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Abstract

Zero-shot Singing Voice Synthesis (SVS) with
style transfer aims to generate high-quality
singing voices of unseen timbres and styles (in-
cluding singing methods, rhythm, techniques,
and pronunciation) from the prompt audio.
However, the multifaceted nature of singing
voice styles poses a significant challenge for
comprehensive modeling and effective trans-
fer. Furthermore, existing SVS models often
fail to generate singing voices with a wealth
of stylistic nuances for unseen singers. In this
paper, we introduce TransferSinger, a novel
zero-shot SVS model that primarily employs
three modules to address these challenges: 1)
the style encoder that employs a Vector Quan-
tization (VQ) model to condense style infor-
mation into a compact latent space, thus facili-
tating subsequent predictions; 2) the Style and
Duration Language Model (S&D-LM), which
concurrently predicts style information and
phoneme duration, thereby enhancing both;
and 3) the style adaptive decoder that uses
a novel style adaptive normalization method
to generate singing voices with enhanced de-
tails. Experimental results show that Trans-
ferSinger outperforms baseline models in terms
of both synthesis quality and singer similar-
ity across various tasks, including zero-shot
SVS, controllable style synthesis, cross-lingual
style transfer, and speech-to-singing style trans-
fer. Singing voice samples can be accessed at
https://transfersinger.github.io/.

1 Introduction

Singing Voice Synthesis (SVS) is dedicated to gen-
erating high-quality singing voices by utilizing
lyrics and musical notations. The pipeline of tradi-
tional SVS systems involves an acoustic model to
transform musical notations and lyrics into FO and
mel-spectrogram, which are then synthesized into
the target singing voice by a vocoder.

Recent years have seen significant advancements
in SVS technology, with remarkable results being

generated (Zhang et al., 2022b; Kim et al., 2023;
Cho et al., 2022; Liu et al., 2022a). Howeyver, the in-
creasing demand for personalized timbre and styles
in singing voices presents a challenge to current
SVS models. Unlike traditional SVS tasks, the
zero-shot SVS with style transfer seeks to generate
high-quality singing voices with unseen timbres
and styles of the prompt audio. Personal singing
styles mainly include singing methods (like bel
canto and pop), rhythm (including the stylistic han-
dling of individual notes and transitions between
them), techniques (such as vibrato and falsetto),
and pronunciation (like articulation and accent).
Despite this, traditional SVS methods lack neces-
sary mechanisms to model and transfer these per-
sonal styles effectively. Their performance tends to
decline for unseen singers, as these methods gen-
erally assume that target singers are identifiable
during the training phase (Zhang et al., 2023).
Presently, the zero-shot SVS with style trans-
fer task primarily faces two major challenges: 1)
The multifaceted nature of singing styles presents
a substantial challenge for comprehensive model-
ing and effective transfer. Previous models em-
ploy pre-trained models to model global styles
(Cooper et al., 2020). StyleSinger (Zhang et al.,
2023) uses a Residual Quantization (RQ) model
to capture detailed styles. However, these mod-
els focus on limited aspects of styles, neglecting
styles like singing methods. Moreover, they fail to
extend to cross-lingual speech and singing styles
and do not conduct controllable style synthesis. 2)
Existing SVS models often fail to generate singing
voices rich in stylistic nuances for unseen singers.
Diffsinger (Liu et al., 2022a) employs a diffusion
decoder to capture the intricacies of singing voices.
RMSSinger (He et al., 2023) uses a post-net to en-
hance synthesis quality. However, these methods
do not adequately incorporate style information
into the synthesis of singing voices, leading to re-
sults that lack style variations in zero-shot tasks.


https://transfersinger.github.io/

To address these challenges, we introduce Trans-
ferSinger, a model designed to transfer unseen tim-
bre and styles (like singing methods, rhythm, tech-
niques, and pronunciation) from prompts to synthe-
size high-quality target singing voices. To model
styles of the prompt audio, we propose a style en-
coder that uses a vector quantization (VQ) model
with ¢5 normalization for enhancing training stabil-
ity and reconstruction quality. To transfer styles to
the target, we put forth the Style and Duration Lan-
guage Model (S&D-LM). The S&D-LM incorpo-
rates a multi-task language module to concurrently
predict both style information and phoneme dura-
tion, thereby enhancing both predictions. To gener-
ate singing voices rich in stylistic nuances, we in-
troduce the style adaptive decoder, which employs
a novel style adaptive normalization method to re-
fine mel-spectrograms with style information. Our
experimental results illustrate that TransferSinger
outperforms baseline models in terms of both syn-
thesis quality and singer similarity across various
tasks, including zero-shot SVS, controllable style
synthesis, cross-lingual style transfer, and speech-
to-singing style transfer. The main contributions of
this work can be summarized as follows:

* We introduce the style encoder using a VQ
model with ¢ normalization, and the Style
and Duration Language Model (S&D-LM) to
predict style information and phoneme dura-
tion, addressing style modeling and transfer.

* We propose the style adaptive decoder to gen-
erate intricately detailed singing voices using
a novel style adaptive normalization method.

