes Frep(.) is NP-hard,
and it is computationally expensive when S is typically very large. Motivated by Fang et al. (2019),
we propose a heuristic way. We first randomly sample a set S′ ⊂ S of size n′, where m < n′ < n.
Then, we use a greedy algorithm to pick the top m2 observed states from S′. we start by initializing
Sθ as a set including those top m1 important states, and at each step, we will add the observed state
s that maximizes the marginal gain to Sθ, where the marginal gain Frep({s}|Sθ) is defined as the
difference in Frep(·) when adding the observed state {s} to Sθ:

Frep({s}|Sθ) = Frep({s} ∪ Sθ)− Frep(Sθ) (7)

Because Frep(Sθ) is a submodular function, the greedy algorithm can provide a solution, S∗
θ with

an approximation factor of 1− 1
e (Nemhauser et al., 1978).

3.2.2 DIVERSE LEVEL REPLAY BUFFER

We now describe how the representative observed state vector is utilized to maintain a diverse level
replay buffer (utilized in Algorithm 1). A diverse level buffer is more informative and will contribute
to the effective exploration and improve the generalizability of the agent. The formal definition to
measure the state-aware diversity among the level buffer Λ for a given student policy is as follows.

Definition 2 (Diversity score among Λ) Consider the level replay buffer Λ = {θ1, . . . ,θK}, each
level θi ∈ Λ has its corresponding representative observed state vector, Sθi

. We can compute the
state-aware diversity score Fdiv(Λ,Λ) of level replay buffer Λ as follows:

Fdiv(Λ,Λ) =
∑
θi∈Λ

Fdiv(θi,Λ \ {θi}) (8)

Fdiv(θi,Λ\{θi}) measures the diversity score between the level θi and a set of levels Λ\{θi} and

Fdiv(θi,Λ \ {θi}) = −
∑

si∈Sθi

max
sj∈{Sθj

}i̸=j

{k(si, sj)} (9)

Unlike computing the representative score in Eq. 5, we introduce a negative sign before the kernel
function to assess the diversity between two states. A high similarity between two representative
observed state vectors indicates a low diversity score between those two levels, and vice versa. It is
important to note that this diversity measure between levels is not symmetric, as Fdiv(θi,Λ\{θi}) ̸=
Fdiv(Λ \ {θi},θi). We can make it symmetric by letting F sym

div = Fdiv(θi,Λ\{θi})+Fdiv(Λ\{θi},θi)
2 .

However, since the symmetric property has no impact on our algorithm, we use the asymmetric form
in this work. When generating a new environment θnew, if that new level is added to the level replay
buffer Λ, we want to increase the diversity among Λ, which means the diversity score among Λ,
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Figure 3: An illustration of levels generated with four kinds of obstacles: (a) Roughness of range
(2,8) (b) Stump height of range (1,3) (c) Pit gap of range(1,3) (d) Stair steps of range (2,6) (e) Vanilla
BipedalWalker (f)Hard BipedalWalker with a mix of (a) to (d) parameters.

Figure 4: Transfer performance on test environments during training (mean and standard error).

i.e., Fdiv(Λ,Λ), should increase. We now provide a heuristic way to determine whether a newly
generated level θnew should be added to the level replay buffer Λ:
[1] Consider the level buffer Λ = {θ1, . . . ,θK} and the newly generated level θnew, each of which
has its corresponding observed state representative vector Sθ. For any level θ ∈ {θnew} ∪ Λ, we
can compute its state-aware diversity score Fdiv(, ) with other levels θ′ ∈ {θnew} ∪ Λ \ {θ} as
follows:

Fdiv(θ, {θnew} ∪Λ \ {θ}) = −
∑

oi∈Sθ

max
oj∈S′

θ

{k(oi,oj)}, (10)

[2] If Fdiv(θnew,Λ) is higher than the min
θi∈Λ

{Fdiv(θi, {θnew} ∪Λ \ {θi})}, add θnew to Λ and

remove θi that has the lowest Fdiv(θi, {θnew}∪Λ\{θi}) value, as a higher diversity score of θnew
indicates a lower likelihood of finding a similar observed state within the levels in Λ.

3.3 LEVEL REPLAY

At the beginning of each iteration, MBeDED either generates new levels (with probability p, line
4 and 5) or sample a mini-batch of levels in the level buffer to train the student (line 13 and 14).
Details regarding the replay process are explained in the appendix.

