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ABSTRACT

Meta continual learning algorithms seek to train a model when faced with sim-
ilar tasks observed in a sequential manner. Despite promising methodological
advancements, there is a lack of theoretical frameworks that enable analysis of
learning challenges such as generalization and catastrophic forgetting. To that
end, we develop a new theoretical approach for meta continual learning (MCL)
where we mathematically model the learning dynamics using dynamic program-
ming, and we establish conditions of optimality for the MCL problem. Moreover,
using the theoretical framework, we derive a new dynamic-programming-based
MCL method that adopts stochastic-gradient-driven alternating optimization to
balance generalization and catastrophic forgetting. We show that, on MCL bench-
mark data sets, our theoretically grounded method achieves accuracy better than
or comparable to that of existing state-of-the-art methods.

1 INTRODUCTION

The central theme of meta continual learning (MCL) is to learn on similar tasks revealed sequen-
tially. In this process, two fundamental challenges must be addressed: catastrophic forgetting of
the previous tasks and generalization to new tasks (Javed and White, 2019). In order to address
these challenges, several approaches (Javed and White, 2019; Beaulieu et al., 2020; Riemer et al.,
2018) have been proposed in the literature that build on the second-order, derivative-driven approach
introduced in Finn et al. (2017).

Despite the promising prior methodological advancements, existing MCL methods suffer from
three key issues: (1) there is a lack of a theoretical framework to systematically design and ana-
lyze MCL methods; (2) data samples representing the complete task distribution must be known
in advance (Finn et al., 2017; Javed and White, 2019; Beaulieu et al., 2020), often, an impracti-
cal requirement in real-world environments as the tasks are observed sequentially; and (3) the use
of fixed representations (Javed and White, 2019; Beaulieu et al., 2020) limits the ability to han-
dle significant changes in the input data distribution, as demonstrated in Caccia et al. (2020). We
focus on a supervised learning paradigm within MCL, and our key contributions are (1) a dynamic-
programming-based theoretical framework for MCL and (2) a theoretically grounded MCL approach
with convergence properties that compare favorably with the existing MCL methods.

Dynamic-programming-based theoretical framework for MCL: In our approach, the problem is
first posed as the minimization of a cost function that is integrated over the lifetime of the model.
Nevertheless, at any time t, the future tasks are not available, and the integral calculation becomes
intractable. Therefore, we use the Bellman’s principle of optimality (Bellman, 2015) to recast the
MCL problem to minimize the sum of catastrophic forgetting cost on the previous tasks and gen-
eralization cost on the new task. Next, we theoretically analyze the impact of these costs on the
MCL problem using tools from the optimal control literature (Lewis et al., 2012). Furthermore, we
demonstrate that the MCL approaches proposed in (Finn et al., 2017; Beaulieu et al., 2020; Javed
and White, 2019) can be derived from the proposed framework. Our theoretical framework unifies
different MCL approaches. In this paper, we discuss the connection between the theoretical frame-
work and other MCL methods in the literature. Specifically, we show how these methods can be
derived from our framework.

Theoretically grounded MCL approach: We derive a theoretically grounded dynamic
programming-based meta continual learning (DPMCL) approach. The generalization cost is com-
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puted by training and evaluating the model on given new task data. The catastrophic forgetting cost
is computed by evaluating the model on the task memory (previous tasks) after the model is trained
on the new task. We alternately minimize the generalization and catastrophic forgetting costs for a
predefined number of iterations to achieve a balance between the two. (See Fig. 2 in the appendix for
an overview). We analyze the performance of the DPMCL approach experimentally on classification
and regression benchmark data sets.

2 PROBLEM FORMULATION

We focus on the supervised MCL setting. We let R denote the set of real numbers and use boldface to
denote vectors and matrices. We use ‖.‖ to denote the Euclidean norm for vectors and the Frobenius
norm for matrices. The lifetime of the model is given by [0,Γ] : Γ ∈ R, where Γ is the maximum
lifetime of the model. We let p(T ) be the distribution over all the tasks in the interval [0,Γ]. Based
on underlying processes that generate the tasks, the task arrival can be continuous time (CT) or
discrete time (DT). For example, consider the system identification problem in a stochastic process
modeled by ordinary differential equations (ODEs) or partial differential equations (PDE)–where
the tasks, represented by the states of the process x(t), are generated in CT through the ODE. On
the other hand, in the typical supervised learning setting, consider an image classification problem
where each task comprises a set of images sampled from a discrete process and the tasks arrive in DT.
As in many previous MCL works, we focus on DT MCL. However, we develop our theory for the CT
MCL setting first because a CT MCL approach is broadly applicable to many domains. In Section
3.3 we provide a DPMCL approach for DT MCL setting by discretizing our theory. A task T (t) is a
tuple of input-output pairs {X (t),Y(t)} provided in the interval [t, t+ ∆t]∀t ∈ [0,Γ),∆t ∈ R. We
denote (x(t),y(t)) ∈ {X (t),Y(t)}.We define a parametric model g(.) with parameters θ̂ such that
ŷ(t) = g(x(t); θ̂(t)). Although we will use neural networks, any parametric model can be utilized
with our framework. Our MCL problem is comprised of two challenges, catastrophic forgetting on
previous tasks and generalization to new tasks.

