
Explaining Landscape Connectivity of Low-cost Solutions for
Multilayer Nets

Rohith Kuditipudi
Duke University

rohith.kuditipudi@duke.edu

Xiang Wang
Duke University

xwang@cs.duke.edu

Holden Lee
Princeton University

holdenl@princeton.edu

Yi Zhang
Princeton University

y.zhang@cs.princeton.edu

Zhiyuan Li
Princeton University

zhiyuanli@cs.princeton.edu

Wei Hu
Princeton University

huwei@cs.princeton.edu

Sanjeev Arora
Princeton University and Institute for Advanced Study

arora@cs.princeton.edu

Rong Ge
Duke University

rongge@cs.duke.edu

Abstract

Mode connectivity (Garipov et al., 2018; Draxler et al., 2018) is a surprising phenomenon in the loss
landscape of deep nets. Optima—at least those discovered by gradient-based optimization—turn out to
be connected by simple paths on which the loss function is almost constant. Often, these paths can be
chosen to be piece-wise linear, with as few as two segments.

We give mathematical explanations for this phenomenon, assuming generic properties (such as dropout
stability and noise stability) of well-trained deep nets, which have previously been identified as part of
understanding the generalization properties of deep nets. Our explanation holds for realistic multilayer
nets, and experiments are presented to verify the theory.

1 Introduction
Efforts to understand how and why deep learning works have led to a focus on the optimization landscape of
the training loss. Since optimization to near-zero training loss occurs for many choices of random initialization,
it is clear that the landscape contains many global optima (or near-optima). However, the loss can become
quite high when interpolating between found optima, suggesting that these optima occur at the bottom of
“valleys” surrounded on all sides by high walls. Therefore the phenomenon of mode connectivity (Garipov
et al., 2018; Draxler et al., 2018) came as a surprise: optima (at least the ones discovered by gradient-based
optimization) are connected by simple paths in the parameter space, on which the loss function is almost
constant. In other words, the optima are not walled off in separate valleys as hitherto believed. More
surprisingly, the paths connecting discovered optima can be piece-wise linear with as few as two segments.

Mode connectivity begs for theoretical explanation. One paper (Freeman and Bruna, 2016) attempted
such an explanation for 2-layer nets, even before the discovery of the phenomenon in multilayer nets. However,
they require the width of the net to be exponential in some relevant parameters. Others (Venturi et al., 2018;
Liang et al., 2018; Nguyen et al., 2018; Nguyen, 2019) require special structure in their networks where the
number of neurons needs to be greater than the number of training data points. Thus it remains an open
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problem to explain mode connectivity even in the 2-layer case with realistic parameter settings, let alone for
standard multilayer architectures.

At first sight, finding a mathematical explanation of the mode connectivity phenomenon for multilayer
nets—e.g., for a 50-layer ResNet on ImageNet—appears very challenging. However, the glimmer of hope is
that since the phenomenon exists for a variety of architectures and datasets, it must arise from some generic
property of trained nets. The fact that the connecting paths between optima can have as few as two linear
segments further bolsters this hope.

Strictly speaking, empirical findings such as in (Garipov et al., 2018; Draxler et al., 2018) do not show
connectivity between all optima, but only for typical optima discovered by gradient-based optimization.
It seems an open question whether connectivity holds for all optima in overparametrized nets. Section 5
answers this question, via a simple example of an overparametrized two-layer net, not all of whose optima are
connected via low-cost paths.

Thus to explain mode connectivity one must seek generic properties that hold for optima obtained via
gradient-based optimization on realistic data. A body of work that could be a potential source of such generic
properties is the ongoing effort to understand the generalization puzzle of over-parametrized nets—specifically,
to understand the “true model capacity”. For example, Morcos et al. (2018) note that networks that generalize
are insensitive to linear restrictions in the parameter space. Arora et al. (2018) define a noise stability property
of deep nets, whereby adding Gaussian noise to the output of a layer is found to have minimal effect on the
vector computed at subsequent layers. Such properties seem to arise in a variety of architectures purely from
gradient-based optimization, without any explicit noise-injection during training—though of course using
small-batch gradient estimates is an implicit source of noise-injection. (Sometimes training also explicitly
injects noise, e.g. dropout or batch-normalization, but that is not needed for noise stability to emerge.)

Since resilience to perturbations arises in a variety of architectures, such resilience counts as a “generic”
property for which it is natural to prove mode connectivity as a consequence. We carry this out in the current
paper. Note that our goal here is not to explain every known detail of mode connectivity, but rather to give
a plausible first-cut explanation.

First, in Section 3 we explain mode connectivity by assuming the network is trained via dropout. In fact,
the desired property is weaker: so long as there exists even a single dropout pattern that keeps the training
loss close to optimal on the two solutions, our proof constructs a piece-wise linear path between them. The
number of linear segments grows linearly with the depth of the net.

Then, in Section 4 we make a stronger assumption of noise stability along the lines of Arora et al. (2018)
and show that it implies mode connectivity using paths with 10 linear segments. While this assumption is
strong, it appears to be close to what is satisfied in practice. (Of course, one could explicitly train deep nets
to satisfy the needed noise stability assumption, and the theory applies directly to them.)

1.1 Related work
The landscape of the loss function for training neural networks has received a lot of attention. Dauphin et al.
(2014); Choromanska et al. (2015) conjectured that local minima of multi-layer neural networks have similar
loss function values, and proved the result in idealized settings. For linear networks, it is known (Kawaguchi,
2016) that all local minima are also globally optimal.

Several theoretical works have explored whether a neural network has spurious valleys (non-global minima
that are surrounded by other points with higher loss). Freeman and Bruna (2016) showed that for a two-layer
net, if it is sufficiently overparametrized then all the local minimizers are (approximately) connected. However,
in order to guarantee a small loss along the path they need the number of neurons to be exponential in
the number of input dimensions. Venturi et al. (2018) proved that if the number of neurons is larger than
either the number of training samples or the intrinsic dimension (infinite for standard architectures), then
the neural network cannot have spurious valleys. Liang et al. (2018) proved similar results for the binary
classification setting. Nguyen et al. (2018); Nguyen (2019) relaxed the requirement on overparametrization,
but still require the output layer to have more direct connections than the number of training samples.

Some other papers have studied the existence of spurious local minima. Yun et al. (2018) showed that in
most cases neural networks have spurious local minima. Note that a local minimum need only have loss no

2



larger than the points in its neighborhood, so a local minimum is not necessarily a spurious valley. Safran
and Shamir (2018) found spurious local minima for simple two-layer neural networks under a Gaussian input
distribution. These spurious local minima are indeed spurious valleys as they have positive definite Hessian.

2 Preliminaries
Notations For a vector v, we use ‖v‖ to denote its `2 norm. For a matrix A, we use ‖A‖ to denote its
operator norm, and ‖A‖F to denote its Frobenius norm. We use [n] to denote the set {1, 2, . . . , n}. We use
In to denote the identity matrix in Rn×n. We use O(·),Ω(·) to hide constants and use Õ(·), Ω̃(·) to hide
poly-logarithmic factors.

Neural network In most of the paper, we consider fully connected neural networks with ReLU activations.
Note however that our results can also be extended to convolutional neural networks (in particular, see
Remark 1 and the experiments in Section 6).

Suppose the network has d layers. Let the vector before activation at layer i be xi, i ∈ [d], where xd
is just the output. For convenience, we also denote the input x as x0. Let Ai be the weight matrix at
i-th layer, so that we have xi = Aiφ(xi−1) for 2 ≤ i ≤ d and x1 = A1x

0. For any layer i, 1 ≤ i ≤ d,
let the width of the layer be hi. We use [Ai]j to denote the j-th column of Ai. Let the maximum width
of the hidden layers be hmax := max{h1, h2, . . . , hd−1} and the minimum width of the hidden layers be
hmin := min{h1, h2, . . . , hd−1}.

We use Θ to denote the set of parameters of neural network, and in our specific model, Θ = Rh1×h0 ×
Rh2×h1 × · · · × Rhd×hd−1 which consists of all the weight matrices {Ai}’s.

Throughout the paper, we use fθ, θ ∈ Θ to denote the function that is computed by the neural network.
For a data set (x, y) ∼ D, the loss is defined as LD(fθ) := E(x,y)∼D[l(y, fθ(x))] where l is a loss function. The
loss function l(y, ŷ) is convex in the second parameter. We omit the distribution D when it is clear from the
context.

