
RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Xinnuo Xu * 1 Rachel Lawrence * 1 Kshitij Dubey * 2 Atharva Pandey * 2 Risa Ueno 1 Fabian Falck 1

Aditya V. Nori 1 Rahul Sharma 2 Amit Sharma 2 Javier Gonzalez 1

Abstract

Recent Large Language Models (LLMs) have re-
ported high accuracy on reasoning benchmarks.
However, it is still unclear whether the observed
results arise from true “reasoning” or from statisti-
cal recall of the training set. Inspired by the ladder
of causation (Pearl, 2009) and its three levels (as-
sociations, interventions and counterfactuals), this
paper introduces RE-IMAGINE: a framework to
characterize a hierarchy of reasoning ability in
LLMs, alongside a scalable pipeline to generate
problem variations across all the levels of the hi-
erarchy. By altering problems in an intermediate
symbolic representation, RE-IMAGINE generates
arbitrarily many problems that are not solvable
using memorization alone. The framework is gen-
eral and can work across reasoning domains, in-
cluding math, code, and logic. We demonstrate
the type of insights that RE-IMAGINE can gener-
ate on four widely-used benchmarks, which we
use to evaluate reasoning on several families of
LLMs. We observe reductions in performance
when the models are queried with problem vari-
ations. These assessments indicate a degree of
reliance on statistical recall for past performance,
and open the door to further research targeting
skills across the reasoning hierarchy.

1. Introduction
Recent advancements in Artificial Intelligence (AI) have
sparked increasing interest in the development of reasoning
systems. Central to this goal are Large Language Models
(LLMs) – models like OpenAI’s o1 (Jaech et al., 2024), o3
(OpenAI, 2024), or DeepSeek-R1 (Team, 2025) show com-
plex problem-solving abilities, and demonstrate unprece-

*Equal contribution 1Microsoft Research Cambridge, UK
2Microsoft Research India, India. Correspondence to:
Xinnuo Xu <xinnuoxu@microsoft.com>, Rachel Lawrence
<rachel.lawrence@microsoft.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

dented results on reasoning benchmarks, e.g. FrontierMath
(Glazer et al., 2024) and ARC-AGI (Chollet et al., 2024).
With growing reliance on LLMs across wide-ranging appli-
cations, it is increasingly important to clarify the strengths
and limitations of these apparent reasoning abilities.

Reasoning is a cognitive process. It involves using facts or
premises to make inferences about conclusions or judgments
(Holyoak & Morrison, 2005). In the realm of LLMs and
AI, reasoning is understood to be the ability of a model
to demonstrate logically correct systematic processes that
surpass mere statistical pattern recognition in the training
set (González & Nori, 2024).

Traditionally, the evaluation of reasoning in LLMs has been
focused on their performance across fixed benchmarks in
domains such as math (Cobbe et al., 2021), programming
(Wu et al., 2024; Gu et al., 2024), real-world logic (Jin et al.,
2023a) and others (Wang et al., 2019; Hendrycks et al., 2020;
Srivastava et al., 2022). However, debate persists on whether
the observed results occur from genuine reasoning or from
mere statistical recall of training data (Mitchell & Krakauer,
2023) – particularly for training data which, in the case
of published benchmarks, may have information leakage
from the test set (Zhou et al., 2023). Defining principled
ways to make this distinction is crucial for advancing AI
and controlling potential hazards and risks (Weidinger et al.,
2021).

Recently, several surveys have explored how to evaluate
reasoning beyond memorization in LLMs (Xu et al., 2025;
Huang & Chang, 2023). In general, two main approaches
have emerged. One aims to develop novel reasoning tasks
such as mystery blocksworld (Webb et al., 2024), ARC-
AGI (Chollet et al., 2025), and others (Zhu et al., 2023). An
alternative is to create novel variations of existing bench-
marks, e.g. for math (Mirzadeh et al., 2024; Srivastava et al.,
2024), analogies (Lewis & Mitchell, 2024), and diverse
tasks across code, math, and logic (Wu et al., 2023; Zhang
et al., 2024). A common strategy for creating such variations
involves leveraging symbolic representations of problems
such as functional templates (Mirzadeh et al., 2024; Srivas-
tava et al., 2024), reasoning or causal graphs (González &
Nori, 2024; Hüyük et al., 2024; Yang et al., 2024), planning
tasks (Valmeekam et al., 2022) or code (Li et al., 2024).

1

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Level Description Examples Evaluation metric(s) References

1. Observe Original problem.
Problems in GSM8K,
CLadder, CRUXEval

Loop
Task performance (original).

Cobbe et al. (2021)
Jin et al. (2023a)

Kamath et al. (2024)
Gu et al. (2024)

2. Mutate
Mutated problem by
replacing or adding

components.

Replacing numeric value,
changing variable name,

modifying operator,
irrelevant information

Task performance
(original and mutated).

Mirzadeh et al. (2024)
Srivastava et al. (2024)

Wu et al. (2023)
Lewis & Mitchell (2024)

3. Imagine

Original problem augmented
with an ‘imagine’ statement,

modifying the original statements
or assertions before it.

Extra logic involving revisions
or counterfactual statements.

Task performance
(original and augmented)

PN and PS
(only in counterfactuals).

González & Nori (2024)
Hüyük et al. (2024)

Table 1. Hierarchy of problem variations introduced in the RE-IMAGINE framework to evaluate LLMs. Level-1 (observe) captures the
accuracy of LLMs to solve problems in existing benchmarks. These benchmarks may have been observed by the LLMs in current
or similar form. Level-2 (mutate) captures the ability to solve problem variations. Level-3 (imagine) captures the ability to correctly
incorporate new logic into existing problems, even when this logic contradicts the original components. In certain cases, the new logic can
be understood as a counterfactual statement (Pearl, 2009).

Despite the introduction of various benchmark variations
aimed at assessing LLMs’ reasoning abilities, these varia-
tions have been developed in an ad hoc manner, lacking a
systematic hierarchy. Moreover, most existing approaches
rely on significant manual effort and are designed for spe-
cific tasks, making them difficult to scale across multiple
benchmarks and tasks. For instance, in Mirzadeh et al.
(2024); Srivastava et al. (2024), functional templates for
simple math problems in the GSM8K benchmark (Cobbe
et al., 2021) are manually created, restricting the analysis to
only 100 new templates.

Inspired by Judea Pearl and his ladder of causation (Pearl,
2009), our work expands on the traditional way to evalu-
ate reasoning. Pearl asserts that: “Only machines that can
correctly perform correlations, interventions and counter-
factuals will have reasoning abilities comparable to humans.”
Following this principle, we present a new framework, RE-
IMAGINE, to characterize a hierarchy of reasoning abilities
in LLMs, alongside an automated pipeline to guarantee
scalable evaluations in each level of the hierarchy.

RE-IMAGINE generalizes, expands and scales up evaluation
of LLM reasoning by means of an pipeline with three core
components:

(i) A language-to-code model that converts each bench-
mark question into a symbolic (code) representation.

(ii) A set of mutations of the symbolic representation that
creates an ‘executable’ variation of the problem.

(iii) A code-to-language component that translates the gen-
erated symbolic problems back into natural language.

The intermediate executable symbolic representation en-
sures that correct outcomes can be calculated automatically
from the mutations. This approach generates a diverse set
of “unseen” variations of existing, well-established bench-
marks, providing novel challenges for LLMs.

RE-IMAGINE enables us to reinvent the standard approach

to evaluating reasoning in LLMs. As our experiments show,
benchmarks across domains such as math, code, and logic
can be systematically transformed using the same principles,
generating challenging new scenarios that are unlikely to
appear in the LLMs’ pre-training data. Our findings indi-
cate that all tested LLMs exhibit some degree of reliance
on statistical recall, while problems at higher levels in the
reasoning hierarchy remain a yet-unsolved challenge.

Contributions. This paper presents three major contribu-
tions, corresponding to each of the following sections:

In Section 2, we propose a hierarchical framework to charac-
terize existing and new approaches for evaluating reasoning
in LLMs. The proposed hierarchy has three levels of increas-
ingly difficulty that capture different levels of reasoning
via variations of the problems of existing, well-established
benchmarks.

In Section 3, we propose an end-to-end, scalable pipeline
that allows the generation of an arbitrary number of new
problems in each level of the hierarchy. This is crucial to
scale up current approaches that require the manual genera-
tion of new scenarios.

In Sections 4-5, we use RE-IMAGINE to re-analyze the rea-
soning abilities of all models in the GPT (Brown et al.,
2020), Llama (Touvron et al., 2023), and Phi families
(Kambhampati et al., 2024). We focus on four reasoning
benchmarks: GSM8K for math (Cobbe et al., 2021), CLad-
der for causality (Jin et al., 2023a), and CRUXEval (Gu
et al., 2024) and Loop (Kamath et al., 2024) for code. We
show consistent decline in LLM performance as reasoning
complexity increases across all evaluated benchmarks.

Novelty. This paper introduces two major innovations:

The unified 3-level reasoning hierarchy presented in this
paper incorporates both previously studied mutations and
the newly introduced ones. According to this hierarchy, we
highlight that prior research has mainly focused on Level-2
mutations, which assess a model’s ability to generalize be-

2

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Figure 1. Top: The benchmark transformation pipeline (Section 3) outlined with an example from GSM8K (Cobbe et al., 2021). This
pipeline leverages the symbolic representation of the question (a Python snippet form) to automatically transform a math QA problem
(leftmost) into a similar format with additional reasoning steps (rightmost). Bottom: To clearly define the mutations, we transform the
symbolic representation into a computational graph (leftmost). Nodes represent variables from the symbolic representation, and edges
illustrate the dependencies between them. The remaining six graphs depict the different types of mutations (see Section 3.2). E, B, M, R,
P, and S represent variable eggs, breakfast eggs, muffin eggs, reminder, price, and sales, respectively. The yellow highlights indicate the
modifications made relative to the original versions. Red nodes represent binary values, while all other nodes are numerical.

yond existing benchmarks while maintaining the original
reasoning path of the questions. In contrast, we empha-
size that the Level-3 mutations introduced in our work are
significantly more challenging.

Alongside the reasoning hierarchy, we introduce – to the
best of our knowledge – the first scalable mutation gen-
eration pipeline that applies across multiple benchmarks
and tasks. This framework enables the creation of an arbi-
trary number of mutations at each level of the hierarchy for
existing benchmark problems.

A detailed comparison with previous studies can be found
in Table 4 in Appendix B.

2. RE-IMAGINE: The Ladder of Reasoning
Inspired by the ladder of causation (Pearl, 2009), we system-
atically define a three-layer hierarchy (‘observe’, ‘mutate’,
‘imagine’) that characterizes different levels of reasoning
abilities in LLMs, in the same way that the ladder of causa-
tion captures three different cognition skills. This allows us
to characterize and compare the goals of different evalua-
tion experiments with precision, both new and existing. A
summary of the three levels is presented in Table 1.1

• Level-1 (“Observe”) captures the accuracy (or other met-
ric of interest) of LLMs on existing benchmarks. It is
called observe because it is expected that an LLM which

1We provide a more detailed explanation of the fundamental
connection between our hierarchy and causality in Appendix C.

has already seen training-set problems similar to the ones
in the benchmark should be able to produce high accuracy.

• Level-2 (“Mutate”) captures the ability of LLMs to solve
problems that have been mutated by, for example, adding
irrelevant information, renaming values, or changing val-
ues. It tests the ability of models to generalize beyond the
existing benchmarks in cases where the core logical re-
quirements of the questions are preserved. Several works
have proposed approaches that sit in this level (Mirzadeh
et al., 2024; Srivastava et al., 2024; Wu et al., 2023; Lewis
& Mitchell, 2024), which are based on manually created
functional variations of the original problems. The results
in such variations highlight memorization and over-fitting
issues. For a true reasoning model, the task performance
should be invariant w.r.t. the class of changes in this level.

• Level-3 (“Imagine”) is the topmost and most sophisti-
cated level. It captures the models’ ability to correctly
incorporate new information and logic into existing prob-
lems. Given a problem defined by a set of logical predi-
cates or facts, this variation augments the original problem
with an additional predicate that changes some previously
stated one. Correctly incorporating new logic requires
an accurate (explicit or implicit) representation of the
steps required to solve the problem, as well the ability to
contradict and revise prior knowledge. Counterfactual as-
sessments (González & Nori, 2024) sit on this level of the
hierarchy. Task performance metrics and counterfactual
related metrics like the probability of necessity (PN) and
sufficiency (PS) can be used in this level as in (González

3

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

& Nori, 2024).

Next, we detail how to use the problems from benchmarks
in Level-1 to create novel problems in Level-2 and Level-3.

3. Benchmark Synthesis Pipeline
We present a unified benchmark synthesis pipeline that auto-
matically generates variations of existing benchmarks, pre-
serving the core logic of the task while demanding stronger
reasoning abilities to solve.