* TransferSinger is the first method for the SVS
with style transfer task that successfully mod-
els styles of cross-lingual speech and singing
data, and achieves controllable style synthesis.

* Our experimental results demonstrate that
TransferSinger surpasses baseline models in
both synthesis quality and singer similarity
across various tasks: zero-shot SVS, control-
lable style synthesis, cross-lingual style trans-
fer, and speech-to-singing style transfer.

2 Related Works
2.1 Singing Voice Synthesis

Singing Voice Synthesis (SVS) has emerged as a
dynamic field focused on generating high-quality
singing voices from provided lyrics and musical

scores. VISinger (Zhang et al., 2022b) introduces
a comprehensive, end-to-end SVS system, building
upon the VITS model (Kim et al., 2021). Choi
and Nam (2022) presents a melody-unsupervised
model that only requires pairs of audio and lyrics,
thus eliminating the need for temporal alignment.
For multi-singer tasks, both M4Singer (Zhang et al.,
2022a) and Multi-Singer (Huang et al., 2021) make
substantial contributions by releasing multi-singer
Chinese song datasets. Recently, RMSSinger (He
et al., 2023) has proposed a diffusion pitch predic-
tor to forecast FO and UV, and a diffusion-based
post-net to improve synthesis quality. Nonetheless,
these methods are based on the assumption that the
target singer is visible during the training phase
and they do not adequately incorporate style infor-
mation into synthesis, with few style variations in
generated audio for zero-shot SVS tasks.

2.2 Style Modeling and Transfer

Modeling and transferring styles remains a pivotal
area of research within the audio domain, with
past models predominantly leveraging pre-trained
models to capture a limited array of styles (Kumar
et al., 2021). Atmaja and Sasou (2022) evaluates
the performance of wav2vec 2.0 (Baevski et al.,
2020), HuBERT (Hsu et al., 2021), and WavLM
(Chen et al., 2022) in speech emotion recognition
tasks. Generspeech (Huang et al., 2022a) integrates
global and local style adaptors to capture speech
styles. YourTTS (Casanova et al., 2022) conditions
the affine coupling layers of the flow-based decoder
to handle zero-shot tasks. Mega-TTS (Jiang et al.,
2023) decomposes speech into multiple attributes
and models prosody using a language model. Re-
cently, StyleSinger (Zhang et al., 2023) has em-
ployed a Residual Quantization (RQ) model to cap-
ture detailed styles in singing voices. Although
these approaches have made strides in capturing
style, there remains a notable gap in fully modeling
styles like singing methods and extending these ca-
pabilities to cross-lingual speech and singing styles,
as well as in controllable style synthesis.

3 TransferSinger

In this section, we first overview the proposed
TransferSinger. Then, we introduce several crit-
ical components including the style encoder, the
style adaptive decoder, and the Style and Duration
Language Model (S&D-LM). Finally, we elaborate
on the training and inference procedures.
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Figure 1: The architecture of TransferSinger. In Figure (a), S&D-LM represents the Style and Duration Language
Model, while LR stands for length regulator. In Figure (b), the S&D-LM autoregressively predicts both style
information and phoneme duration. In Figure (c), intermediate mel-spectrograms are refined with style information
in the style adaptive decoder. In Figure (d), the style encoder extracts style information from mel-spectrograms.

3.1 Overview

The architecture of TransferSinger is depicted in
Figure 1(a). We disentangle singing voices into
separate representations for content, style (includ-
ing singing methods, rhythm, techniques, and pro-
nunciation), and timbre. Regarding content repre-
sentation, lyrics are encoded through a phoneme
encoder, while a note encoder captures musical
notes. For style representation, we use a VQ mod-
ule within the style encoder to condense style infor-
mation into a compact latent space, thus facilitat-
ing subsequent predictions. We use ¢2 normaliza-
tion in the VQ model to enhance training stability
and reconstruction quality. In terms of timbre rep-
resentation, we feed a prompt mel-spectrogram,
sampled from different audio of the same singer,
into the timbre encoder to disentangle the timbre
and content information. We then temporally aver-
age the output to obtain a one-dimensional global
timbre vector. Then, we utilize the Style and Du-
ration Language Model (S&D-LM) to simultane-
ously predict style information and phoneme dura-
tion since styles and duration of singing voices are
closely related, and a composite module benefits
both. Next, we use the content, style, and timbre
representations as inputs to the pitch predictor with
diffusion-based architecture (He et al., 2023) for
FO prediction. Finally, we use the style adaptive
decoder to generate the target mel-spectrogram.
The style adaptive decoder generates intricately
detailed singing voices using a novel style adap-
tive normalization method. During inference, we
use the content from the given lyrics and notes,

the timbre extracted from the prompt audio, and
style information, phoneme duration predicted by
S&D-LM to synthesize the target singing voice.
Additionally, we can substitute a text prompt (like
alto pop vibrato) as input to S&D-LM for style in-
formation and phoneme duration prediction. Please
refer to Appendix A for more details.

