PyraMotion: Attentional Pyramid-Structured Motion
Integration for Co-Speech Gesture Synthesis

Zhizhuo Yin', Yuk Hang Tsui?, Pan Hui'2
'Hong Kong University of Science and Technology (Guangzhou) Guangzhou, Guangdong, China
2Hong Kong University of Science and Technology, Hong Kong SAR
zyinl190@connect.hkust-gz.edu.cn, yhtsui@connect.ust.hk, panhui@hkust-gz.edu.cn

Abstract

Generating full-body human gestures encompassing face, body, hands, and global
movements from audio is crucial yet challenging for virtual avatar creation. Exist-
ing systems tokenize gestures with fixed frame-count for each token, predicting
tokens of single scale from the input audio. However, expressive human gestures
consist of varied patterns with different frame lengths, and different body parts ex-
hibit motion patterns of varying durations. Existing systems fail to capture motion
patterns across body parts and temporal scales due to the fixed frame-count setting
of their gesture tokens. Inspired by the success of the feature pyramid technique
in the multi-scale visual information extraction, we propose a novel framework
named PyraMotion and an adaptive multi-scale feature capturing model called
Attentive Pyramidal VQ-VAE (APVQ-VAE). Objective and subjective experiments
demonstrate that the PyraMotion outperforms state-of-the-art methods in terms of
generating natural and expressive full-body human gestures. Extensive ablation
experiments highlight that the self-adaptiveness integration through attention maps
contributes to performance.

1 Introduction

Among all human communication, the movements of all body gestures serve as an important
approach to conveying thoughts. Such non-verbal signals provide more information than voice
and context, enhancing the expressiveness and vividness of the speech, thus allowing listeners
to gain a more comprehensive understanding of the intentions, emotions, and motivations of the
speaker [32, 28]]. Existing studies [35}[11] suggest that expressive gestures make avatars more intimate
and trustworthy. In the metaverse [17], the naturalness of the avatar’s full-body gestures, such as
face micro-expressions, intricate body gestures, and movement trajectory, could impact the sense of
realism, presence, and satisfaction. Therefore, generating natural full-body gestures is a valuable and
challenging task that serves as a critical component for creating realistic digital humans [29, 42]].

The most recent co-speech gesture generation work [22} (1} 139] focuses on utilizing VQ-VAE [34], a
method that encodes continuous motion to a discrete latent space while preserving the original motion
information. However, in these VQ-VAE-based methods, one shared approach is that each motion
token exclusively represents a static human pose in a single scale with fixed frame count. Since natural
gestures convey semantic information through a series of motion patterns with varying durations,
shown in this assumption severely hampers the model’s ability to learn natural gestures
that express different intricate semantic information. This assumption also constrains the ability of
the token predictor model to capture expressive patterns of audio and transcript representations with
inconsistent durations and generate accurate corresponding motion tokens.

Inspired by a widespread pyramidal multiscale design exploited in computer vision [31} 20} 26]. We
propose the PyraMotion framework to address the above problem by adaptively capturing motion
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Figure 1: Illustration of gesture sequences with expressive motion patterns in different durations.

patterns from coarse to fine granularities. Experiments validate that PyraMotion outperforms existing
state-of-the-art studies on reconstructing smooth body gestures from audio and textual information.

One of the key components of PyraMotion, the Attentional Pyramidal VQ-VAE (APVQ-VAE) model
encodes the motion patterns of different body parts at different scales into a shared discrete latent
space as several series of motion tokens and reconstructs a motion sequence by attentively fusing these
motion tokens. Experiments also demonstrate that APVQ-VAE outperforms the traditional VQ-VAE
in gesture reconstruction, beat alignment, and diversity. Additionally, the attention maps reveal
that different body parts exhibit distinct attention patterns to tokens across varying time durations,
highlighting the necessity to introduce a pyramidal motion representation.

To summarize, the main contributions are as follows:

* This work introduces a novel framework called the PyraMotion, which generates dynamic and
natural full-body gestures using multi-modal information. To the best of our knowledge, this paper
is the first to propose encoding motion patterns with varying temporal scale into a shared discrete
latent space as motion pattern tokens.

 This work proposes the Attentional Pyramidal VQ-VAE (APVQ-VAE), a novel model designed to
tokenize motion patterns across multiple temporal scales using a shared codebook. Experiments
validate the superiority of APVQ-VAE compared with vanilla VQ-VAE in capturing motion patterns
at different temporal scales and effectively accommodating the diverse motion information needs
of various body parts during generation.