The catastrophic forgetting cost measures the error of the model on all the previous tasks; the gen-
eralization cost measures the error of the model on the new task. The goal in MCL is to minimize
both the catastrophic forgetting cost and generalization cost for every t ∈ [0,Γ). Let us split the
interval [0,Γ) as [0, t] ∪ (t,Γ), where the intervals [0, t] and (t,Γ) comprise previous tasks and new
task respectively (i.e., the collection of all the task that can be observed in the respective intervals).
To take all the previous tasks into account, we define the instantaneous catastrophic forgetting cost
J(t; θ̂(t)) to be the integral of the loss function `(τ) for any t ∈ [0,Γ) as

J(t; θ̂(t)) =

∫ t

τ=0

γ(τ)`(τ)dτ, (1)

where `(τ) is computed on task T (τ) with γ(τ) being a parameter describing the contribution of
this task to the integral. The value of γ(τ) is critical for the integral to be bounded (details are
provided in Lemma 1). Given a new task, the goal is to perform well on the new task as well as
maintain the performance on the previous tasks. To this end, we write V (t; θ̂(t)), as the cumulative
cost (combination of catastrophic cost and generalization cost) that is integrated over [t,Γ). We
therefore seek to minimize V (t; θ̂(t)) and obtain the optimal value, V ∗(t), by solving the problem

V ∗(t) = minθ̂(τ)∈Ω:t≤τ≤Γ

∫ Γ

τ=t

J(τ ; θ̂(τ))d τ, (2)

where Ω is the compact set required to initialize the parameters of the model. In a non-convex
optimization problem, the compact set describes the boundaries of the solution space. It is also
assumed that there is at least one minima of the optimization space in this set. If the parameters are
initialized from within the compact set, the optimization may converge to the local solution within
the set.

MCL is a sequential decision making problem where the goal is to obtain a sequence of parameters
in the interval (t,Γ) as described in Eq. (2). In MCL context, whenever a new tasks is observed at
τ ∈ (t,Γ), we seek to make a decision (find a parameter set, θ̂(τ) ∈ Ω) such that θ̂(τ) is optimal
for all the previous tasks and the new task in the interval [0, τ ]. Consequentially, for each new task,
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we obtain a new parameter set and the solution to the MCL problem is provided by a sequence of
parameters (decisions). For making each of these decision, a task is counted exactly one and the
contribution of cost is determined by the choice of γ.

The optimization problem in Eq. (2) in its current form is intractable for two reasons. First,
note that V ∗(t) is the optimal cost value over the complete lifetime of the model [0,Γ). Since
we have only the data corresponding to all the tasks in the interval [0, t], solving Eq. (2) in its
current form is intractable. Second, it is not feasible to maintain a parameter set for each τ ∈
(t,Γ). To circumvent this issue, we take a dynamic programming view of the MCL problem. We
introduce a new theoretical framework where we model the learning process as a dynamical system
and use Bellman’s principle of optimality to simplify the MCL problem. Furthermore, we derive
conditions under which the learning process is stable and optimal, using tools from the optimal
control literature (Lewis et al., 2012).

3 THEORETICAL META CONTINUAL LEARNING FRAMEWORK

We will recast the problem defined in Eq. (2) using ideas from dynamic programming, specifically
Bellman’s principle of optimality (Lewis et al., 2012). We treat the MCL problem as a dynamical
system and describe the system using the following PDE:

−∂V
∗(t)

∂t
= minθ̂(t)∈Ω

[
J(t; θ̂(t)) + JN (t; θ̂(t)) +

(
V ∗
θ̂(t)

)T
∆θ̂
]

+
(
V ∗x(t)

)T
∆x(t), (3)

where V ∗(t) describes the optimal cost (the left-hand side of Eq. (2)) and (.)T refers to the transpose
operator. The notation A(.) denotes the partial derivative of A with respect to (.), for instance,

V ∗
θ̂(t)

= ∂V ∗(t;θ̂(t))

∂θ̂(t)
The full derivation for Eq. (3) from Eq. (2) is provided in Appendix A.1.. Note

that since y(t) is a function of x(t), the changes in the optimal cost due to y(t) are captured by(
V ∗x(t)

)T
∆x(t). Eq. (3) is also known as the Hamilton-Jacobi Bellman equation in optimal control

(Lewis et al., 2012) with the key difference that there is an extra term to quantify the changes due to
the new task.