3.2 Style Encoder

To comprehensively capture styles (such as singing
methods, rhythm, techniques, and pronunciation)
from mel-spectrograms, we introduce the style en-
coder. As illustrated in Figure 1 (d), the input mel-
spectrogram is initially refined through WaveNet
blocks before being condensed into phoneme-level
hidden states by a pooling layer based on the
phoneme boundary. Subsequently, the convolution
stacks capture phoneme-level correlations. Then,
we employ a linear projection from the convolution
stacks’ output into a low-dimensional latent vari-
able space for code index lookup, which could sig-
nificantly increase the codebook’s usage (Yu et al.,
2021). The vector quantization (VQ) layer (Van
Den Oord et al., 2017) then employs these inputs
x to generate phoneme-level style representations,
establishing an information bottleneck that effec-
tively eliminates non-style information. Through
the dimensionality reduction of the linear projec-
tion and the bottleneck of VQ, we achieve a decou-
pling of styles from the timbre and content infor-
mation. To enhance training stability and improve
reconstruction quality, we apply ¢2 normalization
to the encoded latent variables z.(x) and the code-



book latent variables e. This approach has proven
useful in the VQ-related tasks of image domain (Yu
etal., 2021). By mapping all latent variables onto a
sphere, the Euclidean distance of /2-normalized la-
tent variables |l (2¢(z)) — £2(e;)|3 is transformed
into the cosine similarity between the two vectors
ze(x) and e. To train the style encoder, we use the
VQ loss with ¢5 normalization:

Lvq = |lsglla(ze(2))] — L2(e) 3+
Blita(ze(x)) — La(sgle])II3,

where sg(-) is the stop-gradient operator, [ is a
commitment loss hyperparameter.

(1

3.3 Style Adaptive Decoder

The dynamic nature of singing voices poses a
substantial challenge to traditional mel-decoders,
which often fail to capture the intricacies of mel-
spectrograms effectively. Furthermore, using VQ
to extract style information is inherently lossy
(Razavi et al., 2019), and closely related styles
can easily be encoded into identical codebook in-
dices. Consequently, if we employ traditional mel
decoders here, our synthesized singing voices may
become rigid and lacking in stylistic variation. To
address these challenges, we introduce the style
adaptive decoder, which utilizes a novel style adap-
tive normalization method. While the adaptive in-
stance normalization method has been widely used
in image synthesis tasks (Zheng et al., 2022; Du-
moulin et al., 2016), our work is pioneering in re-
fining mel-spectrograms using style information in
the singing field. Our approach can infuse stylistic
variations into mel-spectrograms, thereby generat-
ing more believable and diverse audio results, even
when the same style quantization index is used for
closely related styles in decoder inputs.

As depicted in Figure 1 (c), our style adap-
tive decoder is fundamentally based on an 8-step
diffusion-based decoder (Huang et al., 2022b). We
utilize FFT as the denoiser and enhance it by in-
corporating multiple layers of our style adaptive
normalization. In our model, we denote the inter-
mediate mel-spectrogram of the i-th layer in the
diffusion decoder denoiser as m’. In i-th layer,
m~! is initially normalized using a normalization
method and then adapted by the scale and bias that
are computed from the style embedding s. To be
more detailed, m’ is given by:

mi—l _ H(mi—l)
o(mi-1)

m' = ¢(s) + ¢3(s), (2)

where the functions y(-) and o (-) are the mean and
standard deviation calculation. We employ Layer
Normalization (Ba et al., 2016) as the normaliza-
tion method here. ¢ (-) and ¢3(-) are two learned
affine transformations for converting the style rep-
resentation s to the scaling and bias values. As
®~(-) and ¢5(-) inject the stylistic variant informa-
tion, it encourages similar decoder inputs entry to
generate plausible and diverse mel-spectrograms.
In the training phase, we first apply Mean Abso-
lute Error (MAE) loss. Let x( be the original clean
data, while xg denotes the denoised data sample:

T (atl‘o +14/1— a?e) — X
(3)

where oy = [['_, /T — Bi. B, represents the pre-
defined fixed noise schedule at diffusion step ¢.
Additionally, € is randomly sampled from a normal
distribution A/ (0, I). Furthermore, we also incor-
porate the Structural Similarity Index (SSIM) loss
(Wang et al., 2004) to the reconstruction loss:

Essim =1-

4
SSIM (:ca (ata:o + me> 7370) ) )

34 S&D-LM

Singing styles (like singing methods, rhythm, tech-
niques, and pronunciation) usually exhibit both
local and long-term dependencies, and they change
rapidly over time with a weak correlation to con-
tent. This makes the conditional language model
inherently ideal for generating style information.
Meanwhile, phoneme duration is rich in variations
and closely related to singing styles. Therefore, we
propose the Style and Duration Language Model
(S&D-LM) to simultaneously predict style informa-
tion and phoneme duration, serving as a multi-task
module to enhance both. Through S&D-LM, we
can generate high-quality target singing voices with
unseen timbre and styles of the prompt audio.