» Extensive experiments show that Pyramotion outperforms state-of-the-art methods in generating
audio-driven gestures, as confirmed by both objective evaluations and subjective human studies.

2 Related Works

2.1 Human 3D Motion Generation Approaches

Early attempts at generating human gestures involved using rule-based algorithms [4, |15] to select
appropriate gestures from a database based on input and blend motion clips with smooth algorithms.
However, due to limited data and varying speech details, such a workflow suffers from inconsistency
between the audio and motion, and the unnatural transition among different motion clips.

Deep generative models, such as Variational Autoencoders (VAEs) [16], Generative Adversarial
Networks (GANSs) [[13]], and transformers [36|9], have shown promise in addressing the limitations
of rule-based methods by capturing complex data correlations in a shared vector space. However,
direct generation from a continuous latent space is sensitive to input noise, presenting challenges in
practical applications. VAE-based methods also face the problem of "posterior collapse,” restricting
their ability to generate diverse gestures based on audio cues. These pose challenges for practical
implementation in real-world scenarios.

Recent work [39/ 30} (1} 22]] has utilized VQ-VAE [34] to project motion patterns to a discrete latent
codebook, transforming the motion generation problem into an autoregressive token prediction task
conditioned on audio. These methods utilize VQ-VAE to capture motion patterns in single scale
with fixed frame count and project them into a discrete latent space, represented by motion tokens.



Then, they utilize a token predictor network to transform the audio and text representations into
the motion token series and reconstruct human motion of each frame by applying the decoder of
VQ-VAE. While the VQ-VAE enhances model robustness and generation quality, the assumption that
each token represents poses of gestures in a single scale limits the generation of expressive motions
varying in frame counts.

To address the gap, this paper introduces a variation of VQ-VAE called Attentional Pyramidal VQ-
VAE (APVQ-VAE) to tokenize dynamic motions in different temporal scales, enabling the generation
of more detailed and natural gesture sequences.

2.2 Audio-driven Full-body Gesture Generation

Given the complexity and variability of human motions, recent research has focused on generating
gestures for specific parts of the body, such as the face [[10} 37, upper body (including arms, wrists,
and hands) [41[12]], and lower body (including overall movements) [38]] individually. While these
generative models have shown promise in capturing unique motion patterns, they lack the versatility
to generate movements across all body parts due to the diverse range of motion patterns among
different body parts. There is a need for a unified framework for motion modeling.

Recent studies [22} [25]16] approached generating full-body gestures by generating each part, the face,
upper body, hands, lower body, and global movements first and combining these components to form
full-body gestures.

However, existing methods overlook the need for different temporal information in modeling and
generating motions, which lack the ability to capture motion patterns in different temporal scales and
extract semantic correlations between different body parts.

In this work, we utilize the Attentional Pyramidal Token predictor to extract the coarse-to-fine-grained
pattern information within the audio and transcript embeddings. It can accurately predict the motion
token series by exploiting both body part information and semantic correlations between different
body parts through a multi-scale temporal cross-attentive network.

3 Methodology
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Figure 2: The Overall Workflow of PyraMotion. Stage 1: APVQ-VAE learns the discrete latent
representations of motions, denoted as tokens, and reconstructs the motion from the pyradical token
series via decoder. Stage 2: The PyraMotion framework is trained to predict the pyradical token
series of motion from audio and reconstruct the motion via decoder in APVQ-VAE.

This section presents the development of the PyraMotion framework, as depicted in[Figure 2] Initially,
we formally define the problem of audio-driven gesture generation. Subsequently, we outline the
workflow of the PyraMotion framework and delve into the structures of Attentional Pyramidal
VQ-VAE and Pyramidal Token Predictor.



3.1 Problem Formulation

For a given audio a € RLsf g f = Sraudio/ [PSgestures, Where L represents the expected total
frame counts of generated gesture sequences, sf represents the sample count per frame, srqyudio
denotes the sample rate of the given audio, and fpsgesiures denotes the frames per second of the
generate gesture sequences. The task is to generate the holistic 3D gesture of the human body
g € REX(55x6+100+443) from the given audio. The dimension of g is formed by L multiplied by
the sum of 55 joints in Rot6D, 100 dimensions of facial expressions in FLAME parameters, 4 foot
contact labels, and 3 global translation parameters.

