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Abstract: Designing controllers that accomplish tasks while guaranteeing safety
constraints remains a significant challenge. We often want an agent to perform
well in a nominal task, such as environment exploration, while ensuring it can
avoid unsafe states and return to a desired target by a specific time. In particular
we are motivated by the setting of safe, efficient, hands-off training for reinforce-
ment learning in the real world. By enabling a robot to safely and autonomously
reset to a desired region (e.g., charging stations) without human intervention, we
can enhance efficiency and facilitate training. Safety filters, such as those based
on control barrier functions, decouple safety from nominal control objectives and
rigorously guarantee safety. Despite their success, constructing these functions
for general nonlinear systems with control constraints and system uncertainties
remains an open problem. This paper introduces a safety filter obtained from the
value function associated with the reach-avoid problem. The proposed safety fil-
ter minimally modifies the nominal controller while avoiding unsafe regions and
guiding the system back to the desired target set. By preserving policy perfor-
mance while allowing safe resetting, we enable efficient hands-off reinforcement
learning and advance the feasibility of safe training for real world robots. We
demonstrate our approach using a modified version of soft actor-critic to safely
train a swing-up task on a modified cartpole stabilization problem.

Keywords: Safety filters, Reachability analysis, Safe learning

1 Introduction

Reach-avoid problems have typically focused on reaching a target set in the state space as quickly
as possible while avoiding a failure set. One popular value function-based approach is Hamilton-
Jacobi reachability (HJR) analysis [1]. HJR encodes a differential game between the control and
disturbance to the system. The result is a value function whose level sets define the reach-avoid set
(or tube): the set of states from which the target can be reached safely despite worst-case disturbance
at the end of (or within) the time horizon. Additionally, the gradients of the value function provide
the optimal control strategy for reaching the goal in minimum time.

A secondary approach is through the separate use of control Lyapunov functions (CLFs) that enforce
stabilizing to a desired goal, combined with control barrier functions (CBFs) that enforce safety [2].
An optimization problem (which is not necessarily feasible) incorporating both constraints is solved
at each iteration, forcing the control to maintain safety (via the CBF) while progressing toward the
goal (via the CLF). However, the CLF constraint only ensures exponential stabilizability to the goal.

In practical applications, many scenarios require safely reaching a target at or within an exact time
in the future, while achieving a secondary objective such as minimizing control input. One such
application is hybrid systems, where the system must safely reach a switching state within a given
time [3]. Additionally, a broad range of systems require being able to return to a desired goal within
a certain time, e.g., a drone has to safely return to a dock station before its battery runs out. In this
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paper, we motivate our work through the application of safely training a reinforcement learning (RL)
agent in the real world, either from scratch or through fine-tuning. Real world RL training entails
significant risks to both the robot and its environment if safety is not properly ensured. Further-
more, the trajectory of the robot can lead to states where it cannot continue operating due to system
limitations, such as running out of battery or getting stuck [4]. This often necessitates human inter-
vention to reset the robot to a desired state from which the robot can continue learning. This can
make real world training prohibitively expensive and even infeasible in certain scenarios, like search
and rescue or space exploration. For example, a drone fine-tuning its flight or search policy during
deployment in an unknown environment could benefit from an approach that minimally modifies the
nominal policy to allow for effective learning, while ensuring that it can always safely return to a
desired target set. This would allow the drone to seamlessly resume its tasks and continue learning,
enhancing the efficiency of real world RL.

We propose characterizing this problem through a time-varying reach-avoid value function. How-
ever, instead of directly applying the optimal control to safely reach the goal in minimum time, as
is typically done using HJIR, we view the reach-avoid tube as a time-varying safe set and use an as-
sociated CBF-like constraint on the value function to design a safety filter. This safety filter allows
a user to prioritize safety while also pursuing a secondary objective (e.g. learning a performance
policy using RL). Our contributions are as follows:

1. We introduce the notion of a viscosity-based control barrier function (VB-CBF), which
resembles a standard CBF but has less restrictive assumptions. For control-and disturbance
affine dynamics its associated time-varying safety filter is a quadratic program.

