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Abstract

Zero-shot Singing Voice Synthesis (SVS) with001
style transfer aims to generate high-quality002
singing voices of unseen timbres and styles (in-003
cluding singing methods, rhythm, techniques,004
and pronunciation) from the prompt audio.005
However, the multifaceted nature of singing006
voice styles poses a significant challenge for007
comprehensive modeling and effective trans-008
fer. Furthermore, existing SVS models often009
fail to generate singing voices with a wealth010
of stylistic nuances for unseen singers. In this011
paper, we introduce TransferSinger, a novel012
zero-shot SVS model that primarily employs013
three modules to address these challenges: 1)014
the style encoder that employs a Vector Quan-015
tization (VQ) model to condense style infor-016
mation into a compact latent space, thus facili-017
tating subsequent predictions; 2) the Style and018
Duration Language Model (S&D-LM), which019
concurrently predicts style information and020
phoneme duration, thereby enhancing both;021
and 3) the style adaptive decoder that uses022
a novel style adaptive normalization method023
to generate singing voices with enhanced de-024
tails. Experimental results show that Trans-025
ferSinger outperforms baseline models in terms026
of both synthesis quality and singer similar-027
ity across various tasks, including zero-shot028
SVS, controllable style synthesis, cross-lingual029
style transfer, and speech-to-singing style trans-030
fer. Singing voice samples can be accessed at031
https://transfersinger.github.io/.032

1 Introduction033

Singing Voice Synthesis (SVS) is dedicated to gen-034

erating high-quality singing voices by utilizing035

lyrics and musical notations. The pipeline of tradi-036

tional SVS systems involves an acoustic model to037

transform musical notations and lyrics into F0 and038

mel-spectrogram, which are then synthesized into039

the target singing voice by a vocoder.040

Recent years have seen significant advancements041

in SVS technology, with remarkable results being042

generated (Zhang et al., 2022b; Kim et al., 2023; 043

Cho et al., 2022; Liu et al., 2022a). However, the in- 044

creasing demand for personalized timbre and styles 045

in singing voices presents a challenge to current 046

SVS models. Unlike traditional SVS tasks, the 047

zero-shot SVS with style transfer seeks to generate 048

high-quality singing voices with unseen timbres 049

and styles of the prompt audio. Personal singing 050

styles mainly include singing methods (like bel 051

canto and pop), rhythm (including the stylistic han- 052

dling of individual notes and transitions between 053

them), techniques (such as vibrato and falsetto), 054

and pronunciation (like articulation and accent). 055

Despite this, traditional SVS methods lack neces- 056

sary mechanisms to model and transfer these per- 057

sonal styles effectively. Their performance tends to 058

decline for unseen singers, as these methods gen- 059

erally assume that target singers are identifiable 060

during the training phase (Zhang et al., 2023). 061

Presently, the zero-shot SVS with style trans- 062

fer task primarily faces two major challenges: 1) 063

The multifaceted nature of singing styles presents 064

a substantial challenge for comprehensive model- 065

ing and effective transfer. Previous models em- 066

ploy pre-trained models to model global styles 067

(Cooper et al., 2020). StyleSinger (Zhang et al., 068

2023) uses a Residual Quantization (RQ) model 069

to capture detailed styles. However, these mod- 070

els focus on limited aspects of styles, neglecting 071

styles like singing methods. Moreover, they fail to 072

extend to cross-lingual speech and singing styles 073

and do not conduct controllable style synthesis. 2) 074

Existing SVS models often fail to generate singing 075

voices rich in stylistic nuances for unseen singers. 076

Diffsinger (Liu et al., 2022a) employs a diffusion 077

decoder to capture the intricacies of singing voices. 078

RMSSinger (He et al., 2023) uses a post-net to en- 079

hance synthesis quality. However, these methods 080

do not adequately incorporate style information 081

into the synthesis of singing voices, leading to re- 082

sults that lack style variations in zero-shot tasks. 083
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To address these challenges, we introduce Trans-084