Intuitively, the PDE completely describes the dynamics of learning for the MCL problem in the
period [0,Γ]. Specifically, the left hand side of Eq. (3), ∂V

∗(t)
∂t describes the change in the global

solution of the MCL problem, V ∗(t), with respect to time t. The right hand side describes what are
the different components of the MCL problem that impact this global solution. Note from the right
hand side of Eq. (3), this impact is quantified by the four terms: the cost contribution from all the
previous tasks J(t; θ̂(t)); the cost due to the new task JN (t; θ̂(t)); the change in the optimal cost
due to the change in the parameters

(
V ∗
θ̂(t)

)T
∆θ̂; and the change in the optimal cost due to change

in the input (introduction of new task)
(
V ∗x(t)

)T
∆x(t). Since, the PDE completely describes our

problem, the solution to the MCL problem can be obtained by obtaining the parameter θ̂(t) that
minimizes the right-hand side of Eq. (3). Specifically, we seek to solve the following optimization
problem

minθ̂(t)∈Ω

[
J(t; θ̂(t)) + JN (t; θ̂(t)) +

(
V ∗
θ̂(t)

)T
∆θ̂
]
, s. t.

∂V ∗(t)

∂t
+
(
V ∗x(t)

)T
∆x(t) = 0.

(4)
Solving the problem in Eq. (4) is equivalent to minimizing the impact of introducing a new task
on the optimal cost. Observe that the intractable problem in Eq. (2) has been posed as a PDE
constrained optimization Eq. (4). Note that in Eq. (2), the global solution is achieved when a series
of parameters are obtained. On the other hand, in the optimization problem in Eq. (4) we obtain a
parameter at time t to achieve the global solution under certain assumption on the parameters and
data. Although, this solution is under assumptions on the data, these assumptions can be satisfied
in practice. More details about the convergence of this optimization and assumptions involved is
provided in Theorem. 1 in the next section.
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3.1 ANALYSIS

Our formalism has two critical elements: γ(t), which quantifies the contribution of each task to
catastrophic forgetting cost, and the impact of the change in the input data distribution ∆x on learn-
ing, specifically while adapting to new tasks. We will analyze them next.

Impact of γ(t) on catastrophic forgetting cost: Since, the cost in Eq. (1) is an integral of cost
contributions from all the tasks, it is critical that this integral has a converging point. In other words,
we seek to understand, when all the tasks provide non-zero values to the overall loss, is the cost
is bounded and can the optimization problem be solved? The existence of the convergence point
depends directly on the contribution of each task determined through γ(t). We therefore present
Lemma 1 and Corollary 1 ( the complete statement and proofs can be found in Appendix A.2)

In Lemma 1, we demonstrate that when all tasks in a MCL problem provide a nonzero cost, it is
not possible to maintain equivalent performance on all the tasks. Specifically, we show that when
γ(τ) = 1,∀τ that is the contribution of each task to the cost is greater than zero and equal, then
the integral diverges when the number of tasks tend to ∞. This phenomenon has been observed
empirically (Lin, 1992). However, by choosing γ(t) appropriately, we can control the catastrophic
forgetting by selecting which tasks to forget. One reasonable solution is to give older tasks less
priority and new tasks more priority, this is shown in Corollary 1 to provide a cost function that
is both bounded and convergent. An example of such γ is γ(τ) = e−τ , τ ∈ [0,Γ]. However, any
choice of γ(t) that will keep J(t; θ̂(t)) bounded is reasonable.

The second most important component of our approach is the impact of change in the input (∆x)
on learning. To substantiate this, we present Theorem 1 (the complete statement and proof can be
found in Appendix A.2). Theorem 1 shows the convergence of a gradient-based solution to the MCL
learning under assumptions on the input, the gradient and the learning rate. Specifically, we show
through Lyapunov principles that J(t; θ̂(t)) (the cost on all the previous tasks) decreases as t→∞
and ultimately achieves a value less than β. In Theorem 1, there are four main assumptions. First
is a consequence of Corollary 1 where the contributions of each task to the cost must be chosen
such that the cost is bounded and convergent. Second is the assumption of a compact set Ω. This
assumption implies that if a weight value initialized from within the compact set Ω, there will be a
convergence to local minima. Third, we consider the condition ||Jθ̂(t)|| = 0 which is well known in
the literature as the vanishing gradient problem (Pascanu et al., 2013).