3.2 PyraMotion

The overall workflow of PyraMotion can be divided into two stages: 1. Training APVQ-VAE to learn
discrete latent representations of motions for encoding and reconstruction. 2. Training the Pyramidal
Token Predictor to predict the discrete latent representations from audio.

In the first stage, motion representations are tokenized at various scales using multiple Temporal
Convolution Networks (TCNs). These tokens are mapped to a shared codebook for semantic
alignment, then reconstructed to original motions by applying Transpose TCN and aggregation.

In the second stage, the goal is to predict token series from input audio and text transcripts to recon-
struct corresponding motion sequences. To account for the diverse motion patterns across different
body parts, the audio and text representations are transformed into four separate latent embeddings
for reconstructing the face, upper body, hands, and lower body. The four latent embeddings are
further processed and quantized into token series of varying temporal scale, then decoded by the
attentional pyramidal decoder in the trained APVQ-VAE to reconstruct the motion sequences.

3.3 Attentional Pyramidal VQ-VAE (APVQ-VAE)

Normal VQ-VAE consists of Encoder £, Quantizer Q, and Decoder D. The Encoder projects the
raw gesture sequences (g) into the latent representation space as encoded embeddings f in single
scale with fixed frame count, and then the Quantizer classifies the embeddings into discrete tokens q
according to the codebook Z based on the embedding distance in the latent space. After that, the
decoder reconstructs the motion sequences g from the quantized embedding f, which is generated by
looking up the codebook with quantized token series.

f=&(g),q = Q(f),f = lookup(Z, q), & = D(f)

f,f‘ c RTsou,«ceXd’q c ]RTS(,M,VC@7 7 c RCXd»g»g c ]RLX(55><6+100+4+3) (1)

where Tsource, d, and C' are the total frame count of the input motion sequence, the dimensions of
embeddings, and the size of the codebook, respectively.

In APVQ-VAE, we utilize n TCN networks representing n levels of temporal scale to generate the
encoded embedding F, which consists of n embedding series with various lengths.

F=If,..f,]=£&(g) = [TCNy(g), ..., TCN,(g)] 2)

where f; € R(Tsource/2')%d denotes the embedding series with i from 1 to n.

In the quantization stage, the encoded embeddings are first quantized to token series Q, then formed

the quantized embedding series F by looking up the codebook. All embedding series share the same
codebook Z to ensure consistency in the embedding semantics.

Q = [q17 7qn] = Q(F)a F = IOOkUP(Z7 Q) (3)

where q; € RTsouree/2" denotes the token series.

In the decoding stage, instead of using TCN as previous VQ-VAE-based methods [22} [1]], we utilize
the Transpose Temporal Convolution Network (TransTCN) to decode the quantized embeddings
into gesture sequences using the same scale of reception field in the encoder. Thus, multiple gesture
sequences are reconstructed from quantized embeddings in different temporal scales. To further
enhance the reconstruction, as shown in[Eq. 4] a residual connection is introduced by combining the
direct reconstruction from the mean of the stacked gesture sequences with the attention-based residue,



enabling the model to capture both coarse and fine-grained temporal dynamics effectively. Further
details on this design and its effectiveness are discussed in

g = D(F) = Attention(Mean(F stack ), Fstacks Fstack) + Mean(Fgzqcr)

| [TransTCNl(f'l), ...,TransTCNn(f"n)]

Notably, for each convolution operation in TCNs and TranTCNs, the output embeddings are nor-
malized by dividing the kernel size shown in[Eq. 5|to mitigate the scale differences stemming from
varying kernel sizes, thereby enhancing the stability of the training process.

r = Conv(f, ks, s,p)/ks 5)

where C'onv() denotes convolutional operation, ks denotes kernel size, s denotes stride, and p denotes
padding. The loss function of APVQ-VAE is as follows:

‘CVQfVAE - Ere(:(gv g) + ‘Cvel (g/7 g/)
+ Lace(g",8") + ||sg[F] — F[[5 + |[F — sg[E]][5

where L, is Geodesic [33] loss, and L, Lacc are L1 losses. sg is the stop gradient operation and
the weight of commitment [34] loss is set to 1.

“
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3.4 Pyramidal Token Predictor

In the Pyramidal Token Predictor, we need to predict the corresponding pyramidal tokens series
Q =41, ..., 0n] from audio features and text contents.