ferSinger, a model designed to transfer unseen tim-085

bre and styles (like singing methods, rhythm, tech-086

niques, and pronunciation) from prompts to synthe-087

size high-quality target singing voices. To model088

styles of the prompt audio, we propose a style en-089

coder that uses a vector quantization (VQ) model090

with ℓ2 normalization for enhancing training stabil-091

ity and reconstruction quality. To transfer styles to092

the target, we put forth the Style and Duration Lan-093

guage Model (S&D-LM). The S&D-LM incorpo-094

rates a multi-task language module to concurrently095

predict both style information and phoneme dura-096

tion, thereby enhancing both predictions. To gener-097

ate singing voices rich in stylistic nuances, we in-098

troduce the style adaptive decoder, which employs099

a novel style adaptive normalization method to re-100

fine mel-spectrograms with style information. Our101

experimental results illustrate that TransferSinger102

outperforms baseline models in terms of both syn-103

thesis quality and singer similarity across various104

tasks, including zero-shot SVS, controllable style105

synthesis, cross-lingual style transfer, and speech-106

to-singing style transfer. The main contributions of107

this work can be summarized as follows:108

• We introduce the style encoder using a VQ109

model with ℓ2 normalization, and the Style110

and Duration Language Model (S&D-LM) to111

predict style information and phoneme dura-112

tion, addressing style modeling and transfer.113

• We propose the style adaptive decoder to gen-114

erate intricately detailed singing voices using115

a novel style adaptive normalization method.116

• TransferSinger is the first method for the SVS117

with style transfer task that successfully mod-118

els styles of cross-lingual speech and singing119

data, and achieves controllable style synthesis.120

• Our experimental results demonstrate that121

TransferSinger surpasses baseline models in122

both synthesis quality and singer similarity123

across various tasks: zero-shot SVS, control-124

lable style synthesis, cross-lingual style trans-125

fer, and speech-to-singing style transfer.126

2 Related Works127

2.1 Singing Voice Synthesis128

Singing Voice Synthesis (SVS) has emerged as a129

dynamic field focused on generating high-quality130

singing voices from provided lyrics and musical131

scores. VISinger (Zhang et al., 2022b) introduces 132

a comprehensive, end-to-end SVS system, building 133

upon the VITS model (Kim et al., 2021). Choi 134

and Nam (2022) presents a melody-unsupervised 135

model that only requires pairs of audio and lyrics, 136

thus eliminating the need for temporal alignment. 137

For multi-singer tasks, both M4Singer (Zhang et al., 138

2022a) and Multi-Singer (Huang et al., 2021) make 139

substantial contributions by releasing multi-singer 140

Chinese song datasets. Recently, RMSSinger (He 141

et al., 2023) has proposed a diffusion pitch predic- 142

tor to forecast F0 and UV, and a diffusion-based 143

post-net to improve synthesis quality. Nonetheless, 144

these methods are based on the assumption that the 145

target singer is visible during the training phase 146

and they do not adequately incorporate style infor- 147

mation into synthesis, with few style variations in 148

generated audio for zero-shot SVS tasks. 149

2.2 Style Modeling and Transfer 150

Modeling and transferring styles remains a pivotal 151

area of research within the audio domain, with 152

past models predominantly leveraging pre-trained 153

models to capture a limited array of styles (Kumar 154

et al., 2021). Atmaja and Sasou (2022) evaluates 155

the performance of wav2vec 2.0 (Baevski et al., 156

2020), HuBERT (Hsu et al., 2021), and WavLM 157

(Chen et al., 2022) in speech emotion recognition 158

tasks. Generspeech (Huang et al., 2022a) integrates 159

global and local style adaptors to capture speech 160

styles. YourTTS (Casanova et al., 2022) conditions 161

the affine coupling layers of the flow-based decoder 162

to handle zero-shot tasks. Mega-TTS (Jiang et al., 163

2023) decomposes speech into multiple attributes 164

and models prosody using a language model. Re- 165

cently, StyleSinger (Zhang et al., 2023) has em- 166

ployed a Residual Quantization (RQ) model to cap- 167

ture detailed styles in singing voices. Although 168

these approaches have made strides in capturing 169

style, there remains a notable gap in fully modeling 170

styles like singing methods and extending these ca- 171

pabilities to cross-lingual speech and singing styles, 172

as well as in controllable style synthesis. 173

3 TransferSinger 174

In this section, we first overview the proposed 175

TransferSinger. Then, we introduce several crit- 176

ical components including the style encoder, the 177

style adaptive decoder, and the Style and Duration 178

Language Model (S&D-LM). Finally, we elaborate 179

on the training and inference procedures. 180
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Figure 1: The architecture of TransferSinger. In Figure (a), S&D-LM represents the Style and Duration Language
Model, while LR stands for length regulator. In Figure (b), the S&D-LM autoregressively predicts both style
information and phoneme duration. In Figure (c), intermediate mel-spectrograms are refined with style information
in the style adaptive decoder. In Figure (d), the style encoder extracts style information from mel-spectrograms.

3.1 Overview181

The architecture of TransferSinger is depicted in182

Figure 1(a). We disentangle singing voices into183

separate representations for content, style (includ-184

ing singing methods, rhythm, techniques, and pro-185

nunciation), and timbre. Regarding content repre-186

sentation, lyrics are encoded through a phoneme187

encoder, while a note encoder captures musical188

notes. For style representation, we use a VQ mod-189

ule within the style encoder to condense style infor-190

mation into a compact latent space, thus facilitat-191

ing subsequent predictions. We use ℓ2 normaliza-192

tion in the VQ model to enhance training stability193

and reconstruction quality. In terms of timbre rep-194

resentation, we feed a prompt mel-spectrogram,195

sampled from different audio of the same singer,196

into the timbre encoder to disentangle the timbre197

and content information. We then temporally aver-198

age the output to obtain a one-dimensional global199

timbre vector. Then, we utilize the Style and Du-200

ration Language Model (S&D-LM) to simultane-201

ously predict style information and phoneme dura-202

tion since styles and duration of singing voices are203

closely related, and a composite module benefits204

both. Next, we use the content, style, and timbre205

representations as inputs to the pitch predictor with206

diffusion-based architecture (He et al., 2023) for207

F0 prediction. Finally, we use the style adaptive208

decoder to generate the target mel-spectrogram.209

The style adaptive decoder generates intricately210

detailed singing voices using a novel style adap-211

tive normalization method. During inference, we212

use the content from the given lyrics and notes,213

the timbre extracted from the prompt audio, and 214

style information, phoneme duration predicted by 215

S&D-LM to synthesize the target singing voice. 216

Additionally, we can substitute a text prompt (like 217

alto pop vibrato) as input to S&D-LM for style in- 218

formation and phoneme duration prediction. Please 219

refer to Appendix A for more details. 220

3.2 Style Encoder 221

To comprehensively capture styles (such as singing 222

methods, rhythm, techniques, and pronunciation) 223

from mel-spectrograms, we introduce the style en- 224

coder. As illustrated in Figure 1 (d), the input mel- 225

spectrogram is initially refined through WaveNet 226

blocks before being condensed into phoneme-level 227

hidden states by a pooling layer based on the 228

phoneme boundary. Subsequently, the convolution 229

stacks capture phoneme-level correlations. Then, 230

we employ a linear projection from the convolution 231

stacks’ output into a low-dimensional latent vari- 232

able space for code index lookup, which could sig- 233

nificantly increase the codebook’s usage (Yu et al., 234

2021). The vector quantization (VQ) layer (Van 235

Den Oord et al., 2017) then employs these inputs 236

x to generate phoneme-level style representations, 237

establishing an information bottleneck that effec- 238

tively eliminates non-style information. Through 239

the dimensionality reduction of the linear projec- 240

tion and the bottleneck of VQ, we achieve a decou- 241

pling of styles from the timbre and content infor- 242

mation. To enhance training stability and improve 243

reconstruction quality, we apply ℓ2 normalization 244

to the encoded latent variables ze(x) and the code- 245
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book latent variables e. This approach has proven246