To be more specific, given the lyrics [, notes 7
of the target, and lyrics [, notes n, mel-spectrogram
m of the prompt audio, our goal is to synthe-
size the high-quality target singing voice’s mel-
spectrogram m with unseen timbre and styles of the
prompt audio. Initially, we use different encoders
to extract the timbre information ¢, content infor-
mation ¢, and style information s of the prompt
audio and the target content information ¢:

»Cmae =

s = Estyle (m)> t= Etimbre (m),

¢ = Eeontent (l, ’I’L), c= Econtent([a ﬁ)v

&)



where E denotes encoders for each attribute. Given
that the target timbre { is anticipated to mirror the
prompt audio, we also require the target style infor-
mation S to generate the target mel-spectrogram 1.
Utilizing the powerful in-context learning capabili-
ties of language models, we design the S&D-LM to
predict 5. Concurrently, we also use the S&D-LM
to predict the target phoneme duration d, leveraging
the strong correlation between phoneme duration
and styles in singing voices to enhance both pre-
dictions. Our S&D-LM is based on a decoder-only
transformer-based architecture (Brown et al., 2020).
We concatenate the prompt phoneme duration d,
the prompt style information s, along with prompt
content c, target content ¢, and target timbre ¢ to
form the input. The autoregressive prediction pro-
cess can be formulated as follows:

p(é,cﬂ s,dm,f,é;@) =
r - 3 (6)
Hp (gtaﬁt | ‘§<ta d<ta S, d7 ¢, ta 67 0) 9
t=0
where 6 is the parameter of our S&D-LM. We train
the S&D-LM in the teacher-forcing mode using the
cross-entropy loss for the predicted style informa-
tion and the Mean Squared Error (MSE) loss for
the phoneme duration. Finally, we use P to denote
the pitch predictor and D to represent our style

adaptive decoder, the formula for synthesizing the
target FO and mel-spectrogram is:

F0 = P(5,d,t,¢),

. e (7
m = D(§,d,t, ¢, FO).

3.5 Training and Inference Procedures

Training Procedures The final loss terms of Trans-
ferSinger in the training phase consist of the fol-
lowing parts: 1) VQ loss Ly q: the VQ loss with
£2 normalization for the style encoder; 2) Pitch
reconstruction loss Lygif ¢, Limdifs: the Gaussian
diffusion loss and the multinomial diffusion loss
between the predicted and the GT pitch spectro-
gram for the pitch predictor; 3) Mel reconstruction
10ss Lynae, Lssim: the MAE loss and the SSIM loss
between the predicted and the GT mel-spectrogram
for the style adaptive decoder. 4) Duration predic-
tion loss L 4,,,-: the MSE loss between the predicted
and the GT phoneme-level duration in log scale
for S&D-LM in the teacher-forcing mode; 5) Style
prediction loss Lgy: the cross-entropy loss be-
tween the predicted and the GT style information
for S&D-LM in the teacher-forcing mode.
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Figure 2: Inference procedure of TransferSinger. In
Figure (a), the S&D-LM extracts information from the
prompt audio to predict the target style information and
phoneme duration, while in Figure (b), the S&D-LM
utilizes the text prompt to predict them.

Inference of Zero-Shot SVS Refer to Figure 2 (a)
and Equation 6, during the inference phase of zero-
shot SVS, we use the prompt audio to extract c, ¢,
s, d, as well as the target content ¢ as inputs for the
S&D-LM, and obtain s, . Then, since the target’s
timbre and prompt remain unchanged, according
to Equation 7, we concatenate the content ¢, timbre
t, style information 3, and phoneme duration d of
the target to generate FO by the pitch predictor, and
mel-spectrogram 7 by the style adaptive decoder.
Therefore, the generated target singing voice can
effectively transfer the timbre and styles of the
prompt audio. In the cross-lingual experiments, the
lyrics language of the prompt and the target are
different (like English and Chinese), but the rest
of the process remains the same. In the speech-
to-singing experiments, we use speech data as the
prompt audio, allowing the target singing voice to
transfer the timbre and styles of the speech data,
with the rest of the process remaining consistent.

Training and Inference with Text Prompts As
shown in Figure 1 (b), during the training phase
of the S&D-LM, we use a text prompt (like alto
pop vibrato) to replace the s, d extracted from the
prompt audio, and combine the text prompt with
¢, t, ¢ to generate s, . As shown in Figure 2 (b),
during inference, we use a text prompt to replace
the s, d extracted from the prompt audio, thus gen-
erating the target s, @, with the rest of the process
remaining consistent with the zero-shot SVS task.
Each text prompt encompasses a singing style class,
containing a variety of styles. Through these text
prompts, we can generate singing voices with refer-
ence timbre and independent specific style classes,
thus achieving controllable style synthesis.



4 [Experiments

4.1 Experimental Setup

In this section, we present the datasets utilized by
TransferSinger, delve into the implementation and
training details, discuss the evaluation methodolo-
gies, and introduce the baseline models.