2. We prove that the HJR reach-avoid value function is a VB-CBF for the reach-avoid set,
and admits a feasible control set for almost every state and time pair in the reach-avoid set.
Under mild assumptions, it also serves as a VB-CBF for the reach-avoid tube.

3. We demonstrate the effectiveness of our approach for safely training an RL agent on an
enhanced cartpole environment. We successfully showcase how we can use our method
to train an RL agent without the need to explicitly reset the environment. Specifically, the
reach-avoid VB-CBF enables both training safely and returning to a safe initial state at the
end of each episode. Both are crucial components for scalable real world RL.

2 Related Work

Hamilton-Jacobi Reachability. Many safety-critical autonomous tasks can be formulated as reach-
avoid problems [5, 6]. HJR offers a rigorous framework for verifying safety and reachability in
dynamical systems [1]. To tackle the scalability challenges of HIR, learning-based approaches have
been developed [7, 8, 9, 10], but they require specifying the desired task objectives as a part of their
reach-avoid formulation a priori, and are hence limited to a specific subset of tasks. In contrast, [11]
uses HJR to define a feasible set and constrain an RL agent to learn an unspecified objective con-
strained to this set. This method considers constraints only and does not enforce reaching a target.
Control barrier functions. Safety is often enforced using CBFs [2]. In particular, CBFs are used as
safety filters by adjusting a nominal control law to ensure the system satisfies safety constraints [12],
resulting in a quadratic program. However, constructing CBFs and ensuring feasibility remain chal-
lenging [13]. To tackle feasibility challenges, backup CBFs have been proposed to guarantee fea-
sibility using a predefined backup policy to a predefined safe set [14, 15]. While more broadly
applicable to complex systems, specifying a backup set a priori limits the implicitly specified safety
region and the backup CBF formulation introduces additional computational complexity. Deriving
a CBF from HJR without a target (i.e., only avoiding unsafe states) is explored in [16] via a novel
value function. Similarly, in [17], the authors provide a method for constructing CBFs using ideas
from reachability analysis, but their approach is limited to fixed policies.

Safe & recoverable RL. Safe RL is well-explored [18] and and typically framed either as a con-
strained Markov decision process [19] or using control-theoretic methods to restrict the action space
of the agent. These works leverage that separating task performance from safety objectives can
improve both performance and safety [20]. Lyapunov-based methods, including CBFs, have been



used to guarantee safety while learning for model-based [21, 22] and model-free RL [23]. This has
been extended to include system uncertainties and disturbances [24, 25]. However, these methods
typically do not consider resetting to a desired state at the end of each episode, which is desired for
autonomous, i.e., without human presence, training. In contrast, reach-avoid methods focus exclu-
sively on reaching a desired goal state, which is often difficult to define in advance and limits the
use of general-purpose RL algorithms. To address these challenges, we propose a time-varying CBF
that encodes both safety (for all times) and recovery to a desired target set within the specified time.

3 Preliminaries

Consider a system of the form
&= f(z,u,d) (1

where x € R” is the state, u € U C RP is the control input, d € D C R is the disturbance, with
convex and compact sets U and D. For each initial time ¢ < 0, we denote the sets of admissible
control and disturbance signals by U(t) := {u : [t,0] — U | wis measurable} and D(t) :=
{d : [t,0] — D | dis measurable}, respectively. Throughout this work, we make the following
assumption on the dynamics.

Assumption 1. The function f : R” x U« x D — R" is bounded and globally Lipschitz.