4 EXPERIMENTAL RESULTS

In this section, we present our experimental results in the domains of BipedalWalker, Minigrid, and
CarRacing to demonstrate the superior performance of our approach when a trained agent is trans-
ferred to new environments. We compare our approach against existing UED methods: Domain
Randomization (DR (Tobin et al., 2017)), Minimax (Wang et al., 2019), PAIRED (Dennis et al.,
2020), PLR (Jiang et al., 2021a). We do not compare our approach against ACCEL (Parker-Holder
et al., 2022) as it re We show the average and variance of the performance for our method, baselines
with five random seeds. There are other random generation UED employing techniques complemen-
tary to the above baselines. Table 1 in the appendix provides a summary of the key characteristics
of all approaches.
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Figure 5: The results of the ablation experiment on the transfer performance of the agent during
training (mean and standard error).

Performance on BipedalWalker: We first evaluate our approach on BipedalWalker (Wang et al.,
2019) environment. This environment entails continuous control with dense rewards. Simi-
lar to Wang et al. (2019), we use a modified version of BipedalWalker-Hardcore from OpenAI
Gym (Brockman et al., 2016). In BipedalWalker, there are 8 parameters that indirectly rep-
resent the intensity of four kinds of terrain-based obstacles for a two-legged robot: the mini-
mum/maximum roughness of the ground, the minimum/maximum height of stump obstacles, the
minimum/maximum width of pit gap obstacles, and the minimum/maximum size of ascending and
descending flights of stairs. We provide an illustration of these four kinds of obstacles in Figure 3.

The BipedalWalker environment provides the student agent with a 24-dimensional proprioceptive
state with respect to its lidar sensors, angles, and contacts. The action space is continuous and
consists of four values that control the torques of the agent’s four motors. In this environment, the
teacher learns to control eight parameters that correspond to the range of four kinds of obstacles
and then combines a random seed to generate a specific level. All agents are trained using Proximal
Policy Optimization (PPO, (Schulman et al., 2017)). For a fair comparison, during training, we
presented a vanilla BipedalWalker, a challenging BipedalWalker-Hardcore environment, and four
specific levels in the context of isolated challenges in {Roughness, Stump height, Pit gap, Stair
step} to evaluate our algorithm and baselines.

Figure 4 shows the transfer performance throughout training. As shown in the figure, MBeDED
consistently outperforms all the baselines across the majority of test environments, achieving faster
convergence (and is more scalable compared to the original RL generator algorithm, PAIRED).
These results provide strong evidence in support of the key principles driving MBeDED’s design:
a student-centric generator that progressively produces environments to facilitate the improvement
of the student policy, and the maintenance of diverse environments to enhance effective exploration
and improve generalizability.

We also provide ablation analysis to evaluate the impact of different design choices, including
(a) RL-based generator vs. Random generator; (b) important states vs. representative states; (c)
marginal benefit vs. regret-based incentive for generator. The results are provided in Figure 5.
Specifically, MBeDEDr considers only representative states when selecting Sθ for level θ, while
MBeDEDi considers only the important observed states. DED and DEDMBe are both versions of
our algorithm without an RL-based environment generator. Similar to PLR, they use a randomly
generated environment teacher, and DED approximates the learning potential using GAE, DEDMBe

approximates the learning potential using the marginal benefit of level θ. As we see, in the parame-
terized BipedalWalker environment, the RL-based teacher can effectively exploit previously discov-
ered level structure or adapt the difficulty of the environment to the student’s learning progress.

Performance on Minigrid: Here we investigate the maze navigation environment introduced by
Dennis et al. (2020), which is based on Minigrid (Chevalier-Boisvert et al., 2018). We train the
environment generator to learn how to build maze environments by choosing the location of the
obstacles, the goals, and the starting location of the agent. Specifically, at the beginning of each
iteration, the generator will place the student agent and the goal, and then every time step afterward,
the generator outputs a location where the next obstacle will be placed. There will be up to 50 blocks
that can be placed. Several examples of generated mazes during training are illustrated in Figure 6.
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SMU Classification: Restricted

Figure 6: Example levels generated by MBeDED (placing up to 50 blocks) during training.

Figure 7: Zero-shot transfer performances in challenging environments after 100 million training
steps. We show the median and interquartile range of solved rates over 5 runs.

The maze is partially observable, where the student agent’s view is shown as a blue-shaded area
in Figure 6. The student agent (blue triangle) must explore the maze to find a goal (green square).
In order to deal with the partially observable setting, our agents use PPO with a Recurrent Neu-
ral Network structure. We compare our agents’ transfer ability trained by different approaches on
human-designed levels. The test environments and the performance are reported in Figure 7. While
DR acts as a strong baseline in this domain, MBeDED can achieve a similar highest mean return.

Figure 8: Zero-shot transfer performance on the OOD F1 tracks: Vanilla, Italy and Germany.

The results of the ablation study on the Maze environment are provided in the appendix.

Performance on Car Racing: Figure 8 provides the results for the car racing domain, and MBeDED
is able to outperform other baselines. All details of the experiments can be found in the appendix.