Dataset Existing open-source singing datasets are
relatively sparse. In this endeavor, we collect and
annotate a cross-lingual dataset (16 singers, 28h
Chinese and English singing) by recruiting pro-
fessional singers in a professional recording stu-
dio. Moreover, we enrich our data by incorpo-
rating the M4Singer dataset (Zhang et al., 2022a)
(20 singers, 30h Chinese singing), the OpenSinger
dataset (Huang et al., 2021) (93 singers, 85h Chi-
nese singing), the AISHELL-3 dataset (Shi et al.,
2021) (218 singers, 85h Chinese speech), and a sub-
set of the PopBuTFy database (Liu et al., 2022b)
(20 singers, 18h English speech and singing). Then,
we manually annotate these singing data with style
class labels based on vocal ranges, singing methods,
and techniques (like alto pop vibrato). Finally, we
randomly designate 40 singers (including singing
and speech, Chinese and English) as the unseen test
set to evaluate TransferSinger in zero-shot tasks.
Please refer to Appendix B for more details.
Implementation Details We set the sample rate to
48000Hz, the window size to 1024, the hop size to
256, and the number of mel bins to 80 to derive mel-
spectrograms from raw waveforms. The default
size of the codebook for VQ is 512. The S&D-
LM model is a decoder-only architecture with 8
Transformer layers and 512 embedding dimensions.
Please refer to Appendix A.1 for more details.
Training Details We train our model using four
NVIDIA 3090Ti GPUs. The Adam optimizer is
used with 81 = 0.9 and B2 = 0.98. The main SVS
model takes 300k steps and the S&D-LM model
takes 100k steps to train until convergence. Output
mel-spectrograms of the style adaptive decoder are
transformed into singing voices using a pre-trained
HiFi-GAN vocoder (Kong et al., 2020).
Evaluation Details We use both objective and sub-
jective evaluation metrics to validate the perfor-
mance of TransferSinger. For subjective metrics,
we employ the Mean Opinion Score (MOS) to
judge synthesis quality (including clarity, natural-
ness, and rich stylistic details) and use the Similar-
ity Mean Opinion Score (SMOS) (Min et al., 2021)
to assess singer similarity (in terms of timbre and
styles) between the synthesized and the prompt

audio. Both these metrics are rated from 1 to 5
and reported with 95% confidence intervals. In the
ablation study, we employ the Comparative Mean
Opinion Score (CMOS) to gauge synthesis quality,
along with the Comparative Similarity Mean Opin-
ion Score (CSMOS) to evaluate singer similarity.
For objective metrics, we use the Singer Cosine
Similarity (Cos) to judge singer similarity, and the
FO Frame Error (FFE) to quantify synthesis quality.
Please refer to Appendix C for more details.
Baseline Models We conduct a comprehensive
comparative analysis of synthesis quality and
singer similarity for TransferSinger with other mod-
els. Firstly, we compare our model with the original
target ground truth (GT) and the audio generated
by HiFi-GAN (GT (vocoder)). Next, we integrate
a note encoder into two well-performing speech
models that conduct style transfer, training them
on speech and singing data to compare their perfor-
mance, including YourTTS (Casanova et al., 2022)
and Mega-TTS (Jiang et al., 2023). Subsequently,
we also compare with the best-performing tradi-
tional SVS model, RMSSinger (He et al., 2023). In
this comparison, we use the prompt singer embed-
ding to synthesize the target singing voice. Lastly,
we compare with StyleSinger (Zhang et al., 2023),
the first model that conducts style transfer for
zero-shot SVS. We use the open-source code of
YourTTS and make necessary modifications. As
for RMSSinger, Mega-TTS, and StyleSinger, we
carefully reproduced their works independently.

4.2 Main Results

Zero-Shot SVS with Style Transfer To assess the
performance of TransferSinger and baseline mod-
els in the zero-shot SVS with style transfer task, we
randomly select samples with unseen singers from
the test set as targets and different utterances from
the same singers to form prompts. As shown in
Table 1, we have the following findings: 1) Trans-
ferSinger exhibits outstanding synthesis quality, as
indicated by the highest MOS and the lowest FFE.
This underscores the model’s impressive adaptabil-
ity in managing zero-shot SVS scenarios. 2) Trans-
ferSinger also excels in singer similarity, as de-
noted by the highest SMOS and Cos. This high-
lights our model’s superior ability to model and
transfer different singing styles precisely, thanks
to the innovative design of our components. Our
style adaptive decoder effectively improves the rich
stylistic details of synthesis quality, rendering the
singing voices more natural and of superior qual-



Method | Mos+ SMOS1 | Cost FFE |
GT 456 + 0.07 - - -
GT (vocoder) 4324009 4384006 | 097  0.04
YourTTS (Casanova et al., 2022) | 3.64 +0.08 3.74+007 | 0.81 035
Mega-TTS (Jiang etal., 2023) | 3.75+£0.07 3.87+0.06 | 0.83  0.29
RMSSinger (He et al., 2023) 3.86+£0.06 3.80+008 | 0.86 031
StyleSinger (Zhang et al., 2023) | 3.93 £0.07 3.99+0.08 | 090 027
TransferSinger (ours) | 406 +0.08 4.27+0.08 | 0.92 0.23

Table 1: Synthesis quality and singer similarity of zero-shot SVS with style transfer. For subjective measurement,
we employ MOS and SMOS. In objective evaluation, we utilize Cos and FFE.