Audio and Context Feature Fusion For the input audio features s, following previous work [2],
we employ onset o, and amplitude a and combine them as rhythmic audio features r € R”*?. For the
input transcript text, we transform it into content features ¢ € R”*? using the pre-trained model [3].
Then we utilize the attention mechanism to fuse the audio features and context features,

«a = Softmax(MLP(ry.7, c1.7))
fir=axrir+(1—a)Xcur

@)

where T denotes the total frame counts of the audio after sampling and the expected motion sequences.
a € RT* js the element-wise attention coefficient.

Latent Generation and Token Prediction According to the previous studies [22]], in the holistic
gesture generation task, there is only a weak correlation between the distribution of facial expression
and body motion. Therefore, we propose to exploit two independent feature extraction and token
prediction workflows for facial expression and body motion separately, based on independent audio-
text representations £f¢© and f?°9Y. For the latent representation prediction, we first combine the
audio-text embedding with the learned speaker embedding and project to the dimension of the hidden

vector:
hface _ MLP(fface D Pf)

h""** — SAN(g + p:) (8)
hbody _ hhints + TCAT(hhints @ py fbody)
hrerts ¢ RT*" denotes the hidden representation of part motion, where parts can be face or body.
frarts ¢ RT*xd denotes the fused audio-text embedding, and p € R? denotes the learned speaker

embedding. Body hints h""*s € RT*" are encoded from the masked gesture sequence g, where the
first 8 frames are ground truth frames. SAN denotes a self-attentive network.

To better capture the various motion patterns of different parts of the body, the hidden representation
of the body is further projected into three different latent spaces, including the upper body, lower
body, and hands. Then, we construct two types of pyramidal representations to generate pyramidal
latent. The first type averages the consecutive representation and the second type uses the isomorphic
TCN network in the APVQ-VAE encoder. The TCN network can extract similar information as the
APVQ-VAE encoder and generate pyramidal motion latent.

hupper,lower,hands _ MLP(thdy)

arts arts arts arts arts
ane;n = [hfneatnw E) h‘fne;nn—l] = [O—(hfo7.,72i_1])v EEE) J(hﬁl_zi,“m_u)] )
B0 = (707, W, ] = [TONo (7). L TON, ()]



where parts can be face, upper, lower, and hands. o denotes the average operation and

hrarts  hPerts. € RT/2° %" denotes the i*" embedding series with 2° frames.

After constructing the embedding series with different scale, a temporal cross-attention Transformer
decoder TCAT is applied to capture the correlations between the above two representations. Then a

1-layer MLP is used to project the dimensions into the reconstruction latent I:Pﬁgg ts,

H?2' = MLP(TCAT(HA!S HPS™)) (10)

rec mean’ ten

We optimize the learned reconstruction latent by applying the MSE loss:
L£rerts — MSELoss(HEZ™, Frarts) (11)

Tec Tec
where FP97ts ig the learned latent representation of APVQ-VAE of corresponding body parts from
the ground truth. After learning the mutual information between the two representations, we further
learned the correlation among body parts. We sum the TCN latent series of all body parts together to
form a full-body pyramidal latent and conduct cross-attention operations with the mean latent:
u hand 1
Hfu — HUPPET + H anas + thxer

ten ten

I:'Iparts — TcAT(Hpa'rts Hfull) — [l'_'lggarts’ - flﬁa_rfS]

mean?

(12)

where HP%"%s denotes the latent embedding of each part of the body in different temporal scale
and parts can be upper, lower, and hands according to previous body part separation. h?*"** ¢

RT/2"%h represents the latent embedding of body parts in different scales.

After generating the latent representations of each body part, we quantize the latent representations
by predicting the corresponding tokens iteratively from coarse to fine granularity. Such quantization
operation projects the learned continuous latent to discrete latent space represented by tokens for
better reconstruction performance.

q;;)arts _ MLP(ﬁfarts + qf_?_rlts)ai c [0’ n— 2] (13)
Qparts _ [qgm“ts’ - Aﬁa_rltS]

where 7" € RT/ 2'xC represents the predicted possibility distribution of motion tokens for it"

granularity, C' denotes the codebook size. We use cross-entropy loss to optimize the learned token
index distribution, where QP"** is the learned token of body motion in APVQ-VAE.
LPoTS — CrossEntropy (QPeTs, QPerts) (14)

cls

4 Experiments

4.1 Datasets and Training

We evaluate the ability of our method to generate holistic 3D gestures from speech on a diverse
and expressive dataset BEATQE] [23] collected from mocap equipment. This public dataset contains
76 hours of high-quality, multi-modal data captured from 30 speakers talking with eight different
emotions. Following the settings of existing work [22, 25], we conduct the experiments on the
BEAT?2-Standard Speaker2 with an 85%/7.5%/7.5% train/val/test split.