It follows from Assumption 1 that for each t < 0, x € R™, u € U(t), and d € D(¢), there exists a
unique (Carathéodory) solution x : [t, 0] — R™ of (1) which satisfies x(¢) = 2 [26]. We denote this

solution by 5;,‘7’[1.
3.1 Hamilton-Jacobi Reachability

HIJR determines the set of initial states from which a system can robustly reach a goal while avoiding
failure states. This analysis is formulated in terms of a differential game played over the dynamics
(1), where we consider the control u and disturbance d as the players of the game [1]. Player u
wishes to ensure the system enters the target set 7 C R™ by some final time (which we shall choose
to be 0), while avoiding the failure set / C R" in the process, and player d wishes for the opposite.
Given an initial time ¢ < 0, the reach-avoid tube R.A(T, F, t) represents the set of initial states z for
which the control can win the game. More precisely, we have

RA(T, F, ) := fr eR" |VA€A(t) JueU(t), 3s € [t,0], £, ™M @ e TAvr e[t,5], €2 0 ¢ F}, )

x,t

where A(t) represents the set of non-anticipative (i.e., causal) strategies from which we permit the
disturbance player to choose. Formally, we have

At)={N:U(t) — D(¢)|Vs € [t,0], Vu,u € U(t),
u(r)=u(r) ae. 7 € [t,s] = Au](r)=Au](r) ae. T € [t,s]}. 3)

Though we are mainly interested in the tube, it will be helpful to consider the reach avoid set
RA(T, Fit):={z eR" VA€ A(t), JueU(t), M (0) e T Avrelt, 0], 4™ () ¢ FY, @)

which corresponds to a game in which the controller wishes to ensure the state is in the target set at
the final time rather than by the final time. By definition, R.Ay (7, F,t) C RA(T, F,t). To compute
RA(T, F, t), one first computes the value function Vg : R™ x (—00,0] — R associated with the
game. We define the target and constraint functions £(z), g(z) : R™ — R such that ¢(z) > 0 <
x€T and g(x) < 0 <= z € F. Then, V} is the unique viscosity solution (for details on viscosity
solutions, we refer the reader to [27]) of the following variational inequality [5, 6]

{0 = min{g(z) — Vo(z,1), %Vo(amﬁ) + H(VVy(x,t),z)} inzeR" t<0

Vo(z,0) = min{l(z),g(xz)} onz e R", (5)



where the Hamiltonian H : R" x R™ — R is given by H(\, z) = max,ey mingep A" f(z, u, d).
Then, we have the following relationship

Vo(z,t) >0 <= z € RA(T,F,t). (6)
Moreover, the gradient of the value function V;(z, t) informs the optimal control law u*(x, t)

*(z,t) = i t)" : 7
u*(z,t) arg%lgé(arélgvvo(z, ) f(z,u,d) (7)

Following this control law ensures that any state x at time ¢ such that V(z, t) > 0 reaches the target
while avoiding the failure set, despite the best effort from player d.

3.2 Control Barrier Functions (CBFs)

For consistency with the original work [28], we introduce CBFs in the context of control-affine
dynamics with no disturbances, i.e.

&= fo(x) + go(z)u, ®)

where the functions fy:R™ —R™ and go: R™ — R™*? are globally Lipschitz. Note that this formal-
ism has been extended to more general dynamics, such as (1), with the key ideas unchanged [29].
Moreover, the system is considered safe as long as the state remains within a safe set C C R",
defined as the zero-superlevel set of a continuously differentiable function h : R™ — R. To ensure
the safety, we introduce concept of CBFs, as defined in the following.

Definition 3.1. (Control Barrier Functions, [28]) A continuously differentiable function h : R™ —
RsuchthatC = {x € R™ | h(x) > 0} is a control barrier function for (8) on C if there is an extended
class KC function! « such that, for each = € C, there exists a control u € U satisfying

Vah(2)" (fo(@) + go(x)u) + a(h(z)) > 0. ©)

If one can identify a CBF for a system, the following result provides the desired safety guarantee:

Theorem 1. ([28]) If h is a CBF for (8) on C, and if Vh(x) # 0 for all x € OC, then the set C is
safe under any globally Lipschitz controller u : R™ — U for which (9) is satisfied with u = u(x) at
each x € R™.

Given any nominal control 1aw e, @ R™ — RP that might violate control limits and safety, CBFs
can be used to minimally adjust the nominal control input with the following optimization problem:

* _ 1 — 2
u*(x) —argglelﬁllu Unom (2) |5

s.t. Voh(z) " (fo(z) + go(x)u) + a(h(z)) > 0.