5 CONCLUSION

In this paper, we introduce MBeDED , a novel method for unsupervised environment design. Our
approach utilizes a curriculum to automatically create a distribution of training environments by
employing a novel marginal benefit-based measure. Furthermore, in order to enhance effective
exploration and improve generalizability, MBeDED selectively revisits previously generated envi-
ronments by prioritizing those with higher estimated learning potential and diversity. Finally, we
conducted experiments in various benchmark environments and demonstrated that our RL-based
generation algorithm achieves superior zero-shot transfer performance in most settings.
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A APPENDIX

B RELATED WORK

This work aims to train agents that are capable of generalizing across a wide range of environ-
ments (Whiteson, 2009). Several methods for enhancing generalization in RL utilize techniques
from supervised learning, such as data augmentation (Raileanu et al., 2020; Kostrikov et al., 2020;
Wang et al., 2020), and feature distillation (Igl et al., 2020). In contrast to supervised learning,
there is a growing trend of incorporating curriculum learning mechanisms in various learning sce-
narios (Fang et al., 2019; Weinshall & Amir, 2020; Wu et al., 2020). In RL, curricula improve the
learning performance of the agent by adapting the training environment to the agent’s current ca-
pabilities. One prior approach is domain randomization (Jakobi, 1997; Tobin et al., 2017), where
agents are trained on a wide range of randomly generated environments. In contrast, Akkaya et al.
(2019) propose automatic domain randomization, where they use a curriculum that gradually in-
creases the difficulty of agent training. In the multi-task domain (Sukhbaatar et al., 2017; Zhang
et al., 2020; Du et al., 2022; Klink et al., 2022), automatic curricula are specifically designed for the
goals that agents need to solve. These Curricula are often generated as the proposed goals are right
at the frontier of the learning process of an agent.

In particular, we focus on the emerging field of unsupervised environment design (Dennis et al.,
2020), which is inherently related to the Automatic Curriculum Learning (Florensa et al., 2017;
Portelas et al., 2020b). It seeks to learn a curriculum that adaptively generates challenging en-
vironments to train robust agents. Dennis et al. (2020) proposed PAIRED algorithm, where they
introduce an environmental adversary that learns a curriculum to control environmental parameters
to maximize approximate regret. POET (Wang et al., 2019; 2020) co-evolves the generation of en-
vironmental challenges and the optimization of agents to solve them. (Jiang et al., 2021b;a) further
introduce PLR, a general framework that allows agents to revisit previously generated environments
with high learning potential for training. We draw inspiration from these works, leveraging auto-
matically generated environments with a curriculum design and maintaining a level buffer with high
learning potential and diversity.

For brevity, we provide the works most related to our approach and summarize them in Table 1.

Table 1: Key Characteristics of Baselines and MBeDED. MCC is an abbreviation for Minimal Cri-
teria Coevolution (Wang et al., 2019).

Algorithm Generation Strategy Generator Objective Buffer Objective Setting

DR (Tobin et al., 2017) Random None None Single Agent
Minimax (Wang et al., 2019) Evolution Minimax MCC Population-Based
PAIRED (Dennis et al., 2020) RL Minimax Regret None Single Agent

PLR (Jiang et al., 2021a) Random None Learning potential Single Agent

MBeDED RL Maximize Marginal
Benefit

Diversity &
Learning Potential Single Agent

C ADDITIONAL DETAILS IN ALGORITHM

C.1 DIVERSITY GUIDED ENVIRONMENT SELECTION

Note that the objective of the diversity score for the level buffer is different from that of finding
the representative observed state for levels. In the case of the representative state, a high diversity
score is desirable as it ensures that every observation obtained from the level can find a similar state
in the set Sθ. However, for the level buffer, we aim to maintain diversity, which implies minimal
similarity. Therefore, a higher diversity score of new environment θnew indicates a lower likelihood
of finding a similar observed state in the levels within the level buffer.

When considering the use of either important states or representative states to represent the environ-
ment θ, determining the important states is straightforward. However, determining the representative
states is more complex. Intuitively, we use the cosine similarity kernel k to measure how well the
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selected observed states in the set Sθ can represent the whole observed states S collected from the
current level. A high representative score Frep(Sθ) indicates that each observed state collected from
the current level can find a sufficiently similar state in Sθ, such that Sθ is a good representation of
the current level. The way to find the Sθ only based on the representative states is as follows:

1. We first randomly sample a set S′ ⊂ S of size m′, where n < m′ ≪ m;
2. Then we use a greedy algorithm to pick the top n observed states from the set O′. we

start by taking Sθ as an empty set and at each step, we will add the observed state s
that maximizes the marginal gain, where the marginal gain Frep({s}|Sθ) is defined as the
difference of adding observed state {s} into Sθ:

Frep({s}|Sθ) = Frep({s} ∪ Sθ)− Frep(Sθ) (11)

C.2 LEVEL REPLAY

At the beginning of each iteration, MBeDED either generates new levels (with probability p, line 4
and 5) or sample a mini-batch of levels in the level buffer to train the agent (line 13 and 14).