Mode connectivity and spurious valleys Fixing a neural network architecture, a data set D and a loss
function, we say two sets of parameters/solutions θA and θB are ε-connected if there is a path π(t) : R→ Θ
that is continuous with respect to t and satisfies: 1. π(0) = θA; 2. π(1) = θB and 3. for any t ∈ [0, 1],
L(fπ(t)) ≤ max{L(fθA), L(fθB )}+ ε. If ε = 0, we omit ε and just say they are connected.

If all local minimizers are connected, then we say that the loss function has the mode connectivity
property. However, as we later show in Section 5, this property is very strong and is not true even for
overparametrized two-layer nets. Therefore we restrict our attention to classes of low-cost solutions that
can be found by the gradient-based algorithms (in particular in Section 3 we focus on solutions that are
dropout stable, and in Section 4 we focus on solutions that are noise stable). We say the loss function has
ε-mode connectivity property with respect to a class of low-cost solutions C, if any two minimizers in C
are ε-connected.

Mode connectivity is closely related to the notion of spurious valleys and connected sublevel sets (Venturi
et al., 2018). If a loss function has all its sublevel sets ({θ : L(fθ) ≤ λ}) connected, then it has the mode
connectivity property. When the network only has the mode connectivity property with respect to a class of
solutions C, as long as the class C contains a global minimizer, we know there are no spurious valleys in C.

However, we emphasize that neither mode connectivity or lack of spurious valleys implies any local search
algorithm can efficiently find the global minimizer. These notions only suggest that it is unlikely for local
search algorithms to get completely stuck.

3 Connectivity of dropout-stable optima
In this section we show that dropout stable solutions are connected. More concretely, we define a solution θ
to be ε-dropout stable if we can remove a subset of half its neurons in each layer such that the loss remains

3



steady.

Definition 1. (Dropout Stability) A solution θ is ε-dropout stable if for all i such that 1 ≤ i < d, there
exists a subset of at most bhj/2c hidden units in each of the layers j from i through d − 1 such that after
rescaling the outputs of these hidden units (or equivalently, the corresponding rows and/or columns of the
relevant weight matrices) by some factor r1 and setting the outputs of the remaining units to zero, we obtain
a parameter θi such that L(fθi) ≤ L(fθ) + ε.

Intuitively, if a solution is ε-dropout stable then it is essentially only using half of the network’s capacity.
We show that such solutions are connected:

Theorem 1. Let θA and θB be two ε-dropout stable solutions. Then there exists a path in parameter space
π : [0, 1] → Θ between θA and θB such that L(fπ(t)) ≤ max{L(fθA), L(fθB )} + ε for 0 ≤ t ≤ 1. In other
words, letting C be the set of solutions that are ε-dropout stable, a ReLU network has the ε-mode connectivity
property with respect to C.

Our path construction in Theorem 1 consists of two key steps. First we show that we can rescale at
least half the hidden units in both θA and θB to zero via continuous paths of low loss, thus obtaining two
parameters θA1 and θB1 satisfying the criteria in Definition 1.

Lemma 1. Let θ be an ε-dropout stable solution and let θi be specified as in Definition 1 for 1 ≤ i < d.
Then there exists a path in parameter space π : [0, 1]→ Θ between θ and θ1 passing through each θi such that
L(fπ(t)) ≤ L(fθ) + ε for 0 ≤ t ≤ 1.

Though naïvely one might expect to be able to directly connect the weights of θ and θ1 via interpolation,
such a path may incur high loss as the loss function is not convex over Θ. In our proof of Lemma 1, we rely
on a much more careful construction. The construction uses two types of steps: (a) interpolate between two
weights in the top layer (the loss is convex in the top layer weights); (b) if a set of neurons already have
their output weights set to zero, then we can change their input weights arbitrarily. See Figure 1 for an
example path for a 3-layer network. Here we have separated the weight matrices into equally sized blocks:

A3 =
[
L3 R3

]
, A2 =

[
L2 C2

D2 R2

]
and A1 =

[
L1

B1

]
. The path consists of 6 steps alternating between

type (a) and type (b). Note that for all the type (a) steps, we only update the top layer weights; for all the
type (b) steps, we only change rows of a weight matrix (inputs to neurons) if the corresponding columns
in the previous matrix (outputs of neurons) are already 0. In Section A we show how such a path can be
generalized to any number of layers.

We then show that we can permute the hidden units of θA1 such that its non-zero units do not intersect
with those of θB1 , thus allowing us two interpolate between these two parameters. This is formalized in the
following lemma and the proof is deferred to supplementary material.

Lemma 2. Let θ and θ′ be two solutions such that at least dhi/2e of the units in the ith hidden layer have
been set to zero in both. Then there exists a path in parameter space π : [0, 1]→ Θ between θ and θ′ with 8
line segments such that L(fπ(t)) ≤ max{L(fθ), L(fθ′)}.

Theorem 1 follows immediately from Lemma 1 and Lemma 2, as one can first connect θA to its dropout
version θA1 using Lemma 1, then connect θA1 to dropout version θB1 of θB using Lemma 2, and finally connect
θB1 to θB using Lemma 1 again.

Finally, our results can be generalized to convolutional networks if we do channel-wise dropout (Tompson
et al., 2015; Keshari et al., 2018).

Remark 1. For convolutional networks, a channel-wise dropout will randomly set entire channels to 0
and rescale the remaining channels using an appropriate factor. Theorem 1 can be extended to work with
channel-wise dropout on convolutional networks.

1Note our results will also work if r is allowed to vary for each layer.
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A3 A2 A1

(1)
[
L3 R3

] [
L2 C2

D2 R2

] [
L1

B1

]
(2)

[
rL3 0

] [
L2 C2

D2 R2

] [
L1

B1

]
(a)

(3)
[
rL3 0

] [
L2 C2

rL2 0

] [
L1

B1

]
(b)

(4)
[

0 rL3

] [
L2 C2

rL2 0

] [
L1

B1

]
(a)

(5)
[

0 rL3

] [
rL2 0
rL2 0

] [
L1

B1

]
(b)

(6)
[
rL3 0

] [
rL2 0
rL2 0

] [
L1

B1

]
(a)

(7)
[
rL3 0

] [
rL2 0
0 0

] [
L1

0

]
(b)

Figure 1: Example path, 6 line segments from a 3-layer network to its dropout version. Red denotes weights
that have changed between steps while green denotes the zeroed weights that allow us to make these changes
without affecting our output.

4 Connectivity via noise stability
In this section, we relate mode connectivity to another notion of robustness for neural networks—noise
stability. It has been observed (Morcos et al., 2018) that neural networks often perform as well even if a
small amount of noise is injected into the hidden layers. This was formalized in (Arora et al., 2018), where
the authors showed that noise stable networks tend to generalize well. In this section we use a very similar
notion of noise stability, and show that all noise stable solutions can be connected as long as the network is
sufficiently overparametrized.

We begin in Section 4.1 by restating the definitions of noise stability in (Arora et al., 2018) and also
highlighting the key differences in our definitions. In Section 6 we verify these assumptions in practice. In
Section 4.2, we first prove that noise stability implies dropout stability (meaning Theorem 1 applies) and
then show that it is in fact possible to connect noise stable neural networks via even simpler paths than mere
dropout stable networks.

4.1 Noise stability
First we introduce some additional notations and assumptions. In this section, we consider a finite and
fixed training set S. For a network parameter θ, the empirical loss function is L(θ) = 1

|S|
∑

(x,y)∈S l(y, f(x)).
Here the loss function l(y, ŷ) is assumed to be β-Lipschitz in ŷ: for any ŷ, ŷ′ ∈ Rhd and any y ∈ Rhd , we
have |l(y, ŷ)− l(y, ŷ′)| ≤ β‖ŷ − ŷ′‖. Note that the standard cross entropy loss over the softmax function is√

2-Lipschitz.
For any two layers i ≤ j, let M i,j be the operator for the composition of these layers, such that

xj = M i,j(xi). Let J i,jxi be the Jacobian of M i,j at input xi. Since the activation functions are ReLU’s, we
know M i,j(xi) = J i,jxi x

i.
Arora et al. (2018) used several quantities to define noise stability. We state the definitions of these

quantities below.
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Definition 2 (Noise Stability Quantities). Given a sample set S, the layer cushion of layer i is defined as
µi := minx∈S

‖Aiφ(xi−1)‖
‖Ai‖F ‖φ(xi−1)‖ .

For any two layers i ≤ j, the interlayer cushion µi,j is defined as µi,j = minx∈S
‖Ji,j
xi
xi‖

‖Ji,j
xi
‖‖xi‖

.

Furthermore, for any layer i the minimal interlayer cushion is defined as2 µi→ = mini≤j≤d µi,j .