useful in the VQ-related tasks of image domain (Yu247

et al., 2021). By mapping all latent variables onto a248

sphere, the Euclidean distance of ℓ2-normalized la-249

tent variables |ℓ2(ze(x))− ℓ2(ej)|22 is transformed250

into the cosine similarity between the two vectors251

ze(x) and e. To train the style encoder, we use the252

VQ loss with ℓ2 normalization:253

LV Q = ∥sg[ℓ2(ze(x))]− ℓ2(e)∥22+
β∥ℓ2(ze(x))− ℓ2(sg[e])∥22,

(1)254

where sg(·) is the stop-gradient operator, β is a255

commitment loss hyperparameter.256

3.3 Style Adaptive Decoder257

The dynamic nature of singing voices poses a258

substantial challenge to traditional mel-decoders,259

which often fail to capture the intricacies of mel-260

spectrograms effectively. Furthermore, using VQ261

to extract style information is inherently lossy262

(Razavi et al., 2019), and closely related styles263

can easily be encoded into identical codebook in-264

dices. Consequently, if we employ traditional mel265

decoders here, our synthesized singing voices may266

become rigid and lacking in stylistic variation. To267

address these challenges, we introduce the style268

adaptive decoder, which utilizes a novel style adap-269

tive normalization method. While the adaptive in-270

stance normalization method has been widely used271

in image synthesis tasks (Zheng et al., 2022; Du-272

moulin et al., 2016), our work is pioneering in re-273

fining mel-spectrograms using style information in274

the singing field. Our approach can infuse stylistic275

variations into mel-spectrograms, thereby generat-276

ing more believable and diverse audio results, even277

when the same style quantization index is used for278

closely related styles in decoder inputs.279

As depicted in Figure 1 (c), our style adap-280

tive decoder is fundamentally based on an 8-step281

diffusion-based decoder (Huang et al., 2022b). We282

utilize FFT as the denoiser and enhance it by in-283

corporating multiple layers of our style adaptive284

normalization. In our model, we denote the inter-285

mediate mel-spectrogram of the i-th layer in the286

diffusion decoder denoiser as mi. In i-th layer,287

mi−1 is initially normalized using a normalization288

method and then adapted by the scale and bias that289

are computed from the style embedding s. To be290

more detailed, mi is given by:291

mi = ϕγ(s)
mi−1 − µ(mi−1)

σ(mi−1)
+ ϕβ(s), (2)292

where the functions µ(·) and σ(·) are the mean and 293

standard deviation calculation. We employ Layer 294

Normalization (Ba et al., 2016) as the normaliza- 295

tion method here. ϕγ(·) and ϕβ(·) are two learned 296

affine transformations for converting the style rep- 297

resentation s to the scaling and bias values. As 298

ϕγ(·) and ϕβ(·) inject the stylistic variant informa- 299

tion, it encourages similar decoder inputs entry to 300

generate plausible and diverse mel-spectrograms. 301

In the training phase, we first apply Mean Abso- 302

lute Error (MAE) loss. Let x0 be the original clean 303

data, while xθ denotes the denoised data sample: 304

Lmae =

∥∥∥∥xθ (αtx0 +
√
1− α2

t ϵ

)
− x0

∥∥∥∥ ,
(3) 305

where αt =
∏t

i=1

√
1− βi. βt represents the pre- 306

defined fixed noise schedule at diffusion step t. 307

Additionally, ϵ is randomly sampled from a normal 308

distribution N (0, I). Furthermore, we also incor- 309

porate the Structural Similarity Index (SSIM) loss 310

(Wang et al., 2004) to the reconstruction loss: 311

Lssim = 1−

SSIM

(
xθ

(
αtx0 +

√
1− α2

t ϵ

)
, x0

)
.

(4) 312

3.4 S&D-LM 313

Singing styles (like singing methods, rhythm, tech- 314

niques, and pronunciation) usually exhibit both 315

local and long-term dependencies, and they change 316

rapidly over time with a weak correlation to con- 317

tent. This makes the conditional language model 318

inherently ideal for generating style information. 319

Meanwhile, phoneme duration is rich in variations 320

and closely related to singing styles. Therefore, we 321

propose the Style and Duration Language Model 322

(S&D-LM) to simultaneously predict style informa- 323

tion and phoneme duration, serving as a multi-task 324

module to enhance both. Through S&D-LM, we 325

can generate high-quality target singing voices with 326

unseen timbre and styles of the prompt audio. 327

To be more specific, given the lyrics l̃, notes ñ 328

of the target, and lyrics l, notes n, mel-spectrogram 329

m of the prompt audio, our goal is to synthe- 330

size the high-quality target singing voice’s mel- 331

spectrogram m̃ with unseen timbre and styles of the 332

prompt audio. Initially, we use different encoders 333

to extract the timbre information t, content infor- 334

mation c, and style information s of the prompt 335

audio and the target content information c̃: 336

s = Estyle(m), t = Etimbre(m),

c = Econtent(l, n), c̃ = Econtent(l̃, ñ),
(5) 337
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where E denotes encoders for each attribute. Given338

that the target timbre t̃ is anticipated to mirror the339

prompt audio, we also require the target style infor-340

mation s̃ to generate the target mel-spectrogram m̃.341

Utilizing the powerful in-context learning capabili-342

ties of language models, we design the S&D-LM to343

predict s̃. Concurrently, we also use the S&D-LM344

to predict the target phoneme duration d̃, leveraging345

the strong correlation between phoneme duration346

and styles in singing voices to enhance both pre-347

dictions. Our S&D-LM is based on a decoder-only348

transformer-based architecture (Brown et al., 2020).349

We concatenate the prompt phoneme duration d,350

the prompt style information s, along with prompt351

content c, target content c̃, and target timbre t̃ to352

form the input. The autoregressive prediction pro-353

cess can be formulated as follows:354

p
(
s̃, d̃ | s, d, c, t̃, c̃; θ

)
=

T∏
t=0

p
(
s̃t, p̃t | s̃<t, d̃<t, s, d, c, t̃, c̃; θ

)
,

(6)355

where θ is the parameter of our S&D-LM. We train356

the S&D-LM in the teacher-forcing mode using the357

cross-entropy loss for the predicted style informa-358

tion and the Mean Squared Error (MSE) loss for359

the phoneme duration. Finally, we use P to denote360

the pitch predictor and D to represent our style361

adaptive decoder, the formula for synthesizing the362

target F0 and mel-spectrogram is:363

F0 = P (s̃, d̃, t̃, c̃),

m̃ = D(s̃, d̃, t̃, c̃, F0).
(7)364

3.5 Training and Inference Procedures365

Training Procedures The final loss terms of Trans-366

ferSinger in the training phase consist of the fol-367

lowing parts: 1) VQ loss LV Q: the VQ loss with368

ℓ2 normalization for the style encoder; 2) Pitch369

reconstruction loss Lgdiff ,Lmdiff : the Gaussian370

diffusion loss and the multinomial diffusion loss371

between the predicted and the GT pitch spectro-372

gram for the pitch predictor; 3) Mel reconstruction373

loss Lmae,Lssim: the MAE loss and the SSIM loss374

between the predicted and the GT mel-spectrogram375

for the style adaptive decoder. 4) Duration predic-376

tion loss Ldur: the MSE loss between the predicted377

and the GT phoneme-level duration in log scale378

for S&D-LM in the teacher-forcing mode; 5) Style379

prediction loss Lstyle: the cross-entropy loss be-380

tween the predicted and the GT style information381

for S&D-LM in the teacher-forcing mode.382
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Figure 2: Inference procedure of TransferSinger. In
Figure (a), the S&D-LM extracts information from the
prompt audio to predict the target style information and
phoneme duration, while in Figure (b), the S&D-LM
utilizes the text prompt to predict them.