• (Generating new level): When there is a newly generated level, we measure the diversity score
of the new level and the levels in the level buffer according to Equation 10. To achieve a diverse
level buffer, if the diversity score of a new level is lower than one of the levels in the buffer, we
add the new level θnew to the buffer Λ to replace the level with the highest diversity score Fdiv(, )
(Line 11 and 12).

• (Sampling level from buffer): In order to decide which level to train on, we assign each level
θi a probability that is based on the combination of its diversity score and learning potential.
Following Jiang et al. (2021b), we use the GAE function shown in Equation 3 as the proxy for
its learning potential. Given the learning potential of Fgae(θi), we rank them accordingly and
use a prioritization function h to decide how differences in learning potential are translated into
differences in prioritization. As a result, we obtain a learning potential prioritized distribution
Pgae(Λ) over the level buffer, and the probability for θi is

Pgae(θi|Λ, Fgae) =
h (rank(Fgae(θi)))

1/β∑
j h (rank(Fgae(θj)))

1/β
(12)

where β is the temperature parameter that tunes how much h(rank(Fgae(θi))) determines related
probability, and rank(Fgae(θi)) is the rank of level θi sorted in the descending order among the
level buffer. Same to Jiang et al. (2021b), we employ h (rank(Fgae(θj))) =

1
rank(Fgae(θi))

. Note
that different surrogates for learning potential can be used, such as the marginal benefit µ(πA, πB)
shown in Equation 4. The comparison of using different types of learning potential is provided in
the following section in the Appendix.
Similarly, we can compute the diversity score computed through Equation 10 and its correspond-
ing diversity score prioritized distribution Pdiv(Λ) over the level buffer. We also rank Fdiv(, ) in
descending order, as we prefer to train on environments that are more informative and contain di-
verse observed states. We update the overall replay distribution Preplay(Λ) over Λ by combining
Pgae(Λ) based on the learning potential and Pdiv(Λ) based on the diversity score as (Line 19):

Preplay(Λ) = (1− ρ) · Pgae(Λ) + ρ · Pdiv(Λ) (13)
The hyperparameter ρ ∈ [0, 1] is used to balance the trade-off between learning potential and
diversity. Therefore, a level that exhibits a higher learning potential or a greater diversity in its
observed states is more likely to be selected for replaying. We present the overall framework for
MBeDED in Figure 1.

D ADDITIONAL EXPERIMENTS

D.1 OTHER POSSIBLE APPROACHES

We compare MBeDED with other different UEDs during training by periodically evaluating them
on the test environments. We include a comparison with DIPLR (Li et al., 2023), a recent ap-
proach that incorporates Diversity for environment generation. Their approach involves evaluating
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Figure 9: Performance on test environments during training (mean and standard error). Here The
DIPLR method by Li et al. (2023) randomly generate new levels. MBeDEDr considers only rep-
resentative states when selecting Sθ for level θ, while MBeDEDi considers only the important
observed states. DED and DEDMBe are both versions of our algorithm without the self-play com-
ponent. Similar to PLR or DIPLR, they use a randomly generated environment teacher, and DED
approximates the learning potential using GAE, DEDMBe approximates it using the marginal ben-
efit of level θ.

the similarity on different levels based on the distance between occupancy distributions of the cur-
rent student policy. They decide whether to include a new level in the buffer using a combination of
this distance measure and regret value. To increase diversity, they add levels with the highest dis-
tance value to the level buffer. In contrast, our diversity measurement is more scalable than DIPLR
approach. DIPLR utilizes state-action occupancy measures and computes the diversity through the
Wasserstein distance between these occupancy measures. They will update occupancy measures
for all environments in the level buffer once the student agent policy is updated with the currently
selected environment. The whole process of this step is very time-consuming as they need to re-
collect trajectories in all environments in the level replay buffer (as shown in the DIPLR paper) and
the computation of the Wasserstein distance is computationally intensive. However, our diversity
measurement is more efficient by only requiring updates to the representative observed states vec-
tor of the currently selected environment. Additionally, our diversity measurement demonstrates
comparable results in some experiments, such as the DED approach (random-based generation with
our diversity measurement) displaying better performance against DIPLR in some test environments
across different domains.

D.2 BIPEDAL WALKER

we also conduct ablation studies in the Bipedal walker environment to determine which factor influ-
ences performance most. The result is shown in Figure 9.