We illustrate the pipeline with a real example from the
GSM8K benchmark, presented in the top row of Figure 1.
Starting with a sample from the existing dataset, we first
convert the question into executable symbolic form, e.g.
code, knowledge graph (1⃝ in Figure 1). In line with Tosh-
niwal et al. (2024), we represent the math question as a
Python code snippet. Next, we apply a specific type of mu-
tation to the symbolic representation (2⃝). In this example,
we overwrite the value of the variable muffin eggs in the
code. To maintain the core logic of the task – a natural
language-based math question-answering (QA) problem –
we translate the change in the symbolic representation back
into natural language (NL) and incorporate it into the origi-
nal question (3⃝). Due to the executable nature of the Python
code, the ground-truth answer for the mutated question can
be obtained by running the modified code snippet (4⃝).

Note that although Figure 1 illustrates all the elements in
the pipeline, not all of them will be necessary for every
benchmark of interest. A summary of the required steps
for the benchmarks discussed in this paper is provided in
Table 2. Similarly, not all mutations are applicable to every
problem, and additional mutations beyond those listed in
Figure 1 can also be considered.

3.1. NL-to-Symbolic (1⃝) & Symbolic-to-NL (3⃝)

Steps 1⃝ and 3⃝, corresponding to transformations from
NL to Symbolic and Symbolic to NL respectively, are non-
trivial. Benchmarks that have original problems already in
code form (e.g. Loop and CRUXEval) do not require these
steps. When they are required, they need some level of
adaptation to the nature of the benchmark. Details for these
two steps are provided in Section 4.

3.2. Symbolic Mutations (2⃝)

We showcase six code mutations spanning the Level-2 and
Level-3 reasoning levels to create benchmark variations. To
thoroughly define the mutations in 2⃝, we first convert the
symbolic representation into a computational graph (left-
most column in the bottom row of Figure 1). Nodes rep-
resent variables in the symbolic representation and edges
capture their dependencies. The mutation applied to the
computational graph is then reflected in the symbolic repre-

sentation and translated into NL. The remaining six columns
in Figure 1 illustrate mutation variations.

Level-2 mutations

• SampleValues assigns new values to all root nodes. When
translating the mutation back to NL, only the values in
the question are replaced with the new ones, while the
rest of the narration remains unchanged. This mutation
specifically aims to differentiate the model’s reasoning
ability from memorization caused by data contamination.

• UselessInfo adds a new node dependent on a randomly
selected node from the original graph, with the change de-
scribed in NL between the context and the question. This
introduces additional context, but does not alter original
statements or impact the correct answer. This assesses the
model’s ability to disregard irrelevant information.

Level-3 mutations

• AddDependence also introduces a new node into the
graph. However, unlike UselessInfo, a randomly selected
node from the original graph is modified to depend on the
new node for its calculation. This is likely to influence the
correct answer to the question. A natural way to encode
this mutation in NL is to append a statement to the end
of the original question, amending the original statement
context, making this a Level-3 mutation.

• InsertConditional adds a new node that connects two
non-adjacent nodes in the graph, with edges linking the
first node to the new node and the new node to the second
node. In symbolic terms, this mutation is represented as
an if-else condition. Two variables are randomly chosen,
and one variable’s value is set to 0 depending on the
value of the other. Describing this in NL as a change to
the previous method of calculating the variable, it also
becomes a Level-3 mutation.

• CounterFactual randomly selects a node in the graph and
overwrites its value. Unlike SampleValues, this mutation
does not directly replace the number in the question. In-
stead, it presents the change as an assumption statement
appended to the original question. Thus, it modifies an
existing statement in the context and adds an extra rea-
soning step to the original question, making it a Level-3
mutation.

• Bi-CounterFactual builds on CounterFactual to evaluate
the model’s ability to connect the presence or absence of
a cause with its effect, an essential reasoning skill from
the perspective of causation (Neuberg, 2003; Halpern &
Pearl, 2005). Previous work (González & Nori, 2024;
Hüyük et al., 2024) quantitatively evaluates this through
necessity and sufficiency inconsistency rates (N-IR and
S-IR), but relies on manually crafted questions and their
counterfactuals. In contrast, our scalable pipeline unlocks

4

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Benchmark Type Input Output Required Steps
GSM8K Mathematics QA NL math question Numerical answer 1⃝ 2⃝ 3⃝ 4⃝
CLadder Causal QA NL causal query Y/N answer 1⃝ 2⃝ 3⃝ 4⃝
CRUXEval Code understanding Python function and input Execution output 2⃝ 4⃝
Loop Loop invariant inference C Code and an assertion Y/N answer 2⃝ 4⃝

Table 2. A summary of the steps used in GSM8K (Cobbe et al., 2021), CLadder (Jin et al., 2023a), CRUXEval (Gu et al., 2024), and Loop
(Kamath et al., 2024). Since the inputs for both CRUXEval and Loop are code snippets, steps 1⃝ and 3⃝ are not required.

large-scale analysis. In Bi-CounterFactual, the compu-
tational graph is treated as a Structural Causal Model
(SCM), where the overwritten node acts as the cause and
the final answer (leaf node) serves as the effect. Specifi-
cally, Bi-CounterFactual requires binary cause and effect
nodes, with the overwritten value ensuring a change in
the cause statement’s presence or absence.

In the next two sections, we apply our automatic bench-
mark synthesis pipeline to the math reasoning benchmarks
GSM8K and CLadder (Section 4) and the code understand-
ing benchmarks CRUXEval and Loop (Section 5).

4. Math Benchmarks: GSM8K and CLadder

This section first details the benchmark transformation pro-
cess for GSM8K and evaluates its quality (Section 4.1).
We then analyze model accuracy on numerical math ques-
tions using the first five mutations outlined in Section 3.2,
excluding Bi-CounterFactual (Section 4.2). Since Bi-
CounterFactual involves binary questions and is primarily
assessed with causation metrics, it is discussed separately
in Section 4.3. Section 4.4 demonstrates that the findings
from GSM8K extend to CLadder, another math reasoning
benchmark focused on probabilities and causality.

4.1. Transformation Pipeline

Question to Symbolic Representation 1⃝ Toshniwal
et al. (2024) introduced OpenMathInstruct, whose valida-
tion set contains 970 GSM8K QA examples paired with
Python solutions generated by Mixtral-8x7B (Jiang et al.,
2024). We construct our test set by filtering out examples
where the Python solution execution does not match the
ground-truth answers. To ensure high-quality mutations, we
further filter the data to keep only those where all constant
variables in the code (root nodes in the computational graph)
align with the numbers in the question and vice versa.2

Symbolic Representation to Mutation 2⃝ We incorpo-
rate all six types of mutation described in Section 3.2. Since
most GSM8K questions are framed within a story context,
we ensure that newly sampled values for existing variables
align with the original value’s type (float/integer) and sign
to preserve the story’s coherence. Within this constraint,

2We account for commonsense numerical facts, such as one
year having 12 months, and one hour containing 60 minutes.

integers are sampled from a discrete uniform distribution,
while floats are drawn from a uniform distribution centered
around the original value. We also ensure that the final
answer maintains the same type and sign as the original
ground-truth answer.

Mutated Symbolic to NL 3⃝ In the SampleValues mu-
tation, only the values in the questions are replaced with
newly sampled ones, while the rest of the narrative stays the
same, so no new NL descriptions are required. For the other
mutation types, we provide the original math question, its
Python solution, and the code modifications to a LLM (GPT-
4o), leveraging its text generation capabilities to describe
the code changes in natural language. To guarantee the
symbolic-to-NL translation is correct, we prompt GPT-4o
a second time to back-translate the mutated math problem
into Python by modifying the original question’s Python
solution. The generated code must produce an execution
result that matches the ground truth answer of the mutated
question. (Detailed prompts are shown in Figure 17 and
Figure 16 in Appendix E.)

To verify the accuracy of the mutated QA pairs, we man-
ually reviewed 50 randomly selected examples from each
mutation type. Valid examples are the ones that contain
a clearly defined question and a correct ground-truth an-
swer. The percentage of invalid QA pairs in SampleValues,
UselessInfo, CounterFactual, AddDependence, and Insert-
Conditional were 3.33%, 0.00%, 6.67%, 5.00%, and 5.00%,
respectively.

4.2. Reasoning on Numerical Math QA

In line with previous studies, during testing, all models are
provided with 8 in-context examples with Chain-of-Thought
(CoT) to help them understand the task (prompt shown in
Figure 18 in Appendix E).3 We evaluate models from three
popular families—Phi, Llama, and GPT (see Table 3 in
Appendix A for details).

The answer accuracies are presented in Figure 2, with the
percentage of invalid mutated examples in each mutation
category displayed as a hashed block above each bar. By
assuming that models would correctly answer these ques-
tions if the QA pairs were valid, this estimation serves as an

3We follow this blog post to strengthen our prompt.

5

https://andrewmayne.com/2024/10/18/can-you-dramatically-improve-results-on-the-latest-large-language-model-reasoning-benchmark-with-a-simple-prompt/

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Figure 2. GSM8K results summary: model accuracy on numerical answer predictions across test set variations in different reasoning levels
(see Section 3.2 and Figure 1). Due to potential noise from the automatic mutation process, we performed a human evaluation on the
mutated test set. We added the percentage of invalid examples in each mutation category to the top of each accuracy bar as hashed blocks,
assuming that if these QA pairs were correct, the models would answer them correctly. This provides an upper bound on the model’s
performance. We also present a box plot (see Figure 10 in Appendix E) to illustrate the statistical accuracy across 10 sets of samples.

upper bound on the model performance.

Key findings are: (1) With 8-shot in-context examples, most
of the models achieve high accuracy (∼ 95%) on the Level-
1 raw test set. (2) Among Level-2 mutations, UselessInfo is
less challenging—especially for larger models—indicating
their ability to ignore irrelevant details. However, nearly all
models experience around 10% accuracy drop on Sample-
Values, despite unchanged reasoning paths and only altered
values. (3) Level-3 mutations pose a greater challenge, with
models showing significantly lower upper-bound perfor-
mance than on Level-1 and 2 test sets.

We also conduct ablation experiments to examine per-
formance on test set containing multiple mutations (Ap-
pendix E.3). We found that composing mutations increases
performance gap between the mutated and the original sets.

4.3. Reasoning Evaluation with Binary Counterfactuals

Bi-CounterFactual as described in Section 3.2 creates two
auxiliary nodes in the computation graph with binary ver-
sions of a condition and an outcome. The reason for consid-
ering this problem transformation is that it allow us to com-
pute metrics that are relevant to evaluate reasoning beyond
accuracy. As shown in González & Nori (2024); Hüyük
et al. (2024), this scenario enables the computation of the
probabilities of necessity (PN) and sufficiency (PS) from
the counterfactual literature (Pearl et al., 2000). Intuitively,
these measures capture the probability of activating/deacti-
vating a binary outcome in the presence/absence of a binary
input. Although this restricts our analysis to the simplified
(binarized) version of the GSM8k introduced by the Binary
Counterfactual mutations, we compute these metrics due to
their intrinsic value.

The ground truth PN and PS varies across problems and
nodes. To give a benchmark-level measure of how well
different models approximate them, we use the necessity

Figure 3. Sufficiency/necessity inconsistency rates (S-IR/N-IR) on
GSM8K factual/counterfactual test set. Models located near the
bottom-left corner are thought to predict the causal relationship
between the cause and effect, i.e. sufficient and necessary, in a
way that is consistent with the true causal relationship, as defined
by the ground truth.
and sufficiency inconsistency rates (N-IR, S-IR) introduced
in Hüyük et al. (2024), which account for the errors in the
approximation of these measures in a normalized way (an
optimal reasoning LLMs is one with N-IR = 0 and S-IR
= 0). Because obtaining N-IR and S-IR is computationally
expensive, we used 50 questions from the validation set of
the benchmark, where the condition node was randomly
sampled across the available leaf nodes. To obtain these
results, we follow the same setup as in Hüyük et al. (2024).

Figure 3 shows the average S-IR and N-IR for all models
across 50 random examples. Consistent with the numerical
accuracy evaluation, GPT-o1 remains the best-performing
model, while Llama 8B models, GPT-3.5, and GPT-4 are
at the other end of the spectrum. However, GPT-4o and
Llama 70B outperform phi3-small and phi3-mini in the
causal reasoning evaluation.

4.4. Similar Findings on CLadder

To confirm that our findings in GSM8K generalize to other
math reasoning benchmarks, we use the transformation
pipeline (Section 3) to automatically generate three test
set variations for CLadder, a causal reasoning benchmark.

6

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Figure 4. Left: An example from CLadder test set and its Counter-
Factual mutation. Right: CLadder accuracy of the best-performing
model in each family on causal question answering across test
set variations at different reasoning levels. The full results can be
found in Figure 21 in Appendix F. UnRelatedIrrelevantInfo and
RelatedIrrelevantInfo are categorized as UselessInfo per Figure 1.