The activation contraction c is defined as c = maxx∈S, 1≤i≤d−1
‖xi‖
‖φ(xi)‖ .

Intuitively, these quantities measures the stability of the network’s output to noise for both a single layer
and across multiple layers. Note that the definition of the interlayer cushion is slightly different from the
original definition in (Arora et al., 2018). Specifically, in the denominator of our definition of interlayer
cushion, we replace the Frobenius norm of J i,jxi by its spectral norm. In the original definition, the interlayer
cushion is at most 1/

√
hi, simply because J i,ixi = Ihi and µi,i = 1/

√
hi. With this new definition, the interlayer

cushion need not depend on the layer width hi.
The final quantity of interest is interlayer smoothness, which measures how close the network’s be-

havior is to its linear approximation under noise. Our focus here is on the noise generated by the
dropout procedure (Algorithm 1). Let θ = {A1, A2, ..., Ad} be weights of the original network, and let
θi = {A1, Â2, . . . , Âi, Ai+1, . . . , Ad} be the result of applying Algorithm 1 to weight matrices from layer 2 to
layer i.3 For any input x, let x̂ii(t) and x̂ii−1(t) be the vector before activation at layer i using parameters
θt+ θi(1− t) and θt+ θi−1(1− t) respectively.

Definition 3 (Interlayer Smoothness). Given the scenario above, define interlayer smoothness ρ to be
the largest number such that with probability at least 1/2 over the randomness in Algorithm 1 for any two
layers i, j satisfying for every 2 ≤ i ≤ j ≤ d, x ∈ S, and 0 ≤ t ≤ 1

‖M i,j(x̂ii(t))− J
i,j
xi (x̂ii(t))‖ ≤

‖x̂ii(t)− xi‖‖xj‖
ρ‖xi‖

,

‖M i,j(x̂ii−1(t))− J i,jxi (x̂ii−1(t))‖ ≤
‖x̂ii−1(t)− xi‖‖xj‖

ρ‖xi‖
.

If the network is smooth (has Lipschitz gradient), then interlayer smoothness holds as long as ‖x̂ii(t)−
xi‖, ‖x̂ii−1(t) − xi‖ is small. Essentially the assumption here is that the network behaves smoothly in the
random directions generated by randomly dropping out columns of the matrices.

Similar to (Arora et al., 2018), we have defined multiple quantities measuring the noise stability of a
network. These quantities are in practice small constants as we verify experimentally in Section 6. Finally,
we combine all these quantities to define a single overall measure of the noise stability of a network.

Definition 4 (Noise Stability). For a network θ with layer cushion µi, minimal interlayer cushion µi→,
activation contraction c and interlayer smoothness ρ, if the minimum width layer hmin is at least Ω̃(1) wide,
ρ ≥ 3d and ‖φ(x̂ii(t))‖∞ = O(1/

√
hi)‖φ(x̂ii(t))‖ for 1 ≤ i ≤ d− 1, 0 ≤ t ≤ 1, we say the network θ is ε-noise

stable for

ε =
βcd3/2 maxx∈S(‖fθ(x)‖)
h
1/2
min min2≤i≤d(µiµi→)

.

The smaller ε, the more robust the network. Note that the quantity ε is small as long as the hidden
layer width hmin is large compared to the noise stable parameters. Intuitively, we can think of ε as a single
parameter that captures the noise stability of the network.

4.2 Noise stability implies dropout stability
We now show that noise stable local minimizers must also be dropout stable, from which it follows that noise
stable local minimizers are connected. We first define the dropout procedure we will be using in Algorithm 1.

2Note that Ji,i

xi
= Ihi and µi,i = 1.

3Note that A1 is excluded because dropping out columns in Â2 already drops out the neurons in layer 1; dropping out
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Algorithm 1 Dropout (Ai, p)

Input: Layer matrix Ai ∈ Rhi×hi−1 , dropout probability 0 < p < 1.
Output: Returns Âi ∈ Rhi×hi−1 .
1: For each j ∈ [hi−1], let δj be an i.i.d. Bernoulli random variable which takes the value 0 with probability
p and takes the value 1

1−p with probability (1− p).
2: For each j ∈ [hi−1], let [Âi]j be δj [Ai]j , where [Âi]j and [Ai]j are the j-th column of Âi and Ai respectively.

The main theorem that we prove in this section is:

Theorem 2. Let θA and θB be two fully connected networks that are both ε-noise stable, there exists a
path with 10 line segments in parameter space π : [0, 1] → Θ between θA and θB such that4 L(fπ(t)) ≤
max{L(fθA), L(fθB )}+ Õ(ε) for 0 ≤ t ≤ 1.

To prove the theorem, we will first show that the networks θA and θB are Õ(ε)-dropout stable. This is
captured in the following main lemma:

Lemma 3. Let θ be an ε-noise stable network, and let θ1 be the network with weight matrices from layer
2 to layer d dropped out by Algorithm 1 with dropout probability Ω̃(1/hmin) < p ≤ 3

4 . For any 2 ≤ i ≤ d,
assume ‖[Ai]j‖ = O(

√
p)‖Ai‖F for 1 ≤ j ≤ hi−1. For any 0 ≤ t ≤ 1, define the network on the segment from

θ to θ1 as θt := θ + t(θ1 − θ). Then, with probability at least 1/4 over the weights generated by Algorithm 1,
L(fθt) ≤ L(fθ) + Õ(

√
pε), for any 0 ≤ t ≤ 1.

The main difference between Lemma 3 and Lemma 1 is that we can now directly interpolate between the
original network and its dropout version, which reduces the number of segments required. This is mainly
because in the noise stable setting, we can prove that after dropping out the neurons, not only does the
output remains stable but moreover every intermediate layer also remains stable.

From Lemma 3, the proof of Theorem 2 is very similar to the proof of Theorem 1. The detailed proof is
given in Section B.

The additional power of Lemma 3 also allows us to consider a smaller dropout probability. The theorem
below allows us to trade the dropout fraction with the energy barrier ε that we can prove—if the network is
highly overparametrized, one can choose a small dropout probability p which allow the energy barrier ε to be
smaller.

Theorem 3. Suppose there exists a network θ∗ with layer width h∗i for each layer i that achieves loss L(fθ∗),
and minimum hidden layer width h∗min = Ω̃(1). Let θA and θB be two ε-noise stable networks. For any dropout
probability 1.5 max1≤i≤d−1(h∗i /hi) ≤ p ≤ 3/4, if for any 2 ≤ i ≤ d, 1 ≤ j ≤ hi−1, ‖[Ai]j‖ = O(

√
p)‖Ai‖F

then there exists a path with 13 line segments in parameter space π : [0, 1]→ Θ between θA and θB such that
L(fπ(t)) ≤ max{L(fθA) + Õ(

√
pε), L(fθB ) + Õ(

√
pε), L(fθ∗)} for 0 ≤ t ≤ 1.

Intuitively, we prove this theorem by connecting θA and θB via the neural network θ∗ with narrow hidden
layers. The detailed proof is given in Section B.

5 Disconnected modes in two-layer nets
The mode connectivity property is not true for every neural network. Freeman and Bruna (2016) gave a
counter-example showing that if the network is not overparametrized, then there can be different global
minima of the neural network that are not connected. Venturi et al. (2018) showed that spurious valleys can
exist for 2-layer ReLU nets with an arbitrary number of hidden units, but again they do not extend their result

columns in A1 would drop out input coordinates, which is not necessary.
4Here Õ(·) hides log factors on relevant factors including |S|, d, ‖x‖, 1/ε and hi‖Ai‖ for layers i ∈ [d].
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to the overparametrized setting. In this section, we show that even if a neural network is overparametrized—in
the sense that there exists a network of smaller width that can achieve optimal loss—there can still be two
global minimizers that are not connected.

In particular, suppose we are training a two-layer ReLU student network with h hidden units to fit a
dataset generated by a ground truth two-layer ReLU teacher network with ht hidden units such that the
samples in the dataset are drawn from some input distribution and the labels computed via forward passes
through the teacher network. The following theorem demonstrates that regardless of the degree to which the
student network is overparametrized, we can always construct such a dataset for which global minima are not
connected.

Theorem 4. For any width h and and convex loss function l : R×R 7→ R such that l(y, ŷ) is minimized when
y = ŷ, there exists a dataset generated by ground-truth teacher network with two hidden units (i.e. ht = 2)
and one output unit such that global minimizers are not connected for a student network with h hidden units.

Our proof is based on an explicit construction. The detailed construction is given in Section C.