As we can see, our proposed algorithm consistently outperforms DIPLR. Particularly, the combina-
tion of the important state and representative state as the representative observed state vector exhibits
the best performance across most cases. In addition, we evaluate the transfer performance of alter-
native approaches for approximating learning potentials in the BipedalWalker environment. It is
important to note that in this evaluation, we used a random generation as the environment generator
(teacher). This comparison is shown in section D.5 and Figure 13.

D.3 MINIGRID

We also conducted an ablation study in the Minigrid domain, comparing our approach against the
concurrent work by Li et al. (2023). The results of this comparison are presented in the figure 10.

Furthermore, we present the results for the scenario where an RL-based generator is not used, in-
stead, we use the random generated teacher. These results are shown in Figure 12.

D.4 PERFORMANCE ON CARRACING

Finally, we investigate the learning dynamics of MBeDED and baselines on CarRacing (Brockman
et al., 2016), a popular continuous-control environment with dense rewards. Similar to the partially
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Figure 10: Zero-shot transfer performances in challenging environments after 100 million training
steps. We show the median and interquartile range of solved rates over 5 runs.

Figure 11: A randomly-selected examples of CarRacing tracks produced by different algorithms.
(a)DR (b) Minimax (c) PAIRED (d) PLR (e)MBeDED (f) Two examples in the CarRacing F1 bench-
mark that are used for evaluating zero-shot generalization.

observable navigation task, The student agent in CarRacing receives a partial, pixel observation and
has a 3-dimensional action space. The goal of the agent is to drive a full lap around a generated
track. To generate a feasible level (closed-loop track), following (Jiang et al., 2021a), the gener-
ator learns to choose a sequence of up to 12 control points, which will unique generate a Bézier
curve (Mortenson, 1999) within predefined curvature constraints. In Figure 11, we show some ex-
amples of CarRacing tracks produced by different algorithms.

We present per-track zero-shot transfer returns of policies trained by each method on some of the
human-designed Formula One (F1) tracks throughout training in Figure 8. Note that these tracks
are significantly out-of-distribution (OOD) as they can not be generated within 12 control points.
Remarkably, MBeDED can either mitigate the degeneracy of PAIRED or achieve significant outper-
formance than other baselines in mean performance, providing further evidence of the benefits of the
induced curriculum and diverse level buffer. We also present the comparison between our approach
and DIPLR in the provided Figure 15. The results clearly demonstrate that MBeDED is capable of
achieving comparable performance to DIPLR in the given task.

D.5 LEARNING POTENTIAL

In this section, we conduct experiments with additional methods for approximating the learning po-
tential of an environment, aiming to effectively sample replayed levels with high learning potentials.
As per the arguments in section 3.1, we define the marginal benefit of environment θ as the differ-
ence in performance in the next environment after training the student agent in the environment θ
compared to the expected performance of the student in the same next environment θ′ before train-
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Figure 12: Zero-shot transfer performances in challenging environments after 100 million training
steps. We show the median and interquartile range of solved rates over 5 runs.

ing. This can be interpreted as the learning potential of the environment with respect to the student’s
learning. We rewrite the two different definitions to approximate the learning potential here for
convenience:

• PLR uses the positive value loss(referred to as GAE) to approximate the regret, and further
is used as the learning potential in the level replay buffer. Specifically, regret is approxi-
mated by:

Fgae(θ) =
1

T

T∑
t=0

max{
T∑

k=t

(γΛ)k−tδk, 0} (14)

• In this work, we can also approximate the learning potential by the marginal benefit which
is defined as the difference between the cumulative reward received by Alice πA and Bob
πB :

µθ(πA, πB) = V θ′
(πA)− V θ′

(πB) (15)

As we can easily have this value after collecting Alice πA and Bob πB’s trajectories in the next
environment θ′, we can compute the marginal benefit µθ(πA, πB) according to Equation 15 and
assign this value to the previous training environment θ as the learning potential. Therefore, we
developed an alternative approach using the marginal benefit. One potential disadvantage of this
method is that the calculation of the learning potential for a given environment θ is delayed. Instead
of directly calculating the potential in the current environment like using the GAE function, we
obtain the potential of the previous environment θ from the current environment θ′, which may result
in instability. Because the value obtained can be influenced by the current environment. As a result,
different next environments may lead to different learning potentials for previous environments,
which can cause instability.

We provide the experiment results for the BipedalWalker domain. Figure 13 compares the transfer
performance of both methods with the RL-based environment generator (teacher) component re-
moved, using different methods for calculating regret (using GAE function as shown in Equation 3
and marginal benefit as shown in Equation 4).To isolate the impact of different methods for approx-
imating learning potentials, we generate new environments using a random teacher. Both methods
demonstrate reasonable transfer performance and maintain similar abilities to solve various tasks.
However, we observe that the DEDMBe method has a lower variance in transfer performance com-
pared to DED. Empirical findings suggest that GAE suffers from high volatility, but overall, both
methods achieve comparable performance.