We examine three mutations UnRelatedIrrelevantInfo, Re-
latedIrrelevantInfo, and CounterFactual, with the first two
classified under UselessInfo (see Figure 1 and Section 3.2).
Details on the benchmark, implementation, LLM prompts,
and mutation specifics are provided in Appendix F. The
accuracy of the best-performing model in each family is
shown in Figure 4. Similar to our observations in GSM8K,
Level-3 mutations present a greater challenge than Level-2,
causing models to exhibit an approximately 20% drop in
accuracy relative to the original test set. Models exhibit
lower accuracy on test set variations composed of two types
of mutations (Figure 21 in Appendix F).

5. Code Benchmarks: CRUXEval and Loop

We investigate two code understanding tasks: input/output
prediction (CRUXEval) and automatic inference of loop
invariants (Loop).

The CRUXEval benchmark (Gu et al., 2024) consists of 800
short LLM-generated Python functions alongside an input-
output pair for each function (see Figure 5 for an example).
The model’s task is to predict the output of the function
when evaluated on a given input parameter. Functions are
filtered to include only those with low computation and
memory requirements, with no side-effects or randomiza-
tion, and excluded arithmetic calculation.

The Loop benchmark (Kamath et al., 2024) contains loop
invariant inference tasks, each of which consists of a pro-
gram with a loop and an assertion (see Figure 6 for an
example). The goal is to infer a predicate that satisfies the
following three conditions: it holds before the loop starts
executing, holds for each iteration of the loop, and implies
the assertion when the loop exits.4 The model succeeds

4Although inferring such loop invariants is undecidable, in
practice, checking whether a given candidate invariant satisfies the
three conditions can be done well by automated software verifica-
tion tools like Frama-C (Correnson et al.).

Figure 5. Left: An example from CRUXEval dataset and the Level-
2 and Level-3 versions of its MutateValue mutation. Right: CRUX-
Eval accuracy of the best-performing model in each family. Full
results can be found in Figure 23 of Appendix G.

on the task if Frama-C (Correnson et al.) verifies via SMT
solvers (de Moura & Bjørner, 2008) that the LLM output is
a loop invariant, and fails otherwise (details in Appendix H).

Since both tasks are already programs, steps 1⃝ and 3⃝ of
the pipeline are not required.

5.1. Symbolic Mutations to CRUXEval 2⃝

Each CRUXEval mutation can be applied either directly to
the function code (Level-2), or presented as a code diff in
an “imagine” statement following the original code (Level-
3). The Level-2 versions, in particular, are designed to
have minimal effect on code length, execution time, and
overall question difficulty. Table 6 in Appendix G shows the
different types of mutations implemented for CRUXEval,
summarized below.

• Replace Operator replaces an operator of type
ast.BinOp, ast.UnaryOp, ast.BoolOp, or
ast.AugAssign with its inverse or negation, where
applicable.

• Mutate String replaces a string instance with a uniformly
random character sequence of the same length.

• Mutate Value changes the value of an instance of type
bool, int, or float. Booleans are replaced with their
negations; integers / floats are perturbed by a uniformly
random nonzero integer / float (respectively) in [−10, 10].

• Swap Conditional selects a random conditional node for
modification. If both an if and else branch are present,
the code body for each branch is swapped. If only an if
branch is present, the condition of the branch is negated.

• Redefine Function defines a wrapper for a random non-
attribute function, and replaces a call to the original func-
tion with a call to the wrapper.

A subsequent validation pass permits only code which ter-
minates and returns a value within 5 seconds without er-

7

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Figure 6. Left: An example from Loop dataset and its Read Orig-
inal mutation. Right: Loop concise results – accuracy of the
best-performing model in each family. Full results can be found in
Figure 25 of Appendix H.

rors. Code transformations for CRUXEval are deterministic,
since for any validated program, the output of the code on
the provided inputs is taken to be ground truth. See Ap-
pendix G for additional implementation detail.

5.2. Symbolic Mutations to Loop 2⃝

Unlike earlier benchmarks, applying substantial mutations
to Loop tasks is more challenging. After changing the values
of the program variables, loop invariants can cease to exist.
Hence, we limit ourselves to Level-2 mutations that add
irrelevant information in the form of additional variables and
operations, leaving the values of variables from the original
program unaffected. Table 7 of Appendix H describes these
mutations, summarized below.

• Junk Hint adds five new variables junk_0, junk_1,
etc., to the program (Si et al., 2018). Before the loop,
they are initialized with randomly generated constants.
Within the loop body, each new variable is updated with
arithmetic expressions over randomly generated constants
and the new variables.

• Junk No-Hint assigns names to the new variables that
resemble those in the original program. This aims to
prevent LLMs from identifying variables with junk in
their name as unnecessary.

• Read Original reads the original variables of the code
into the newly introduced ones. Original variables and op-
erators are randomly sampled and added to new variables.

• Write Original introduces superficial additional writes to
the original variables, i.e. they leave the values taken by
these variables at runtime unaffected. For a new variable
y, existing variables are incremented by an identically
zero polynomial f(y). To further obscure the underly-
ing identity, polynomial coefficients are decomposed and
rearranged.

• X-Original applies both Read and Write Original.

Although the mutated programs are syntactically larger, all
mutations described above have the property that the loop

invariant of the original program is also a valid loop invariant
for the mutated program.

5.3. Model Performance

Zero-shot accuracy on CRUXEval tasks are summarized
in Figure 5. 5 Overall, accuracy scores decrease for both
Level-2 and Level-3 mutations compared with factual prob-
lems, with Level-3 posing the greatest challenge. The drop
in performance on Level-2 mutations is a particularly strong
indication of memorization effects from benchmark leakage,
as these mutations intentionally introduce minimal change
to the execution complexity and corresponding code under-
standing skills. Notably, the original CRUXEval benchmark
is publicly available and LLM-generated, both of which
provide potential leakage pathways.

Evaluations on Loop tasks are summarized in Figure 6 (for
evaluation with all models, see Figure 25 in Appendix H).
Smaller models show performance degradation on introduc-
ing junk named variables. The performance decline from
“Junk Hint” to “Junk No-Hint” shows that LLMs use vari-
able names as semantic cues. The “X-Original” mutations
confuse all models and significantly degrades their success
rates compared to the original tasks.

6. Ablation Study and Discussion

We further evaluate the models’ reasoning abilities through
two ablation experiments: (1) to determine whether the
performance drop on mutated questions stems from the
mutations themselves or from the additional reasoning com-
plexity introduced by some mutations; and (2) to assess
the impact of in-context learning examples on the models’
reasoning performance.

6.1. The Influence of Reasoning Complexity

We use GSM8K as a testbed for our analysis. Following Ye
et al. (2025), we quantify the complexity of a numerical rea-
soning question by the number of reasoning steps, defined
as the number of operations in its code solution. By this
measure, all mutated questions introduce one additional rea-
soning step compared to their original counterparts, except
for those in the SampleValues category. Notably, while Use-
lessInfo questions also include an extra reasoning step, this
step does not affect the final answer, so we still categorize
UselessInfo as a Level-2 mutation. Using this definition, we
compute the average accuracy of each model across exam-
ples with different numbers of reasoning steps. Given the
large number of models tested, we aggregate their results

5Each mutation type applies only to a subset of the questions
in CRUXEval, so we also evaluate performance on each mutation
with respect to the corresponding (factual) subset of problems (see
Figure 24 in Appendix G).

8

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Figure 7. We analyze model performance across varying numbers
of reasoning steps in the GSM8K benchmark. The x-axis rep-
resents the number of reasoning steps, defined as the number of
operations in the code solution. The plot aggregates the perfor-
mance of all tested models. Detailed results for each model are
provided in Figure 15 in Appendix E.5.

and report the overall average accuracy in Figure 7. Detailed
per-model results are in Figure 15 in Appendix E.5.

From Figure 7, we draw two key observations: (1) even
when controlling for the number of reasoning steps, mod-
els consistently perform worse on mutated questions than
on the original test set; and (2) Level-3 mutations pose a
substantially greater challenge than Level-2. Notably, the
accuracy on Level-3 mutations with just three reasoning
steps is significantly lower than on original test examples
requiring seven reasoning steps. These findings suggest that
the primary cause of performance degradation on mutated
questions is the mutations themselves, rather than the added
reasoning complexity.

6.2. The impact of in-context examples

Following previous studies, the 8-shot in-context examples
used in the GSM8K experiments in Section 4 are randomly
sampled from the original training set. Here, we further
investigate whether including mutated examples in the in-
context examples can improve model performance on the
generated test set variations. As shown in Figure 8, we find
that most models achieve significantly higher accuracy on
the test variations when given both original and mutated
examples, compared to using only original GSM8K exam-
ples or only mutated examples as in-context examples. A
detailed explanation of the experiment, including additional
results and full prompt examples, is in Appendix E.2.

7. Conclusion
This work presents a novel framework, RE-IMAGINE, de-
signed to assess the reasoning capabilities of LLMs through
the systematic generation of challenging problem variations.
Our findings reveal a consistent decline in model perfor-
mance as reasoning complexity increases across all evalu-
ated benchmarks. On our mutated GSM8K benchmark, we

Figure 8. Models’ performance when prompted with different
types of in-context examples. We summarize model performance
across two dimensions: the average accuracy across all mutated
test sets and the original test set (x-axis), and the standard devi-
ation in accuracy on the five mutated test sets w.r.t. the raw test
set (y-axis). The bottom-right corner reflects the ideal balance of
high performance on both raw and mutated sets. In this plot, dots
indicate models prompted only with original examples, crosses
represent models prompted only with mutated examples, and trian-
gles denote models prompted with both original and corresponding
mutated examples. Model structures are differentiated by color,
with the same model represented by the same color.

find that the overall performance of all LLMs degrades with
increasing ladder levels. The o1 model shows greater robust-
ness on this benchmark and achieves the best performance
among all tested models on bi-counterfactuals. However,
even the most powerful models struggle with structured
problem variations, particularly when these variations are
combined. Similar results were observed on CLadder.

Additionally, we successfully applied RE-IMAGINE to mu-
tate code benchmarks Loop and CruxEval. Despite the
mutations being designed to have minimal effect on code
length, execution time, and overall question difficulty, a
substantial decline in performance is again observed across
models and problem variations. This lends additional evi-
dence that these models struggle with higher levels of the
reasoning hierarchy, suggesting that gaps in their capabil-
ities may be hidden by effects such as memorization and
benchmark leakage.

In addition to the models discussed in previous sections, we
report results for other popular models in Appendix D. The
conclusions are found to generalize well to these models.

RE-IMAGINE provides a systematic framework to assess and
expose these weaknesses, highlighting the need for more
rigorous evaluation strategies. Expanding RE-IMAGINE to
broader domains could further enhance our understanding
of reasoning capabilities and limitations of LLMs. Our hope
is for RE-IMAGINE to provide a foundational framework
for a more nuanced evaluation of LLMs and encourage the
development of more robust reasoning models.

9

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Impact Statement

The RE-IMAGINE framework represents a significant ad-
vancement in evaluating the reasoning capabilities of Large
Language Models. By systematically generating problem
variations that cannot be solved through memorization alone,
RE-IMAGINE provides a robust method to disentangle gen-
uine reasoning from statistical recall. The findings reveal
notable drops in LLM performance when faced with prob-
lem variations. By setting a new standard for evaluating
hierarchical reasoning, this research paves the way for more
transparent and interpretable AI systems, ultimately con-
tributing to the broader goal of building models with true
generalizable reasoning capabilities. This will impact the
development of future AI systems. It will also influence
benchmark design, ensuring that evaluations better reflect
genuine cognitive capabilities rather than memorization. Ad-
ditionally, this research can guide policymakers, researchers,
and practitioners in designing more reliable and trustworthy
AI applications across domains such as education, health-
care, and scientific discovery, where robust reasoning is
critical.

References

Ait El Hara, H. R., Bury, G., and de Oliveira, S. Alt-
Ergo-Fuzz: A fuzzer for the Alt-Ergo SMT solver.
In Keller, C. and Bourke, T. (eds.), Journées Franco-
phones des Langages Applicatifs, pp. 235–244, Saint-
Médard-d’Excideuil, France, June 2022. URL https:
//inria.hal.science/hal-03626861.

Barrett, C. W., Conway, C. L., Deters, M., Hadarean, L.,
Jovanovic, D., King, T., Reynolds, A., and Tinelli, C.
CVC4. In Gopalakrishnan, G. and Qadeer, S. (eds.),
Computer Aided Verification - 23rd International Confer-
ence, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, volume 6806 of Lecture Notes in Computer
Science, pp. 171–177. Springer, 2011. doi: 10.1007/
978-3-642-22110-1\ 14. URL https://doi.org/
10.1007/978-3-642-22110-1_14.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Chollet, F., Knoop, M., Kamradt, G., and Landers, B.
Arc prize 2024: Technical report. arXiv preprint
arXiv:2412.04604, 2024.