Impact of ∆x(t) on learning: The fourth assumption, that is ‖Jx‖ > 0 is important to the proof
and directly explains how ∆x(t) can impact the validity of Theorem 1 (thus the convergence of the
approach). Note that if ‖Jx‖ = 0, the value of the cost J will not change due to change in the input
∆x(t) > 0. Due to this, Theorem 1 will not hold and the learning will stagnate. To give an example,
consider the MNIST dataset with a total of 10 classes and the solution of the MCL problem is to
predict efficiently on all the 10 classes. Consider now the case when each task is created randomly
to include exactly one class and each task is being shown to the model sequentially. If the model
only experiences classes 1 through 5 and does not experience classes 5 through 10 (by virtue of
improper sampling), the information provided to the model is not informative enough to perform
well on all the 10 classes. Thus, although the model is perfect in predicting classes 1 through 5 such
that ‖Jx‖ = 0, the MCL problem has not reached the global solution. Consequently, the learning
process has stagnated. In control theory, this condition is known as persistence of excitation (Lewis
et al., 1998).

On the other hand, a large change in the input data distribution presents issues in the learning process
as well. Note that for Theorem 1 to hold, α(t) > 0, therefore, ‖Jx‖‖∆x(t)‖ < 1. Let ‖∆x(t)‖ ≤
bx, where bx is the upper bound on the change in the input data distribution. If bx is large (going
from predicting on images to understanding texts), the condition ‖Jx‖‖∆x(t)‖ < 1 will be violated,
and our approach will be unstable. We can, however, adapt our model to the change in the input data-
distribution ∆x(t) exactly if we can explicitly track the change in the input. This type of adaptation
can be done easily when the process generating x(t) can be described by using an ODE or PDE.
In traditional supervised learning settings, however, such a description is not possible. The issue
highlights the need for strong representation learning methodologies where a good representation
over all the tasks can minimize the impact of changes in ∆x(t) on the performance of the MCL
problem (Javed and White, 2019; Beaulieu et al., 2020). Currently, in the literature, it is common
to control the magnitude of ∆x(t) through normalization procedures under the assumption that all
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tasks are sampled from the same distribution. Therefore, for all practical purposes, we can choose
0 ≤ α(t) ≤ (β ||Jθ̂(t)||)

−1.

Connection to MAML, FTML, and their variants: The optimization problem in MAML (Finn
et al., 2017), FTML (Finn et al., 2019) and other variants can be obtained from Eq. (3) by setting the
third and the fourth terms to zero, which provides −∂V

∗(t)
∂t = minθ̂(t)∈Ω[J(t; θ̂(t)) + JN (t; θ̂(t)].

The MCL problem is split into three phases, meta training, meta testing and testing. In the meta
training, we learn to generalize to new task. In meta testing, we learn from all the previous tasks,
which aims at learning over p(T ) (which is similar to minimize catastrophic forgetting). Finally,
in the testing phase, the network predicts on a set of held out tasks that are representative of the
complete task distribution. To learn common features across all the tasks, we must optimize for
the first term on the right-hand side in the equation above (where a second order derivative can be
utilized). When the goal is to generalize to new tasks, one must optimize the second term on the right
hand side of the equation above. With the choice of different architectures for the neural network, all
of the approaches that build on MAML and FTML such as (Javed and White, 2019) and (Beaulieu
et al., 2020) can be directly derived.

For instance, to obtain the methodology in (Javed and White, 2019), we may do the following. First,
the model architecture is described as a combination of representation learning network (RLN) and
prediction learning network (PLN) such that θ̂ = [θ̂1θ̂2] and the vector space for θ̂1 and θ̂2 can be
considered to denote PLN and RLN respectively. In the learning process, we will first pre-train a
RLN as an encoder by optimizing the first term in Eq. (3.1) while a new PLN is randomly initialized
for each new task. Next, we may freeze the RLN and update PLN to minimize the second term in
Eq. (3.1) when new tasks are observed sequentially.

Similar to Javed and White (2019), θ̂ = [θ̂1θ̂2] in Beaulieu et al. (2020) described as a combina-
tion of neuro-modulatory network (NLM) and the prediction network (PLN). The methodology in
Beaulieu et al. (2020) can be obtained by following a two step learning procedure. First, NLM and
PLN are pre-trained to minimize the right hand side of (3.1) with data from all the available tasks.
Second, we train the prediction network on unseen tasks by optimizing the second term in the right
hand side of (3.1) and fix the NLM. All these methods do not adopt the PDE formalism; the third
and fourth terms in Eq. (3) are not explicitly included in MAML and FTML. On the other hand,
the works in (Javed and White, 2019) and (Beaulieu et al., 2020) learn to represent p(T ), (the
distribution over all the tasks) and require a pre-training phase.

