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Abstract
The Warmup Stable Decay (WSD) learning rate scheduler has recently become popular, largely due
to its good performance and flexibility when training large language models. It remains an open
question whether the remarkable performance of WSD – using a decaying learning rate for only
a fraction of training compared to cosine decay – is a phenomenon specific to transformer-based
language models that can potentially offer new theoretical insights into their training dynamics.
Inspired by the usage of learning rate schedulers as a new lens into understanding landscape ge-
ometry (e.g., river valley, connected minima, progressive sharpening), in this work we compare the
WSD path of the Adam optimizer on a Pythia-like language model to that of a small CNN trained
to classify CIFAR10 images. We observe most training signals, optimizer path features, and sharp-
ness dynamics to be qualitatively similar in such architectures. This consistency points to shared
geometric characteristics of the loss landscapes of old and new nonconvex problems, and hints to
future research questions around the geometry of high dimensional optimization problems.

1. Introduction

The growing adoption of the WSD scheduler is driven by its good (at times, better) performance in
relation to standard cosine decay practice, in combination to its native support for resuming training
at different scales. The latter, in particular, has become an increasingly urgent concern given the
rise of large language models (LLMs), which are extremely costly to train.

To better appreciate the benefits of the WSD scheduler for training continuation, let us briefly
revisit the behavior of the well-established warmup cosine scheduler alongside the newer WSD
scheduler. Here, Tend denotes the total step budget, Tw the number of warmup steps, and Tc the
step at which the learning rate decay begins. The warmup cosine annealing scheduler reads:

η(t) =

{
t
Tw

if t ≤ Tw,
1
2(1 + cos(π t−Tw

Tend−Tw
)) if t > Tw

The WSD scheduler, instead, has the following form:

η(t) =





t
Tw

if t ≤ Tw,

1 if Tw < t ≤ Tc,

1− t−Tc
Tend−Tc

if t > Tc

where we assumed a peak learning rate of 1. Unlike cosine annealing, which requires prior knowl-
edge of the total training duration (i.e., the endpoint Tend must be determined by the time the
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Figure 1: Typical training dynamics with WSD and Warmup Cosine Annealing schedulers. In both
the 160M parameters LM with Pythia 12 layer configuration [2] (left) and the 334K pa-
rameters CNN with 4 layers (right), we observe that WSD follows the same trend: modest
decreases during the stable phase (left of dashed line), followed by sudden and more pro-
nounced gains during the cooldown (right of dashed line). Note that while the former
model was trained 3B tokens (way less than 1 epoch), the latter performs 50 epochs.

warmup phase Tw concludes), the WSD scheduler offers significantly greater flexibility. Specif-
ically, Tend must only be defined at the start of the decay phase Tc, which itself can be selected
arbitrarily. This enables a more dynamic training process that can be adapted in real time.

Indeed, as noted by Hu et al. [5] and by Hägele et al. [6], the WSD scheduler proves partic-
ularly advantageous in the context of continual training. It allows training to be resumed from a
checkpoint located just prior to the decay phase, retaining the previous high and stable learning
rate. This approach eliminates the need to potentially retrain the model from scratch when increas-
ing the training step budget, as would be necessary in a single-cycle cosine annealing schedule; it
also avoids the negative effects of rewarming the learning rate, such as loss spikes and unlearning
behaviors [7] [11], which may arise when attempting to resume training with a new cycle of cosine
annealing. Given that the primary benefits of WSD lie in compute advantages, it is unsurprising that
prior research has focused predominantly on studying its behavior when training large-scale models,
particularly transformer-based language models. This narrow focus has shaped a perspective on the
scheduler that is deeply linked to the characteristics of transformer-based architectures, in fact some
of these studies have even proposed new theoretical insights into the structure of the transformer
loss landscapes stemming from WSD dynamics [14].

In contrast, our work investigates the effects of WSD on alternative architectures like CNNs,
where only brief references to the trapezoid scheduler (an earlier term for WSD) have been made –
for example by Xing et al. [15] – none driven by computational efficiency, which has rarely posed a
significant constraint on small CNN models. Interestingly, we observed that WSD induces similar
training dynamics even in these different settings (Fig. 1). Motivated by this similarity, we aim to
investigate whether WSD behavior remains consistent between the two model types even at a more
fine-grained scale. Our analysis reveals the presence of broad and shared properties that govern the
characteristic loss pattern induced by WSD across a variety of architectures.