Chollet, F., Knoop, M., Kamradt, G., and Landers, B. Arc
prize 2024: Technical report, 2025. URL https://
arxiv.org/abs/2412.04604.

Cobbe, K., Kosaraju, V., Hilton, J., and Schulman, J. Train-
ing verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Correnson, L., Cuoq, P., Kirchner, F., Maroneze, A., Pre-
vosto, V., Puccetti, A., Signoles, J., and Yakobowski,
B. Frama-C User Manual. URL http://frama-c.
com/download/frama-c-user-manual.pdf.

de Moura, L. and Bjørner, N. Z3: An efficient smt solver.
In Ramakrishnan, C. R. and Rehof, J. (eds.), Tools and
Algorithms for the Construction and Analysis of Systems,
pp. 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-78800-3.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: Program-aided lan-
guage models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Glazer, E., Erdil, E., Besiroglu, T., Chicharro, D., Chen,
E., Gunning, A., Olsson, C. F., Denain, J.-S., Ho, A.,
de Oliveira Santos, E., Järviniemi, O., Barnett, M., San-
dler, R., Vrzala, M., Sevilla, J., Ren, Q., Pratt, E., Levine,
L., Barkley, G., Stewart, N., Grechuk, B., Grechuk, T.,
Enugandla, S. V., and Wildon, M. Frontiermath: A bench-
mark for evaluating advanced mathematical reasoning in
AI, 2024. URL https://arxiv.org/abs/2411.
04872.

González, J. and Nori, A. V. Does reasoning emerge? ex-
amining the probabilities of causation in large language
models. In Advances in Neural Information Processing
Systems (NeurIPS), 2024.

Gu, A., Rozière, B., Leather, H., Solar-Lezama, A., Syn-
naeve, G., and Wang, S. I. Cruxeval: A benchmark
for code reasoning, understanding and execution. arXiv
preprint arXiv:2401.03065, 2024.

Halpern, J. Y. and Pearl, J. Causes and explanations: A
structural-model approach. Part I: Causes. The British
journal for the Philosophy of Science, 2005.

Hendrycks, D., Basart, S., Mazeika, M., Zou, A., Song, D.,
and Steinhardt, J. Measuring massive multitask language
understanding. arXiv preprint arXiv:2009.03300, 2020.

Holyoak, K. J. and Morrison, R. G. (eds.). The Cam-
bridge Handbook of Thinking and Reasoning. Cambridge
University Press, Cambridge, England, 2005. ISBN
9780521824170.

Huang, J. and Chang, K. C.-C. Towards reasoning in large
language models: A survey. In Rogers, A., Boyd-Graber,
J., and Okazaki, N. (eds.), Findings of the Association for
Computational Linguistics: ACL 2023, pp. 1049–1065,
Toronto, Canada, jul 2023. Association for Computational
Linguistics.

10

https://inria.hal.science/hal-03626861
https://inria.hal.science/hal-03626861
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://arxiv.org/abs/2412.04604
https://arxiv.org/abs/2412.04604
http://frama-c.com/download/frama-c-user-manual.pdf
http://frama-c.com/download/frama-c-user-manual.pdf
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Hüyük, A., Xu, X., Maasch, J., Nori, A. V., and González,
J. Reasoning elicitation in language models via counter-
factual feedback, 2024. URL https://arxiv.org/
abs/2410.03767.

Jaech, A., Kalai, A., Lerer, A., et al. Openai o1 system card.
arXiv preprint arXiv:2412.16720, 2024.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Jin, Z., Chen, Y., Leeb, F., Gresele, L., Kamal, O., Lyu, Z.,
Blin, K., Gonzalez, F., Kleiman-Weiner, M., Sachan, M.,
and Schölkopf, B. CLadder: Assessing causal reasoning
in language models. In NeurIPS, 2023a. URL https:
//openreview.net/forum?id=e2wtjx0Yqu.

Jin, Z., Chen, Y., Leeb, F., Gresele, L., Kamal, O., Lyu,
Z., Blin, K., Gonzalez Adauto, F., Kleiman-Weiner, M.,
Sachan, M., et al. Cladder: Assessing causal reasoning
in language models. Advances in Neural Information
Processing Systems, 36:31038–31065, 2023b.

Kamath, A., Mohammed, N., Senthilnathan, A.,
Chakraborty, S., Deligiannis, P., Lahiri, S. K., Lal,
A., Rastogi, A., Roy, S., and Sharma, R. Leveraging llms
for program verification. In FMCAD, 2024. URL http:
//hdl.handle.net/20.500.12708/200783.

Kambhampati, R. S., Iwafuchi, T., and Dasaka, S. Phi-3:
A family of small open models. Microsoft AI Research,
2024. Pre-release information.

Lewis, M. and Mitchell, M. Evaluating the robustness of
analogical reasoning in large language models. arXiv
preprint arXiv:2411.14215, 2024.

Li, Z., Zhou, Z., Yao, Y., Li, Y.-F., Cao, C., Yang, F., Zhang,
X., and Ma, X. Neuro-symbolic data generation for math
reasoning, 2024. URL https://arxiv.org/abs/
2412.04857.

Mirzadeh, I., Alizadeh, K., Shahrokhi, H., Tuzel, O., Bengio,
S., and Farajtabar, M. Gsm-symbolic: Understanding the
limitations of mathematical reasoning in large language
models. arXiv preprint arXiv:2410.05229, 2024.

Mitchell, M. and Krakauer, D. C. The debate over under-
standing in ai’s large language models. Proceedings of
the National Academy of Sciences, 120(13):1–15, 2023.
doi: 10.1073/pnas.2215907120.

Neuberg, L. G. Causality: models, reasoning, and infer-
ence, by judea pearl, cambridge university press, 2000.
Econometric Theory, 19(4):675–685, 2003.

OpenAI. Early access for safety testing, Decem-
ber 2024. https://openai.com/index/
early-access-for-safety-testing/.

Pearl, J. Causality: Models, Reasoning, and Inference.
Cambridge University Press, Cambridge, England, 2nd
edition, 2009. ISBN 9780521895606.

Pearl, J. et al. Models, reasoning and inference. Cambridge,
UK: CambridgeUniversityPress, 19(2):3, 2000.

Shi, F., Chen, X., Misra, K., Scales, N., Dohan, D., Chi,
E. H., Schärli, N., and Zhou, D. Large language models
can be easily distracted by irrelevant context. In Inter-
national Conference on Machine Learning, pp. 31210–
31227. PMLR, 2023.

Si, X., Dai, H., Raghothaman, M., Naik, M., and Song,
L. Learning loop invariants for program verification. In
NeurIPS 2018, 2018.

Srivastava, A., Wei, J., Jun, H., et al. Beyond the imita-
tion game: Quantifying and extrapolating the capabilities
of language models. arXiv preprint arXiv:2206.04615,
2022.

Srivastava, S., PV, A., Menon, S., Sukumar, A., Philipose,
A., Prince, S., Thomas, S., et al. Functional benchmarks
for robust evaluation of reasoning performance, and the
reasoning gap. arXiv preprint arXiv:2402.19450, 2024.

Team, D. A. Deepseek-r1: A comprehensive reasoning
model. DeepSeek AI Research, 2025. URL https:
//github.com/deepseek-ai/DeepSeek-R1.
Available on GitHub.

Toshniwal, S., Moshkov, I., Narenthiran, S., Gitman, D., Jia,
F., and Gitman, I. Openmathinstruct-1: A 1.8 million
math instruction tuning dataset. arXiv preprint arXiv:
Arxiv-2402.10176, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Roziere, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Valmeekam, K., Olmo, A., Sreedharan, S., and Kambham-
pati, S. Large language models still can’t plan (a bench-
mark for llms on planning and reasoning about change).
In NeurIPS 2022 Foundation Models for Decision Mak-
ing Workshop, 2022.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F., Levy, O., and Bowman, S. R. Super-
glue: A stickier benchmark for general-purpose language
understanding systems. arXiv preprint arXiv:1905.00537,
2019.

11

https://arxiv.org/abs/2410.03767
https://arxiv.org/abs/2410.03767
https://openreview.net/forum?id=e2wtjx0Yqu
https://openreview.net/forum?id=e2wtjx0Yqu
http://hdl.handle.net/20.500.12708/200783
http://hdl.handle.net/20.500.12708/200783
https://arxiv.org/abs/2412.04857
https://arxiv.org/abs/2412.04857
https://openai.com/index/early-access-for-safety-testing/
https://openai.com/index/early-access-for-safety-testing/
https://github.com/deepseek-ai/DeepSeek-R1
https://github.com/deepseek-ai/DeepSeek-R1

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Webb, T., Mondal, S. S., and Momennejad, I. Improving
planning with large language models: A modular agentic
architecture. arXiv preprint arXiv:2310.00194, 2024.

Weidinger, L., Mellor, J., Rauh, M., et al. Ethical and social
risks of harm from language models. arXiv preprint
arXiv:2112.04359, 2021.

Wu, H., Barrett, C. W., and Narodytska, N. Lemur: In-
tegrating large language models in automated program
verification. In ICLR, 2024.

Wu, Z., Qiu, L., Ross, A., Akyürek, E., Chen, B., Wang,
B., Kim, N., Andreas, J., and Kim, Y. Reasoning or
reciting? exploring the capabilities and limitations of
language models through counterfactual tasks. arXiv
preprint arXiv:2307.02477, 2023.

Xu, F., Hao, Q., Zong, Z., Wang, J., Zhang, Y., Wang, J.,
Lan, X., Gong, J., Ouyang, T., Meng, F., et al. Towards
large reasoning models: A survey on scaling llm reason-
ing capabilities. arXiv preprint arXiv:2501.09686, 2025.

Yang, L., Shirvaikar, V., Clivio, O., and Falck, F. A critical
review of causal reasoning benchmarks for large language
models. In AAAI 2024 Workshop on”Are Large Language
Models Simply Causal Parrots?”, 2024.

Ye, T., Xu, Z., Li, Y., and Allen-Zhu, Z. Physics of
Language Models: Part 2.1, Grade-School Math and
the Hidden Reasoning Process. In Proceedings of the
13th International Conference on Learning Representa-
tions, ICLR ’25, April 2025. Full version available at
https://ssrn.com/abstract=5250629.

Zhang, Z., Chen, J., and Yang, D. Darg: Dynamic evaluation
of large language models via adaptive reasoning graph,
2024.

Zhou, K., Zhu, Y., Chen, Z., Chen, W., Zhao, W. X., Chen,
X., Lin, Y., Wen, J.-R., and Han, J. Don’t make your
llm an evaluation benchmark cheater. arXiv preprint
arXiv:2311.01964, 2023.

Zhu, K., Chen, J., Wang, J., Gong, N. Z., Yang, D., and
Xie, X. Dyval: Dynamic evaluation of large language
models for reasoning tasks. In The Twelfth International
Conference on Learning Representations, 2023.

12

https://ssrn.com/abstract=5250629

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

A. Appendix: Language Model Details

Models Details #Parameters Pre-train Size (tokens)

Phi-3 mini microsoft/Phi-3-mini-128k-instruct 3.8B 4.9T
Phi-3.5 mini microsoft/Phi-3.5-mini-instruct 3.8B 3.4T
Phi-3 small microsoft/Phi-3-small-128k-instruct 7B 4.8T
Phi-3 medium microsoft/Phi-3-medium-128k-instruct 14B 4.8T
Phi-4 microsoft/phi-4 14B 9.8T

Llama 2 meta-llama/Llama-2-7b-chat-hf 7B 2T
Llama 3 meta-llama/Meta-Llama-3-8B-Instruct 8B 15T
Llama 3.1 meta-llama/Meta-Llama-3.1-8B-Instruct 8B 15T
Llama 3.3 (70B) meta-llama/Meta-Llama-3.3-70B-Instruct 8B 15T
Llama 3 (70B) meta-llama/Meta-Llama-3-70B-Instruct 70B 15T

GPT-3.5 gpt-35-turbo 1106 175B –
GPT-4 gpt-4-32k 0613 – –
GPT-4o gpt-4o 2024-08-06 – –
GPT-o1 o1-preview 2024-09-12 – –

Table 3. Details of LLMs used in this work.

B. Appendix: Comparison to Related Work

Previous Studies Mutations Manual Effort Scalability

GSM-IC UselessInfo (L2) Hand-written patterns/rules Scaling within questions
(Shi et al., 2023) for each question

iGSM Out of scope Human-defined concepts, Scaling within questions
(Ye et al., 2025) constructed from scratch dependency graphs,

NL expression patterns
for QA pairs.

GSM-Symbolic UselessInfo (L2) Hand-written patterns/rules Scaling within questions
(Mirzadeh et al., 2024) SampleValues (L2) for each question

ChangingVariableNames (L2)

GSM-Hard SampleValues (L2) Writing prompts to get Scaling within benchmarks,
(Gao et al., 2023) symbolic representation. since the code generation

Writing program to sample replies on the ground truth CoT.
values for parameters.