To the best of our knowledge, the only work where the third and fourth term are implicitly addressed
is meta experience replay (MER) (Riemer et al., 2018). MER models the interference (forward
transfer and backward transfer) due to the introduction of new tasks as a gradient alignment problem.
Observe, from Eq. (3), the third term models the change in the global solution (backward transfer)
with respect to change in the weights. Furthermore, the fourth term models the change in the global
solution (forward transfer) with respect to change in the input. MER can be directly derived from
Eq. (3) by optimizing the third and fourth term with samples from the experience replay memory,
to minimize interference (both forward and backward). This is very similar to DPMCL with the
key difference that, instead of approximating the optimal cost directly, MER approximates the angle
between the gradients.Furthermore, this approximation is performed using Reptile (Nichol et al.,
2018). Reptile is essentially similar to constraining the change in the weight such that the third term
in Eq. (3) is zero. Although this regularizes the learning in the presence of new tasks such that
forgetting is not large, the network can unlearn experiences due to parameter drift especially when
the new tasks are very similar to order tasks (Narendra and Annaswamy, 1987).

DPMCL is a new approach derived from the presented theoretical framework. In our DPMCL
approach, we provide a clear and methodical procedure from Eq. (3) for deriving the weight update
rule, providing us with a much more methodical process of addressing the impact of these terms
and, by extension, the impact of key challenges in the MCL setting.

3.2 DYNAMIC PROGRAMMING-BASED META CONTINUAL LEARNING (DPMCL)

As a consequence of Theorem 1, the update for the parameters is provided by α(t)Vθ̂(t)). Since

V (t; θ̂(t)) is not completely known, we have to approximate this gradient. To derive this approx-
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imation, we first rewrite Eq. (3) as −∂V
∗(t;θ̂(t))
∂t = minθ̂(t)∈Ω

[
H(t; θ̂(t))

]
, which provides the

optimization problem as θ̂
∗
(t) = arg minθ̂(t)∈Ω

[
H(t; θ̂(t)))

]
, where H(t; θ̂(t))) = J(t; θ̂(t)) +

JN (t; θ̂(t))+
(
V ∗
θ̂(t)

)T
∆θ̂+

(
V ∗x(t)

)T
∆x(t) is the CT Hamiltonian. The solution for this optimiza-

tion problem (the updates for the parameters in the network) is provided when the derivative of the
Hamiltonian is set to zero.

First, we discretize the MCL problem setting. Let k be the discrete sampling instant such that
t = k∆t, where ∆t is the sampling interval. Let a task T k at instant k be sampled from p(T ). Let
T k = (X k,Yk) be a tuple, where X k ∈ Rn×p denotes the input data and Yk ∈ Rn×1 denotes
the target labels (output). Let n be the number of samples and p be the number of dimensions.
Let the parametric model be given as ŷ = g(h(x; θ̂1); θ̂2), where the inner map h(.) is treated
as a representation learning network and g(.) is the prediction network. Let θ̂ = [θ̂1 θ̂2] be the
learnable model parameters and the weight updates be given as

θ̂(k + 1) = θ̂(k)− α(k)
∂

∂θ̂(k)

[
JN (k) + JP (k) +

(
JPN (k)− JPN (k; θ̂(k + ζ))

)]
(5)

Our update rule has three terms (the terms inside the bracket). The first term depends on JN , which
is calculated on the new task; the second term depends on JP and is calculated on all the previous
tasks; the third term comprises JPN and is evaluated on a combination of the previous tasks and the
new task. The first term minimizes the generalization cost. Together, the second and the third terms
minimize the catastrophic forgetting cost.

The first two terms can be obtained by measuring JP and JN directly. To obtain the third term in
Eq. (5), we simplify the third and fourth term in Eq. (3). In Eq. 3, the third and the fourth term
quantifies the change in the optimal cost due to the parameter updates and the change in the input
respectively. Since, the boundary value for the optimal cost is the current performance of the model
on a combination of all the previous tasks and the new task (how well the model performs on all the
tasks till now), we use the current performance as an approximation of the optimal cost. This fact
combined with the finite difference approximation results in the third term in Eq. (5). Updating with
the third term in Eq. (5) regularizes the impact of the new task on the global solution. In Eq. (5)
α(k) ≤ 1

β‖J ˆθ(k))
‖2+ε , where β is a user-defined parameter and ε > 0 is a small value to ensure that

the denominator does not go to zero. The derivation of the update rule and the discretization are
presented in Appendix A.3. The value β is the theoretical threshold on the optimal cost and the way
we choose beta as the reciprocal of the learning rate.