6 Experiments
We now demonstrate that our assumptions and theoretical findings accurately characterize mode connectivity in
practical settings. In particular, we empirically validate our claims using standard convolutional architectures—
for which we treat individual filters as the hidden units and apply channel-wise dropout (see Remark 1)—trained
on datasets such as CIFAR-10 and MNIST.

Training with dropout is not necessary for a network to be either dropout-stable or noise-stable. Recall
that our definition of dropout-stability merely requires the existence of a particular sub-network with half
the width of the original that achieves low loss. Moreover, as Theorem 3 suggests, if there exists a narrow
network that achieves low loss, then we need only be able to drop out a number of filters equal to the width
of the narrow network to connect local minima.

Figure 2: Results for convolutional networks trained on MNIST.

First, we demonstrate in the left plot in Figure 2 on MNIST that 3-layer convolutional nets (not counting
the output layer) with 32 3× 3 filters in each layer tend to be fairly dropout stable—both in the original
sense of Definition 1 and especially if we relax the definition to allow for wider subnetworks—despite the
fact that no dropout was applied in training. For each trial, we randomly sampled 20 dropout networks
with exactly b32(1 − p)c non-zero filters in each layer and report the performance of the best one. In the
center plot, we verify for p = 0.2 we can construct a linear path π(t) : R → Θ from our convolutional net
to a dropout version of itself. Similar results were observed when varying p. Finally, in the right plot we
demonstrate the existence of 3-layer convolutional nets just a few filters wide that are able to achieve low loss
on MNIST. Taken together, these results indicate that our path construction in Theorem 3 performs well in
practical settings. In particular, we can connect two convolutional nets trained on MNIST by way of first
interpolating between the original nets and their dropped out versions with p = 0.2, and then connecting the
dropped out versions by way of a narrow subnetwork with at most b32pc non-zero filters.
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Figure 3: Left) Distribution of layer cushion, activation contraction, interlayer cushion and interlayer
smoothness of the 6-th layer of a VGG-11 network on the training set. The other layers’ parameters are
exhibited in Section D.3. Right) The loss and training accuracy along the path between two noise stable
VGG-11 networks described in Theorem 3.

We also demonstrate that the VGG-11 (Simonyan and Zisserman, 2014) architecture trained with channel-
wise dropout (Tompson et al., 2015; Keshari et al., 2018) with p = 0.25 at the first three layers5 and p = 0.5
at the others on CIFAR-10 converges to a noise stable minima—as measured by layer cushion, interlayer
cushion, activation contraction and interlayer smoothness. The network under investigation achieves 95%
training and 91% test accuracy with channel-wise dropout activated, in comparison to 99% training and 92%
test accuracy with dropout turned off. Figure 3 plots the distribution of the noise stability parameters over
different data points in the training set, from which we can see they behave nicely. Interestingly, we also
discovered that networks trained without channel-wise dropout exhibit similarly nice behavior on all but the
first few layers. Finally, in Figure 3, we demonstrate that the training loss and accuracy obtained via the
path construction in Theorem 3 between two noise stable VGG-11 networks θA and θB remain fairly low
and high respectively—particularly in comparison to directly interpolating between the two networks, which
incurs loss as high as 2.34 and accuracy as low as 10%, as shown in Section D.2.

Further details on all experiments are provided in Section D.1.
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A Proofs for connectivity of dropout-stable optima

Proof of Lemma 1. Without loss of generality, suppose for each θi that the subset of bhi/2c non-zero
hidden units in each layer are all indexed between 1 and bhi/2c. For 1 < i < d, we can partition Ai into

quadrants such that Ai =

[
Li Ci
Di Ri

]
. (Here, Li ∈ Rbhi/2c×bhi/2c. If hi is odd, when we write Li in the

other quadrants we implicitly pad it with zeros in a consistent manner.) Similarly, we can partition A1 such

that A1 =

[
L1

B1

]
and Ad such that Ad =

[
Ld Rd

]
. We will sometimes use the notation Ai to refer to

the value of Ai at a given point on our path, while Aθi will always refer to the value of Ai at θ. We now
proceed to prove via induction the existence of a path from θ to θi for all i whose loss is bounded by L(fθ) + ε,
from which the main result immediately follows.

Base case: from θ to θd−1 As a base case of the induction, we need to construct a path from θ to θd−1,
such that the loss is bounded by L(fθ) + ε. First, note that setting a particular subset of columns (e.g. the
right half of columns) in Ai to zero is equivalent to setting the corresponding rows (e.g. the bottom half of
rows) of Ai−1 to zero. So from the fact that L(fθd−1

) ≤ L(fθ) + ε it follows that we can equivalently replace
Aθd with

[
rLθd 0

]
without increasing our loss by more than ε.

In fact, because our loss function is convex over Ad we can actually interpolate Ad between Aθd and[
rLθd 0

]
while keeping our loss below L(fθ) + ε at every point along this subpath.

Then, because Rd = 0 we can modify both Dd−1 and Rd−1 any way we’d like without affecting the output

of our network. In particular, we can interpolate Ad−1 between Aθd−1 and
[
Lθd−1 Cθd−1

0 0

]
while keeping

our loss constant long this subpath, thus arriving at θd−1.
From θk to θk−1

Suppose we have found a path from θ to θk such that (1) Aθkd =
[
rLθd 0

]
, (2) Aθki =

[
rLθi 0

0 0

]
for

k < i < d, (3) Aθkk =

[
Lθk Cθk
0 0

]
, and (4) Aθki = Aθi for i < k, such that the loss along the path is at most

L(fθ) + ε. Note that θd−1 satisfies all these assumptions, including in particular (2) as there are of course no
Ai between Ad−1 and Ad. Now let us extend this path to θk−1.

First, because the rightmost columns of Ai are zero for k < i ≤ d, we can modify the bottom rows of Ai

for k ≤ i < d without affecting the output of our network. In particular, we can set Ak to
[
Lθk Cθk
rLθk 0

]
,

as well as Ai to
[
rLθi 0

0 rLθi

]
for k < i < d. From the fact that the loss is convex over Ad and that

L(fθk−1
) < L(fθ) + ε, it then follows that we can set Ad to

[
0 rLθd

]
via interpolation while keeping our

loss below L(fθ) + ε. In particular, note that because the off-diagonal blocks of Ai are zero for k < i < d,
interpolating between the leftmost columns of Ad being non-zero and the rightmost columns of Ad being
non-zero simply amounts to interpolating between the outputs of the two subnetworks comprised respectively
of the first bhi/2c and last bhi/2c rows of Ai for k ≤ i < d.

Once we have the leftmost columns of Ad set to zero and Ai in block-diagonal form for k < i < d, we
can proceed to modify the top rows of Ak however we’d like without affecting the output of our network.

Specifically, let us set Ak to
[
rLθk 0
rLθk 0

]
. We can then reset Ad to

[
rLθd 0

]
via interpolation—this time

without affecting our loss since the weights of our two subnetworks are equivalent—and afterwards set Dk to
zero and Ri to zero for k ≤ i < d—again without affecting our loss since the rightmost columns of Ad are
now zero, meaning that the bottom rows of Ai have no affect on our network’s output.

Following these steps, we will have Ai =

[
rLθi 0

0 0

]
for k ≤ i < d and Ad =

[
rLθd 0

]
. And so we are

now free to set the bottom rows of Ak−1 to zero without affecting our loss, thus arriving at θk−1. �
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Lemma 4. Let θ be a parameter such that at least dhi/2e of the units in each hidden layer have been set to
zero. Then we can achieve an arbitrary permutation of the non-zero hidden units of θ via a path consisting of
just 5 line segments such that our loss is constant along this path.

Proof. Let π : [hi] 7→ [hi] be some permutation over the units in layer i. Without loss of generality, suppose
all non-zero units in layer i are indexed between 0 and bhi/2c, and define π′ : [bhi/2c] 7→ [hi] \ [bhi/2c] as
any one-to-one mapping such that π′(i) = π(i) if π(i) ∈ [hi] \ [bhi/2c]. Note that when we refer to a unit j as
“set to zero”, we mean that both row j of Ai and column j of Ai+1 have been set to zero.

To permute the units of layer i, we can first simultaneously copy the non-zero rows of Ai into a subset of
the rows that have been set to zero. Specifically, for j ∈ [bhi/2c] we can copy row j of Ai into row π′(j) via
interpolation and without affecting our loss, due to the fact that column π′(j) in Ai+1 is set to zero. We
can then set column j of Ai+1 to zero while copying its value to column π′(j), again via interpolation and
without affecting our loss since rows j and π′(j) of Ai are now equivalent.