Inference of Zero-Shot SVS Refer to Figure 2 (a) 383

and Equation 6, during the inference phase of zero- 384

shot SVS, we use the prompt audio to extract c, t, 385

s, d, as well as the target content c̃ as inputs for the 386

S&D-LM, and obtain s̃, ũ. Then, since the target’s 387

timbre and prompt remain unchanged, according 388

to Equation 7, we concatenate the content c̃, timbre 389

t̃, style information s̃, and phoneme duration d̃ of 390

the target to generate F0 by the pitch predictor, and 391

mel-spectrogram m̃ by the style adaptive decoder. 392

Therefore, the generated target singing voice can 393

effectively transfer the timbre and styles of the 394

prompt audio. In the cross-lingual experiments, the 395

lyrics language of the prompt and the target are 396

different (like English and Chinese), but the rest 397

of the process remains the same. In the speech- 398

to-singing experiments, we use speech data as the 399

prompt audio, allowing the target singing voice to 400

transfer the timbre and styles of the speech data, 401

with the rest of the process remaining consistent. 402

Training and Inference with Text Prompts As 403

shown in Figure 1 (b), during the training phase 404

of the S&D-LM, we use a text prompt (like alto 405

pop vibrato) to replace the s, d extracted from the 406

prompt audio, and combine the text prompt with 407

c, t, c̃ to generate s̃, ũ. As shown in Figure 2 (b), 408

during inference, we use a text prompt to replace 409

the s, d extracted from the prompt audio, thus gen- 410

erating the target s̃, ũ, with the rest of the process 411

remaining consistent with the zero-shot SVS task. 412

Each text prompt encompasses a singing style class, 413

containing a variety of styles. Through these text 414

prompts, we can generate singing voices with refer- 415

ence timbre and independent specific style classes, 416

thus achieving controllable style synthesis. 417
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4 Experiments418

4.1 Experimental Setup419

In this section, we present the datasets utilized by420

TransferSinger, delve into the implementation and421

training details, discuss the evaluation methodolo-422

gies, and introduce the baseline models.423

Dataset Existing open-source singing datasets are424

relatively sparse. In this endeavor, we collect and425

annotate a cross-lingual dataset (16 singers, 28h426

Chinese and English singing) by recruiting pro-427

fessional singers in a professional recording stu-428

dio. Moreover, we enrich our data by incorpo-429

rating the M4Singer dataset (Zhang et al., 2022a)430

(20 singers, 30h Chinese singing), the OpenSinger431

dataset (Huang et al., 2021) (93 singers, 85h Chi-432

nese singing), the AISHELL-3 dataset (Shi et al.,433

2021) (218 singers, 85h Chinese speech), and a sub-434

set of the PopBuTFy database (Liu et al., 2022b)435

(20 singers, 18h English speech and singing). Then,436

we manually annotate these singing data with style437

class labels based on vocal ranges, singing methods,438

and techniques (like alto pop vibrato). Finally, we439

randomly designate 40 singers (including singing440

and speech, Chinese and English) as the unseen test441

set to evaluate TransferSinger in zero-shot tasks.442

Please refer to Appendix B for more details.443

Implementation Details We set the sample rate to444

48000Hz, the window size to 1024, the hop size to445

256, and the number of mel bins to 80 to derive mel-446

spectrograms from raw waveforms. The default447

size of the codebook for VQ is 512. The S&D-448

LM model is a decoder-only architecture with 8449

Transformer layers and 512 embedding dimensions.450

Please refer to Appendix A.1 for more details.451

Training Details We train our model using four452

NVIDIA 3090Ti GPUs. The Adam optimizer is453

used with β1 = 0.9 and β2 = 0.98. The main SVS454

model takes 300k steps and the S&D-LM model455

takes 100k steps to train until convergence. Output456

mel-spectrograms of the style adaptive decoder are457

transformed into singing voices using a pre-trained458

HiFi-GAN vocoder (Kong et al., 2020).459

Evaluation Details We use both objective and sub-460

jective evaluation metrics to validate the perfor-461

mance of TransferSinger. For subjective metrics,462

we employ the Mean Opinion Score (MOS) to463

judge synthesis quality (including clarity, natural-464

ness, and rich stylistic details) and use the Similar-465

ity Mean Opinion Score (SMOS) (Min et al., 2021)466

to assess singer similarity (in terms of timbre and467

styles) between the synthesized and the prompt468

audio. Both these metrics are rated from 1 to 5 469

and reported with 95% confidence intervals. In the 470

ablation study, we employ the Comparative Mean 471

Opinion Score (CMOS) to gauge synthesis quality, 472

along with the Comparative Similarity Mean Opin- 473

ion Score (CSMOS) to evaluate singer similarity. 474

For objective metrics, we use the Singer Cosine 475

Similarity (Cos) to judge singer similarity, and the 476

F0 Frame Error (FFE) to quantify synthesis quality. 477

Please refer to Appendix C for more details. 478

Baseline Models We conduct a comprehensive 479

comparative analysis of synthesis quality and 480

singer similarity for TransferSinger with other mod- 481

els. Firstly, we compare our model with the original 482

target ground truth (GT) and the audio generated 483

by HiFi-GAN (GT (vocoder)). Next, we integrate 484

a note encoder into two well-performing speech 485

models that conduct style transfer, training them 486

on speech and singing data to compare their perfor- 487

mance, including YourTTS (Casanova et al., 2022) 488

and Mega-TTS (Jiang et al., 2023). Subsequently, 489

we also compare with the best-performing tradi- 490

tional SVS model, RMSSinger (He et al., 2023). In 491

this comparison, we use the prompt singer embed- 492

ding to synthesize the target singing voice. Lastly, 493

we compare with StyleSinger (Zhang et al., 2023), 494

the first model that conducts style transfer for 495

zero-shot SVS. We use the open-source code of 496

YourTTS and make necessary modifications. As 497

for RMSSinger, Mega-TTS, and StyleSinger, we 498

carefully reproduced their works independently. 499

4.2 Main Results 500

Zero-Shot SVS with Style Transfer To assess the 501

performance of TransferSinger and baseline mod- 502

els in the zero-shot SVS with style transfer task, we 503

randomly select samples with unseen singers from 504

the test set as targets and different utterances from 505

the same singers to form prompts. As shown in 506

Table 1, we have the following findings: 1) Trans- 507

ferSinger exhibits outstanding synthesis quality, as 508

indicated by the highest MOS and the lowest FFE. 509

This underscores the model’s impressive adaptabil- 510

ity in managing zero-shot SVS scenarios. 2) Trans- 511

ferSinger also excels in singer similarity, as de- 512

noted by the highest SMOS and Cos. This high- 513

lights our model’s superior ability to model and 514

transfer different singing styles precisely, thanks 515

to the innovative design of our components. Our 516

style adaptive decoder effectively improves the rich 517

stylistic details of synthesis quality, rendering the 518

singing voices more natural and of superior qual- 519
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Method MOS ↑ SMOS ↑ Cos ↑ FFE ↓