Note that because the dynamics (8) are control-affine, then equation (10) is a quadratic program,
enabling real-time safety filtering.

(10)

4 Safe & Reset-Friendly Learning via Viscosity-Based CBF's

Joint safety, defined as avoiding failure states, and liveness, defined as reaching a target, are com-
monly addressed through reach-avoid HJR or combined CLF-CBF approaches. While HJR ensures
safety and liveness, it lacks a framework for minimally modifying a nominal controller in a smooth
CBF-like fashion. In contrast, the CLF-CBF approach facilitates the construction of a safety filter,
but ensuring feasibility becomes challenging in the presence of disturbances and control bounds. As
such, both of these methods are ill-suited to prioritizing finite-time safety and liveness for a system
while executing a nominal controller for a secondary objective. Such a need arises, for example,
when one wishes for a system to explore an environment while ensuring it can avoid failure states
and return to a safe reset position (e.g., a charging station) within some time.

'A function o : R — R is said to be extended class K if « is continuous, strictly increasing, and satisfies
a(0) = 0.



In this section, we develop a framework that robustly and safely reaches a goal within a desired time,
while optimizing online for different performance objectives over the time horizon. In Section 4.1,
we develop a generalization of a CBF for reach-avoid sets that addresses safety and liveness under
disturbances. The extension of these results to reach-avoid tubes is presented in Section 4.2. The
design of a safety filter using our findings is covered in Section 4.3.

4.1 Viscosity-Based Control Barrier Functions for Reach-Avoid Sets

We consider a time-varying safe set C, : (—oo, 0] — 2&" that captures both finite-time safety and
liveness. To achieve this objective, we introduce viscosity-based CBF (VB-CBFs) as follows.

Definition 4.1. (Viscosity-Based Control Barrier Function) Consider a continuous function h,, :
R™ x (—00,0] — R, and for each ¢ < 0, let C,(t) = {z € R™ | hy(z,t) > 0}. Then h,
is a viscosity-based control barrier function (VB-CBF) for system (1) on C,(-) if there exists an
extended class K function « such that for all ¢ < 0 and all z € C,(t), the inequality

0
&hv (x,t) + max zréig Voho(z, )" flz,u,d) > —ahy(z,1)) (11)
holds in a viscosity sense, i.e., for each continuously differentiable ¢ : R™ x (—o00,0) — R

) , .
g (z,t) + max min Vaotp(x,t)' f(z,u,d) > —a(hy(x,t)) (12)

at each (x,t) where h, — v has a local minimum.

Unlike a traditional CBF, which satisfies the global safety condition (9), a VB-CBF satisfies the
local safety condition (12) anywhere such a 1 exists (in particular anywhere h,, is differentiable;
see Lemma 1.7 in [27]). Recall that the value function Vj, is the viscosity solution to the variational
inequality (5). The following result formalizes the connection between VB-CBF from Definition
4.1 and the time-varying reach-avoid safety problem (4).

Theorem 2. The value function Vy : R™ X (—00,0] — R is a VB-CBF for system (1) on the
reach-avoid set RAo (T, F,").

The proof for this theorem is in the section 7.2 of the Appendix. The above theorem provides a useful
method for constructing a VB-CBF on the reach-avoid set, namely computing the value function V.

4.2 Viscosity-Based Control Barrier Functions for Reach-Avoid Tubes

While Theorem 2 provides a VB-CBF for the reach-avoid set RAq (T, F,t) (i.e., safely reaching
the target at the final time), it is often desirable to safely reach the target by the final time. Therefore,
in this section, we extend our result from previous section to reach-avoid tubes RA(T, F, t).

Definition 4.2. (Robust Control Invariance) A set S C R" is robustly control invariant if for each
t<0andz € S, forall A € A(t) there exists a u € U(¢) such that fu’k[u](s) € Sforall s € [¢,0].

x,t

For simplicity, we will assume one can safely stay within the target set and outside the failure set
once the target has been reached.

Assumption 2. The set 7 \ F is non-empty and robustly control invariant.