Following these first two steps, the first bhi/2c columns of Ai+1 will have been set to zero. Thus, for all
j ∈ [bhi/2c] such that π(j) ∈ [hi/2] we can copy row π′(j) of Ai into row π(j) without affecting our loss. We
can then set column π′(j) of Ai+1 to zero while copying its value into column π(j) via interpolation and
without affecting our loss since rows π′(j) and π(j) of Ai are now equivalent. Setting row π′(j) to zero—again
for all j ∈ [bhi/2c] such that π(j) ∈ [hi/2]—completes the permutation for layer i.

Note that because we leave the output of layer i unchanged throughout the course of permuting the units
of layer i, it follows that we can perform all swaps across all layers simultaneously. And so from the fact that
permuting each layer can be done in 5 steps—each of which consists of a single line segment in parameter
space—the main result immediately follows.

Proof of Lemma 2. Without loss of generality, suppose for θ that the subset of bhi/2c non-zero hidden
units in each layer i are all indexed between 0 and bhi/2c. Note that when we refer to a unit as “set to zero",
we mean that both the corresponding row of Ai and column of Ai+1 have been set to zero. Adopting our
notation in Lemma 1, we can construct a path from θ to θ′ as follows.

First, from the fact that the second half of units in each hidden layer i have been set to zero in θ we have

that Aθ1 =

[
Lθ1
0

]
, Aθi =

[
Lθi 0
0 0

]
for 1 < i < d, and Aθd =

[
Lθd 0

]
. Similarly, half the rows of Aθ

′

1 are

zero, half the rows and columns of Aθ
′

i are zero for 1 < i < d, and half the columns of Aθ
′

d are zero. Note that
the indices of the non-zero units in θ′ may intersect with those of the non-zero units in θ. For 1 ≤ i ≤ d, let
Bi denote the submatrix of Ai corresponding to the non-zero rows and columns of Aθ

′

i .
Because Aθi are block-diagonal for 1 < i < d and the rightmost columns of Aθd are zero, starting from θ we

can modify the bottom rows of Ai for 1 ≤ i < d any way we’d like without affecting our loss—as done in our

path construction for Lemma 1. In particular, let us set Ai to
[
Lθi 0

0 Bθ
′

i

]
for 1 < i < d and A1 to

[
Lθ1
Bθ
′

1

]
.

Then, from the fact that our loss function is convex over Ad it follows that we can set Ad to
[

0 Bθ
′

d

]
via interpolation while keeping our loss below max{L(fθ), L(fθ′)}. Finally, from the fact that the leftmost
columns of Ad are now zero and Ai are still block-diagonal for 1 < i < d, it follows that we can set Li to zero

for 1 ≤ i < d without affecting our loss—thus making Ai equal to
[

0 0

0 Bθ
′

i

]
for 1 < i < d and A1 equal to[

0

Bθ
′

1

]
.

To complete our path from θ to θ′ we now simply need to permute the units of each hidden layer so as to
return the elements of Bθ

′

i to their original positions in Ai for each i. From Lemma 4 it follows that we can
accomplish this permutation via 5 line segments in parameter space without affecting our loss. Combined
with the previous steps above, we have constructed path from θ to θ′ consisting of a total of 8 line segments
whose loss is bounded by max{L(fθ), L(fθ′)}. �

Proof of Theorem 1. First, from Lemma 1 we know we can construct paths from both θA to θA1 and θB
to θB1 while keeping our loss below L(fθA) + ε and L(fθB ) + ε respectively. From Lemma 2 we know that we
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can construct a path from θA1 to θB1 such that the loss along the path is bounded by max{L(fθA1 ), L(fθB1 )}.
The main result then follows from the fact that L(fθA1 ) ≤ L(fθA) + ε and L(fθB1 ) ≤ L(fθB ) + ε due to θA and
θB both being ε-dropout stable. �

B Proofs for connectivity via noise stability
In this section, we give detailed proofs showing that noise stability implies connectivity. In the following
lemma, we first show that the network output is stable if we randomly dropout columns in a single layer
using Algorithm 1.

Lemma 5. For any layer 2 ≤ i ≤ d, let G = {(U (l), x(l))}ml=1 be a set of matrix/vector pairs of size m where

U ∈ Rhd×hi and x ∈ Rhi−1 satisfying ‖x‖∞ = O

(
‖x‖√
hi−1

)
. Given Ai, let Âi ∈ Rhi×hi−1 be the output of

Algorithm 1 with dropout probability 0 < p ≤ 3
4 . Assume ‖[Ai]j‖ = O(

√
p)‖Ai‖F for 1 ≤ j ≤ hi−1. Given

any 0 < δ < 1, let ε′ = O

(√
log(mhd/δ)p

hmin

)
, with probability at least 1 − δ, we have for any (U, x) ∈ G that

‖U(Âi −Ai)x‖ ≤ ε′‖Ai‖F ‖U‖‖x‖. Further assuming hmin = Ω
(

log(1/δ)
p

)
, we know with probability at least

1− δ, no less than 2
3p fraction of columns in Âi are zero vectors.

Intuitively, this lemma upper-bounds the change in the network output after dropping out a single layer.
In the lemma, we should think of x as the input to the current layer, Ai as the layer matrix and U as the
Jacobian of the network output with respect to the layer output. If the activation pattern does not change
after the dropping out, UÂix is exactly the output of the dropped out network and ‖U(Âi − Ai)x‖ is the
change in the network output.
Proof of Lemma 5. Fixing 2 ≤ i ≤ d and one pair (U, x) ∈ G, we show with probability at least 1− δ

m ,
‖U(Âi−Ai)x‖ ≤ ε′‖Ai‖F ‖U‖‖x‖. Let Uk be the k-th column of U . Then by definition of Âi in the algorithm,
we know

U(Âi −Ai)x =
∑
k,j

Uk[Ai]kjxj(δj − 1)

=
∑
j

(∑
k

Uk[Ai]kj

)
xj(δj − 1),

where δj is an i.i.d. Bernoulli random variable which takes the value 0 with probability p and takes the value
1

1−p with probability (1− p).
Let [Ai]j be the j-th column of Ai. Because p ≤ 3

4 ,
1

1−p = O(1) (any p bounded away from 1 will work).
Hence the norm for each individual term can be bounded as follows.∥∥∥∥∥

(∑
k

Uk[Ai]kj

)
xj(δj − 1)

∥∥∥∥∥ (∗)
≤ O

(
‖x‖√
hi−1

)
‖U [Ai]j‖

≤ O
(
‖x‖√
hmin

)
‖U‖‖[Ai]j‖

(†)
≤ O

(√
p‖U‖‖Ai‖F ‖x‖√

hmin

)
,

where (*) uses the assumption that ‖x‖∞ = O

(
‖x‖√
hi−1

)
and (†) holds because we assume ‖[Ai]j‖ =

O(
√
p)‖Ai‖F for 1 ≤ j ≤ hi−1.
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For the total variance, we have

σ2 : =
∑
j

E

∥∥∥∥∥
(∑

k

Uk[Ai]kj

)
xj(δj − 1)

∥∥∥∥∥
2


≤
∑
j

‖U [Ai]j‖2|xj |2
(

(0− 1)2 × p+

(
1

1− p
− 1

)2

× (1− p)

)
(∗)
=
∑
j

‖U [Ai]j‖2 ·O
(
‖x‖2

hi−1

)
· p
(

1 +
p

1− p

)

≤ ‖UAi‖2F ·O
(
‖x‖2

hmin

)
· p

≤ O
(
p‖U‖2‖Ai‖2F ‖x‖2

hmin

)
,

where inequality (∗) uses the assumption that ‖x‖∞ = O

(
‖x‖√
hi−1

)
. Then, by the vector Bernstein inequality

(Lemma 8), we know given 0 < δ < 1, there exists ε′ = O

(√
p log(mhd/δ)

hmin

)
, with probability at least 1− δ

m ,

we have
‖U(Âi −Ai)x‖ ≤ ε′‖Ai‖F ‖U‖‖x‖.

Taking the union bound over all (U, x) pairs in G, we know that with probability at least 1− δ, for any
(U, x) ∈ G, ‖U(Âi −Ai)x‖ ≤ ε′‖Ai‖F ‖U‖‖x‖.

Suppose hmin = Ω
(

log(1/δ)
p

)
; then by the Chernoff bound, we know with probability at least 1− δ, the

dropped out fraction is at least 2
3p. Taking another union bound concludes our proof. �

Now we are ready to prove Lemma 3. The idea is similar to (Arora et al., 2018), but we give the proof
here for completeness.

