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Abstract

The field of machine translation has achieved
significant advancements, yet domain-specific
terminology translation, particularly in AI, re-
mains challenging. We introduce GIST, a
large-scale multilingual AI terminology dataset
containing 5K terms extracted from top AI
conference papers spanning 2000 to 2023.
The terms are translated into Arabic, Chinese,
French, Japanese, and Russian using a hybrid
framework that combines LLMs for extrac-
tion with human expertise for translation. The
dataset’s quality is benchmarked against exist-
ing resources, demonstrating superior transla-
tion accuracy through crowdsourced evaluation.
GIST is integrated into translation workflows
using post-translation refinement methods that
require no retraining, where LLM prompting
consistently improves BLEU, COMET, and
other scores. A web demonstration on the ACL
Anthology platform highlights its practical ap-
plication, showcasing improved accessibility
for non-English speakers. This work aims to ad-
dress critical gaps in AI terminology resources
and fosters global inclusivity and collaboration
in AI research.

1 Introduction

The field of machine translation has made sig-
nificant progress, with state-of-the-art models ex-
celling across diverse tasks (Brown et al., 1990;
Wu et al., 2016; Goyal et al., 2022; Haddow et al.,
2022) and demonstrating effectiveness in translat-
ing between high-resource and low-resource lan-
guages (Yao and Wan, 2020; Costa-jussà et al.,
2022; Ranathunga et al., 2023). Despite these suc-
cesses, translating domain-specific scientific texts
remains a persistent challenge, particularly for ter-
minology translation (Cabré, 2010; Shuttleworth,
2014; Naveen and Trojovskỳ, 2024). General-
purpose translation systems often falter in accu-
rately translating specialized terminology, leading

*Equal contribution.

English: 
The model performs 
competitively with recent 
coreference resolution systems.

Incorrect Chinese Translation: 
该模型的性能与最近的共指解析  
(coreference analysis) 系统具有
竞争力。

Terminology dictionary
coreference resolution: 共指消解
explain-away effect: 相消解释作用

English: 
This can lead to the 
explain-away effect, wherein the 
models only consider features 
easier to explain predictions.
Incorrect Chinese Translation: 
这可能会导致解释效应 
(explanation effect)，其中模型  
只考虑更容易解释预测的特征。

Correct Chinese Translation: 
该模型的性能与最近的共指消解
系统具有竞争力。

Correct Chinese Translation: 
这可能会导致相消解释作用，其

中模型只考虑更容易解释预测的

特征。

AI Research Papers Model/Data Cards

Figure 1: Direct translations of AI research papers and
model cards using Google Translate generally offer fair
quality but often fail to accurately translate AI-specific
terminologies, potentially causing confusion or misun-
derstanding for readers. Our work addresses this issue
by providing high-quality translations for a wide range
of such terms, which can be efficiently integrated post-
hoc to enhance the initial translations.

to loss of critical details (Dagan and Church, 1994;
Haque et al., 2020a), or worse yet possibly leading
to misinterpretations (Chmutina et al., 2021; Yue
et al., 2024).

In the field of AI, terms such as “Coreference
Resolution” or “Explain-Away Effect,” are fre-
quently translated incorrectly or inconsistently, un-
dermining comprehension for global researchers
and practitioners (Khuwaileh and Khwaileh, 2011;
Tehseen et al., 2018), as illustrated in Figure 1. For
non-English readers, who comprise a substantial
portion of the global population both within and
beyond the AI community (Ammon, 2003; Ding
et al., 2023), such inaccuracies in AI research pa-
pers and blog translation hinder access to essential
knowledge, stifling research innovation and collab-
oration across linguistic boundaries (Amano et al.,



Figure 2: Overview of GIST creation. AI terminology are extracted from awarded papers using an LLM and then
combined with existing terminology dictionaries. After data cleansing, translations into five languages are generated
via crowdsourcing, and an LLM is used to select the best candidate translation. Dataset quality is evaluated against
two baselines: majority-vote-selected translations and translations from the 60-60 evaluation set, demonstrating the
superior quality of GIST.

2023; Bahji et al., 2023). The implications extend
to AI resource documentation, such as model and
data cards hosted on platforms such as Hugging
Face,1 where errors in translated terminology can
lead to misunderstandings or incorrect usage of
models and datasets. This highlights the urgent
need for precise and standardized multilingual AI
terminology resources to support equitable access
to AI knowledge (Ahuja et al., 2023; Liu et al.,
2024).2

Existing efforts to address this gap have re-
lied heavily on manual curation of specialized ter-
minology by domain experts, a process that is
time-consuming, resource-intensive, and difficult
to scale (Wang et al., 2013; Freitag et al., 2021).
Meanwhile, large language models (LLMs) have
shown promise in automated terminology transla-
tion (Feng et al., 2024), while their outputs often
misalign with human expert standards (Zhang et al.,
2024), and different models often yield inconsis-
tent translations (Banik et al., 2019; Prieto Ramos,
2021). The ACL 60-60 initiative in 2022 curated
and translated AI-specific terms, and showcased
potential for multilingual scientific communication
and AI inclusivity (Salesky et al., 2023).3 How-
ever, its small scale and narrow scope underscore
the need for a more comprehensive multilingual AI
terminology resource at scale.

1huggingface.co/docs/hub/en/model-cards,
huggingface.co/docs/hub/en/datasets-cards

2See Appendix A for a more in-depth discussion of our
motivation.