Method | MOSt | SMOS*

YourTTS 3.63 £0.07 | 3.70 &+ 0.06
Mega-TTS 3.72+£0.09 | 3.83 +£0.08
RMSSinger 3.83 £0.05 | 3.78 £ 0.07
StyleSinger 391+£0.06 | 3.96 £ 0.09

TransferSinger (ours) | 4.03 £ 0.08 | 4.22 £ 0.05

Table 2: Synthesis quality and singer similarity compar-
isons for controllable style synthesis.

ity. Meanwhile, our style encoder shows an excel-
lent capability for modeling styles across a wide
range of categories. Finally, the S&D-LM delivers
excellent prediction results for style information
and phoneme duration, significantly contributing
to synthesis quality and singer similarity.

As shown in Figure 3, TransferSinger not only
displays greater details in the mel-spectrogram, but
also effectively learns the technique, pronunciation,
and rhythm of the prompt audio. In contrast, other
models lack details in mel-spectrograms, and their
pitch curves remain flat, failing to transfer styles.
Upon listening to demos, it is clear that our model
effectively transfers the timbre, singing methods,
rhythm, techniques, and pronunciation of prompts.

Controllable Style Synthesis We randomly select
singing voice samples from the unseen test set and
use them as prompts for the baseline models. Then,
we use the style labels (like alto pop vibrato) of
these prompts as text prompts for TransferSinger
to perform controllable style synthesis, and these
audio severs as timbre prompts. Moreover, we ran-
domly utilize content information from all songs in
the dataset as the target. As shown in Table 2, we
use MOS and SMOS to compare TransferSinger
with text prompts against other models. Trans-
ferSinger with text prompts surpasses other base-
line models in synthesis quality and singer similar-
ity. Apart from the advantages of our models in

Method | MOSt | SMOS?

YourTTS 3.58 £0.08 | 3.55 £ 0.09
Mega-TTS 3.65+0.06 | 3.71 £0.07
RMSSinger 3.77 £ 0.10 | 3.64 £ 0.09
StyleSinger 3.84 £0.07 | 3.82 £0.06

TransferSinger(ours) | 3.95 £ 0.09 | 4.08 + 0.08

Table 3: Synthesis quality and singer similarity compar-
isons for cross-lingual style transfer.

style modeling and transfer, the text prompt encom-
passes a comprehensible style class, enabling the
use of abundant styles to synthesize controllable
singing voices. Simultaneously, since the text and
timbre prompts can be independent, we can synthe-
size the controllable target singing voice using the
prompt timbre and the specified style class.

Cross-Lingual Style Transfer To test the cross-
lingual style transfer performance of various mod-
els, we alternately use unseen Chinese and English
data as prompts and targets for inference, using
MOS and SMOS as evaluation criteria. As shown
in Table 3, our TransferSinger outperforms other
models regarding synthesis quality and singer simi-
larity. Benefiting from the modeling capability of
our style encoder for rich cross-lingual styles, the
assistance of the style adaptive decoder in generat-
ing singing voices with rich style details, and the
powerful prediction capability of the S&D-LM for
phoneme duration and style information, our model
performs well in a cross-lingual environment.

Speech-to-Singing Style Transfer We conducted
experiments on speech-to-singing style transfer and
used MOS and SMOS to compare the performance
of various models. To be specific, we used unseen
speech audio as the prompt audio to transfer timbre
and styles to the target singing voice. As shown in
Table 4, we found that both synthesis quality and
singer similarity of TransferSinger are superior to



a) Prompt b) GT

e) YourTTS f) Mega-TTS

c) GT(vocoder) d) TransferSinger

g) RMSSinger h) StyleSinger

Figure 3: Mel-spectrograms depicting the results of zero-shot SVS with style transfer. TransferSinger effectively
captures the rhythm and pronunciation in red boxes, along with the vibrato technique and rhythm in yellow boxes.

Method | MOSt | SMOS*?

YourTTS 3.53£0.08 | 3.51 £0.07
Mega-TTS 3.60 £ 0.09 | 3.66 &+ 0.08
RMSSinger 3.73 £0.07 | 3.59 £ 0.06
StyleSinger 3.81 +£0.10 | 3.80 +=0.09

TransferSinger (ours) | 3.92 £ 0.08 | 4.03 £ 0.07

Table 4: Synthesis quality and singer similarity compar-
isons for speech-to-singing style transfer.

Setting | CMOS | CSMOS
TransferSinger | 0.00 | 0.00
w/o SAD -0.21 -0.19
w/o DM -0.12 -0.23

Table 5: Synthesis quality and singer similarity com-
parisons for ablation study. SAD denotes style adaptive
decoder and DM means duration model of S&D-LM.

those of the baseline models. This demonstrates
the excellent ability of our model in both speech
and singing style modeling and transfer.