D.6 SCALABILITY OF OUR MARGINAL BENEFIT-INDUCED RL GENERATION PROCESS

We also illustrate the scalability of our marginal benefit-induced RL generation process compared
with other RL-based generation approach, i.e., PAIRED and REPAIRED:
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Figure 13: Performance of alternative methods for computing regret in terms of transfer performance
on test environments during training (mean and standard error) over three random seeds. Here
DivSP no SP approximates the learning potential using GAE, while DivSP no SP m approximates
it using the marginal benefit of level θ.

[1] PAIRED often overexploits the difference in the students, leading to simple tracks that inciden-
tally favor the antagonist (as evidenced in Jiang et al. (2021b)). Conversely, our MBeDED/MBeED
approaches help mitigate this issue by recovering complexity in the generated environments, as
demonstrated in Figure 11 of the Appendix, which showcases examples of car-racing tracks gener-
ated. By adopting a student-centric perspective, we focus on enhancing the student’s policy within
a generated environment. This approach allows us to generate environments at an appropriate pace
and provides a more accurate representation of the student’s actual improvement during training.

[2]In PAIRED, there are two agents: Protagonist and Antagonist. For the selected environment,
the antagonist agent is trained to maximize the defined regret value, which should be the difference
between the optimal antagonist’s performance and the protagonist’s performance, and the antagonist
agent is trained to maximize the regret value (In the PAIRED experiment, for each selected level, the
protagonist is updated 5 times and antagonist is updated 8 times). PAIRED further approximates the
regret value by computing the difference between the maximum reward achieved by the Antagonist
and the average reward attained by the Protagonist across all trajectories. While this approach is
well-conceived, it can still be hindered by the inherent challenge of accurately approximating the
regret value, which impacts both performance and training efficiency. Contrastingly, our marginal
definition sidesteps these challenges, allowing for a more streamlined and scalable approach. By
focusing on the difference in policy performance, we eliminate the need for additional training it-
erations and the approximation of regret values. This leads to a more efficient training process,
ultimately enhancing scalability and training speed in comparison to the PAIRED approach. Our
approach reduces the overall training time required for the same number of training episodes while
achieving significantly better performance. When compared to PAIRED and REPAIRED (PAIRED
version with a level replay buffer), MBeED emerges as the fastest option. We established PAIRED
as the baseline (with a value of 1 for each environment), where a higher value indicates faster train-
ing (less time). As indicated in Table 2, MBeED outperforms both the PAIRED and REPAIRED
approaches. Even with the incorporation of the diversity measurement, MBeDED maintains faster
training compared to PAIRED and REPAIRED, further underscoring the scalability of our RL gen-
eration process.

Table 2: Comparisons of training speed for different approaches. A higher value indicates faster
training.

Environments Approaches MBeDED MBeED PARIED REPAIRED

BipedalWalker 1.15 1.42 1 -
Maze 1.13 1.38 1 0.85

CarRacing 1.46 2.12 1 0.73
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Table 3: The environment design space used for the BipedalWalker environment. Where values
are shown as ranges, both the lower and upper bounds of the range are learned parameters. When
creating a level, the size of each obstacle is sampled from the range. This is also the same as work
by Parker-Holder et al. (2022)

Stump Height Stair Height Stair Steps Roughness Pit Gap

Easy Init [0,0.4] [0,0.4] 1 Unif(0.6) [0,0.8]
Max Value [5,5] [5,5] 9 10 [10,10]

E EXPERIMENT DETAILS AND HYPERPARAMETERS

In this section, we provide details on the experiment setup, such as the network archi-
tecture and the devices used for training. We utilized the open codebase available at
https://github.com/facebookresearch/dcd to build our implementation. All the models were trained
on a single NVIDIA GeForce RTX 3090 GPU and 16 CPUs.

E.1 ENVIRONMENT DETAILS

We follow the PAIRED approach (Dennis et al., 2020) using the same RL generator structure. For
example, in the partially observable navigation task (maze environment), the teacher needs to build
the environments by choosing the location of the obstacles, the goals, and the starting location of
the agent. The input to the teacher (or the teacher’s observation) consists of a fully observed view
of the environment state, the current timestep t, and a random vector z ∼ N (0, I), z ∈ RD sampled
for each episode. At each timestep, the teacher outputs the location where the next object will be
placed; at timestep 0 it places the agent, 1 the goal, and every step afterwards an obstacle. For
the Bipedalwalker environment, the input is the previous environment parameters and the random
vector.