4.2 Evaluation Metrics

For the body motion generation, we adopt FGD [41] to measure the similarity between the generated
gesture and the real gestures. To evaluate the Diversity [[18] of generated gestures, we calculate the
L1 distance between different gesture clips. In terms of audio-motion synchronization, we utilize the
Beat Align [19] measurement. For the facial expression generation, we use Mean Square Error
(MSE) [37] to measure the vertex position distance and L1 Vertex Difference (LVD) [37] to measure
the L1 distance between the generated facial expression and the ground truth facial expression.
The results are reported as the mean value and the standard deviation computed from 5 times of
independent runs. The significance is also reported with the p-value.

"https://github.com/PantoMatrix/PantoMatrix



4.3 Comparison Methods

We compare our PyraMotiorE] with the following classic and state-of-the-art methods of talking
head generation and body gesture generation: S2G [12], Trimodal [41]], HA2G [24], DisCo [21]],
CaMN [23], Diffusestylegesture [38]], HoloGest [7],RAG-Gesture [27], AMUSE [8], MambaT-
alk [43]], Habibie et al [14],TalkSHOW [40], DiffSHEG [6], EMAGE [22], and ProbTalk [25]],
SynTalker [3]. For Habibie et al. [14]], TalkSHOW [40], we use their reported version, which is the
upper body generation. Meanwhile, we cite the results of their full-body version reproduced by [22].

4.4 Overall Comparison

In this part, we compare the overall performances of M3G with classical and state-of-the-art audio-
driven gesture generation methods. In Habibie et al* and TalkSHOW? denotes the reported
performance of reproduced full-body motion generation in [22], * denotes the results are directly
adapted from their original paper due to the same experimental settings, thus no std values are
reported. AMUSET denotes the reported performance is by the reproduced evaluation code by
ourselves.

FGD *10"'| BAX!0"'—  Diversity—» MSEX10 "] LVD*10 |

S2G (CVPR 2019) 27.87 4.827 £0.138 6.022 £ 0.097 - -
Trimodal (TOG 2020) 12.13 5.762 = 0.063 7.513 +0.073 - -
HA2G (CVPR 2022) 12.32 6.779 = 0.021 8.626 +0.016 - -
DisCo (ACM MM 2022) 9.484 6.439 +0.027 9.912 £+ 0.022 - -
CaMN (ECCYV 2022) 6.967 6.628 +0.018 11.18 4 0.089 - -
DiffStyleGesture (IJCAI 2023) 8.866 7.239 +£0.089 11.13 +0.077 - -
AMUSE' (CVPR 2024) 12.11 8.318 + 0.052 14.93 + 1.497 - -
SynTalker* (MM 2024) 5.366 7.812 13.05 - -
HoloGest* (3DV 2025) 5.341 7.957 14.15 - -
RAG-Gesture*(CVPR 2025) 8.08 7.34 11.97 - -
Habibie et al* (IVA 2021) 9.040 7.716 8.213 8.614 8.043
TalkSHOW (CVPR 2023) 6.145 6.863 + 0.008 13.12 +0.156 7.791 +0.044 7.771 + 0.052
TalkSHOW* (CVPR 2023) 6.209 6.947 13.47 7.791 7.771
DiffSHEG™* (CVPR 2024) 8.986 7.142 11.91 7.665 8.673
EMAGE (CVPR 2024) 5.643 7.707 £0.004 12.92 4+ 0.198 7.694 £ 0.076 7.593 £ 0.062
ProbTalk* (CVPR 2024) 5.040 7.711 13.27 8.617 -
MambaTalk* (MMM 2025) 5.366 7.812 13.05 6.289 6.897
PyraMotion 4.612 7.420 +0.008 13.42 +0.020 7.176 = 0.028 7.270 = 0.011
p-value - < 0.0005 < 0.0001 < 0.0001 < 0.001

Table 1: Overall Comparison of various methods. The best performance of each metric is in boldface
fonts, and the second one is in font. The sign 1 denotes that the larger the value, the better it is,
while the sign | is the reverse, — means the metrics measures some expressive aspects of the motion,
while higher value is not necessarily correlated to the generation accuracy. The standard deviation is
calculated across 10 epochs after reaching best performance.