2. Related Work

In Fig. 1 (right) we recall the typical WSD loss curve characterized by slow improvements during
the stable learning rate phase, followed by a sharp decline during the learning rate cooldown phase
[5] [6] [10] [14] [15] [16] . WSD can achieve performance comparable to that of the widely used
warmup cosine annealing scheduler, and even outperform it when the cooldown phase is sufficiently
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long [5] [6] [14]. This distinctive and non-traditional training loss curve produced by WSD has
recently sparked curiosity and interest, prompting several interpretations of this phenomenon.

Wen et al. [14] for example attributes the typical loss trend to the geometric properties of the
loss landscapes in transformer-based language models. Proposing and assuming that the loss surface
exhibits a “River Valley” profile, they show how variations in the learning rate guide the training
iterates along a particular trajectory that navigates this valley. Specifically, they identify two pre-
dominant directions of movement, corresponding to the two phases of training: constant learning
rate and cooldown. During the constant phase, due to the high learning rate and the stochasticity of
the optimizer, the iterates oscillate between the valley’s slopes, making some progress in the river
direction. In the cooldown phase, instead, as the learning rate decays, the iterates begin descending
on the mountain slope and towards the valley floor, revealing most of the loss reduction. To support
the River Valley hypothesis, Wen et al. [14] explore why such a landscape might naturally emerge
in language models. They argue that it is rooted in the intrinsic nature of language modeling itself,
particularly due to the ”heterogeneity in the stochasticity of tokens”. Using a simple bigram toy
model, they illustrate how more predictable tokens, typically encoding structured knowledge, shape
the flat river-like direction in the landscape. In contrast, tokens associated with higher uncertainty,
reflecting linguistic ambiguity or creative variability, contribute to the steeper sides of the valley.

Schaipp et al. [10] instead suggest an alternative explanation for the loss behavior with WSD,
grounded in first-order convex optimization theory. Specifically, the authors observe a striking
similarity between the loss curve of an LLM trained with AdamW and a suboptimality bound for
SGD in convex settings ([10] Fig. 1). Notably, this explanation does not rely on intrinsic properties
of the model, even though it was formulated by analyzing the WSD training dynamics on an LLM.

3. Experiments

Building on the macroscopic similarity observed in how WSD affects performance in both trans-
former language models and CNNs for image classification (Fig. 1), we aim to examine at a finer
scale the training dynamics and the loss landscape regions traversed by AdamW iterates under WSD
across the two model types.

Setup For our empirical evaluation on transformer-based LMs, we train a decoder-only trans-
former model [13], with around 160M trainable parameter, on the cerebras/SlimPajama-627B HF
dataset [12], using PlainLM by Ajroldi [1]. Extending the study of WSD to non-transformer-
based architectures instead, we experiment with a small CNN, with approximately 334K param-
eters, trained for an image classification task on the CIFAR10 dataset. All models are trained with
Adam [9]. For further details on the experimental setup, please refer to Appendix A.

River Valley First, we aim to replicate some of the findings of Wen et al. [14]. To support their
River Valley hypothesis, Wen et al. [14] provide visualizations of the loss landscape by plotting
the loss along linear interpolations between selected training checkpoints near the end of the stable
phase, obtaining a convex loss curve resembling a valley ([14] Fig. 7a). In contrast, when plotting
the loss along the interpolation between two points before and after a cooldown ([14] Fig. 7b),
they observe a smooth decline, consistent with the observations of Hägele et al. [6] (Fig. 7), who
characterize this phase as a smooth transition to a connected basin in the loss landscape.

We reproduce the same visualizations in Fig. 2, by interpolating between the checkpoint at
80% of the stable phase and the one at the start of the cooldown, as well as between the one at the
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Figure 2: Loss evaluated along αt + (1 − α)t′, with α ∈ [0, 1], where t′ and t denote checkpoints
taken at 80% and 100% of the stable phase, or at the start and end of the cooldown phase,
on an LM (left) and a CNN (right). Both models display a similar convex valley-shaped
profile between the two checkpoints sampled near the end of the stable phase, followed
by a monotonic descent over the cooldown period.

start and at the end of the cooldown itself. We obtain consistent results not only for transformer but,
perhaps surprisingly, also for the CNN. It therefore appears that the “river valley” landscape induced
by WSD is not unique to transformer-based language models. Indeed, the loss surface of CNNs also
seems to exhibit this profile within the optimizer’s region under WSD, which may partially align
with some findings of Xing et al. [15] (although obtained using SGD and GD, as opposed to Adam).