Equipped with the gradient updates, we now describe the DPMCL algorithm. We define a new
task sample, DN (k) = {Xk,Yk}, and a task memory (samples from all the previous tasks)
DP (k) ⊂ ∪k−1

τ=0T τ . We can approximate the required terms in our update rule Eq. 5 using sam-
ples (batches) from DP (k) and DN (k). The overall algorithm consists of two steps: generalization
and catastrophic forgetting (see Algorithm 1 in Appendix B.4). DPMCL comprises representation
and prediction neural networks parameterized by θ̂1 and θ̂2, respectively. Since, the vector space
of θ̂ is written as a combination of θ̂1 and θ̂2. The theory developed on θ̂ extends to the vector
space defined by the combination of θ̂1 and θ̂2. The solution in this space can be done achieved
either by coordinate descent or by alternative minimization. We choose to update in an alternative
minimization manner.

For each batch bN ∈ DN (k), DPMCL alternatively performs generalization and catastrophic for-
getting cost updates ρ times. The generalization cost update consists of computing the cost JN
and using that to update θ̂1 and θ̂2; the catastrophic forgetting cost update comprises the following
steps. First we create a batch that combines the new task data with samples from the previous tasks
bPN = bP ∪ bN (k), where bP ∈ DP (k). Second, to approximate the term

(
JPN (k; θ̂(k + ζ))),,

we copy θ̂2 (prediction network) into a temporary network parameterized by θ̂B . We then perform
ζ updates on θ̂B while keeping θ̂1 fixed. Third, using θ̂B(k + ζ), we compute JPN (k; θ̂B(k + ζ))

and update θ̂1, θ̂2 with JP (k) + (JPN (k) − JPN (k; θ̂B(k + ζ))). The inner loop with ζ is purely
for the purpose of approximating the optimal cost.
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The rationale behind repeated updates to approximate JPN (k; θ̂(k + ζ)), is as follows. At every
instant k, JPN (k) (the cost on all the previous tasks and the new task) is the boundary value for the
optimal cost as the optimal cost can only be less than JPN (k) (minimum of the cost can only be
less than or equal to the current value). Therefore, if we start from JPN (k) and execute a Markov
chain (repeated gradient updates) for ζ steps, the end point of this Markov chain is the optimal value
of JPN (k) (the cost will reduce with repeated updates using the same batch of data) at instant k,
provided ζ is large enough. Furthermore, the difference between the cost at the starting point and the
end point of this chain provides us with a value that should be minimized such that the cost JPN (k)
will reach the optimal value for the MCL problem at instant k. To execute this Markov chain, we
perform repeated updates on a copy of θ̂2 (prediction network) denoted as θ̂B .

The goal of the markov chain procedure is purely to approximate the optimal cost, that is, how well,
the current state of the model can predict on all the tasks that have been observed till now (previous
tasks and the new task). The performance of the model depends on the prediction network and the
representation network. Since, we seek to maintain a global solution, the pursuit is well served by
learning a robust representation over all the tasks. Therefore, we want to observe, can the current
representation allow us to reach the global solution over all the tasks? Therefore, we seek to estimate
the difference JPN (k) − JPN (k; θ̂B(k + ζ)), corresponding to the current representation and we
treat the output of the representation network as input and measure the optimal cost by updating only
a copy of θ̂2. This process allows us to measure the optimal cost as a function of the representation
network and train the representation network toward minimizing optimal cost.

We repeat this alternative update process for each data batch in the new task. Once all the data from
the new task is exhausted, we move to the next task.

3.3 RELATED WORK

Existing MCL methods can be grouped into three groups: (1) dynamic architectures and flexible
knowledge representation (Sutton, 1990; Rusu et al., 2016; Yoon et al., 2017); (2) regularization
approaches, ((Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018)) and (3) memo-
ry/experience replay, (Lin, 1992; Lopez-Paz and Ranzato, 2017; Chaudhry et al., 2019). Flexible
knowledge representations seek to maintain a state of the whole dataset and require computation-
ally expensive mechanisms (Yoon et al., 2017). Regularization approaches (Kirkpatrick et al., 2017;
Zenke et al., 2017; Aljundi et al., 2018) attempt to minimize the impact of new tasks (changes in the
input data-distribution) on the parameters of the model involving a significant trial-and-error pro-
cess. Memory/experience replay-driven approaches (Lin, 1992; Chaudhry et al., 2019; Lopez-Paz
and Ranzato, 2017) can address catastrophic forgetting but do not generalize well to new tasks.