4.3 Ablation Study

As depicted in Table 5, we undertake ablation stud-
ies to showcase the efficacy of various designs
within TransferSinger. We use CMOS to test the
variation in synthesis quality, and CSMOS to mea-
sure the changes in singer similarity. 1) When
we eliminate the style adaptive decoder and use
an 8-step diffusion decoder (Huang et al., 2022b),

both synthesis quality and singer similarity decline,
indicating the enhancement our method brings to
the diversity of styles in singing voices. 2) When
we only predict styles in the S&D-LM and use a
simple duration predictor (Ren et al., 2020) to pre-
dict phoneme duration, both synthesis quality and
singer similarity decrease. This demonstrates the
mutual benefits of our method for predicting both
phoneme duration and style information.

5 Conclusion

In this paper, we introduce TransferSinger, a model
designed to transfer unseen timbre and styles (like
singing methods, rhythm, techniques, and pronunci-
ation) from prompts to synthesize high-quality tar-
get singing voices. The performance of our model
is primarily enhanced through three key compo-
nents: 1) the style encoder that condenses style
information into a compact latent space using a VQ
model with /> normalization; 2) the Style and Du-
ration Language Model (S&D-LM), which predicts
style information and phoneme duration informa-
tion simultaneously, thus enhancing both; and 3)
the style adaptive decoder that employs a novel
style adaptive normalization method to generate en-
hanced details in singing voices. Our experimental
results demonstrate that TransferSinger surpasses
baseline models in both synthesis quality and singer
similarity across various tasks: zero-shot SVS, con-
trollable style synthesis, cross-lingual style transfer,
and speech-to-singing style transfer.



6 Limitations

Our method primarily acknowledges two key limi-
tations. First, our multilingual data currently only
facilitates cross-lingual style transfer between Chi-
nese and English, primarily due to the challenges in
collecting singing voice data. In the future, we plan
to gather more diverse language data for conduct-
ing multilingual style transfer experiments. Second,
our model only allows for global control of singing
styles, lacking the ability to finely customize the
style techniques used for each phoneme. Look-
ing ahead, our future work aims to control singing
styles at the phoneme level for zero-shot SVS tasks.

7 Ethics Statement

TransferSinger, due to its ability to transfer per-
sonal timbre and styles for singing voice synthesis,
may be used for dubbing in entertainment videos,
leading to possible infringement of singers’ copy-
rights. Meanwhile, due to its capacity for transfer-
ring cross-lingual speech and singing, our model
could potentially result in unfair competition and
unemployment for individuals in related singing
occupations. Consequently, we will enforce restric-
tions on our model to mitigate unauthorized usage.
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Hyperparameter \ TransferSinger
Phoneme Embedding 320
Phoneme Encoder Layers 5
Encoder Encoder Hidden 320
Kernal Size 9
Filter Size 1280
Note Pitches Embedding 320
Encoder Type Embedding 320
Duration Hidden 320
. Encoder Layers 5
pmbre Hidden Size 320
Conv1D Kernel 31
WN Layers 4
WN Kernel 3
Conv Layers 5
1
E:ty ; . Conv Kernel 5
code Hidden Channel 320
VQ Embedding Size 512
VQ Embedding Channel 64
Conv Layers 12
Kernel Size 3
Pitch Residual Channel 192
Predictor Hidden Channel 25
Time Steps 100
Max Linear 8 Schedule 0.06
Style Denoﬁser Lgyers 20
Denoiser Hidden 320
Adapt .
Decod Time Steps 8
ccoder Noise Schedule Type VPSDE
Decoder Layers 8
Style Embedding Size 514
S&D-LM Hidden Size 512
Kernal Size 5
Attention Heads 8
Total Number of Parameters \ 328.5M

Table 6: Hyper-parameters of TransferSinger modules.

A Details of Models

A.1 Architecture Details

We list the architecture and hyperparameters of our
TransferSinger in Table 6.

A.2 Content Encoder

Our content encoder is composed of a note encoder
and a phoneme encoder. The phoneme encoder pro-
cesses a sequence of phonemes through a phoneme
embedding layer and four FFT blocks, culminat-
ing in the production of phoneme features. On
the other hand, the note encoder is responsible for
handling musical score information. It processes
note pitches, note types (including rest, slur, grace,
etc.), and note duration. Each of these is processed
through two embedding layers and a linear projec-
tion layer, thereby generating note features.
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A.3 Timbre Encoder

Designed to encapsulate the singer’s identity, the
timbre encoder extracts a global vector ¢ from
the prompt audio. The encoder comprises several
stacks of convolution layers. To maintain the sta-
bility of the timbre information, a one-dimensional
timbre vector ¢ is obtained by averaging the output
of the timbre encoder over time.