CounterFactual Bi-Counterfactual (L3) Hand-written patterns/rules Scaling within questions
(Hüyük et al., 2024) for each question

Re-Imagine (Ours) Covering L2 and L3 Customizing reusable adapters Scaling across benchmarks

Table 4. Compared to existing work. Scaling within questions means that for each original question with human-written patterns, an
arbitrary number of mutated questions can be generated. Scaling within benchmarks means that the mutation generation tool could help to
generate an arbitrary number of mutated questions for all questions in the entire benchmark.

C. Appendix: Fundamental Link to Causality

The three levels of Pearl’s ladder of causation – intervention, correlation and counterfactuals – provide a foundational
hierarchical characterization for the reasoning levels of an AI system. Our work is inspired by this ladder, and taking the
three levels as a reference, we describe a hierarchical set of experiments that also capture different levels of reasoning in
LLMs. The key connection between both frameworks is the problem’s computation graph, which can be understood as a
causal model in Pearl’s framework. Each problem in a benchmark can be interpreted as a single realization of the graph with
specific node values. Experiments associated with different perturbations in such a graph can often be related to operations
in Pearl’s ladder of causation. For instance, computing the effect of a change to one leaf node maps to the standard definition
of a counterfactual from causal inference. Note, however, that not all mutations in the three levels have a causal counterpart
(for example, adding an irrelevant piece of information or changing an operation). In this sense, our framework covers a
broader scope of reasoning tasks in each level.

13

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

D. Appendix: Extra Models Performance on GSM8K, CruxEval and Loop

 Extral Model Accuracies on GSM8K (8 Original In-context Examples) Extra Model Accuracies on CruxEval Extra Model Accuracies on Loop

Figure 9. In addition to the models discussed in the main body of the paper, we also report results for several popular models on GSM8K,
CruxEval, and Loop. The conclusions drawn in the main paper are found to generalize well to these additional models.

E. Appendix: GSM8K Details

E.1. Statistical Accuracy on GSM8K and its variations

Figure 10. The statistical accuracy of models on GSM8K numerical answer predictions is evaluated across different mutated test sets at
varying reasoning levels (see Section 3.2 and Figure 1). To generate this plot, we randomly select 150 examples from the pool of examples
eligible for all mutations, excluding Bi-CounterFactual. We then create 10 test variations for each mutation by sampling with 10 different
seeds. All models are independently tested on these 10 variations, and the resulting accuracies are used to generate the bar plot. During
testing, each model is prompted with 8 raw examples along with their Chain-of-Thought (CoT) process. Our observations are as follows:
(1) All models show significant accuracy variability when tested on mutated test sets, particularly on variations with Level-3 mutations; (2)
For all models, the average performance on the mutated sets is notably lower than on the original GSM8K test set (as indicated by the
dashed line). Moreover, for most test set variations with Level-3 mutations, even the accuracy on the most beneficial sample set falls
below the accuracy of the original GSM8K test. This suggests that a single sentence mutation altering the computational logic of the
original math question may severely impact the models’ performance.

E.2. The Influence of In-context Examples

In this section, we examine the impact of in-context examples on the model’s reasoning ability.

First, we aim to investigate whether providing the model with only mutated examples can improve its reasoning performance
on the generated test set variations. During testing, all models are provided with seven mutated examples with amended CoT
process, each from a different type of mutation (including two additional mutations beyond those discussed in Section 3.2
and Figure 1). Figure 19 shows one detailed prompt. Figure 11 presents the results, indicating that the models exhibit

14

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

behavior highly similar to when original GSM8K examples are used as in-context examples (see Figure 2).

Next, we investigate whether providing the model with both the original example and its mutated variations can enhance its
reasoning performance on the generated test set variations. During testing, all models receive seven in-context examples.
Each example consists of an original GSM8K question and its answer, followed by a mutated version of the question
along with the corresponding CoT solution and answer. These examples cover different types of mutations, including two
additional mutations beyond those discussed in Section 3.2 and Figure 1. To maintain consistency with the in-context
example format, we also include the original question and its answer for the final mutated question that the model is expected
to answer. Figure 20 illustrates a detailed example of the prompt, while Figure 12 presents the results. The findings indicate
that most models perform significantly better on the generated test set variations when provided with both original and
mutated examples, compared to using only original GSM8K examples (Figure 2) or only mutated examples (Figure 19) as
in-context examples.

To visualize the comparison, we summarize model performance across two dimensions: the average accuracy across all six
test sets, as in the left bar plot (x-axis), and the standard deviation in accuracy on the five mutated test sets w.r.t. the raw test
set (y-axis). The bottom-right corner reflects the ideal balance of high performance on both raw and mutated sets. In this
way, we consolidate model performance across these three different in-context example scenarios in Figure 8 and illustrate
how to interpret the plot using the Llama3 model as an example.

Figure 11. GSM8K: Detailed accuracy for all models in the Phi, Llama, and GPT families. All models are prompted with 7 mutated
in-context examples. Check Figure 19 for the detailed prompt. Due to potential noise from the automatic mutation process, we performed
a human evaluation on the mutated test set. We added the percentage of invalid examples in each mutation category to the top of each
accuracy bar, assuming that if these QA pairs were correct, the models would answer them correctly. This provides an upper bound on the
model’s performance.

Figure 12. GSM8K: Detailed accuracy for all models in the Phi, Llama, and GPT families. All models are prompted with 7 paired raw
and the corresponding mutated in-context examples. Check Figure 20 for the detailed prompt. The missing Llama-2 experiments are
due to its failure to follow instructions and produce correctly formatted answers.

E.3. Composition of Mutations

The defined Ladder of reasoning hierarchy (Section 2) and the automatic variation generation pipeline (Section 3), open
the possibility of combining multiple mutations to create challenging test set variations. In this section, we combine the
SampleValues mutation from Level-2 with the remaining four mutations (excluding Bi-CounterFactual) to create four test
set variations, each containing two types of mutations. The models’ accuracy can be find in Figure 13.

15

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

To visualize the comparison, similar to Figure 8 in Section 6.2, we summarize model performance along two dimensions:
the average accuracy across all test sets and the standard deviation in accuracy on the mutated test sets relative to the raw test
set. We combine model performance on test set variations with a single mutation and those with two mutations in Figure 14.
As observed, all models exhibit lower average accuracy on test variations containing two mutations compared to those with a
single mutation. The increased standard deviation of accuracy w.r.t. the original test set suggests that composing mutations
expands the performance gap between the mutated sets and the original set.

Figure 13. GSM8K: Detailed accuracy for all models in the Phi, Llama, and GPT families. All models are prompted with 8 original
in-context examples. However, with the exception of SampleValues, all other mutations are combined with SampleValues to create even
more challenging test set variations.

Figure 14. GSM8K: Visualization comparing model performance on test set variations with one or two mutations. We summarize model
performance across two dimensions: the average accuracy across all six test sets, as in the left bar plot (x-axis), and the standard deviation
in accuracy on the five mutated test sets w.r.t. the raw test set (y-axis). The bottom-right corner reflects the ideal balance of high
performance on both raw and mutated sets. In this plot, dots represent models’ accuracy on test sets with a single mutation, while crosses
indicate their accuracy on sets containing two mutations. Model structures are differentiated by color, with the same structure represented
by the same color.

16

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

E.4. Decomposing Model Performance by Number of Reasoning Steps

Figure 15. GSM8K: We analyze model performance across varying numbers of reasoning steps. We define the difficulty of a numerical
reasoning question by the number of calculation steps (operations) in its code solution. For each model, we compute the average accuracy
across examples grouped by their number of calculation steps. In the plots, the x-axis indicates the number of reasoning steps, and
the y-axis shows the accuracy. The results reveal that, across all models, even when controlling for the number of reasoning steps,
performance is consistently lower on mutated examples than on the original test set. Furthermore, Level-3 mutations pose a significantly
greater challenge than Level-2. Notably, models perform worse on Level-3 mutations with just three calculation steps than they do on
original test examples requiring seven steps, indicating a substantial gap.

17

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

E.5. Detailed Prompts

[{"role": "system", "content": "I will provide a math question along with a sample of Python code which
solves the question. The names of variables in this code may be intentionally
misleading. Then I will provide an updated version of the math question which
differs from the original question. It may include irrelevant information or
references to variables which are not used in the code. I would like you to
update the code to represent the inclusion of this additional sentence, so
that it answers the updated version of the math question accurately. You may
need to add or remove variables or lines of code. It is important that you
disregard the names of the variables in the code and focus on the values they
represent. Do not modify which variable is returned at the end of the code. If
you are unable to complete the task, please return the phrase
'Unable to complete'."},

 {"role": "user", "content": "Math question: {original_text}\n\n"
 "Python code: {original_code}\n\n"
 "Updated math question: {mutated_text}\n\n"
 "Requested output format: Runnable python code with no additional text."

 "Do not include `python at the beginning.")}]

Figure 16. Prompts used in GSM8K quality control. We prompt the LLM to back-translate the mutated math problem into Python by
modifying the original question’s Python solution. The generated code must produce an execution result that matches the ground truth
answer of the mutated question.

18

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

[{"role": "system", "content": "You are a helpful assistant."},
 {"role": "user", "content": "I will provide a math question along with the Python code that solves it.

I will set a particular variable in the code to a different value.
 I would like you to describe this change in natural language
 and offer a brief explanation for it in a single sentence.
 Math question: {original_question}\n\n
 Python code: {original_code}\n\n
 I set {variable_name} to {new_value}.
 Describe this change in natural language.
 The request format is: The change is that ... instead of... .")}]OverWriteValue

[{"role": "system", "content": "I will provide a math question along with the Python code that solves it.
 I will add one new line of code which describes the definition of a new,

irrelevant variable. I would like you to create a meaning for this
new variable which is related to the setting of the word problem,
but ultimately irrelevant to the question. The change to the word problem
should be a single sentence in natural language, describing the new
variable and its definition, which makes sense in context.
The change must not affect the rest of the word problem. Do not make
any reference to the fact that the new information is irrelevant,
but ensure that it is. Do not use the name of the variable from the
python code; only describe the change in natural language."},

 {"role": "user", "content": "Math question: {original_question}\n\n
 Original Python code: {original_code}\n\n
 I add the line {new_line} which defines the variable {new_variable}.\n\n
 Describe this change in natural language.
 The request format is: \"Suppose that\"")}]UselessInfo

[{"role": "system", "content": "I will provide a math question along with the Python code that solves it.
 I will define a new variable, and then add the value of that new variable

to the definition of an existing variable. I would like you to describe
an alternate version of the word problem which matches the updated code.
The change to the word problem should be a single sentence in natural
language, which makes sense in context. Make sure to explicitly state the
value of the new variable and how it is used in the problem."},

 {"role": "user", "content": "Math question: {original_question}\n\n
 Original Python code: {original_code}\n\n
 I define the new variable {v2} to be: {v2_new_value}
 I update the definition of variable {v1} to: {v1_value}.\n\n
 Describe this change in natural language.
 The request format is: \"Suppose that ... in addition to\"")}]AddDependence

[{"role": "system", "content": "I will provide a math question along with the Python code that solves it.
 I will add an if-else conditional to the code. I would like you to

describe an alternate version of the word problem whose solution matches
the updated code. The change to the word problem should be a single
sentence in natural language, without ambiguity, and which makes sense
in context."},

 {"role": "user", "content": "Math question: {original_question}\n\n
 Original Python code: {original_code}\n\n
 I replace the line {original_line} with the conditional statement

{conditional_replacement}.\n\n
 Describe this change in natural language.
 The request format is: Suppose that ... if ... otherwise")}]

InsertConditional

Figure 17. Prompts used in GSM8K mutated symbolic representation to natural language.

19

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

[
 {
 "role": "user",
 "content": "Question: Mimi picked up 2 dozen seashells on the beach. Kyle found twice as many

 shells as Mimi and put them in his pocket. Leigh grabbed one-third of the shells
 that Kyle found. How many seashells did Leigh have?"

 },
 {
 "role": "assistant",
 "content": "Answer: Mimi has 2 x 12 = <<2*12=24>>24 sea shells.\n
 Kyle has 24 x 2 = <<24*2=48>>48 sea shells.\n
 Leigh has 48 / 3 = <<48/3=16>>16 sea shells.\n#### 16"
 },
 {
 "role": "user",
 "content": "Question: Frankie's parents let him have many pets. He has six more snakes than he
 has cats. He has one less parrot than cats. Six of his pets have four legs. He has
 2 dogs. How many pets does he have in total?"
 },
 {
 "role": "assistant",
 "content": "Answer: He has 6 - 2 = <<6-2=4>>4 cats.\n
 He has 4 - 1 = <<4-1=3>>3 parrots.\n
 He has 4 + 6 = <<4+6=10>>10 snakes.\n
 He has a total of 2 + 4 + 3 + 10 = <<2+4+3+10=19>>19 pets.\n#### 19"
 },
 ... 6 more examples
 {
 "role": "user",
 "content": "Question: In mid-May , the depth of a river in Moreland is measured . By mid-June ,
 the river is 17 feet deeper than mid-May . By mid-July , the river is 3 times deeper
 than mid-June . If the river is 54 feet deep in mid-July , how many feet deep was
 the river in mid-May ? Let's think step by step. At the end, you MUST write the answer
 after '####'. Note that, this might be a trick question designed to confuse LLMs with
 additional information. Look for irrelevant information, new assumptions or distractors
 in the question. "
 }
]

Figure 18. Prompts used in GSM8K testing. The prompt contains 8 raw in-context examples.