Note that this assumption will usually be satisfied for our intended usage, where the target serves as
a resetting set (e.g., a docking station). Therefore, Assumption 2 is not restrictive in practice.

Proposition 1. Under Assumption 2, the fixed-time reach-avoid set is the same as the reach-avoid
tube, i.e. RA(T,F,t) = RA(T,F,t) foreach t < 0.

The proof for this proposition is in the section 7.1 of the Appendix. Intuitively, this proposition
states that so long as the system can safely remain in the target once it arrives, reaching the target
by any time guarantees that the system can be in the target at the final time. The following result is
then immediate from Theorem 2 and Proposition 1.



Theorem 3. Under Assumption 2, the value function Vy : R™ x (—o0,0] — R is a VB-CBF for
system (1) on the reach-avoid tube RA(T, F,-).

The above theorem implies that the value function Vj can be computed to construct a VB-CBF on
the reach-avoid tube (rather than the reach-avoid set as before), provided that Assumption 2 holds.

4.3 Safety Filter

Given a VB-CBF h,, for system (1) and corresponding extended class K function o, we consider for
t < 0and z € Cy(t) the feasible control set

Qx,t) :=={u el |F: R" x (—0,0) — R continuously differentiable s.t. h, — 1 has a local

minimum at (z,t) 0 ¢(x,t)+géigvmw(:r,t)Tf(x,u,d) >—a(hy(x,t))}. (13)

ot
We use the feasible control set to design a safety filter that prioritizes system safety and liveness,
while also addressing a secondary objective. Then, given a nominal control law ey @ R™ X
(—00, 0] — U that might violate safety or prevent safely achieving the target set, whenever Q(z, t)
is non-empty, we minimally adjust the nominal control input via the following optimization problem

u*(z,t) =arg 11}161{{1 |l — tnom (33)||§
(14

s.t. %¢(l"t> + gélg VJ¢(xv t)Tf(J),U7d) Z _a(h’U(x?t))7

where v is chosen as above. When the system dynamics are control and disturbance-affine, the
optimization problem can be formulated as a quadratic program that can be solved efficiently online.

Remark 1. When computing u*(z,t) online, note that if h, is differentiable at (x,t), it follows
from Lemma 1.7 of [27] that one can simply solve the optimization problem (14) with A, in place
of 7. Additionally, since Vj is Lipschitz (c.f., [6]), V, is differentiable almost everywhere by
Rademacher’s Theorem. It follows from Theorems 2 and 3, that for h, = Vj we have that Q(z, t)
is non-empty almost everywhere in R Ay (7, F,-) (and RA(T,F,-) as well under Assumption 2).
These observations justify that in practice, if one uses the value function V}y computed via HJR as a
VB-CBEF, they may compute u*(x, t) by solving (14) with both 1 and h, replaced with V5. In this
case, there will be some feasible control action at almost every x and ¢ in the reach-avoid tube.

5 Numerical Experiments
5.1 Simulation Setup

Modified Cartpole Environment Setup: We demonstrate the
the effectiveness of our approach by considering the cartpole
swing-up task [30], modified such that all the mass is placed at
the end of the pole, and damping and friction are removed. The
state space of the cartpole system is given by z = [z, 0, &, 6’] Te
R*, where x is the position of the cart, 6 is the pendulum angle,
and & and 6 are the velocity of the cart and the angular velocity
of the pendulum. The state space of environment is constrained
by x € [-1.8,1.8]. For our setting, we define position x as e _A{’g)7 S
unsafe for z < —1.5 or z > 1.5, while the angular position N
is unsafe for 7/8 < 6 < /4, visualized in Figures 1 and 2 in Figure 1: Reach-avoid compu-
red. These constraints limit the safe swing-up behavior of the tation for the modified cartpole
. . . . environment. The reach-avoid
system to the clockwise direction. These unsafe regions are not . RA(T, F, 1) indicate
explicitly modeled in the simulator, thus safety violations do states from which the cartpole
not directly impact performance. We consider the target set as can reach the target 7 at times
a region where the robot must reset at the end of each episode. ! = {__0-8’ —1.6,-2.4, __3-2} sec-
For this setup, the target region is specified as onds while avoiding the failure set 7.