As shown in our proposed PyraMotion surpasses or achieves state-of-the-art methods
across all metrics. Notably, it achieves significant improvements in reconstruction accuracy like
FGD, MSE, and LVD, demonstrating that its generated full-body gestures align more closely with
ground-truth motion than existing approaches. For non-deterministic metrics like Beat Align and
Diversity, PyraMotion delivers comparable or suboptimal performance.

These results highlight that PyraMotion’s use of Attentional Pyramidal VQ-VAE to adaptively capture
multi-scale patterns across body parts enables it to model a broader range of motion patterns. This
capability enhances the model’s ability to generate higher-quality, more accurate motion sequences
compared to other methods.

4.5 Ablation Analysis

Key components In this ablation experiment, we propose five variants of PyraMotion: w/o
Separate Body uses unified latent embeddings for different body parts instead of separate latent

’The source code will be released to GitHub after acceptance.



representations. w/o Text generates motion sequences only based on the audio signal. w/o TCN
Encoder discards the TCN network in equation (12) to disable the temporal information extracting
process in the token predictor; w/o Full-Body Latent discards the fusing operation of full-body latent
in equation (15) and generates each body part’s latent embedding only based on their own parts’
features; w/o TransTCN substitutes the TransTCN structure in equation (4) with the TCN structure
in equation (2) following previous work [22 [1].

reported that the PyraMotion significantly outperforms or performs similarly with all
variants, demonstrating the contributions of these components. Moreover, the results indicate that
replacing the TransTCN structure leads to a more significant decline in performance compared with
the other two variants, demonstrating the indispensability of the token decoding process in the overall
workflow. The absence of Full-Body latent mainly affects the body’s reconstructing performance,
which might be caused by the lack of mutual information among different body parts. The w/o TCN
Encoder performs significantly worse than PyraMotion on facial reconstruction and body diversity,
indicating the ability of the Pyramidal TCN Encoder to model diverse types of motion patterns and
facial expressions from audio.

FGD*107'|  BC*17't+  Diversity} MSEX107"] LyDx107°]

w/o Separate Body ~ 8.926 £ 0.021 6.843 +0.008 10.838 £ 0.024 9.243 £+ 0.013 8.153 +0.019
w/o Text 6.677 +0.023 7.374 £ 0.012 12.893 £0.043 8.612 £0.012 7.852 £ 0.011
w/o TransTCN 6.178 +0.035 7.132 £ 0.005 12.869 £ 0.057 8.833 £0.017 9.511 £ 0.015
w/o Full-Body Latent 5.152 & 0.034 7.232 +0.002 13.308 £ 0.062 7.440 £ 0.013 7.518 £ 0.012
w/o TCN Encoder 5.178 £ 0.013 7.436 + 0.004 12.439 +0.117 7.607 £0.081 7.589 £ 0.039
PyraMotion 4.612 £ 0.014 7.420 £0.008 13.42 +0.020 7.176 £ 0.028 7.270 £ 0.011

p-value < 0.0005 > 0.1 < 0.0001 < 0.0001 < 0.0001

Table 2: Ablation Experiments for Proposed Components.
Reconstruction Performance Comparison of APVQ-VAE This section evaluates the performance
of APVQ-VAE in learning and reconstructing compared to the widely used VQ-VAE in existing
methods. A variant of it called Mean Pyramidal VQ-VAE (MPVQ-VAE) is also introduced, which
substitutes the attentional fusing operation on the pyramidal token series with an averaging operation.

[Table 3| presents the joints’ rotation Mean Square Error JRMSE) for each body part compared to the
ground truth sequences. The second part of the table shows the metrics used in Table[I]to assess the
reconstruction performance based on the encoded tokens in APVQ-VAE.

| Face*’°™"|  Upper*!°| Hands*!°"| Lower*!%"| Global*"|| FGD*!°'| BC*'4  Diversity} ~MSE**"| LVD*19’|