20

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

[
 {
 "role": "user",
 "content": "Question: If Janet reads 80 pages a day and Belinda reads 30 pages a day, assume Belinda actually reads 50
pages a day, how many more pages does Janet read in 6 days?"
 },
 {
 "role": "assistant",
 "content": "Answer: First find the number of pages Belinda actually reads per day: 50 pages/day. Then find the total
difference in the number of pages Janet and Belinda read each day: 80 pages/day - 50 pages/day = <<80-50=50>>30 pages/day Then
multiply the daily difference by the number of days to find the total difference in the number of pages they read: 30 pages/day *
6 days = <<30*6=180>>180 pages #### 180"
 },
 {
 "role": "user",
 "content": "Question: If Janet reads 80 pages a day and Belinda reads 30 pages a day. Suppose that Belinda only reads if
Janet reads more than 100 pages a day; if she reads 100 pages a day, Belinda does not read at all. How many more pages does Janet
read in 6 days?"
 },
 {
 "role": "assistant",
 "content": "Answer: First find the number of pages Belinda actually reads per day: since Janet reads 80 pages per day
which is less than 100 pages, Belinda reads 0 pages/day. Then find the total difference in the number of pages Janet and Belinda
read each day: 80 pages/day - 0 pages/day = <<80-0=80>>80 pages/day Then multiply the daily difference by the number of days to
find the total difference in the number of pages they read: 80 pages/day * 6 days = <<80*6=480>>480 pages #### 480"
 },
 {
 "role": "user",
 "content": "Question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a
$10 tip. Assume Lee needs to pay the three customers $10 each since he damaged their lawns instead of getting $10 tips. How many
dollars did Lee earn mowing lawns last week?"
 },
 {
 "role": "assistant",
 "content": "Answer: 33 * 16 = $<<33*16=528>>528 3 * 10 = $<<3*10=30>>30 528 - 30 = $<<528-30=498>>498 Lee earned $498
mowing lawns last week. #### 498"
 },
 {
 "role": "user",
 "content": "Question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a
$10 tip. Assume Lee's neighbor also mowed 16 lawns last week. How many dollars did Lee earn mowing lawns last week?"
 },
 {
 "role": "assistant",
 "content": "Answer: 33 * 16 = $<<33*16=528>>528 3 * 10 = $<<3*10=30>>30 528 + 30 = $<<528+30=558>>558 Lee earned $558
mowing lawns last week. #### 558"
 },
 {
 "role": "user",
 "content": "Question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a
$10 tip. Assume Lee got payed in pounds not dollars. How many pounds did Lee earn mowing lawns last week?"
 },
 {
 "role": "assistant",
 "content": "Answer: 33 * 16 = $<<33*16=528>>528 3 * 10 = $<<3*10=30>>30 528 + 30 = $<<528+30=558>>558 Lee earned $558
mowing lawns last week. #### 558"
 },
 {
 "role": "user",
 "content": "Question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a
$10 tip. Assume Lee got extra bonus from his company $5 for each customer he served. How many dollars did Lee earn mowing lawns
last week?"
 },
 {
 "role": "assistant",
 "content": "Answer: 33 * 16 = $<<33*16=528>>528 3 * 10 = $<<3*10=30>>30 3 * 5 = $<<3*5=15>>15 528 + 30 + 15 =
$<<528+30+15=573>>573 Lee earned $573 mowing lawns last week. #### 573"
 },
 {
 "role": "user",
 "content": "Question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a
$10 tip. Assume Lee did not get tips from his customers. How many dollars did Lee earn mowing lawns last week?"
 },
 {
 "role": "assistant",
 "content": "Answer: 33 * 16 = $<<33*16=528>>528 Lee earned $528 mowing lawns last week. #### 528"
 },
 {
 "role": "user",
 "content": "Question: Bill had to finish a project from work that was to take him 4 days. He took 6 seven-hour naps in
the four days. Assume the total time spent on naps is set to 38 hours instead of being calculated as the product of the number of
naps and the duration of each nap. How long did he spend working on the project? Let's think step by step. At the end, you MUST
write the answer after '####'. Note that, this might be a trick question designed to confuse LLMs with additional information.
Look for irrelevant information, new assumptions or distractors in the question. "
 }
]

Figure 19. Prompts used in GSM8K testing. The prompt contains 7 in-context examples demonstrating different types of mutations.
21

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

// preamble or system instruction
As an expert problem solver, solve step by step a mutated math question based on the original question and its answer.
Note that, this might be a trick question designed to confuse LLMs with additional information.
Look for irrelevant information, new assumptions or distractors in the question.
At the end, you MUST write the answer after '####'.

// shot-1
The original question: If Janet reads 80 pages a day and Belinda reads 30 pages a day, how many more pages does Janet read in 6 days?
The answer of the question above is: 300
The mutated question: If Janet reads 80 pages a day and Belinda reads 30 pages a day, assume Belinda actually reads 50 pages a day, how many more pages does
Janet read in 6 days?
The answer of the question above is: First find the number of pages Belinda actually reads per day: 50 pages/day. Then find the total difference in the number of
pages Janet and Belinda read each day: 80 pages/day - 50 pages/day = <<80-50=50>>30 pages/day Then multiply the daily difference by the number of days to find
the total difference in the number of pages they read: 30 pages/day * 6 days = <<30*6=180>>180 pages #### 180

// shot-2
The original question: If Janet reads 80 pages a day and Belinda reads 30 pages a day, how many more pages does Janet read in 6 days?
The answer of the question above is: 300
The mutated question: If Janet reads 80 pages a day and Belinda reads 30 pages a day. Suppose that Belinda only reads if Janet reads more than 100 pages a day;
if she reads 100 pages a day, Belinda does not read at all. How many more pages does Janet read in 6 days?
The answer of the question above is: First find the number of pages Belinda actually reads per day: since Janet reads 80 pages per day which is less than 100
pages, Belinda reads 0 pages/day. Then find the total difference in the number of pages Janet and Belinda read each day: 80 pages/day - 0 pages/day = <<80-
0=80>>80 pages/day Then multiply the daily difference by the number of days to find the total difference in the number of pages they read: 80 pages/day * 6 days
= <<80*6=480>>480 pages #### 480

// shot-3
The original question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a $10 tip. How many dollars did Lee earn
mowing lawns last week?
The answer of the question above is: 558
The mutated question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a $10 tip. Assume Lee needs to pay the
three customers $10 each since he damaged their lawns instead of getting $10 tips. How many dollars did Lee earn mowing lawns last week?
The answer of the question above is: 33 * 16 = $<<33*16=528>>528 3 * 10 = $<<3*10=30>>30 528 - 30 = $<<528-30=498>>498 Lee earned $498 mowing lawns last week.
498

// shot-4
The original question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a $10 tip. How many dollars did Lee earn
mowing lawns last week?
The answer of the question above is: 558
The mutated question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a $10 tip. Assume Lee's neighbor also
mowed 16 lawns last week. How many dollars did Lee earn mowing lawns last week?
The answer of the question above is: 33 * 16 = $<<33*16=528>>528 3 * 10 = $<<3*10=30>>30 528 + 30 = $<<528+30=558>>558 Lee earned $558 mowing lawns last week.
558

// shot-5
The original question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a $10 tip. How many dollars did Lee earn
mowing lawns last week?
The answer of the question above is: 558
The mutated question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a $10 tip. Assume Lee got payed in pounds
not dollars. How many pounds did Lee earn mowing lawns last week?
The answer of the question above is: 33 * 16 = $<<33*16=528>>528 3 * 10 = $<<3*10=30>>30 528 + 30 = $<<528+30=558>>558 Lee earned $558 mowing lawns last week.
558

// shot-6
The original question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a $10 tip. How many dollars did Lee earn
mowing lawns last week?
The answer of the question above is: 558
The mutated question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a $10 tip. Assume Lee got extra bonus from
his company $5 for each customer he served. How many dollars did Lee earn mowing lawns last week?
The answer of the question above is: 33 * 16 = $<<33*16=528>>528 3 * 10 = $<<3*10=30>>30 3 * 5 = $<<3*5=15>>15 528 + 30 + 15 = $<<528+30+15=573>>573 Lee earned
$573 mowing lawns last week. #### 573

// shot-7
The original question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a $10 tip. How many dollars did Lee earn
mowing lawns last week?
The answer of the question above is: 558
The mutated question: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and three customers each gave him a $10 tip. Assume Lee did not get tips
from his customers. How many dollars did Lee earn mowing lawns last week?
The answer of the question above is: 33 * 16 = $<<33*16=528>>528 Lee earned $528 mowing lawns last week. #### 528

// target question
The original question: On a quiz, Martin answered three fewer questions correctly than Kelsey, and Kelsey answered eight more questions correctly than Campbell.
Campbell answered 35 questions correctly. How many did martin answer correctly?
The answer of the question above is: 40
The mutated question: On a quiz, Martin answered three fewer questions correctly than Kelsey, and Kelsey answered eight more questions correctly than Campbell.
Campbell answered 35 questions correctly. Assume Kelsey answered seven more questions correctly than Campbell instead of eight more questions. How many did
martin answer correctly?
The answer of the question above is:

Figure 20. Prompts used in GSM8K testing. The prompt contains 7 in-context examples. Each example contains a raw question and
answer, with the corresponding mutated question and chain-of-thought fo the mutated question, with the final answer. The 7 examples are
demonstrating different types of mutations.

22

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

F. Appendix: CLadder Details

F.1. Benchmark Details

The CLadder dataset (Jin et al., 2023b) provides a systematic evaluation of causal reasoning abilities in LLMs. It consists of
10,000 causal graphs of binary variables (i.e., Bernoulli conditional distributions) that encompass common treatment-effect
estimation scenarios, such as confounding, mediation, and collisions. Each causal graph is associated with multiple queries,
spanning the three levels of Pearl’s ladder of causation: associational, interventional, and counterfactual. Each dataset
example includes (1) a causal graph, (2) a query, (3) a causal engine that computes over the casual graph and the query
to get a binary answer, and (4) a template-based formulation that translates the causal graph and the query into a natural
language question for the LLM to interface with. The benchmark evaluates models’ causal reasoning abilities by requiring
them to (1) extract causal concepts from natural language and (2) apply causal inference (either implicitly or explicitly) over
the causal concepts, such as do-calculus, to calculate the final answer.

F.2. Pipeline Details

F.2.1. QUESTION TO SYMBOLIC REPRESENTATION 1⃝

Filtering: We begin with a filtering pass of the 10,000 examples in CLadder, removing all examples corresponding to
query types ‘backdoor adjustment’ and ‘collider bias’ (in total 1,747 examples). The former was filtered due to the inherent
complexity of the python it would require, and the latter because it is only present for one type of causal graph structure.
This leaves 8,365 examples from CLadder after filtering.

Parser: Next, we develop a parser to automatically translate these examples into Python code with the help of the causal
engine provided by CLadder. The parser determines the query type from the meta data in the CLadder examples, and
extracts the relevant variables from the natural language questions. For every query type, causal graph, and estimand, the
parser generates a snippet of executable Python code which computes the estimand.

Validation: To check that the NL to Python code parser is successful, after conversion of the examples, we execute the
Python code and compare the computed estimand value with its ground-truth in CLadder. 60 examples showed a discrepancy,
leaving us with 8,305 examples (99.34% coverage of parsed examples).

F.2.2. SYMBOLIC MUTATIONS 2⃝ AND MUTATED SYMBOLIC REP TO NL 3⃝

To examine the robustness of LLMs in handling variations in question phrasing and irrelevant information, we include two
key mutations:

• UselessInfo: We add extraneous information at two levels. (i) RelatedIrrelevantInfo: With Meta-Llama 70B Instruct,
we generate two sentences for each question that are semantically related but causally irrelevant. (ii) Unrelate-
dIrrelevantInfo: We prepend the natural language description from a randomly selected CLadder example to the
beginning of each question, ensuring that the added sentences remain semantically irrelevant to prevent ambiguity.
Both RelatedIrrelevantInfo and UnrelatedIrrelevantInfo describe Level-2 mutations.