E.1.1 BIPEDALWALKER

We use the modified BipedalWalkerHardcore environment from OpenAI Gym for our experiments
in this study. The agent is trained using a proprioceptive state consisting of 24 dimensions, which
includes lidar sensors, angles, and contact information. However, the agent does not have access to
its map coordinates. The action space consists of four continuous values that control the torques of
its four motors.

To measure the transfer performance, we evaluate the agents on each of the individual challenges
generated by the environment parameterization. In particular, we utilize the following six environ-
ments, of which five are also employed by Parker-Holder et al. (2022):

• Stairs: the stair height parameters are set to [2,2] with the number of steps set to 5.
• PitGap: the PitGap parameter is set to [5,5].
• Stump: the Stump parameter is set to [2,2].
• Roughness: the Roughness parameter is set to 5.
• BipedalWalker: the vanilla BipedalWalker without Stairs, PitGap, Sump and Roughness.
• BipedalWalker-Hardcore: the hard BipedalWalker with a mix of the above-mentioned elements.

Each of these is visualized in the main body of the paper, in Figure 3.

When generating new environments, the environment design space is shown in Table 3.

E.1.2 MINIGRID

The experiments in this work utilize a 15 × 15 discrete grid as the Partially Observable Navigation
environment, where a border of walls surrounds the grid. This creates a total of 13 × 13 = 169
free tiles that the teacher (environment generator) can use to place obstacles, while other tiles may
contain navigable space, the agent, a block, or the goal. The student agents, Alice and Bob, have
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partial observability, as they are only able to perceive a 5 × 5 view in front of them. They are
also aware of their orientation, and can only move forward or turn left/right. If the student agent
encounters an obstacle, it will remain stationary. The student agent is rewarded with 1 − T/Tmax

upon reaching the goal, where T is the episode length and Tmax is set to 250 as the maximum
episode length. If the agent fails to reach the goal, it receives a reward of 0.

The procedure for designing the environment is as follows: at each timestep, the teacher (envi-
ronment generator) receives a complete map of the level as an observation and takes an action of
dimensionality 169 to indicate the location of the next object to be placed. The adversary agent
places objects in a sequence of actions, with the agent and goal placed on the first and second steps,
respectively. The adversary then places 50 walls (obstacles) for 50 steps after the goal has been
placed. If the adversary places an object on top of a previously existing object, its action does noth-
ing, allowing it to place fewer than 50 obstacles. If it attempts to place the goal on top of the agent,
the goal will be placed randomly. This procedure is similar to recent works such as those by Dennis
et al. (2020); Jiang et al. (2021b). Some examples of generated maze environments are visualized in
the main body of the paper, in Figure 6.

The teacher (environment generator) constructing the environment receives observations that consist
of a 15 × 15 × 3 image of the environment state, a current timestep integer t, and a random vector
z ∼ N(0, I), where z ∈ R50 to allow for the generation of random mazes. The order of actions
is important, so an RNN is experimented with to parameterize the adversary, although it is not
always necessary. The teacher architecture is similar to that of the student agents, with a single
convolutional layer connecting to an LSTM, then to two fully connected layers connecting to policy
outputs. Additional inputs like t and z connect directly to the LSTM layer. A second identical
network is used to estimate the value function.

E.1.3 CARRACING

In the CarRacing environment, we design each track as a closed loop for the student agent to drive
around, with the goal of completing a full lap. To enhance the expressiveness of the original Car-
Racing environment, we reparametrize the tracks using Bézier curves. Specifically, each track is
constructed from a Bézier curve (Mortenson, 1999) based on 12 control points randomly sampled
within a fixed radius, B/2, of the center of the B×B playfield. The track is comprised of a sequence
of L polygons, with the student receiving a reward of 1000/L for driving over each previously un-
visited polygon. In addition, the student receives a penalty of −0.1 at each time step. Following
the methodology of (Jiang et al., 2021a), we do not penalize the agent for driving out of bounds but
terminate the episode if it deviates too far off track. To reduce the complexity of the observation
space, we provide the student with a 96 × 96 × 3 pixel observation in RGB channels, clipped to
an egocentric bird’s-eye view of the vehicle centered horizontally in the top 84 × 96 portion of the
frame. The remaining 12 × 96 portion of the frame displays the dashboard, which visualizes the
agent’s latest action and return.