2.100 £ 0.009 5.209 4 0.028 7.103 £ 0.017 3.335 +0.023 4.418 £ 0.011|3.302 + 0.036 7.488 £ 0.014 12.482 4 0.009 0.524 + 0.002 2.087 & 0.010
MPVQ-VAE | 1.368 + 0.022 2.972+ 0.016 4.818 4 0.024 2.302 £ 0.025 4.103 + 0.020|1.497 £ 0.017 7.143 £ 0.012 12.654 £ 0.008 0.441 & 0.005 2.011 £ 0.012
APVQ-VAE |1.044 £ 0.022 2.955 + 0.018 4.662 = 0.011 2.209 + 0.025 5.129 & 0.031|1.296 + 0.028 7.237 & 0.015 12.864 + 0.008 0.279 =+ 0.005 1.525 + 0.019

p-value ‘ < 0.0001 < 0.0001 < 0.0005 < 0.0001 < 0.0001 ‘ < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Table 3: Experiments for Reconstruction Errors.
The experimental results reveal that both our APVQ-VAE and its mean-fusing counterpart MPVQ-
VAE significantly outperform conventional VQ-VAE in motion pattern tokenization and reconstruc-
tion, confirming the superiority of modeling through pyramidal token series.

VQ-VAE

Notably, APVQ-VAE surpasses the mean-fusing version, MPVQ-VAE, underscoring the importance
of its attentional fusing operation across multiple scales. To interpret this mechanism, we visualize
attention maps from the best epoch (lowest JRMSE) in Figure 3] revealing distinct scale preferences
across body parts. The face predominantly utilizes fine-grained features (kernel size 1), likely due to
continuous mouth motions. In contrast, the lower body balances attention between kernel sizes 2
and 8, corresponding to coarse leg dynamics. Meanwhile, hands and upper body exhibit decreasing
preference from fine to coarse scales with attention weights ranging from 0.2 to 0.3, reflecting their
need for both expressive details and structural motion patterns. These findings demonstrate that
the attentional fusion mechanism in APVQ-VAE adaptively addresses the differential reliance on
multi-scale features across distinct body regions.

Efficiency Analysis In this section, we will provide the theoretical analysis towards the computa-
tional complexity of the proposed workflow compared with vanilla VQ-VAE.
Theoretically, the computational complexity of our APVQ-VAE is:

O ZN:(zpd) (];;d) = O(PNd?)

p=1
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Figure 3: Attention Map Visualization

where d is the latent dimension, N is the total number of frames, and P is the number of pyramid
layers. Thus, the time complexity of APVQ-VAE is a constant multiple of vanilla VQ-VAE.

For the PyraMotion model, before the pooling operation, the data processing steps are identical with
single scale version. After the pooling operation described in equation[Eq. 9} the time complexity in
each step is in multi-scales, which follows the rule of a geometric series with regard to the increasing
scale numbers. For the Temporal Cross-Attention (TCA) operation, the time complexity of its
single-scale version is:
O(Nd? + N?d)
where NV is the clip length and d is the hidden dimension. The multi-scale Temporal Cross-Attention
operation has complexity:
P

Nd?2 [N\? 4N?
o> d +< )d QO(ZNd2+3d>=O(2(Nd2+N2d))=O(Nd2+N2d)

= op op
A similar conclusion will also be reached on the other multi-scale operations. Considering the
total time complexity before the pooling operation, PyraMotion’s time complexity has the same
time-complexity level with less than 2x of the single-scale version. To validate these theoretical
conclusions, we measured the inference times for single-scale EMAGE and multi-scale PyraMotion
on over 5 minutes of motion data. The experimental results are shown in Table [}

Table 4: Inference Time Comparison
Method Inference Time
EMAGE 22 +1.143 s
PyraMotion 41 £ 1.822s

Selection of Pyramid Layer Number This section evaluates the influence of pyramid layer design
on motion reconstruction performance. Adhering to the feature pyramid framework [20], which
leverages exponentially increasing kernel sizes to reduce information overlap across layers, we
configure successive layers with the scale sequence [1, 2, 4, 8, 16]. To preserve information density
and mitigate noise introduced by the padding operation, the pyramid layer downsamples features by
a factor of 2, corresponding to the dilation of their kernel sizes shown in

In this experiment, we search for the optimal number of layers to balance computational efficiency
with hierarchical feature extraction. The results, summarized in show that increasing the
layer number initially boosts performance but eventually leads to a decline. More layers enable
PyraMotion with a higher capability to represent complex motion patterns with varying durations.
However, overcomplex pyramidal token series may cause overfitting and the difficulty in predicting
tokens from audio, resulting in a comparative reconstruction performance with far worse generation
performance from audio, such as the 5 Layers variant.