A.4 Pitch Predictor

In our model, the pitch predictor employs a combi-
nation of Gaussian diffusion and multinomial diffu-
sion methodologies to generate F'0 and UV'. This
process is described mathematically as follows:

q(xi|zi—1) = Nz V1 — Brae—1, Bed),
qWelye—1) = C(ye| (1 — Br)ye—1 + B/ K),

where C denotes a categorical distribution with
probability parameters, z; ~ {0,1}%, and §; is
the probability of uniformly resampling a category.
In the reverse process, we train a neural network
to approximate the noise € from the noisy input z;
and gy from the noisy sample y; at timestep ¢. The
equations of the reverse process are as follows:

B

20'7520[15(1 — @t)

Q(yt71|yt, yo) = C(ytflwpost(ytayo)%

K
gpost(ytvy[)) = Q/Zek,
k=1

®)

[le = ea (e, D)),

Eug.el

®

0 = [y + (1 — ) /K]®
[Qt—1y0 + (1 — au—1)/K],

where oy = 1 — fB; and oy = Hizl os. We use
P(Wi—1|ye) = C(Yi—11Opost (Yt y0)) to approximate
q(yt—1|yt, yo). Our pitch predictor employs a non-
causal WaveNet architecture for the denoiser. The
optimization of this module is achieved using Gaus-
sian diffusion loss and multinomial diffusion loss.

B Details of Dataset

Currently, no datasets are annotated with style in-
formation, and most open-source singing datasets
lack note annotations. In this endeavor, we collect
and annotate a cross-lingual dataset (16 singers,
28h Chinese singing, 4h English singing) by recruit-
ing professional singers in a professional recording
studio. Each singer was compensated at an hourly
rate of $600. Singers are informed that the data



Dataset Total/h ) Chinese ) English
sing speech | sing speech
New 28 25 0 3 0
M4Singer 30 30 0 0 0
OpenSinger 85 85 0 0 0
AISHELL-3 85 0 85 0 0
BuTFy 18 0 0 ] 10
Totalh | 246 | 140 85 | 1l 10

Table 7: Time distribution of our datasets for Chinese,
English, speech, and singing data.

will be used for scientific research. Additionally,
we incorporate the M4Singer dataset (Zhang et al.,
2022a) (20 singers and 30h Chinese singing) to
expand the diversity of singers and styles. Sub-
sequently, we also add the OpenSinger dataset
(Huang et al., 2021) (93 singers and 85h Chinese
singing), the AISHELL-3 dataset (Shi et al., 2021)
(218 singers and 85h Chinese speech), and a sub-
set of the PopBuTFy database (Liu et al., 2022b)
(20 singers, 10h English speech, and 8h English
singing). We use these datasets under license CC
BY-NC-SA 4.0. None of these three datasets has
note annotations, so we have hired music experts
to manually annotate the note information for these
three datasets. Each annotator was compensated at
an hourly rate of $20. Participants are informed that
the data will be used for scientific research. The
time distribution of our datasets for Chinese, En-
glish, speech, and singing data are listed in Table 7.
With the assistance of music experts, we manually
annotate singing data with distinct style class la-
bels. We categorize songs into soprano, tenor, alto,
and bass based on vocal ranges. In singing meth-
ods, we classify songs as bel canto and pop. Based
on certain techniques, like songs that use a lot of
falsetto or vibrato, we label them as ’falsetto’ or
’vibrato’. These classifications are combined into
the final style class labels (like alto pop vibrato),
which will be the text prompts.

C Details of Evaluation

C.1 Subjective Evaluation

For each task, we randomly select 20 pairs of sen-
tences from our test set for subjective evaluation.
Each pair consists of a prompt audio that provides
timbre and styles, and a synthesized singing voice,
each of which is listened to by at least 15 profes-
sional listeners. In the context of MOS and CMOS
evaluations, these listeners are instructed to con-
centrate on synthesis quality (including clarity, nat-
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uralness, and rich stylistic details), irrespective of
singer similarity (in terms of timbre and styles).
Conversely, during SMOS and CSMOS evalua-
tions, the listeners are directed to assess singer
similarity (singer similarity in terms of timbre and
styles) to the prompt audio, disregarding any dif-
ferences in content or synthesis quality (including
quality, clarity, naturalness, and rich stylistic de-
tails). In both MOS and SMOS evaluations, listen-
ers are requested to grade various singing voice
samples on a Likert scale ranging from 1 to 5.
For CMOS and CSMOS evaluations, listeners are
guided to compare pairs of singing voice samples
generated by different systems and express their
preferences. The preference scale is as follows: 0
for no difference, 1 for a slight difference, and 2
for a significant difference. It is important to note
that all participants are fairly compensated for their
time and effort. We compensated participants at a
rate of $12 per hour, resulting in a total expenditure
of approximately $300 on participant compensa-
tion. Participants are informed that the data will be
used for scientific research.

C.2 Objective Evaluation

To objectively evaluate the timbre similarity and
synthesis quality of the test set, we employ two
metrics: Cosine Similarity (Cos) and FO Frame Er-
ror (FFE). Cosine Similarity is used to measure the
resemblance in the singer’s identity between the
synthesized singing voice and the prompt audio.
This is done by computing the average cosine simi-
larity between the embeddings extracted from the
synthesized voices and the prompt audio, thus pro-
viding an objective indication of the performance
in singer similarity. Subsequently, we use FFE,
which amalgamates metrics for voicing decision er-
ror and FO error. FFE effectively captures essential
synthesis quality information.
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