GT 4.56 ± 0.07 - - -
GT (vocoder) 4.32 ± 0.09 4.38 ± 0.06 0.97 0.04

YourTTS (Casanova et al., 2022) 3.64 ± 0.08 3.74 ± 0.07 0.81 0.35
Mega-TTS (Jiang et al., 2023) 3.75 ± 0.07 3.87 ± 0.06 0.83 0.29
RMSSinger (He et al., 2023) 3.86 ± 0.06 3.80 ± 0.08 0.86 0.31
StyleSinger (Zhang et al., 2023) 3.93 ± 0.07 3.99 ± 0.08 0.90 0.27

TransferSinger (ours) 4.06 ± 0.08 4.27 ± 0.08 0.92 0.23

Table 1: Synthesis quality and singer similarity of zero-shot SVS with style transfer. For subjective measurement,
we employ MOS and SMOS. In objective evaluation, we utilize Cos and FFE.

Method MOS ↑ SMOS ↑

YourTTS 3.63 ± 0.07 3.70 ± 0.06
Mega-TTS 3.72 ± 0.09 3.83 ± 0.08
RMSSinger 3.83 ± 0.05 3.78 ± 0.07
StyleSinger 3.91 ± 0.06 3.96 ± 0.09

TransferSinger (ours) 4.03 ± 0.08 4.22 ± 0.05

Table 2: Synthesis quality and singer similarity compar-
isons for controllable style synthesis.

ity. Meanwhile, our style encoder shows an excel-520

lent capability for modeling styles across a wide521

range of categories. Finally, the S&D-LM delivers522

excellent prediction results for style information523

and phoneme duration, significantly contributing524

to synthesis quality and singer similarity.525

As shown in Figure 3, TransferSinger not only526

displays greater details in the mel-spectrogram, but527

also effectively learns the technique, pronunciation,528

and rhythm of the prompt audio. In contrast, other529

models lack details in mel-spectrograms, and their530

pitch curves remain flat, failing to transfer styles.531

Upon listening to demos, it is clear that our model532

effectively transfers the timbre, singing methods,533

rhythm, techniques, and pronunciation of prompts.534

Controllable Style Synthesis We randomly select535

singing voice samples from the unseen test set and536

use them as prompts for the baseline models. Then,537

we use the style labels (like alto pop vibrato) of538

these prompts as text prompts for TransferSinger539

to perform controllable style synthesis, and these540

audio severs as timbre prompts. Moreover, we ran-541

domly utilize content information from all songs in542

the dataset as the target. As shown in Table 2, we543

use MOS and SMOS to compare TransferSinger544

with text prompts against other models. Trans-545

ferSinger with text prompts surpasses other base-546

line models in synthesis quality and singer similar-547

ity. Apart from the advantages of our models in548

Method MOS ↑ SMOS ↑

YourTTS 3.58 ± 0.08 3.55 ± 0.09
Mega-TTS 3.65 ± 0.06 3.71 ± 0.07
RMSSinger 3.77 ± 0.10 3.64 ± 0.09
StyleSinger 3.84 ± 0.07 3.82 ± 0.06

TransferSinger(ours) 3.95 ± 0.09 4.08 ± 0.08

Table 3: Synthesis quality and singer similarity compar-
isons for cross-lingual style transfer.

style modeling and transfer, the text prompt encom- 549

passes a comprehensible style class, enabling the 550

use of abundant styles to synthesize controllable 551

singing voices. Simultaneously, since the text and 552

timbre prompts can be independent, we can synthe- 553

size the controllable target singing voice using the 554

prompt timbre and the specified style class. 555

Cross-Lingual Style Transfer To test the cross- 556

lingual style transfer performance of various mod- 557

els, we alternately use unseen Chinese and English 558

data as prompts and targets for inference, using 559

MOS and SMOS as evaluation criteria. As shown 560

in Table 3, our TransferSinger outperforms other 561

models regarding synthesis quality and singer simi- 562

larity. Benefiting from the modeling capability of 563

our style encoder for rich cross-lingual styles, the 564

assistance of the style adaptive decoder in generat- 565

ing singing voices with rich style details, and the 566

powerful prediction capability of the S&D-LM for 567

phoneme duration and style information, our model 568

performs well in a cross-lingual environment. 569

Speech-to-Singing Style Transfer We conducted 570

experiments on speech-to-singing style transfer and 571

used MOS and SMOS to compare the performance 572

of various models. To be specific, we used unseen 573

speech audio as the prompt audio to transfer timbre 574

and styles to the target singing voice. As shown in 575

Table 4, we found that both synthesis quality and 576

singer similarity of TransferSinger are superior to 577

7



a) Prompt b) GT c) GT(vocoder) d) TransferSinger

h) StyleSingerg) RMSSingerf) Mega-TTSe) YourTTS

Figure 3: Mel-spectrograms depicting the results of zero-shot SVS with style transfer. TransferSinger effectively
captures the rhythm and pronunciation in red boxes, along with the vibrato technique and rhythm in yellow boxes.

Method MOS ↑ SMOS ↑

YourTTS 3.53 ± 0.08 3.51 ± 0.07
Mega-TTS 3.60 ± 0.09 3.66 ± 0.08
RMSSinger 3.73 ± 0.07 3.59 ± 0.06
StyleSinger 3.81 ± 0.10 3.80 ± 0.09

TransferSinger (ours) 3.92 ± 0.08 4.03 ± 0.07

Table 4: Synthesis quality and singer similarity compar-
isons for speech-to-singing style transfer.