Lemma 3. Let θ be an ε-noise stable network, and let θ1 be the network with weight matrices from layer
2 to layer d dropped out by Algorithm 1 with dropout probability Ω̃(1/hmin) < p ≤ 3

4 . For any 2 ≤ i ≤ d,
assume ‖[Ai]j‖ = O(

√
p)‖Ai‖F for 1 ≤ j ≤ hi−1. For any 0 ≤ t ≤ 1, define the network on the segment from

θ to θ1 as θt := θ + t(θ1 − θ). Then, with probability at least 1/4 over the weights generated by Algorithm 1,
L(fθt) ≤ L(fθ) + Õ(

√
pε), for any 0 ≤ t ≤ 1.

Proof of Lemma 3. We first bound the difference between the dropped out network θ1 and the original
network θ.

Bounding ‖fθ(x) − fθ1(x)‖: We first show that with probability at least 1/2 − δ, ‖fθ(x) − fθ1(x)‖ =
‖xd − x̂dd‖ ≤ ε′‖fθ(x)‖, where ε′ will be specified later. For any layer i ≥ 1 and letting x̂ji be the vector before
activation at layer j if the weights A2, . . . , Ai are replaced by Â2, . . . , Âi.

According to Lemma 5, for any layer 2 ≤ i ≤ d, given 0 < δ < 1, let ε′ = O

(√
pc2d2 log(mdhd/δ)
hmin min

2≤i≤d
(µ2
iµ

2
i→)

)
, with

probability at least 1− δ/d over Âi, we have

‖U(Âi −Ai)x‖ ≤
ε′µiµi→

6cd
‖A‖F ‖U‖‖x‖ (1)

for any (U, x) ∈ {(J i,jxi , φ(x̂i−1i−1))|x ∈ S, i ≤ j ≤ d}. By taking a union bound over i, we know inequality (1)
holds with probability at least 1− δ for every i. Recall that the interlayer smoothness holds with probability

14



at least 1/2. Taking another union, we know with probability at least 1/2− δ, interlayer smoothness holds
and inequality (1) holds for every 2 ≤ i ≤ d. Next, conditioning on the success of these two events, we will
inductively prove for any 1 ≤ i ≤ d, for any i ≤ j ≤ d,

‖x̂ji − x
j‖ ≤ (i/d)ε′‖xj‖.

For the base case i = 1, since we are not dropping out any weight matrix, the inequality is trivial. For any
1 ≤ i− 1 ≤ d− 1, suppose ‖x̂ji−1 − xj‖ ≤ i−1

d ε′‖xj‖ for any i− 1 ≤ j ≤ d; we prove the induction hypothesis
holds for layer i.

For any i ≤ j ≤ d we have

‖x̂ji − x
j‖ = ‖(x̂ji − x̂

j
i−1) + (x̂ji−1 − x

j)‖ ≤ ‖x̂ji − x̂
j
i−1‖+ ‖x̂ji−1 − x

j‖.

By the induction hypothesis, we know the second term can be bounded by (i− 1)ε′‖xj‖/d. Therefore,
in order to complete the induction step, it suffices to show that the first term is bounded by ε′‖xj‖/d. For
simplicity, we also denote x̂i−1i−1 as x̂i−1. Let ∆i = Âi −Ai. We can decompose the error into two terms:

‖x̂ji − x̂
j
i−1‖ = ‖M i,j(Âiφ(x̂i−1))−M i,j(Aiφ(x̂i−1))‖

= ‖M i,j(Âiφ(x̂i−1))−M i,j(Aiφ(x̂i−1)) + J i,jxi (∆iφ(x̂i−1))− J i,jxi (∆iφ(x̂i−1))‖
≤ ‖J i,jxi (∆iφ(x̂i−1))‖+ ‖M i,j(Âiφ(x̂i−1))−M i,j(Aiφ(x̂i−1))− J i,jxi (∆iφ(x̂i−1))‖ (2)

The first term of (2) can be bounded as follows:

‖J i,jxi ∆iφ(x̂i−1)‖
≤ (ε′µiµi→/6cd)‖J i,jxi ‖‖Ai‖F ‖φ(x̂i−1)‖ Lemma 5

≤ (ε′µiµi→/6cd)‖J i,jxi ‖‖Ai‖F ‖x̂
i−1‖ φ (ReLU) is 1-Lipschitz

≤ (ε′µiµi→/3cd)‖J i,jxi ‖‖Ai‖F ‖x
i−1‖ Induction hypothesis,∥∥x̂i−1 − xi−1∥∥ ≤ (i− 1)ε′

∥∥xi−1∥∥
d

<
∥∥xi−1∥∥

≤ (ε′µiµi→/3d)‖J i,jxi ‖‖Ai‖F ‖φ(xi−1)‖ Activation Contraction

≤ (ε′µi→/3d)‖J i,jxi ‖‖Aiφ(xi−1)‖ Layer Cushion

= (ε′µi→/3d)‖J i,jxi ‖‖x
i‖ xi = Aiφ(xi−1)

≤ (ε′/3d)‖xj‖ Interlayer Cushion (3)

The second term of (2) can be bounded as:

‖M i,j(Âiφ(x̂i−1))−M i,j(Aiφ(x̂i−1))− J i,jxi (∆iφ(x̂i−1))‖
= ‖(M i,j − J i,jxi )(Âiφ(x̂i−1))− (M i,j − J i,jxi )(Aiφ(x̂i−1))‖
≤ ‖(M i,j − J i,jxi )(Âiφ(x̂i−1))‖+ ‖(M i,j − J i,jxi )(Aiφ(x̂i−1))‖. (4)

Both terms of (4) can be bounded using the interlayer smoothness condition. For the second term of (4),
notice that Aiφ(x̂i−1) = x̂ii−1. Thus by the induction hypothesis, we know

‖Aiφ(x̂i−1)− xi‖ = ‖x̂ii−1 − xi‖ ≤ (i− 1)ε′‖xi‖/d ≤ ε′‖xi‖. (5)

Now, by interlayer smoothness,

‖(M i,j − J i,jxi )(Aiφ(x̂i−1))‖ = ‖(M i,j − J i,jxi )(xi + (Aiφ(x̂i−1)− xi))‖

≤ ‖Aiφ(x̂i−1)− xi‖‖xj‖
ρ‖xi‖

(∗)
≤ ε′‖xi‖‖xj‖

3d‖xi‖
=
ε′‖xj‖

3d
(6)
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where in (*) we use (5) and the assumption ρ ≥ 3d. For the first term of (4), we know Âiφ(x̂i−1) =
x̂ii−1 + ∆iφ(x̂i−1). Therefore by the induction hypothesis and (3) for i = j,

‖Âiφ(x̂i−1)− xi‖ ≤ ‖x̂ii−1 − xi‖+ ‖∆iφ(x̂i−1)‖ ≤ (i− 1)ε′‖xi‖/d+ ε′‖xi‖/3d ≤ ε′‖xi‖,

so again we have

‖(M i,j − J i,jxi )(Âiφ(x̂i−1))‖ ≤ (ε′/3d)‖xj‖. (7)

Together, (7) and (6) show that (4) is ≤ 2ε′

3d ‖x
j‖. Together with (3) we obtain from 2 that ‖x̂ji−x̂

j
i−1‖ ≤ ε′

d ‖x
j‖,

and hence that ‖x̂ji − xj‖ ≤
iε′‖xj‖

d , completing the induction step.
Conditioning on the success of interlayer smoothness and inequality (1), we’ve shown,

‖x̂ji − x
j‖ ≤ (i/d)ε′‖xj‖,

for any i ≤ j ≤ d. Recall that with probability at least 1/2− δ, interlayer smoothness holds and inequality (1)

holds for every 2 ≤ i ≤ d. Thus, let ε′ = O

(√
pc2d2 log(mdhd/δ)
hmin min

2≤i≤d
µ2
iµ

2
i→

)
, we know with probability at least 1/2− δ,

‖fθ(x)− fθ1(x)‖ = ‖xd − x̂dd‖ ≤ ε′‖fθ(x)‖.

Bounding ‖fθ(x)− fθt(x)‖ for any fixed t: The proof for a fixed network on the path is almost the same
as the proof for the end point. Instead of considering x̂ji , now we consider x̂ji (t), which is the vector before
activation at layer j if the weights A2, . . . , Ai are replaced by A2 + t(Â2 −A2), . . . , Ai + t(Âi −Ai). We can
still use Lemma 5 to bound the noise produced by replacing the weight matrix at a single layer because

‖U(Ai + t(Âi −Ai)−Ai)x‖ = t‖U(Âi −Ai)x‖ ≤ ‖U(Âi −Ai)x‖.