T= {z|x€ [~1.1,-0.8],0 € [-7 — 0.25, 7 + 0.25], & € [-0.1,0.1],6 € [~0.25, 0.25]} .




l Target Set

Figure 2: Our modified cartpole environment based on the Deepmind control suite. The green region in the
left figure depicts the target region that we desire to reach, the center image depicts the swung up position that
yields the highest reward and the red regions in the right image depict unsafe regions in the state space.

SAC  SAC-CBF SAC-RACBF SAC-RACBF-noreset
% Unsafe Trajectories  99.437 0.563 0.070 0.000

Table 1: Average (over 5 seeds) percentage of unsafe trajectories during training. Our methods are bolded.
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Figure 3: The mean and standard deviation of episode rpewards over 5 different seeds on the given baselines
(SAC, SAC-CBF) and proposed methods (SAC-RACBF and SAC-RACBF-noreset). The proposed methods
achieve reward performances closely comparable to the baselines, demonstrating how the reach-avoid VB-
CBF safety filter ensures safety, guarantees a safe return to the desired target set, and minimally impacts the
learning process of the SAC agent. To ensure a fair comparison, we compare the reward returned over the first
10 seconds of the 15 second episode, as our method requires returning to the target set, unlike the baselines.

This target set is visualized in Figures 1 and 2 in green. Terminating an episode in this target region
is not straightforward. For our system to efficiently achieve this state, it must actively dissipate
energy while simultaneously moving to the desired position, balancing precise position control with
energy-reducing dynamics. The zero-level sets of the reach-avoid tube RA(T,F,t) are shown
over various times t in Figure 1. We consider the widely used RL method soft actor-critic (SAC)
[31], which utilizes a maximum entropy RL objective to learn both a stochastic policy and a value
function. We build on [32] implementation. However, to ensure safety during training, we run
the output of SAC through a safety filter. By combining SAC with a reach-avoid VB-CBF safety
filter we aim to learn to efficiently swing-up the cartpole to maximize reward, while avoiding safety
violations and returning to the reset position (i.e. target set 7).

5.2 Results and Analysis

To evaluate the effectiveness of our approach, we compare the following methods:

1. (Ours) SAC with reach-avoid VB-CBF (SAC-RACBF): Our method integrates a reach-
avoid VB-CBF with SAC, combining safety with a reachability objective to guide the agent.

2. (Ours) SAC with reach-avoid VB-CBF without resetting (SAC-RACBF-noreset): A mod-
ification of the above, where the next episode starts from the final state of the previous
episode.

3. Standard SAC (SAC): The standard SAC algorithm, which does not account for safety con-
straints or the objective of returning to the start state, serves as our performance baseline.

4. SAC with CBF (SAC-CBF): A variant of SAC enhanced with an CBF-like safety filter.
Inspired by the approach in [16], we construct a CBF-like safety filter following the same
methodology as SAC-RACBE, but relying on the value function obtained from solving the
avoid-only problem.
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Figure 4: The mean and standard deviation of the difference between the final state and desired target region,
averaged over the training episodes of 5 seeds. The proposed methods SAC-RACBF and SAC-RACBF-reset
remain at A close to 0, indicating they successfully reach the target region, while the baselines (SAC and SAC-
CBF) are distributed throughout the state space.

All methods and their results are averaged over 5 seeds. The reward graph over the course of training
is illustrated in the Figure 3. These showcase the rewards accrued over the first 10 seconds of the 15
second episode, as we aim to terminate the episode at a safe reset state in the target set (which has
a low reward for the swing-up objective). The safety-filter enhanced SAC agents agents accumulate
rewards comparable to standard SAC, demonstrating that the safety filter based on the proposed
method is minimally invasive and allows the cartpole agent to efficiently learn how to swing up.
Importantly, unlike standard SAC, our methods preserve safety during learning. Table 1 shows how
our methods are better at maintaining safety throughout the training, while standard SAC leads to
unsafe trajectories in over 99% of the episodes. SAC-CBF provides similar levels of safety to our
approaches, however, it does not provide guarantees on returning to the target set and thus terminates
each episode far away from the desired safe return region. Figure 4 shows the minimum difference
between the current state and target set, denoted by A, for each dimension. The graphs illustrate how
our methods closely align with the desired target region throughout all episodes, while the baselines
remain widely distributed across the state space.