Setting CMOS CSMOS

TransferSinger 0.00 0.00

w/o SAD -0.21 -0.19
w/o DM -0.12 -0.23

Table 5: Synthesis quality and singer similarity com-
parisons for ablation study. SAD denotes style adaptive
decoder and DM means duration model of S&D-LM.

those of the baseline models. This demonstrates578

the excellent ability of our model in both speech579

and singing style modeling and transfer.580

4.3 Ablation Study581

As depicted in Table 5, we undertake ablation stud-582

ies to showcase the efficacy of various designs583

within TransferSinger. We use CMOS to test the584

variation in synthesis quality, and CSMOS to mea-585

sure the changes in singer similarity. 1) When586

we eliminate the style adaptive decoder and use587

an 8-step diffusion decoder (Huang et al., 2022b),588

both synthesis quality and singer similarity decline, 589

indicating the enhancement our method brings to 590

the diversity of styles in singing voices. 2) When 591

we only predict styles in the S&D-LM and use a 592

simple duration predictor (Ren et al., 2020) to pre- 593

dict phoneme duration, both synthesis quality and 594

singer similarity decrease. This demonstrates the 595

mutual benefits of our method for predicting both 596

phoneme duration and style information. 597

5 Conclusion 598

In this paper, we introduce TransferSinger, a model 599

designed to transfer unseen timbre and styles (like 600

singing methods, rhythm, techniques, and pronunci- 601

ation) from prompts to synthesize high-quality tar- 602

get singing voices. The performance of our model 603

is primarily enhanced through three key compo- 604

nents: 1) the style encoder that condenses style 605

information into a compact latent space using a VQ 606

model with ℓ2 normalization; 2) the Style and Du- 607

ration Language Model (S&D-LM), which predicts 608

style information and phoneme duration informa- 609

tion simultaneously, thus enhancing both; and 3) 610

the style adaptive decoder that employs a novel 611

style adaptive normalization method to generate en- 612

hanced details in singing voices. Our experimental 613

results demonstrate that TransferSinger surpasses 614

baseline models in both synthesis quality and singer 615

similarity across various tasks: zero-shot SVS, con- 616

trollable style synthesis, cross-lingual style transfer, 617

and speech-to-singing style transfer. 618

8



6 Limitations619

Our method primarily acknowledges two key limi-620

tations. First, our multilingual data currently only621

facilitates cross-lingual style transfer between Chi-622

nese and English, primarily due to the challenges in623

collecting singing voice data. In the future, we plan624

to gather more diverse language data for conduct-625

ing multilingual style transfer experiments. Second,626

our model only allows for global control of singing627

styles, lacking the ability to finely customize the628

style techniques used for each phoneme. Look-629

ing ahead, our future work aims to control singing630

styles at the phoneme level for zero-shot SVS tasks.631

7 Ethics Statement632

TransferSinger, due to its ability to transfer per-633

sonal timbre and styles for singing voice synthesis,634

may be used for dubbing in entertainment videos,635

leading to possible infringement of singers’ copy-636

rights. Meanwhile, due to its capacity for transfer-637

ring cross-lingual speech and singing, our model638

could potentially result in unfair competition and639

unemployment for individuals in related singing640

occupations. Consequently, we will enforce restric-641

tions on our model to mitigate unauthorized usage.642

References643

Bagus Tris Atmaja and Akira Sasou. 2022. Evaluat-644
ing self-supervised speech representations for speech645
emotion recognition. IEEE Access, 10:124396–646
124407.647

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-648
ton. 2016. Layer normalization. arXiv preprint649
arXiv:1607.06450.650

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,651
and Michael Auli. 2020. wav2vec 2.0: A framework652
for self-supervised learning of speech representations.653
Advances in neural information processing systems,654
33:12449–12460.655

Tom Brown, Benjamin Mann, Nick Ryder, Melanie656
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind657
Neelakantan, Pranav Shyam, Girish Sastry, Amanda658
Askell, et al. 2020. Language models are few-shot659
learners. Advances in neural information processing660
systems, 33:1877–1901.661

Edresson Casanova, Julian Weber, Christopher D662
Shulby, Arnaldo Candido Junior, Eren Gölge, and663
Moacir A Ponti. 2022. Yourtts: Towards zero-shot664
multi-speaker tts and zero-shot voice conversion for665
everyone. In International Conference on Machine666
Learning, pages 2709–2720. PMLR.667

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, 668
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki 669
Kanda, Takuya Yoshioka, Xiong Xiao, et al. 2022. 670
Wavlm: Large-scale self-supervised pre-training for 671
full stack speech processing. IEEE Journal of Se- 672
lected Topics in Signal Processing, 16(6):1505–1518. 673

Yin-Ping Cho, Yu Tsao, Hsin-Min Wang, and Yi-Wen 674
Liu. 2022. Mandarin singing voice synthesis with 675
denoising diffusion probabilistic wasserstein gan. 676

Soonbeom Choi and Juhan Nam. 2022. A melody- 677
unsupervision model for singing voice synthesis. 678
In ICASSP 2022-2022 IEEE International Confer- 679
ence on Acoustics, Speech and Signal Processing 680
(ICASSP), pages 7242–7246. IEEE. 681

Erica Cooper, Cheng-I Lai, Yusuke Yasuda, Fuming 682
Fang, Xin Wang, Nanxin Chen, and Junichi Ya- 683
magishi. 2020. Zero-shot multi-speaker text-to- 684
speech with state-of-the-art neural speaker embed- 685
dings. In ICASSP 2020-2020 IEEE International 686
Conference on Acoustics, Speech and Signal Process- 687
ing (ICASSP), pages 6184–6188. IEEE. 688

Vincent Dumoulin, Jonathon Shlens, and Manjunath 689
Kudlur. 2016. A learned representation for artistic 690
style. arXiv preprint arXiv:1610.07629. 691

Jinzheng He, Jinglin Liu, Zhenhui Ye, Rongjie Huang, 692
Chenye Cui, Huadai Liu, and Zhou Zhao. 2023. 693
Rmssinger: Realistic-music-score based singing 694
voice synthesis. arXiv preprint arXiv:2305.10686. 695

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, 696
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel- 697
rahman Mohamed. 2021. Hubert: Self-supervised 698
speech representation learning by masked prediction 699
of hidden units. IEEE/ACM Transactions on Audio, 700
Speech, and Language Processing, 29:3451–3460. 701

Rongjie Huang, Feiyang Chen, Yi Ren, Jinglin Liu, 702
Chenye Cui, and Zhou Zhao. 2021. Multi-singer: 703
Fast multi-singer singing voice vocoder with a large- 704
scale corpus. In Proceedings of the 29th ACM In- 705
ternational Conference on Multimedia, pages 3945– 706
3954. 707

Rongjie Huang, Yi Ren, Jinglin Liu, Chenye Cui, 708
and Zhou Zhao. 2022a. Generspeech: Towards 709
style transfer for generalizable out-of-domain text-to- 710
speech synthesis. arXiv preprint arXiv:2205.07211. 711