Thus, we can still use the above induction proof to show that for any fixed 0 ≤ t ≤ 1, let ε′ = O

(√
pc2d2 log(mdhd/δ)
hmin min

2≤i≤d
µ2
iµ

2
i→

)
,

with probability at least 1/2− δ,
‖fθ(x)− fθt(x)‖ ≤ ε′‖fθ(x)‖.

Bounding ‖fθ(x)−fθt(x)‖ for every t: Finally, we show that ‖fθ(x)−fθt(x)‖ is bounded for every point on

the path via an ε′-net argument. Similar to previous steps, letting ε′ = O

(√
pc2d2 maxx∈S(‖fθ(x)‖2) log(mdhd/δ)

hmin min
2≤i≤d

(µ2
iµ

2
i→)

)
,

we know that with probability at least 1/2− δ,

‖fθ(x)− fθ1(x)‖ ≤ ε′/2.

Next, we show that on the path, the network output is smooth in terms of the parameters. According to
Algorithm 1, we know for any 2 ≤ i ≤ d, we have ‖Âi‖ ≤ 4‖Ai‖, so ‖Âi −Ai‖ ≤ 5 ‖Ai‖. For any 2 ≤ i ≤ d,
let Ai,t = Ai + t(Âi −Ai). Note ‖Ai,t‖ ≤ (1− t)‖Âi‖+ t‖Ai‖ ≤ 4‖Ai‖. For any t, t′ and any 2 ≤ i ≤ d, let
θit,t′ be θt with the weight matrix at every layer 2 ≤ j ≤ i replaced by (Aj + t′(Âj −Aj)). For convenience,
we also denote θt as θ1t,t′ . Given τ < 1/2, for any τ ≤ t ≤ 1 − τ and for any −τ ≤ κ ≤ τ, we can bound
‖fθt+κ(x)− fθt(x)‖ as follows:

‖fθt+κ(x)− fθt(x)‖ ≤
∑

2≤i≤d

‖fθit,t+κ(x)− fθi−1
t,t+κ

(x)‖
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The output of layer i − 1 is the same for the two networks, of norm ≤ ‖x‖
∏i−1
j=1 ‖Aj,t+κ‖. Hence the

output of layer i differs by at most κ‖x‖‖Âi − Ai‖
∏i−1
j=1 ‖Aj,t+κ‖ and the output differs by κ‖x‖‖Âi −

Ai‖
∏i−1
j=1 ‖Aj,t+κ‖

∏d
j=i+1 ‖Aj,t‖ ≤ 5dκ‖x‖

∏d
j=1 ‖Aj‖. Hence

‖fθt+α(x)− fθt(x)‖ ≤
∑

2≤i≤d

5d‖x‖κ
∏

1≤j≤d

‖Aj‖

≤ 5ddκ‖x‖
∏

1≤j≤d

‖Ai‖.

Thus, given τ ≤ ε′

2·5ddmax
x∈S
‖x‖

∏
1≤j≤d ‖Aj‖

, we know for any τ ≤ t ≤ 1− τ and for any −τ ≤ α ≤ τ,

‖fθt+α(x)− fθ(x)‖ ≤ ε′/2. (8)

There exists a set Q = {θt} with size O(1/τ) such that for any network on the path, the distance to
the closest network in Q is no more than τ. If we can prove for any θt ∈ Q, ‖fθ(x) − fθt(x)‖ ≤ ε′/2, we
immediately know for any network θt′ on the path ‖fθ(x)− fθt′ (x)‖ ≤ ε′ by inequality (8).

By a union bound over Q, letting ε′ = O

(√
pc2d2 maxx∈S(‖fθ(x)‖2) log

(
mdhd
δτ

)
hmin min

2≤i≤d
(µ2
iµ

2
i→)

)
, we know with probability

at least 1/2− δ,
‖fθ(x)− fθt(x)‖ ≤ ε′/2,

for any θt ∈ Q.
Setting δ = 1/4, we know there exists

ε′ = O


√√√√√√pc2d3 maxx∈S(‖fθ(x)‖2) log

(
mdhdmax

x∈S
‖x‖

∏
1≤j≤d ‖Aj‖

ε′

)
hmin min

2≤i≤d
(µ2
iµ

2
i→)


such that with probability at least 1/4,

‖fθ(x)− fθt(x)‖ ≤ ε′

for any x ∈ S and any 0 ≤ t ≤ 1. Since the loss function is β-Lipschitz, we further know that for any 0 ≤ t ≤ 1:

L(fθt) ≤ L(fθ) + βε′ = L(fθ) + Õ(
√
pε).

�
Now, we are ready to prove the main theorem.

Theorem 2. Let θA and θB be two fully connected networks that are both ε-noise stable, there exists a
path with 10 line segments in parameter space π : [0, 1] → Θ between θA and θB such that6 L(fπ(t)) ≤
max{L(fθA), L(fθB )}+ Õ(ε) for 0 ≤ t ≤ 1.

Proof of Theorem 2. Setting dropout probability p = 3/4, by Lemma 5 and Lemma 3, if hmin = Ω̃ (1), we
know there exist θA1 and θB1 such that

1. in both networks, each weight matrix from layer 2 to layer d has at least half of columns as zero vectors;

2. L(fθAt ) ≤ L(fθA) + Õ(ε) and L(fθBt ) ≤ L(fθB ) + Õ(ε), for any 0 ≤ t ≤ 1, where θAt = θA + t(θA1 − θA)

and θBt = θB + t(θB1 − θB).

6Here Õ(·) hides log factors on relevant factors including |S|, d, ‖x‖, 1/ε and hi‖Ai‖ for layers i ∈ [d].
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Since the dropout fraction in both θA1 and θB1 is at least half, we can connect θA1 and θB1 as we did in
Lemma 2, while ensuring the loss doesn’t exceed max{L(fθA), L(fθB )} + Õ(ε). Connecting θA to θA1 and
connecting θB to θB1 each take one line segment. By the construction in Lemma 2, connecting two dropped-out
networks θA1 and θB1 takes 8 line segments. Thus, overall the path between θA and θB contains 10 line
segments. �

Next, we show that if there exists a “narrow” neural network achiving small loss, we can get a lower energy
barrier using a smaller dropout probability.

Theorem 3. Suppose there exists a network θ∗ with layer width h∗i for each layer i that achieves loss L(fθ∗),
and minimum hidden layer width h∗min = Ω̃(1). Let θA and θB be two ε-noise stable networks. For any dropout
probability 1.5 max1≤i≤d−1(h∗i /hi) ≤ p ≤ 3/4, if for any 2 ≤ i ≤ d, 1 ≤ j ≤ hi−1, ‖[Ai]j‖ = O(

√
p)‖Ai‖F

then there exists a path with 13 line segments in parameter space π : [0, 1]→ Θ between θA and θB such that
L(fπ(t)) ≤ max{L(fθA) + Õ(

√
pε), L(fθB ) + Õ(

√
pε), L(fθ∗)} for 0 ≤ t ≤ 1.

Proof of Theorem 3. Since hmin·max1≤i≤d−1(h∗i /hi) ≥ h∗min = Ω̃(1), we have hmin = Ω̃
(

1
max1≤i≤d−1(h

∗
i /hi)

)
.

By Lemma 5 and Lemma 3, there exist θA1 and θB1 such that

1. in both networks, each weight matrix from layer 2 to layer d has at least h∗i columns set to zero;

2. L(fθAt ) ≤ L(fθA)+Õ(
√
pε) and L(fθBt ) ≤ L(fθB )+Õ(

√
pε), for any 0 ≤ t ≤ 1, where θAt = θA+t(θA1 −θA)

and θBt = θB + t(θB1 − θB).