• CounterFactual: We modify the probability values in the original question by introducing a counterfactual assumption,
such as: “Suppose the probability of <Event> is <new-value> instead.”. To generate the ground-truth answer for
the counterfactual question, we update the corresponding probability of the conditional distribution in Python code and
execute it. CounterFactual is a Level-3 mutation.

In Table 5, we provide an example for each type of mutation. Additionally, we generate two more test set variations by
combining the CounterFactual mutation with each UselessInfo mutation. The full results are shown in Figure 21.

23

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Mutation type Problem and Bayesian Network Probability distributions Code

Original For husbands that don’t set the alarm
and wives that don’t set the alarm,
the probability of ringing alarm is
8%. For husbands that don’t set
the alarm and wives that set the
alarm, the probability of ringing
alarm is 54%. For husbands that set
the alarm and wives that don’t set
the alarm, the probability of ring-
ing alarm is 41%. For husbands
that set the alarm and wives that set
the alarm, the probability of ring-
ing alarm is 86%. For husbands that
don’t set the alarm, the probability
of alarm set by wife is 74%. For hus-
bands that set the alarm, the proba-
bility of alarm set by wife is 24%.
If we disregard the mediation effect
through wife, would husband posi-
tively affect alarm clock?

H

W A

H (husband sets alarm)
W (wife sets alarm)
A (alarm rings)

P (A = 1|H = 0,W = 0) = .08
P (A = 1|H = 0,W = 1) = .54
P (A = 1|H = 1,W = 0) = .41
P (A = 1|H = 0,W = 0) = 86
P (W = 1|H = 0) = .74
P (W = 1|H = 1) = .24

Estimand:

E[YX=1,V 2=0 − YX=0,V 2=0]

=
∑

V 2=v

P (V 2 = v|X = 0)·

[P (Y = 1|X = 1, V 2 = v)

− P (Y = 1|X = 0, V 2 = v)]

Probabilities
p_a_given_not_h_not_w = 0.08
p_not_a_given_not_h_not_w = 1 - p_a_given_not_h_not_w
p_a_given_not_h_w = 0.54
p_not_a_given_not_h_w = 1 - p_a_given_not_h_w
p_a_given_h_not_w = 0.41
p_not_a_given_h_not_w = 1 - p_a_given_h_not_w
p_a_given_h_w = 0.86
p_not_a_given_h_w = 1 - p_a_given_h_w
p_w_given_not_h = 0.74
p_not_w_given_not_h = 1 - p_w_given_not_h
p_w_given_h = 0.24
p_not_w_given_h = 1 - p_w_given_h

For W = 0
term_0 = p_not_w_given_not_h * (p_a_given_h_not_w -

p_a_given_not_h_not_w)

For W = 1
term_1 = p_w_given_not_h * (p_a_given_h_w -

p_a_given_not_h_w)

Final sum
result = term_0 + term_1
if result > 0:

print("yes")
else:

print("no")

CounterFactual For husbands that don’t set the
alarm and wives that don’t set the
alarm [...] the probability of alarm
set by wife is 24%. Assume that
the probability of the alarm ringing,
if both the husband and the wife
don’t set the alarm, changes to
25%. If we disregard the mediation
effect through wife, would husband
positively affect alarm clock?

H

W A

P(A = 1|H = 0,W = 0) = .25
P (A = 1|H = 0,W = 1) = .54
P (A = 1|H = 1,W = 0) = .41
P (A = 1|H = 0,W = 0) = 86
P (W = 1|H = 0) = .74
P (W = 1|H = 1) = .24

Probabilities
p a given not h not w = 0.25
p_not_a_given_not_h_not_w = 1 - p_a_given_not_h_not_w
p_a_given_not_h_w = 0.54
p_not_a_given_not_h_w = 1 - p_a_given_not_h_w
p_a_given_h_not_w = 0.41
p_not_a_given_h_not_w = 1 - p_a_given_h_not_w
p_a_given_h_w = 0.86
p_not_a_given_h_w = 1 - p_a_given_h_w
p_w_given_not_h = 0.74
p_not_w_given_not_h = 1 - p_w_given_not_h
p_w_given_h = 0.24
p_not_w_given_h = 1 - p_w_given_h

For W = 0
term_0 = p_not_w_given_not_h * (p_a_given_h_not_w -

p_a_given_not_h_not_w)

For W = 1
term_1 = p_w_given_not_h * (p_a_given_h_w -

p_a_given_not_h_w)

Final sum
result = term_0 + term_1
if result > 0:

print("yes")
else:

print("no")

IrrelevantInfo For husbands that don’t set the
alarm and wives that don’t set the
alarm [...] the probability of alarm
set by wife is 24%. Assume that
the probability of the kids going
to school each day is 80%. If
we disregard the mediation effect
through wife, would husband
positively affect alarm clock?

H

W A

X

Y

Z

K (kids to school)

P (A = 1|H = 0,W = 0) = .25
P (A = 1|H = 0,W = 1) = .54
P (A = 1|H = 1,W = 0) = .41
P (A = 1|H = 0,W = 0) = 86
P (W = 1|H = 0) = .74
P (W = 1|H = 1) = .24

(identical to original)

Table 5. Mutations in RE-IMAGINE for the CLadder dataset. In the Bayesian network, gray nodes indicate a variable whose probability
mass function (conditional on variables from incoming edges) has been intervened on or added as part of the mutation. The probability
distributions for the irrelevant graph in IrrelevantInfo are not stated. Note that the probability of the positive event specifies the full
conditional distribution since all distributions are Bernoulli (e.g. P (A = 1|H = 0,W = 0) = 0.08 =⇒ P (A = 0|H = 0,W = 0) =
0.92).

24

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Figure 21. CLadder: Detailed accuracy for models in the Phi, Llama, and GPT families.

F.3. Prompts for mutated questions

Below are illustration of NL prompts for our mutations on CLadder. We highlight parts of the original question in red,
and the mutated natural language in blue. The prompt consists of the System prompt (stated first below), followed by a
mutation-specific prompt (stated thereafter).

System Prompt We use the following system prompt throughout the evaluation.

You are an expert at causal inference and reasoning. You will be given a question and you must answer with
"yes" or "no" only.

Related UselessInfo

Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned
factors or causal relationships: The probability of the husband being awake when the wife sets the alarm is
85%. If the husband sets the alarm, the probability of the wife being in a good mood is 73%. Husband has a
direct effect on wife and alarm clock. Wife has a direct effect on alarm clock.
For husbands that don’t set the alarm and wives that don’t set the alarm, the probability of ringing alarm is
11%. For husbands that don’t set the alarm and wives that set the alarm, the probability of ringing alarm is
60%. For husbands that set the alarm and wives that don’t set the alarm, the probability of ringing alarm is
46%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 92%.
For husbands that don’t set the alarm, the probability of alarm set by wife is 61%. For husbands that set
the alarm, the probability of alarm set by wife is 1%.
Does husband positively affect alarm clock through wife?

Unrelated UselessInfo

Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned
factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct
effect on room.The overall probability of blowing out the candle is 68%. The probability of not blowing out
the candle and dark room is 12%. The probability of blowing out the candle and dark room is 51%. Imagine a
self-contained, hypothetical world with only the following conditions, and without any unmentioned factors
or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on
alarm clock.
For husbands that don’t set the alarm and wives that don’t set the alarm, the probability of ringing alarm is
8%. For husbands that don’t set the alarm and wives that set the alarm, the probability of ringing alarm is
54%. For husbands that set the alarm and wives that don’t set the alarm, the probability of ringing alarm is
41%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 86%.
For husbands that don’t set the alarm, the probability of alarm set by wife is 74%. For husbands that set
the alarm, the probability of alarm set by wife is 24%.
If we disregard the mediation effect through wife, would husband positively affect alarm clock?"

CounterFactual

25

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned
factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct
effect on alarm clock.
For husbands that don’t set the alarm and wives that don’t set the alarm, the probability of ringing alarm is
11%. For husbands that don’t set the alarm and wives that set the alarm, the probability of ringing alarm is
60%. For husbands that set the alarm and wives that don’t set the alarm, the probability of ringing alarm is
46%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 92%.
For husbands that don’t set the alarm, the probability of alarm set by wife is 61%. For husbands that set
the alarm, the probability of alarm set by wife is 1%.
Suppose Probability of ringing alarm, given that alarm did not set by husband alarm set by wife is 0.46.
Does husband positively affect alarm clock through wife?

Unrelated UselessInfo x CounterFactual

Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned
factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct
effect on room.The overall probability of blowing out the candle is 68%. The probability of not blowing out
the candle and dark room is 12%. The probability of blowing out the candle and dark room is 51%. Imagine a
self-contained, hypothetical world with only the following conditions, and without any unmentioned factors
or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on
alarm clock.
For husbands that don’t set the alarm and wives that don’t set the alarm, the probability of ringing alarm is
11%. For husbands that don’t set the alarm and wives that set the alarm, the probability of ringing alarm is
60%. For husbands that set the alarm and wives that don’t set the alarm, the probability of ringing alarm is
46%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 92%.
For husbands that don’t set the alarm, the probability of alarm set by wife is 61%. For husbands that set
the alarm, the probability of alarm set by wife is 1%.
Suppose Probability of ringing alarm, given that alarm did not set by husband alarm set by wife is 0.46.
Does husband positively affect alarm clock through wife?

Related UselessInfo x CounterFactual

Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned
factors or causal relationships: The probability of the husband being awake when the wife sets the alarm is
85%. If the husband sets the alarm, the probability of the wife being in a good mood is 73%. Husband has
a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock.
For husbands that don’t set the alarm and wives that don’t set the alarm, the probability of ringing alarm is
11%. For husbands that don’t set the alarm and wives that set the alarm, the probability of ringing alarm is
60%. For husbands that set the alarm and wives that don’t set the alarm, the probability of ringing alarm is
46%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 92%.
For husbands that don’t set the alarm, the probability of alarm set by wife is 61%. For husbands that set
the alarm, the probability of alarm set by wife is 1%.
Suppose Probability of ringing alarm, given that alarm did not set by husband alarm set by wife is 0.46.
Does husband positively affect alarm clock through wife?

F.4. Prompts for generating IrrelevantInfo mutations

To generate the NL question for the IrrelevantInfo mutations, we use the following auxiliary prompt. The template
<question> refers to the part highlighted in red in the prompts stated in Appendix F.3.

System Prompt to Generate Irrelevant Information

You are tasked with generating irrelevant probability statements to enhance causal reasoning questions.
These statements will be added to the beginning of the question, right after the phrase: "Imagine a
self-contained, hypothetical world with only the following conditions, and without any unmentioned factors
or causal relationships:" The irrelevant probability statements must adhere to the following guidelines:
They should describe probabilities or conditional probabilities related to entities, actions, or settings
described in the question. The probabilities should be realistic and plausible but should have no impact on
the causal reasoning task or relationships in the question. They must blend seamlessly into the hypothetical
context without introducing new causal relationships. They should add complexity to the question but not
distract from solving the core problem. Structure of Irrelevant Probability Statements: Use probabilities
or percentages (e.g., "The probability of X is Y%"). Include conditional probabilities where appropriate
(e.g., "If A occurs, the probability of B is C%"). Ensure the statements align with the general tone
of hypothetical worlds while remaining inconsequential to the reasoning process. Your Task: Generate
two irrelevant probability statement for a given question. Ensure they are consistent with the context,
plausible, and add complexity without affecting the causal reasoning. Focus on adhering to the structure and
requirements outlined above. You must ONLY give the two statements as output and nothing else. DO NOT start
with phrases like "Here are two irrelevant probability statements for the given question:" <question>

26

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

G. Appendix: CRUXEval Details

G.1. Mutations

We summarize the mutation types implemented for CRUXEval in Table 6. Note that each of the five code mutations can be
implemented as both a Type-2 and a Type-3 mutation, depending on how the resulting question is posed; the corresponding
two prompt templates are presented in Appendix G.2.