In summary, the results in Table 1, Figures 3 and 4 demonstrate how our proposed method has
minimal detrimental effect on performance and maintains safety, while enabling a key feature for
real world RL, namely terminating an episode in a desired safe reset region. Furthermore, the
performance of the proposed method SAC-RACBF-noreset highlights its capability for hands-off
RL, enabling efficient and cost-effective robot training in real world scenarios. We acknowledge
that a policy trained with the reach-avoid-based safety filter will require the continued use of this
safety filter during online deployment. However, the modifications to the safety filter for a policy
can be incorporated in a manner that eliminates their necessity post-training [23].

6 Conclusion

In this paper, we present a novel concept of reach-avoid VB-CBF that integrates CBFs with the
HIJR reach-avoid set. When combined with a safety filter, this approach prioritizes invariance with
respect to the time-varying safe set while maintaining robustness to control and disturbance bounds.
Moreover, we show that the Hamilton-Jacobi reach-avoid set is a reach-avoid VB-CBFE. We motivate
our approach with the promise of safe, efficient, hands-off RL for training robots in the real world.
The effectiveness of our method is demonstrated through safe training and resetting in a cart-pole
environment. For future work, we plan to carry out a comparison of our approach with other methods
and leverage DeepReach to approximate the reach-avoid value function for high-dimensional and
partially unknown dynamics using online updates from a conservative initial guess.
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7 Appendix

7.1 Proof for Proposition 1

Proof. Fix t < 0 (the proof is trivial when ¢ = 0). It is clear that RAo (7T, F,t) C RA(T, F,t).
We prove the reverse inclusion. Suppose z € RA(T,F,t). Let A € A(t). By the definition of
RA(T,F,t), we can choose w € U(t) and s € [t, 0] such that §Z}d(s) € T and 5;‘7’;1(7) ¢ F for
all 7 € [t, s], where d := A[u]. Let u, = ul[t, s] (i.e. the restriction of w to [t, s]), let ds = d|[t, s],
and let \; : U(s) — D(s) be given by A, : ug — A({us,uo))|[s,0], where (us,ug) represents
the concatenation of us and ug. It can be readily checked that non-anticipativity of A, follows
from non-anticipativity of A. Let z, = & ’td(s). By Assumption 2, we can choose uf, € U(s)
such that g;‘f,gdé (1) € T\ Fforall T € [s,0], where d} := A;[ug]. Letting u* = (us, uf;) and
d* = (d,d}), we then have by non-anticipativity of A and the definition of A\, that A[u*] = d*.
Thus E;f*t’d* (1) = f:;td(T) ¢ F for all T € [t, s]. Moreover, g};}d* (1) = ;‘E”Sdé (1) € T\ F for
all 7 € [s,0]. In other words, u* € U(t) is such that §u*‘)[u*}(0) €T and 65;’)‘[1‘*](7) ¢ F for all

x,t

T € [t,0]. Thus z € RAy(T, F,t), completing the proof. O

7.2 Proof for Theorem 2

Proof. First, observe that by (6), RA (T, F,t) is indeed the zero-superlevel set of Vj(+,¢) for each
t <0.Fixt <0and z € RA(T,F,t). Let ¢ : R® — R be a continuously differentiable function
such that V — ¢ has a local minimum at (x, t). Since Vj is a viscosity solution of (5), then

0 Y(z,t) + max min Vop(z,t) " f(z,u,d)}.

0 < min{g(x) - Vo(e, 1), 7 ey min

In particular, we obtain
0
&w(x,t) + Iglétg{{rdréilljl Vip(x, t) " flx,u,d) > 0> —a(Vy(z, 1)),

for any extended class K function «, where the second inequality holds because Vy(z,t) > 0. O
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