From the fact that at least h∗i units in layer i of both θA1 and θB1 have been set to zero for 1 ≤ i < d—
meaning that the corresponding rows of Ai and columns of Ai+1 are zero—it follows from Lemma 2 that
we can connect θA1 to an arbitrary permutation of θ∗ using 8 segments while keeping the loss on the path
no more than max{L(fθA1 ), L(fθ∗)}. By choosing this permutation so that the non-zero units of θ∗ do not
intersect with those of θB1 , we can then connect θ∗ to θB1 using just 3 segments as done in the first step of
our path construction in Lemma 2 seeing as there is no need to permute θ∗ a second time. Combining these
paths together with the paths that interpolate between the original parameters θA and θB and their dropout
versions θA1 and θB1 , we obtain a path in parameter space π : [0, 1] → Θ between θA and θB with 13 line
segments such that L(fπ(t)) ≤ max{L(fθA) + Õ(

√
pε), L(fθB ) + Õ(

√
pε), L(fθ∗)} for 0 ≤ t ≤ 1. �

C Proofs for disconnected modes in two-layer nets

Proof of Theorem 4. Define our loss over parameter space such that L(fθ) = 1
n

∑
l(yi, fθ(xi)), where

xi ∈ Rh+2 is our ith data sample, yi ∈ R the associated label, and fθ(xi) = wTφ(Axi) for θ = (w, A) ∈
R(h+2)×h × Rh. We can represent the data samples as rows in a matrix X ∈ Rn×(h+2)—with fi denoting the
ith “feature” (i.e. column) of X—and the labels as elements of y ∈ Rn×1, as illustrated in Figure 4.

Choose k, l,m, n such that k < l < m < n where k > h, l − k > h, m− l > 2 and n−m > h.
When i ≤ l, let

xi,j =



i, j = 1

i− 1, j = 2

1, i ≡ j (mod h)

−1, i 6≡ j (mod h), i ≤ l
0, i 6≡ j (mod h), k < i ≤ l.

When l < i ≤ m, let

xi,j =


−1, j ≤ 2, i ≡ j (mod 2)

0, j ≤ 2, i 6≡ j (mod 2)

0, j > 2, l < i ≤ m.
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When i > m, let

xi,j =


0, j ≤ 2

−1, j > 2, i ≡ j (mod h)

0, j > 2, i 6≡ j (mod h).

Finally, let yi = 1 when i ≤ l and 0 otherwise.

X =

f1 f2 f3 f4 . . . fh+2
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Figure 4: Our dataset.

From the fact that φ(f1) − φ(f2) =
∑h+2
j=3 φ(fj) = y it follows that there exist networks with both two

active hidden units and h active hidden units that achieve minimal loss, with the former corresponding to the
ground truth teacher network which generated our dataset.

Note in particular that the output layer weight corresponding to φ(f2) in the network with two active
hidden units is negative, whereas in the network with h active hidden units the output layer weights are all
positive. Thus, any path between the two networks must pass through a point in parameter space where
at least one output layer weight is zero while the other h− 1 are positive. However, as shown in Lemma 6,
there does not exist such a point in parameter space that achieves minimal loss. It follows that there exists a
barrier in the loss landscape separating the original networks, both of which are global minima. Moreover, by
adjusting k, l, and m we can somewhat arbitrarily raise or lower this barrier. �

Lemma 6. There does not exist a set of h − 1 positive weights wi and vectors hi ∈ spanX such that∑h−1
i=1 wiφ(hi) = y.

Proof. We can think of each hi as the output a particular hidden unit over all n samples in our dataset
and wi as the output layer weight associated to this hidden unit. We then have hi =

∑
ai,jfj , where the

coefficients ai,j are elements of A.
First, if there did exist wi and hi such that

∑h−1
i=1 wiφ(hi) = y, then it must be the case for all i that

hi =
∑
ai,jfj where ai,j ≥ 0 for all j. Otherwise, there would be non-zero elements in some hi between

indexes l + 1 and n that would be impossible to eliminate in
∑h−1
i=1 wiφ(hi) given that wi > 0 for all i.
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Second, any linear combination of f1 and f2 with positive coefficients would result in a vector whose first l
elements are positive and increasing. In contrast, the first l elements of Y are constant. And so from the
fact that there does not exist ai,j > 0 such that the first l elements of

∑
ai,jfj are decreasing—in particular

because the first k elements and next l − k elements of
∑h+2
j=3 aijxj are periodic with length h—it follows

that ai,1, ai,2 = 0 for all hi.
Thus, we need only consider linear combinations of f3 through fh+2 with positive coefficients as candidates

for hi. To this end, note that if a particular fj has zero coefficient in all of h1 through hh−1, then
∑h−1
i=1 wiφ(hi)

will have zeros in every index congruent to j mod h and therefore cannot equal y. Hence by the pigeonhole
principle, in order to have

∑h−1
i=1 wiφ(hi) = y there must be some i such that hi =

∑h+2
j=3 ai,jfj with at least

two coefficients being non-zero. However, in any linear combination
∑h+2
j=3 ai,jfj where ai,j , ai,j′ > 0 for at

least two distinct j, j′, the elements in indexes k + 1 to l will be greater than the elements in indexes 1 to k
that are congruent to j mod h and j′ mod h. In contrast, the first l elements of y are constant. Hence,
similar to the case of f1 and f2, there cannot exist hi =

∑h+2
j=3 ai,jfj and positive coefficients wi such that∑h−1

i=1 wiφ(hi) = Y .

D Experimental details and further results

D.1 Experimental details and hyperparameters
For all experiments on MNIST, we used a convolutional architecture consisting of 3 convolutional layers
followed by a fully-connected output layer. Each convolutional layer consisted of 32 3× 3 filters and used
sufficient padding so as to keep the layer’s output the same shape as its input. All networks were trained on
an NVIDIA Tesla K20c GPU for 5000 iterations with a batch size of 64 using stochastic gradient descent with
an initial learning rate of 0.1 and a decay rate of 1E−6. No significant hyperparameter tuning was applied.
Images were normalized.

For the left and right plots in Figure 2, we report results averaged over 5 random trials and error bars
corresponding to the standard deviation over these trials. For the center plot we simply computed the loss
and accuracy over a linear path between a particular convolutional net and a single dropout version of itself.
Specific to Figure 2, in applying dropout with probability p we randomly sample a subset of b32(1− p)c units
and rescale these units by 1/(1 − p) while setting the remaining units to zero. In the left plot, each trial
consisted of sampling 20 such dropout networks and reporting the performance of the network achieving the
lowest loss. Losses and accuracies in all plots were computed on a random batch of 4096 training images.

On CIFAR-10, we trained VGG-11 networks on an NVIDIA Titan X GPU for 300 epochs with SGD
with a batch size of 128, with weight decay 5e-4, momentum 0.9, and an initial learning rate of 0.05 which
is decayed by factor of 2 every 30 epochs. We used channel-wise dropout at all convolutional layers. The
dropout rates are p = 0.25 at the first three layers and are p = 0.5 at the others. Ordinary dropout with
p = 0.5 is used at every fully-connected layers except for the last one (the softmax layer).
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D.2 Straight interpolation between two models
As demonstrated in Figure 5, a straight line interpolation between two noise stable model may incur large
losses and poor accuracies. The models are the same as used in Figure 3.

Figure 5: Loss and accuracy from directly interpolating between two noise stable models.

D.3 Verification of noise stability conditions
D.3.1 Layer cushion
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D.3.2 Interlayer cushion
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D.3.3 Activation contraction
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22



D.3.4 Interlayer smoothness

0 5 10 15 20
interlayer smoothness 

layer 2

0 10 20 30
interlayer smoothness 

layer 3

0 10 20
interlayer smoothness 

layer 4

0 10 20 30 40
interlayer smoothness 

layer 5

0 10 20 30
interlayer smoothness 

layer 6

0 5 10 15 20
interlayer smoothness 

layer 7

0 5 10 15 20
interlayer smoothness 

layer 8

E Tools
We use matrix concentration bounds to bound the noise produced by dropping out one single layer (Lemma 5).

Lemma 7 (Matrix Bernstein; Theorem 1.6 in (Tropp, 2012)). Consider a finite sequence {Zk} of independent,
random matrices with dimension d1 × d2. Assume that each random matrix satisfies

E[Zk] = 0 and ‖Zk‖ ≤ R almost surely.

Define
σ2 := max

{∥∥∑
k

E[ZkZ
∗
k ]
∥∥,∥∥∑

k

E[Z∗kZk]
∥∥}.

Then, for all t ≥ 0,

Pr
{∥∥∑

k

Zk
∥∥ ≥ t} ≤ (d1 + d2) exp

( −t2/2
σ2 +Rt/3

)
.

As a corollary, we have:

Lemma 8 (Bernstein Inequality: Vector Case). Consider a finite sequence {vk} of independent, random
vectors with dimension d. Assume that each random vector satisfies

‖vk − E[vk]‖ ≤ R almost surely.

Define
σ2 :=

∑
k

E
[
‖vk − E[vk]‖2

]
.

Then, for all t ≥ 0,

Pr
{
‖
∑
k

(vk − E[vk])‖ ≥ t
}
≤ (d+ 1) · exp

( −t2/2
σ2 +Rt/3

)
.
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