Rongjie Huang, Zhou Zhao, Huadai Liu, Jinglin Liu, 712
Chenye Cui, and Yi Ren. 2022b. Prodiff: Progressive 713
fast diffusion model for high-quality text-to-speech. 714
In Proceedings of the 30th ACM International Con- 715
ference on Multimedia, pages 2595–2605. 716

Ziyue Jiang, Yi Ren, Zhenhui Ye, Jinglin Liu, Chen 717
Zhang, Qian Yang, Shengpeng Ji, Rongjie Huang, 718
Chunfeng Wang, Xiang Yin, et al. 2023. Mega-tts: 719
Zero-shot text-to-speech at scale with intrinsic induc- 720
tive bias. arXiv preprint arXiv:2306.03509. 721

9

http://arxiv.org/abs/2209.10446
http://arxiv.org/abs/2209.10446
http://arxiv.org/abs/2209.10446


Jaehyeon Kim, Jungil Kong, and Juhee Son. 2021.722
Conditional variational autoencoder with adversar-723
ial learning for end-to-end text-to-speech. In Inter-724
national Conference on Machine Learning, pages725
5530–5540. PMLR.726

Sungjae Kim, Yewon Kim, Jewoo Jun, and Injung Kim.727
2023. Muse-svs: Multi-singer emotional singing728
voice synthesizer that controls emotional intensity.729
IEEE/ACM Transactions on Audio, Speech, and Lan-730
guage Processing.731

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020.732
Hifi-gan: Generative adversarial networks for effi-733
cient and high fidelity speech synthesis. Advances in734
Neural Information Processing Systems, 33:17022–735
17033.736

Neeraj Kumar, Srishti Goel, Ankur Narang, and Brejesh737
Lall. 2021. Normalization driven zero-shot multi-738
speaker speech synthesis. In Interspeech, pages 1354–739
1358.740

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and741
Zhou Zhao. 2022a. Diffsinger: Singing voice synthe-742
sis via shallow diffusion mechanism. In Proceedings743
of the AAAI conference on artificial intelligence, vol-744
ume 36, pages 11020–11028.745

Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, and746
Zhou Zhao. 2022b. Learning the beauty in songs:747
Neural singing voice beautifier. arXiv preprint748
arXiv:2202.13277.749

Dongchan Min, Dong Bok Lee, Eunho Yang, and750
Sung Ju Hwang. 2021. Meta-stylespeech: Multi-751
speaker adaptive text-to-speech generation. In In-752
ternational Conference on Machine Learning, pages753
7748–7759. PMLR.754

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals.755
2019. Generating diverse high-fidelity images with756
vq-vae-2. Advances in neural information processing757
systems, 32.758

Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao,759
Zhou Zhao, and Tie-Yan Liu. 2020. Fastspeech760
2: Fast and high-quality end-to-end text to speech.761
arXiv preprint arXiv:2006.04558.762

Yao Shi, Hui Bu, Xin Xu, Shaoji Zhang, and Ming763
Li. 2021. Aishell-3: A multi-speaker mandarin tts764
corpus and the baselines.765

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural766
discrete representation learning. Advances in neural767
information processing systems, 30.768

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P769
Simoncelli. 2004. Image quality assessment: from770
error visibility to structural similarity. IEEE transac-771
tions on image processing, 13(4):600–612.772

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruom-773
ing Pang, James Qin, Alexander Ku, Yuanzhong Xu,774
Jason Baldridge, and Yonghui Wu. 2021. Vector-775
quantized image modeling with improved vqgan.776
arXiv preprint arXiv:2110.04627.777

Lichao Zhang, Ruiqi Li, Shoutong Wang, Liqun Deng, 778
Jinglin Liu, Yi Ren, Jinzheng He, Rongjie Huang, 779
Jieming Zhu, Xiao Chen, et al. 2022a. M4singer: 780
A multi-style, multi-singer and musical score pro- 781
vided mandarin singing corpus. Advances in Neural 782
Information Processing Systems, 35:6914–6926. 783

Yongmao Zhang, Jian Cong, Heyang Xue, Lei Xie, 784
Pengcheng Zhu, and Mengxiao Bi. 2022b. Visinger: 785
Variational inference with adversarial learning for 786
end-to-end singing voice synthesis. In ICASSP 2022- 787
2022 IEEE International Conference on Acoustics, 788
Speech and Signal Processing (ICASSP), pages 7237– 789
7241. IEEE. 790

Yu Zhang, Rongjie Huang, Ruiqi Li, JinZheng He, Yan 791
Xia, Feiyang Chen, Xinyu Duan, Baoxing Huai, and 792
Zhou Zhao. 2023. Stylesinger: Style transfer for out- 793
of-domain singing voice synthesis. arXiv preprint 794
arXiv:2312.10741. 795

Chuanxia Zheng, Tung-Long Vuong, Jianfei Cai, and 796
Dinh Phung. 2022. Movq: Modulating quantized 797
vectors for high-fidelity image generation. Advances 798
in Neural Information Processing Systems, 35:23412– 799
23425. 800

10

http://arxiv.org/abs/2010.11567
http://arxiv.org/abs/2010.11567
http://arxiv.org/abs/2010.11567


Hyperparameter TransferSinger

Phoneme
Encoder

Phoneme Embedding 320
Encoder Layers 5
Encoder Hidden 320

Kernal Size 9
Filter Size 1280

Note
Encoder

Pitches Embedding 320
Type Embedding 320
Duration Hidden 320

Timbre
Encoder

Encoder Layers 5
Hidden Size 320

Conv1D Kernel 31

Style
Encoder

WN Layers 4
WN Kernel 3
Conv Layers 5
Conv Kernel 5

Hidden Channel 320
VQ Embedding Size 512

VQ Embedding Channel 64

Pitch
Predictor

Conv Layers 12
Kernel Size 3

Residual Channel 192
Hidden Channel 25

Time Steps 100
Max Linear β Schedule 0.06

Style
Adapt

Decoder

Denoiser Layers 20
Denoiser Hidden 320

Time Steps 8
Noise Schedule Type VPSDE

S&D-LM

Decoder Layers 8
Style Embedding Size 514

Hidden Size 512
Kernal Size 5

Attention Heads 8

Total Number of Parameters 328.5M

Table 6: Hyper-parameters of TransferSinger modules.