Sharpness Further examining the shape of the loss function, we observe that, for both models,
sharpness (the largest eigenvalue of the loss Hessian) tends to increase along the iterates collected
while annealing the learning rate (which we name D), consistent with the findings of Hu et al. [5],
and more in general with Cohen et al. [3] and Jastrzebski et al. [8], as shown in Fig. 3.

Training Directions Focusing on the training trajectory, we aim to verify if the stable and cooldown
phases correspond to two distinct movement directions in the parameter space, as suggested by Wen
et al. [14]. To investigate this, we perform Principal Component Analysis (PCA) on two sets, S
and D, each containing iterates xi uniformly sampled during stable and decay phases, respectively.
For both models and phases, the first component captures at least approximately 40% of the total
variance (Fig. 7), suggesting that each phase is primarily governed by a main yet distinct direction.

Cooldown unveils a sharp tunnel Motivated by this common trait and by the sharpness increase
at cooldown, we zoom in on checkpoint x̂ at decay start, to closely examine how and why sharpness
evolves along the optimizer’s path. Given two sets, S′ and D′, consisting of iterates xi uniformly
sampled from the last 20% of the stable and the first 20% of the cooldown, respectively, we center
both point clouds and apply PCA to each. This yields two main parameter-space directions, vs and
vd, which capture the trajectory near the loss curve elbow. We then analyze how these directions
align with the Hessian ∇2L(x̂) eigenspaces, finding

∥∥∇2L(x̂)vs
∥∥ <

∥∥∇2L(x̂)vd
∥∥ for both models

(Fig. 3). This suggests that the direction corresponding to the early cooldown lies more closely in
high-curvature regions of the loss landscape. During decay, despite much smaller updates (Fig. 6)
[5], true loss minimization becomes clear as the reduced step size allows the trajectory to “see”, and
thus to follow, sharper subspaces of the parameter space, that were previously not accessible.

Quasi-Convexity Finally, we end by examining the broader explanation from Schaipp et al. [10],
which currently shows a mismatch between the application context (non-convex loss optimized
with AdamW) and the theoretical setting on which the argument is based (convex loss optimized
with SGD). Therefore, we investigate how “surprising” the alignment between the loss profile and
the theoretical bound truly is. We test the Weak-Quasi-Convexity condition introduced by Hardt
et al. [4] (Def. 2.1), evaluating it over a domain B consisting of a subset of iterates xi sampled
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Figure 3: (Left) Estimated sharpness, evaluated on iterates xi sampled at a fixed rate along the
cooldown phase, on an LM (left) and on a CNN (right). In both models, reducing the
learning rate leads to sharper regions of the loss surface. (Right) Box plots of

∥∥∇2L(x̂)v
∥∥

for directions vs and vd, derived from multiple training runs for an LM (left) and a CNN
(right), where x̂ is the checkpoint at the start of the decay. Results indicate that the
direction representing the early decay phase vd aligns more with high-curvature regions.
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Figure 4: (Green) Box plot of τi =
−∇L(xi)(x

∗−xi)
L(xi)−L(x∗) , evaluated on a a subset B of iterates xi sampled

regularly during training, with x∗ denoting the solution at the end of training. Under weak
quasi-convexity, τi > 0, which is indeed observed in nearly all cases. (Orange) Box plot
of scos,i = cos similarity(−∇L(xi), xi+1 − xi), evaluated on B. These scores remain
positive, suggesting that AdamW updates do not deviate substantially from those of SGD.
Results are presented for multiple training runs for an LM (left) and a CNN (right).

regularly after warmup. As shown in Fig. 4, Weak-Quasi-Convexity holds for both models, in
nearly all cases. Similarly, we compare AdamW updates to those of SGD. To do so, we compute
the cosine similarity between the negative gradient and the actual update vector at each point in B,
consistently finding positive values for both models, as presented in Fig. 4. Taken together, these
results reduce the perceived surprise regarding the alignment observed by Schaipp et al. [10], as the
loss appears to exhibit a nearly convex behavior along AdamW’s trajectory. So, these last findings
provide validation for an explanation of WSD that seems to hold regardless of the architecture, and
they also point out other potentially interesting analogies between transformer LMs and CNNs.