The procedure for designing the environment is as follows: The teacher agent (environment genera-
tor) starts by generating a sequence of 12 control points, one for each time step, within a fixed radius
of B/2 from the center of the playfield. The agent always starts at the polygon on the track closest
to 0o relative to the center and faces counterclockwise. Specifically, The teacher policy receives
input at each time step consisting of the set of all previously generated control points, the current
time step represented as a one-hot vector, and a 16-dimensional random noise vector. These control
points are spatially represented in a 10× 10 grid called the sketch, which serves as a downsampled
and discretized version of the playfield boundaries where the track is generated. Each control point
is selected by choosing a cell within the grid, ensuring that no two control points are placed too close
together, which would result in excessive track overlapping. Finally, the chosen control point’s cell
coordinates are upscaled to match the original playfield scale. For more details, please refer to Jiang
et al. (2021a)

E.2 HYPERPARAMETERS

We made use of the majority of hyperparameters from previous works like (Dennis et al., 2020;
Jiang et al., 2021b;a), with minor modifications. For BipedalWalker, we employed the continuous
control policy from the open-source implementation of PPO presented in Kostrikov (2018), along
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with most of the recommended hyperparameters for MuJoCo. The policy uses a simple feedforward
neural network with two hidden layers of size 64 and Tanh activations.

Regarding Minigraid, we followed the setup described in Dennis et al. (2020), which utilizes a
teacher agent with 128 convolution filters, an entropy regularization coefficient of 0.0, and a student
episode length of 250. All agents employed a convolution kernel size of 3, an LSTM size of 256,
two fully connected layers of size 32 each, and a fully connected layer of size 10, which inputs the
timestep and connects to the LSTM.

For CarRacing, in order to encode the sketch mentioned above, two 2× 2 convolutions with a stride
length of 1 are used, with 8 and 16 channels respectively, each followed by a ReLU layer. The
flattened outputs from these convolutions are concatenated with an 8-dimensional embedding of the
time step and a 16-dimensional random noise vector. This combined embedding is then fed through
two fully connected layers, with a hidden size of 256 for each, where the first layer is followed by a
ReLU activation, resulting in policy logits over the 100 possible control point choices. It should be
noted that any cells in the sketch that have already been selected are masked out to prevent duplicate
selection of the same control point.

The student agent is composed of an image embedding module that uses a stack of 2D convolu-
tions with square kernels of sizes 2, 2, 2, 2, 3, 3, channel outputs of 8, 16, 32, 64, 128, 256, and stride
lengths of 2, 2, 2, 2, 1, 1 respectively. The resulting image embedding is 256-dimensional. This em-
bedding is then processed by a fully connected layer with a hidden size of 100, followed by a ReLU
layer. The output of the ReLU layer is then passed through two separate fully-connected layers,
each with a hidden size of 100 and output dimension equal to the action dimension. Softplus acti-
vations are applied to the output of each fully connected layer, and we add 1 to each component of
the resulting two output vectors. These vectors serve as the α and β parameters respectively for the
Beta distributions used to sample each action dimension. During training, rewards are normalized
by dividing rewards by the running standard deviation of the returns encountered so far.

For a list of hyperparameters for each experiment please see Table 4. Additionally, some of the
hyperparameters for the baselines can be found in references such as (Dennis et al., 2020; Jiang
et al., 2021b;a; Parker-Holder et al., 2022).
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Table 4: Hyperparameters used for training each method in the BipedalWalker, Minigrid, and Car-
Racing environments

Parameter BipedalWalker MiniGrid CarRacing

PPO
γ 0.99 0.995 0.99
Λgae 0.9 0.95 0.9
PPO rollout length 2048 256 125
PPO epochs 5 5 8
PPO mini-batches per epoch 32 1 4
PPO clip range 0.2 0.2 0.2
PPO number of works 16 32 16
PPO update 10000 20000 1800
Adam learning rate 3e-4 1e-4 3e-4
Adam ϵ 1e-5 1e-5 1e-5
PPO max gradient norm 0.5 0.5 0.5
PPO value clipping no yes no
return normalization yes yes yes
value loss coefficient 0.5 0.5 0.5
student entropy coefficient 1e-3 0.0 0.0
generator entropy coefficient 1e-2 0.0 0.0
scoring function positive value loss positive value loss positive value loss
replay probability 0.5 0.5 0.5
buffer size, K 128 256 256
level replay score transform rank rank power
Temperature, β 0.1 0.3 1
diversity coefficient 0.5 0.3 0.5
diversity score transform power power power

21



Under review as a conference paper at ICLR 2024

Figure 14: Performance on test environments during training In the BipedalWalker environment.
Here MBeDEDr considers only representative states when selecting Sθ for level θ, while MBe-
DEDi considers only the important observed states. DED and DEDMBe use a randomly generated
environment teacher, and DED approximates the learning potential using GAE, DEDMBe approxi-
mates it using the marginal benefit of level θ. MBeED is a version only considers marginal benefit.

Figure 15: Zero-shot transfer performance on the OOD F1 tracks: Vanilla, Italy and Germany. We
show that MBeED demonstrates strong performance when compared to the baseline methods.

Figure 16: Performance on test environments during training. MBeDED against other baselines.
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