A Details of Models801

A.1 Architecture Details802

We list the architecture and hyperparameters of our803

TransferSinger in Table 6.804

A.2 Content Encoder805

Our content encoder is composed of a note encoder806

and a phoneme encoder. The phoneme encoder pro-807

cesses a sequence of phonemes through a phoneme808

embedding layer and four FFT blocks, culminat-809

ing in the production of phoneme features. On810

the other hand, the note encoder is responsible for811

handling musical score information. It processes812

note pitches, note types (including rest, slur, grace,813

etc.), and note duration. Each of these is processed814

through two embedding layers and a linear projec-815

tion layer, thereby generating note features.816

A.3 Timbre Encoder 817

Designed to encapsulate the singer’s identity, the 818

timbre encoder extracts a global vector t from 819

the prompt audio. The encoder comprises several 820

stacks of convolution layers. To maintain the sta- 821

bility of the timbre information, a one-dimensional 822

timbre vector t is obtained by averaging the output 823

of the timbre encoder over time. 824

A.4 Pitch Predictor 825

In our model, the pitch predictor employs a combi- 826

nation of Gaussian diffusion and multinomial diffu- 827

sion methodologies to generate F0 and UV . This 828

process is described mathematically as follows: 829

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI),

q(yt|yt−1) = C(yt|(1− βt)yt−1 + βt/K),
(8) 830

where C denotes a categorical distribution with 831

probability parameters, xt ∼ {0, 1}K , and βt is 832

the probability of uniformly resampling a category. 833

In the reverse process, we train a neural network 834

to approximate the noise ϵ from the noisy input xt 835

and ŷ0 from the noisy sample yt at timestep t. The 836

equations of the reverse process are as follows: 837

Ex0,ϵ[
β2
t

2σ2
tαt(1− ᾱt)

||ϵ− ϵθ(xt, t)||],

q(yt−1|yt, y0) = C(yt−1|θpost(yt, y0)),

θpost(yt, y0) = θ̃/

K∑
k=1

θ̃k,

θ̃ = [αtyt + (1− αt)/K]⊙
[ᾱt−1y0 + (1− ᾱt−1)/K],

(9) 838

where αt = 1 − βt and ᾱt =
∏t

s=1 αs. We use 839

p(yt−1|yt) = C(yt−1|θpost(yt, ŷ0)) to approximate 840

q(yt−1|yt, y0). Our pitch predictor employs a non- 841

causal WaveNet architecture for the denoiser. The 842

optimization of this module is achieved using Gaus- 843

sian diffusion loss and multinomial diffusion loss. 844

B Details of Dataset 845

Currently, no datasets are annotated with style in- 846

formation, and most open-source singing datasets 847

lack note annotations. In this endeavor, we collect 848

and annotate a cross-lingual dataset (16 singers, 849

28h Chinese singing, 4h English singing) by recruit- 850

ing professional singers in a professional recording 851

studio. Each singer was compensated at an hourly 852

rate of $600. Singers are informed that the data 853
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Dataset Total/h Chinese English
sing speech sing speech

New 28 25 0 3 0
M4Singer 30 30 0 0 0
OpenSinger 85 85 0 0 0
AISHELL-3 85 0 85 0 0
BuTFy 18 0 0 8 10

Total/h 246 140 85 11 10

Table 7: Time distribution of our datasets for Chinese,
English, speech, and singing data.

will be used for scientific research. Additionally,854

we incorporate the M4Singer dataset (Zhang et al.,855

2022a) (20 singers and 30h Chinese singing) to856

expand the diversity of singers and styles. Sub-857

sequently, we also add the OpenSinger dataset858

(Huang et al., 2021) (93 singers and 85h Chinese859

singing), the AISHELL-3 dataset (Shi et al., 2021)860

(218 singers and 85h Chinese speech), and a sub-861

set of the PopBuTFy database (Liu et al., 2022b)862

(20 singers, 10h English speech, and 8h English863

singing). We use these datasets under license CC864

BY-NC-SA 4.0. None of these three datasets has865

note annotations, so we have hired music experts866

to manually annotate the note information for these867

three datasets. Each annotator was compensated at868

an hourly rate of $20. Participants are informed that869

the data will be used for scientific research. The870

time distribution of our datasets for Chinese, En-871

glish, speech, and singing data are listed in Table 7.872

With the assistance of music experts, we manually873

annotate singing data with distinct style class la-874

bels. We categorize songs into soprano, tenor, alto,875

and bass based on vocal ranges. In singing meth-876

ods, we classify songs as bel canto and pop. Based877

on certain techniques, like songs that use a lot of878

falsetto or vibrato, we label them as ’falsetto’ or879

’vibrato’. These classifications are combined into880

the final style class labels (like alto pop vibrato),881

which will be the text prompts.882

C Details of Evaluation883

C.1 Subjective Evaluation884

For each task, we randomly select 20 pairs of sen-885

tences from our test set for subjective evaluation.886

Each pair consists of a prompt audio that provides887

timbre and styles, and a synthesized singing voice,888

each of which is listened to by at least 15 profes-889

sional listeners. In the context of MOS and CMOS890

evaluations, these listeners are instructed to con-891

centrate on synthesis quality (including clarity, nat-892

uralness, and rich stylistic details), irrespective of 893

singer similarity (in terms of timbre and styles). 894

Conversely, during SMOS and CSMOS evalua- 895

tions, the listeners are directed to assess singer 896

similarity (singer similarity in terms of timbre and 897

styles) to the prompt audio, disregarding any dif- 898

ferences in content or synthesis quality (including 899

quality, clarity, naturalness, and rich stylistic de- 900

tails). In both MOS and SMOS evaluations, listen- 901

ers are requested to grade various singing voice 902

samples on a Likert scale ranging from 1 to 5. 903

For CMOS and CSMOS evaluations, listeners are 904

guided to compare pairs of singing voice samples 905

generated by different systems and express their 906

preferences. The preference scale is as follows: 0 907

for no difference, 1 for a slight difference, and 2 908

for a significant difference. It is important to note 909

that all participants are fairly compensated for their 910

time and effort. We compensated participants at a 911

rate of $12 per hour, resulting in a total expenditure 912

of approximately $300 on participant compensa- 913

tion. Participants are informed that the data will be 914

used for scientific research. 915

C.2 Objective Evaluation 916

To objectively evaluate the timbre similarity and 917

synthesis quality of the test set, we employ two 918

metrics: Cosine Similarity (Cos) and F0 Frame Er- 919

ror (FFE). Cosine Similarity is used to measure the 920

resemblance in the singer’s identity between the 921

synthesized singing voice and the prompt audio. 922

This is done by computing the average cosine simi- 923

larity between the embeddings extracted from the 924

synthesized voices and the prompt audio, thus pro- 925

viding an objective indication of the performance 926

in singer similarity. Subsequently, we use FFE, 927

which amalgamates metrics for voicing decision er- 928

ror and F0 error. FFE effectively captures essential 929

synthesis quality information. 930
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