‘ Face*19™"| Upper*1°"°| Hands*'° "] Lower*10"| Glohal““izi‘ FGD*107'|  BCx107'¢ Diversityt ~ MSEX10™"| LVD*107°|

1 Layer |2.100 £ 0.009 5.209 £ 0.028 7.103 £ 0.017 3.335 £ 0.023 4.418 £ 0.011|3.302 £ 0.036 7.488 + 0.014 12.482 + 0.009 0.524 + 0.002 2.087 + 0.017
2 Layers | 1.667 4 0.026 3.262 4- 0.022 5.949 & 0.015 2.546 4 0.027 4.983 & 0.019|6.768 4 0.026 7.342 4 0.027 12.979 £ 0.005 0.411 £ 0.005 1.858 £ 0.010
3 Layers | 1.352 + 0.038 2.993+ 0.025 5.218 +0.021 2.484 4+ 0.035 5.021 +0.018|5.627 + 0.017 7.254 +0.022 13.723 £ 0.011 0.391 £ 0.010 1.616 £ 0.016
4 Layers |1.044 & 0.022 2.612+ 0.023 4.662 = 0.011 2.209 + 0.025 5.129 & 0.031 |1.296 + 0.028 7.237 & 0.015 12.864 £ 0.008 0.279 + 0.005 1.525 + 0.019
5 Layers | 1.508 4- 0.022 2.955 4-0.018 5.483 & 0.014 2.339 4-0.029 5.211 4 0.023 |6.463 4 0.017 6.982 4 0.018 12.263 £ 0.008 0.389 £ 0.005 1.658 + 0.012

p-value ‘ < 0.0001 < 0.0001 < 0.0005 < 0.0001 < 0.0001 ‘ < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Table 5: Experiments for Pyramid Layer Number Selection

S Perceptual Study

To evaluate the naturalness of our generated results from the subjective perception, we conducted
A/B testing following [40] by comparing the generated motions by PyraMotion with other methods,



including CaMN, EMAGE, APVQ-VAE Reconstruction, and Ground Truth. For CaMN, since it
does not generate the facial expression, we directly use the ground truth as its facial expression.

We randomly sampled 40 clips from the generated video and compared them pairwisely. Eighteen
participants took part in this study. Specifically, participants are asked to answer A or B to the
following questions: Which clip do you think is more natural?
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Figure 4: Perceptual Study

illustrates that participants favor PyraMotion over existing work CaMN, and EMAGE,
indicating the superiority of PyraMetion in generating more natural motion from audio. Moreover,
in a proportion of cases, PyraMotion outperforms the APVQ-VAE Reconstruction, which generates
the motion from encoded tokens in APVQ-VAE, showing the closeness of generation quality between
them. GT outperforms PyraMotion without a doubt, showcasing the space for improvements.

6 Limitation, Future Work

The limitations of the proposed method are as follows: 1) It cannot adaptively adjust the number
of pyramid layers towards different datasets. The number of pyramid layers is a hyperparameter in
this work, which might restrict its generalizability and usability towards real-world usage scenarios.
2) One observation based on the existing work, EMAGE, and our work is that overly focusing on
integrating the correlation among different body parts could potentially cause a decrease due to the
interference of different body parts’ motion distributions. While fully independent modeling of each
body part would cause unnatural behavior. Thus, a self-adaptive mechanism of adjusting the ratio
between these two perspectives would be potentially beneficial for future studies.

7 Conclusion

This study introduces an audio-driven holistic gesture synthesis framework named PyraMotion, a
method that can extract pyramidal features from audio and exploit these features to generate natural
and realistic holistic 3D gestures. To achieve this, we propose the APVQ-VAE, which encodes the
pyramidal feature of multi-scale motion patterns into a shared codebook and adaptively fuses these
features for different body parts. We validate the effectiveness of APVQ-VAE by comparing its
reconstruction performance with vanilla VQ-VAE. We also illustrate the attention map of pyramidal
features fusion in APVQ-VAE. It supports the observation of varying preferences of motion scales
across body parts and interprets the source of adaptivity in APVQ-VAE. Extensive experiments
demonstrate the superiority of the PyraMotion framework in generating more natural and realistic
holistic 3D gestures compared with current state-of-the-art methods.
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A Training Details

The whole training process is conducted on an Ubuntu Server with 1 GPU computing card with 32
GB VRAM and 256 GB memory. The average training time of APVQ-VAE of different body parts is
around 24 hours, and the PyraMotion framework takes 48 hours to achieve best performance. For the
software environment, the model is deployed using Python 3.9, PyTorch 2.4.1.
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