4. Discussion and Conclusions

The experiments and results obtained suggest that the distinctive behavior of WSD, although pri-
marily observed and studied in transformer-based language models, is not exclusive to them. This is
evident not only in overall performance, but also through a closer analysis of the training dynamics
and of the loss surface structure: we observe general and shared characteristics that support the typ-
ical WSD loss curve across two distinct (in size and training modality) architectures. An intriguing
future direction is to investigate the effect of overparametrization on WSD performance, not indeed
that our CNN, being small, does not perfectly fit the data (similarly to the transformer).
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[6] Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and
Martin Jaggi. Scaling laws and compute-optimal training beyond fixed training durations,
2024.
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Appendix A. Experimental Setup

In our empirical analysis of language models, we use a transformer-based language model [13],
with just over 160M trainable parameter. We train it on approximately 3 billion tokens from the the
cerebras/SlimPajama-627B HF dataset [12], employing a batch size of 256 and a sequence length
of 2048, using PlainLM [1].
To examine WSD training dynamics in non-transformer architectures instead, we use as a case study
a small CNN with about 334K parameters. We train it for an image classification task on the CI-
FAR10 dataset https://www.cs.toronto.edu/˜kriz/cifar.html, using a batch size
of 128. For completeness, we provide below its architecture implemented in PyTorch.

import torch.nn as nn
import torch.nn.functional as F

class CIFARCNN2(nn.Module):
def __init__(self):

super().__init__()
self.pool = nn.MaxPool2d(2, 2)
self.conv1 = nn.Conv2d(3, 32, 3, padding = 1)
self.conv2 = nn.Conv2d(32, 128, 3, padding = 1)
self.conv3 = nn.Conv2d(128, 128, 3, padding = 1)
self.conv4 = nn.Conv2d(128, 128, 3, padding = 1)
self.fc1 = nn.Linear(128, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = self.pool(F.relu(self.conv4(x)))
x = x.mean(dim=[2,3])
x = self.fc1(x)
return x

To enable meaningful comparisons between such fundamentally different models, it is important
to have the following caveat in mind. CNNs, by the end of training, typically operate in a near-zero
loss region of the landscape, having been exposed to the same training data over multiple epochs.
In contrast, language models remain far from zero loss at that point as they rarely, if ever, revisit
the same sequences. This crucial difference results in distinct training dynamics and loss surface
behaviors. For this reason, we intentionally avoid training the CNN to full accuracy, specifically
training it for about 50 epochs. This choice allows for more consistent comparisons, avoiding situ-
ations where the two models reach entirely different regions of their respective loss landscapes. It
also helps prevent overfitting and limits the influence of secondary effects that tend to emerge when
a model reaches perfect accuracy.
Both models are also trained using the AdamW optimizer. Finally, we mention that in our experi-
ments on LM, we follow Schaipp et al. [10] and use a cooldown length of 20% of the total steps.
On CNN instead, a longer decay (35%) is needed to better match warmup cosine annealing perfor-
mance. Additionally, both WSD and warmup cosine annealing schedulers decay the learning rate
to zero for consistency.
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Appendix B. Supplementary Figures
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Figure 5: Visualization of the impact, on the considered CNN, of cooldown length on WSD perfor-
mance, in comparison to Warmup Cosine Annealing. Unlike what is typically observed
in transformer models, cooldown dynamics in CNNs can be slower when using the same
decay length. For example, under our settings, the learning rate must decay for at least
35% of the total training steps for the WSD performance to match that of Warmup Cosine
Annealing.
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Figure 6: Parameter vector norm evolution after warmup period on an LM (left) and on a CNN
(right). In both, weight updates are much larger in the stable phase (left of dashed line)
than in the cooldown phase (right of dashed line).
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Figure 7: Box plots of the relative explained variance ρ1 = λ1∑nPC
j=1 λj

of the first principal compo-

nent for iterates xi from the stable (PC1s) and decay (PC1d) phases, derived from multiple
training runs on an LM (left) and a CNN (right). In both models and phases, the first prin-
cipal component captures most of the variance, indicating that each phase is characterized
by a predominant direction.
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