In recent literature, the most comprehensive methodology that enables the study of the MCL problem
was introduced in Finn et al. (2017). In Finn et al. (2017), the authors presented an approach where
an additional term is introduced into the cost function (the gradient of the cost function with respect
to the previous tasks). However, this method requires all the data to be known prior to the start of
the learning procedure. To obviate this constraint, an online MAML approach was introduced in
?Caccia et al. (2020). The approach does not explicitly minimize catastrophic forgetting but focuses
on fast online learning. In contrast with Finn et al. (2017), our method can learn sequentially as
the new tasks are observed. Although sequential learning was possible in Finn et al. (2019), it was
highlighted in Caccia et al. (2020), that there is an inherent trade-off between memory requirements
and catastrophic forgetting, which could be addressed by learning a representation over all the tasks
as in Javed and White (2019); Beaulieu et al. (2020). Similar to Javed and White (2019); Beaulieu
et al. (2020), our method allows a representation to be learned over the distribution of all the tasks
p(T ). However, both the representation and the training model are learned sequentially in DPCML,
and we do not observe a pre-training step.

Our approach is the first comprehensive theoretical framework based on dynamic programming that
is model agnostic and can adapted to different MCL setting in both CT and DT. Although theoretical
underpinnings were provided in Finn et al. (2019) and Flennerhag et al. (2019), the focus was to
provide structure for parameter updates but not attempt to holistically model the overall learning
dynamics as is done in our theoretical framework. The key ideas in this paper have been adapted
from dynamic programming and optimal control theory; additional details can be found in Lewis
and Vrabie (2009).
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Figure 1: Top row: Cumulative error (CME) trends with respect to tasks; Bottom row: new task error (NTE)
trends with respect to tasks. The error bars describe the area between µ+ σerror and µ− σerror over 50

repetitions. Gaussian smoothing filter with standard deviation of 2 is applied on each trajectory.

4 EXPERIMENTS

We use four continual learning data sets: incremental sine wave (regression on 50 tasks (SINE));
split-Omniglot (classification on 50 tasks, (OMNI)); continuous MNIST (classification on 10 tasks
and (MNIST)); and CIFAR10 (classification on 10 tasks, (CIFAR10)). All these data sets have been
used in (Finn et al., 2019; 2017; Javed and White, 2019). We compare DPMCL with Naive (train-
ing is always performed on the new task without any explicit catastrophic forgetting minimiza-
tion); Experience-Replay (ER) (Lin, 1992) (training is performed by sampling batches of data from
all the tasks (previous and the new)); follow the meta learner (FTML) (Finn et al., 2019), online
meta-continual learning (OML) (Javed and White, 2019), neuro-modulated meta learning (ANML)
(Beaulieu et al., 2020) and meta experience replay (MER) (Riemer et al., 2018). To keep consistency
with our computing environment and the task structure, we implement a sequential online version
(Finn et al., 2019) (where each task is exposed to the model sequentially) of all these algorithms
in our environment. For ANML and OML, we will run a pre-training phase for each new task. In
particular, for each task, we will first train the RLN/NLM with data for the new task. Next, we
train the complete network (RLN/NLM and PLN) with the data from the new task. For any partic-
ular data set, we set the same model hyper-parameters (number of hidden layers, number of hidden
layer units, activation functions, learning rate, etc.) across all implementations. For fair compar-
isons, for any given task we also fix the total number of gradient updates a method can perform (See
Appendix B.1,2,3 for details on data-set and hyper-parameters).

For each task, we split the given data into training (60%), validation (20%), and testing (20%) data
sets. Methods such as ANML, FTML, and OML follow the two loop training strategy from FTML:
the inner loop and the outer loop. The training data for each task is used for the inner loop, whereas
the validation data is used in the outer loop. The testing data is used to report accuracy metrics. We
measure generalization and catastrophic forgetting through cumulative error (CME) given by the
average error on all the previous tasks and the new task error (NTE) given by the average error on
the new task, respectively. For regression problems, they are computed from mean squared error;
for classification problems, given as (1 − Acc

100 ), where Acc refers to the classification accuracy.
For cost function, we use the mean squared error for regression and categorical cross-entropy for
classification. We use a total of 50 runs (repetition) with different random seeds and report the mean
µ and standard error of the mean (σerror = σ/

√
50, where σ is the standard deviation with 50 being

the number of repetition). We report only the σerror when it is greater than 10−3; otherwise, we
indicate a 0 (See Appendix B.4,5 for implementations details).