Mutation type Description Original Code Mutated Code

Replace
Operator

Selects a random opera-
tor of type ast.BinOp,
ast.UnaryOp, ast.BoolOp,
or ast.AugAssign for replace-
ment. Replaces basic arithmetic
operators with their inverses (e.g.
addition with subtraction). Flips
boolean operators and unary
operators (e.g. “and” with “or”).
Replaces comparison operators with
their negations (eg. “in” with “not
in” and “ ≤” with “>”).

def f(text, lower, upper):
count = 0
new_text = list()
for char in text:

char = lower if char.isdecimal()
else upper↪→

if char in ['p', 'C']:
count += 1

new_text.append(char)
return count, ''.join(new_text)

def f(text, lower, upper):
count = 0
new_text = list()
for char in text:
char = lower if char.isdecimal()

else upper↪→
if char not in ['p', 'C']:

count += 1
new_text.append(char)
return count, ''.join(new_text)

Mutate String
Selects a random string instance for
replacement. Replaces the string
with a random sequence of the same
length.

def f(text, lower, upper):
count = 0
new_text = list()
for char in text:

char = lower if char.isdecimal()
else upper↪→

if char in ['p', 'C']:
count += 1

new_text.append(char)
return count, ''.join(new_text)

def f(text, lower, upper):
count = 0
new_text = list()
for char in text:
char = lower if char.isdecimal()

else upper↪→
if char in ['E', 'C']:

count += 1
new_text.append(char)
return count, ''.join(new_text)

Mutate Value
Selects a random instance of type
bool, int, or float for replace-
ment. Boolean values are replaced
with their negations; integers are
perturbed by a uniformly random
nonzero integer between -10 and 10;
floats are perturbed by a uniformly
random nonzero float between -10
and 10.

def f(nums):
output = []
for n in nums:

output.append((nums.count(n), n))
output.sort(reverse=True)
return output

def f(nums):
output = []
for n in nums:
output.append((nums.count(n), n))

output.sort(reverse=False)
return output

Swap
Conditional

Selects a random conditional node
for replacement.
If both an if and else branch
are present, the code body for each
branch is swapped.
If only an if branch is present, the
condition of the branch is negated
(if X becomes if not X).

def f(t):
for c in t:
if not c.isnumeric():
return False

else:
return True

def f(t):
for c in t:
if not c.isnumeric():

return True
else:

return False

Redefine
Function

Selects a random function call for
replacement (attribute function calls
are not included). Defines a new
wrapper function which calls the
original function, and replaces the
original function call with a call to
the new function.

def f(dic):
for k,v in sorted(dic.items(),

key=lambda x:
len(str(x)))[:-1]:

↪→
↪→

dic.pop(k)
return list(dic.items())

def xxxz(arg0):
return list(arg0)

def f(dic):
for k, v in sorted(dic.items(),

key=lambda x:
len(str(x)))[:-1]:

↪→
↪→

dic.pop(k)
return xxxz(dic.items())

Table 6. Mutations in RE-IMAGINE for the CruxEval dataset.

G.2. Prompts

Below we list the prompts used in testing CRUXEval. All models are tested using zero-shot prompting, only.

Prompt for Level-2 mutations:

27

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Consider the following code with a missing value represented by ’??’: {f question}

Based on the given Python code, which may contain errors, complete the assert statement with the output
when executing the code on the given test case. Print only the exact text to replace "??" in the assert
statement, to make the assert statement true. Do NOT output any extra information, even if the function is
incorrect or incomplete.

Prompt for Level-3 mutations:

Consider the following code with a missing value represented by ’??’: {f question}

Suppose a change is now made to the code, as described by the following diff: {diff}

Based on the given Python code, which may contain errors, complete the assert statement with the output

when executing the code on the given test case. Print only the exact text to replace "??" in the assert

statement, to make the assert statement true. Do NOT output any extra information, even if the function is

incorrect or incomplete.

G.3. Coverage

Not all transformations are applicable to all problems; we report coverage statistics below. Mutations are performed on 800
total factual examples, with 88.9% of factual examples covered by at least one mutation.

Mutate
String

Mutate
Value

Redefine
Function

Replace
Operator

Swap
Conditional

30.3% 56.6% 54.1% 50.6% 42.5%

Figure 22. Mutation Coverage Statistics (as a percentage of total CRUXEval data)

G.4. Evaluation and Matched Factual Accuracy

We plot the accuracy on the factual and mutated CRUXEval benchmark for ten language models in Figure 21.

Figure 23. CRUXEval: Detailed accuracy for models in the Phi, Llama, and GPT families.

Because the coverage statistics for each mutation fall well below 100%, each mutation is tested on only a subset of the
total CRUXEval benchmark problems. We therefore consider the possibility that there may be a correlation between which
mutations apply to a given problem and the difficulty of that problem for the models we evaluate. In order to account for this
fact, we also compute matched factual accuracy scores for each mutation. These scores report the factual accuracy rate of
the model when tested on only the same subset of problems to which the mutation applies. For example, in Figure 24, the
green bars represent accuracy scores on the factual, Level-2, and Level-3 variants of the 56.6% of CRUXEval problems
which admit a Mutate Value mutation. Note for ease of reading that the palest bar of each color in Figure 24 represents the
matched factual score for the corresponding mutation.

28

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Figure 24. CRUXEval: Detailed accuracy and matched factual accuracy for models in the Phi, Llama, and GPT families.

We observe that the overall trend of decreasing accuracy with Level-2 and Level-3 mutations is still evident with respect to
matched accuracy scores. Nonetheless, we note that matched factual accuracy is consistently lower than raw accuracy on
certain mutations; most drastically for Mutate String. This indicates that problems which contain mutable strings tend to be
more difficult for LLMs than other CRUXEval problems, underscoring the importance of viewing matched scores for the
fullest picture of model performance. The further decrease between matched factual scores and the corresponding Level-2
and Level-3 mutation scores indicates that the difficulty-level correlation cannot account for the remaining loss in accuracy
post-mutation.

H. Appendix: Loop Details

In software verification, automatic inference of loop invariants is a classic problem (Si et al., 2018). Since this problem is
undecidable in general, many heuristics have been proposed, including those based on machine learning. Recently, LLMs
have been demonstrated to perform well on loop invariant inference of integer programs (Wu et al., 2024; Kamath et al.,
2024). In this paper, we mutate such tasks and evaluate the efficacy of LLMs on the mutated tasks.

Each task has a program with a loop and an assertion. The goal is to infer a predicate that satisfies the following three
conditions: it holds before the loop starts executing, holds for each iteration of the loop, and implies the assertion when the
loop exits. Finding such predicates can be tricky even for small programs. Consider the task in Figure 6; the predicate x ≥ y
satisfies the first and the third condition but fails to satisfy the second. As another example, consider the simpler program

x=0; while (x< 100) x++; assert x==100

Given this program, the goal is for an LLM to produce the loop invariant x ≤ 100. It is easy to see that x ≤ 100 satisfies
all the three conditions specified above. Note that there are infinitely many predicates that are variations of x ≤ 100, e.g.,
x ≤ 99 ∨ x = 100, that are valid loop invariants and the model succeeds if it infers any of them. Although inferring such
loop invariants is undecidable, in practice, checking whether a given candidate invariant satisfies the three conditions can be
done well by automated software verification tools like Frama-C (Correnson et al.).

To evaluate a model on an original or a mutated task, the LLM output is checked by Frama-C that internally uses SMT
solvers such as Z3(de Moura & Bjørner, 2008), alt-ergo(Ait El Hara et al., 2022) and CVC4(Barrett et al., 2011). The model
succeeds on the task if Frama-C succeeds to verify the LLM output as a loop invariant, and fails otherwise. Hence, a model
can fail on a task for two reasons: either Frama-C declares the candidate as invalid, or the candidate invariant is valid but
Frama-C could not prove its validity within the provided time bound. We evaluate on 250 tasks from Kamath et al. (2024)
which have the property that Frama-C succeeds in verifying that the invariant for the original program is also the invariant
for all the mutated programs.

29

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Unlike GSM8K, applying Level-3 mutations to these tasks is difficult. Once we change the values of the program variables,
loop invariants can cease to exist. For example, if we mutate the example above then we can get the mutated program

x=101; while (x< 100) x++; assert x==100

with a new initialization. There is no loop invariant which discharges the assertion as the assertion will get violated when
the program is run. Hence, we limit ourselves to a category of Level-2 mutations that add useless information to the tasks in
the form of additional variables and operations that leave the values of the variables in the original program unaffected.

Table 7 shows how various mutations operate on the program in Figure 6. Figure 25 shows the results of all the models we
consider on 250 loop invariant inference tasks from Kamath et al. (2024). We use the following prompt from (Kamath et al.,
2024), reproduced here for completeness.

You are a helpful AI software assistant that reasons about how code behaves. Given a program, you can find
loop invariants, which can then be used to verify some property in the program.
Frama-C is a software verification tool for C programs. The input to Frama-C is a C program file with ACSL
(ANSI/ISO C Specification Language) annotations.
For the given program, find the necessary loop invariants of the while loop to help Frama-C verify the
post-condition.

Instructions:
- Make a note of the pre-conditions or variable assignments in the program.
- Analyze the loop body and make a note of the loop condition.
- Output loop invariants that are true
(i) before the loop execution,
(ii) in every iteration of the loop and
(iii) after the loop termination,
such that the loop invariants imply the post condition.
- If a loop invariant is a conjunction, split it into its parts.
- Output all the loop invariants in one code block. For example:
‘‘‘
/*@
loop invariant i1;
loop invariant i2;

*/
‘‘‘
Rules:
- **Do not use variables or functions that are not declared in the program.**
- **Do not make any assumptions about functions whose definitions are not given.**
- **All undefined variables contain garbage values. Do not use variables that have garbage values.**
- **Do not use keywords that are not supported in ACSL annotations for loops.**
- **Variables that are not explicitly initialized, could have garbage values. Do not make any assumptions
about such values.**
- **Do not use the
at(x, Pre) notation for any variable x.**
- **Do not use non-deterministic function calls.**
Consider the following C program:
‘‘‘
code
‘‘‘
You are allowed to use implication to take care of the conditional nature of the code. Use implication (⇒)
instead of using if-then.

For all variables, add conjunctions that bound the maximum and minimum values that they can take, if such
bounds exist.

If a variable is always equal to or smaller or larger than another variable, add a conjunction for their
relation.

If the assertion is guarded by a condition, use the guard condition in an implication.

If certain variables are non-deterministic at the beginning or end of the loop, use an implication to make
the invariant trivially true at that location.

Output the loop invariants for the loop in the program above. Let’s think step by step.

30

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Mutation Description Code Intervention Categories

Vanilla Base Snippet with a loop and
assertion.

int x = 1, y = 0;
while (y < 100000) {x+=y; y++;}
//@ assert(x >= y);

None

Junk Hint Adding 2 junk variables that
are disjoint from original
variables and are named as
junk_0 and junk_1.

int x = 1, y = 0;
int junk_0 = 1, junk_1 = 3;
while (y < 100000) {x+=y; y++;

junk_0 = 178; junk_1 = junk_0 - 687;
}//@ assert(x >= y);

Add irrelevant Info

Junk
No-Hint

Adding 2 new variables that are
disjoint from original variables
and are named unremarkably
(g0 and g1). Create new state-
ments using randomly sam-
pling of new variables and con-
stants.

int x = 1, y = 0;
int g0 = 1, g1 = 3;
while (y < 100000) { x+=y; y++;

g0 = 178; g1 = g0 - 687;
}//@ assert(x >= y);

Add irrelevant Info and rename
nodes

Read
Original

Read the original variables of
the code into the newly intro-
duced ones. Randomly sam-
ple original variables and oper-
ators and add them to new vari-
ables. The arithmetic expres-
sions in updates to new vari-
ables can use the original pro-
gram variables along with the
new variables and random con-
stants. This mutation intro-
duces more reads of the orig-
inal program variables but no
writes to them.

int x = 1, y = 0;
int g0 = 1, g1 = 3;
while (y < 100000) { x+=y; y++;

g0 = 178 + x - y; g1 = g0 - 687 + y - x;
}//@ assert(x >= y);

Add irrelevant Info and rename
nodes, dummy relationship be-
tween nodes

Write
Original

Increment the original vari-
ables by algebraic identities of
new variables that equate to
0. Randomly sample new vari-
ables for the identity. Split con-
stants to increase complexity.

int x = 1, y = 0;
int g0 = 1, g1 = 3;
while (y < 100000) {
x = x + y + (((g0 + g1)*(g0 + g1)) -1*g0*g1 -2*g0*g1)

- ((g0*g0 + g1*g1) - 1*g0*g1);
y = y + 1 + ((g1*g1 + g0*g0) -1*g1*g0) - (((g1 + g0)*(

g1 + g0)) -1*g1*g0 -2*g1*g0);
g0 = 178; g1 = g0 - 687;
}//@ assert(x >= y);

Add irrelevant Info and rename
nodes, dummy relationship be-
tween nodes

X
Original

Increment the original vari-
ables by algebraic identities of
new variables that equate to 0
and read original variables into
the new variables

int x = 1, y = 0;
int g0 = 1, g1 = 3;
while (y < 100000) {
x = x + y + (((g0 + g1)*(g0 + g1)) -1*g0*g1 -2*g0*g1)

- ((g0*g0 + g1*g1) - 1*g0*g1);
y = y + 1 + ((g1*g1 + g0*g0) -1*g1*g0) - (((g1 + g0)*(

g1 + g0)) -1*g1*g0 -2*g1*g0);
g0 = 178 + x - y;; g1 = g0 - 687 + y - x;
}//@ assert(x >= y);

Add irrelevant Info and rename
nodes, dummy relationship be-
tween nodes

Table 7. Mutations for the Loop dataset on an example. For all the programs, (x = 1 ∧ y = 0) ∨ x ≥ y ≥ 1 is a valid loop invariant.

31

RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

Figure 25. Evaluation of various models on the Loop dataset and its mutated versions.

32