4.1 RESULTS

We first analyze the CME and NTE as each task is incrementally shown to the model. We record
the CME and NTE on the testing data (averaged over 50 repetitions) at each instant when a task is
observed. The results are shown in Fig. 1. Unlike the other methods, DPMCL achieves low error
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with respect to CME and NTE. ANML and OML perform poorly on CME because of the lack of a
learned representation (as we do not have a pre-training phase to learn an encoder). The performance
of DPMCL is better than MER, FTML and ER in all data sets except CIFAR-10, where ER is
comparable to DPMCL. The poor performance of Naive is expected because it is trained only on
the new task data and thus incurs catastrophic forgetting. DPMCL generalizes well to new tasks,
and consequently the performance of DPMCL is better than FTML, ER, and ANML in all the data
sets except CIFAR10. As expected, Naive has the lowest NTE. In the absence of a well-learned
representation, OML exhibits behavior similar to Naive’s and is able to quickly generalize to new
task. MER also behaves similar to Naive and incurs very low NTE. For CIFAR10, FTML achieves
NTE lower than that of DPMCL. ER struggles to generalize to a new task; however, the performance
is better than ANML’s, which exhibits the poorest performance due to the absence of a well-learned
representation.

The CME and NTE values for all the data sets and methods are summarized in Table 1 in Ap-
pendix B.6. DPMCL achieves CME [µ(σerr)] of 1.12× 10−5(0) for SINE, 0.175(0.007) for OMNI,
0.015(0.001) for MNIST, and 0.475(0.003) for CIFAR10. We note that the CME for DPMCL are
the best among all the methods and all the data sets except MER for OMNI and ER for CIFAR10.
In CIFAR10, ER demonstrates a 7% improvement in accuracy. For OMNI, MER outperforms
DPMCL with an 1% improvement on the CME scale. On the NTE [µ (σerr)] scale, DPMCL achieves
3.89 × 10−5(0) for SINE, 0.189(0.091) for OMNI, 0.003(0) for MNIST and 0.273(0.008) for CI-
FAR10. On the NTE scale, the best-performing method is Naive followed by OML and MER; this
behavior can be observed in the trends from Fig. 1. DPMCL is better than all the other methods in
all the data sets except CIFAR 10, where FTML is better (observed earlier in Fig. 1) by 10%. How-
ever, this 10% improvement for FTML comes at the expense of 18% drop in performance on the
CME scale. Similarly, although ER exhibits a 3% improvement on CME scale, DPMCL outperforms
ER on the NTE scale by a 22.7% improvement.

The method closest to DPMCL in terms of design and performance is MER. MER outperforms
DPMCL on the NTE scale in all the datasets except sine and MNIST where the performance is
comparable. MER is expected to generalize really well with new tasks as it is designed for this
purpose. MER regularizes the change in weight parameters with the introduction of a new task as
the update rules are derived from Nichol et al. (2018). On the other hand, on the CME scale, DPMCL
outperforms MER in all datasets except OMNI where the performance of MER is better. The reason
is parameter drift (Narendra and Annaswamy, 1987) observed due to weight regularization present
in MER. The parameter drift can make the network unlearn previous experiences especially when
the new tasks are very similar to the older tasks (Narendra and Annaswamy, 1987). In OMNI, the
new tasks are distinctly different from the older ones but in the rest of the datasets, the new tasks
are similar. Such a parameter drift can be avoided when the weight is updated proportional to the
cost (Narendra and Annaswamy, 1987) which is why DPMCL performs better on the CME scale.

Overall, the results show that DPMCL achieves a balance between CME and NTE. The balance can
be engineered depending on the choice of ζ and κ (the study is presented in Appendix B.6.). We
have chosen these parameters to achieve better performance in the CME scale. As a result, we show
that DPMCL outperforms all methods in CME scale without significant drop in the NTE scale. All
other methods either perform well on the NTE or CME scale but not on both.

5 CONCLUSIONS

We introduced a dynamic-programming-based theoretical framework for meta continual learn-
ing.Within this framework, catastrophic forgetting and generalization, the two central challenges
of the meta continual learning, can be studied and analyzed methodically. Furthermore, the frame-
work also allowed us to provide theoretical justification for intuitive and empirically proven ideas
about generalization and catastrophic forgetting. We then introduced DPMCL which was able to
systematically model and compensate for the trade-off between the catastrophic forgetting and gen-
eralization. We also provided experimental results in a sequential learning setting that show that the
framework is practical with comparable performance to state of the art in meta continual learning.

In the future, we plan to extend this approach to reinforcement and unsupervised learning. Moreover,
we plan to study different architectures such as convolutional neural networks and graph neural
networks.
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