32022.aclweb.org/dispecialinitiative.html

To address this, we introduce Glossary of
Multilingual AI Scientific Terminology (GIST),
the first large-scale multilingual AI terminology
dataset, compiling 5K AI-specific terms from
award-winning papers at 18 top-tier AI conferences
(2000–2023). Using a hybrid approach combining
LLMs for extraction and verification with human
expertise for translation, we provide high-quality
translations into Arabic, Chinese, French, Japanese,
and Russian (Abel and Meyer, 2013).

To enhance accessibility of our work, we inte-
grate the curated terminology into machine trans-
lation pipelines without requiring model retrain-
ing. We evaluate three post-translation refinement
methods: prompting, word alignment and replace-
ment, and constrained decoding. Our experiments
reveal that the prompting method effectively inte-
grates the curated dictionary, consistently improv-
ing translation quality as measured by BLEU (Pa-
pineni et al., 2002), COMET (Rei et al., 2020),
ChrF (Popović, 2015), ChrF++ (Popović, 2017),
and TER (Snover et al., 2006). Additionally, we
develop a website demonstration that incorporates
our dataset into translations of ACL Anthology re-
search papers, showcasing its practical application
for non-English speakers in the AI field.

The contributions of this work are summarized
as follows:

• We create GIST, the first large-scale multilin-
gual AI terminology dataset, with 5K terms
from 879 awarded top AI conference papers

https://huggingface.co/docs/hub/en/model-cards
https://huggingface.co/docs/hub/en/datasets-cards
https://2022.aclweb.org/dispecialinitiative.html


(2000–2023) and broad domain coverage;4

• We develop an effective and efficient translation
framework combining LLMs and human exper-
tise to translate English terms into five languages,
achieving high-quality results validated by auto-
matic and human evaluations.

• To enhance accessibility, we explore three ap-
proaches to integrate the curated terminology
into machine translation pipelines without re-
training, and develop a website to showcase its
practical use for AI paper translation.
By addressing the critical gap in multilingual

AI terminology resources, this work contributes a
robust solution to support equitable access to AI
knowledge, fostering inclusivity and collaboration
in the global research community.

2 Related Work

Multilingual Terminology Datasets The ACL
60-60 evaluation sets represent an important effort
in translating multilingual terminology from AI
presentations, but are limited to just over 250 terms
(Salesky et al., 2023).

Scientific terminology datasets are typically built
using two approaches. The first relies on human
multilingual experts for extracting and translating
terminology (Awadh, 2024; Kim et al., 2024). In
cases of limited expert availability, human crowd-
sourcing with aggregation techniques has shown
excellent results (Zaidan and Callison-Burch, 2011;
Chan et al., 2023). The second approach uses ML
and machine translation tools for automatic collec-
tion and translation, including log-likelihood com-
parisons (Haque et al., 2018), machine translation-
based data synthesis (Haque et al., 2020b; Fer-
nando et al., 2020; Manzini et al., 2022; Moslem
et al., 2023), platform-based terminology linkers
(Arcan et al., 2014), classifier training (Jin et al.,
2013; Schumann and Martínez Alonso, 2018), and
prompting LLMs (Nishio et al., 2024; Shamsabadi
et al., 2024).

However, fully human-driven approaches can be
costly for large-scale multilingual datasets, while
fully automated ones often lack accuracy (Giguere,
2023). To address this, our framework integrates
LLM-based extraction, human filtering, human
translation, LLM validation, and merging with ex-
isting dictionaries, efficiently and effectively ex-
panding existing terminology datasets.

4Our code and data is available at https://github.com/
jiarui-liu/MultilingualAITerminology.

Integrating Domain Terminology into Machine
Translation Integrating newly collected domain
terminology into machine translation systems has
led to a variety of research efforts. One common ap-
proach involves training methods, such as augment-
ing training data with input-output pairs that in-
clude terminology for supervised fine-tuning (Dinu
et al., 2019; Niehues, 2021), or modifying model
architectures to enhance terminology awareness
(Dinu et al., 2019; Conia et al., 2024). However,
these training-based approaches are inefficient for
adapting to new terminology, limiting their real-
world applicability.

To tackle this, terminology-aware decoding
methods have emerged as a more flexible alter-
native. These methods, which include variants of
constrained beam search (Anderson et al., 2016;
Hokamp and Liu, 2017a; Chatterjee et al., 2017;
Hasler et al., 2018; Post and Vilar, 2018), slightly
compromise translation accuracy for greater adapt-
ability. Another strategy is post-hoc editing of
generated translations, which typically employs
word alignment techniques to identify and replace
term translations in the output (Zenkel et al., 2019;
Chen et al., 2020; Ferrando et al., 2022). Recently,
LLMs have been leveraged to integrate expected
terminology directly into the translations (Bogoy-
chev and Chen, 2023). Our work explores multiple
terminology integration approaches, including con-
strained beam search, decoding logits adjustment,
word alignment and replacement, and refinement
through prompting.

3 GIST Dataset Construction

We construct GIST, a dataset comprising around
5K English AI terminology and their translations
into Arabic, Chinese, French, Japanese, and Rus-
sian. The basic lexical statistics of the dataset is
presented in Table 1. Additional dataset statistics
are presented in Appendix B.1.

3.1 Terminology Curation

Our dataset follows the ACL 60-60 initiative that
aims to collect scientific terminology in the AI field.
We source AI terminology from two primary chan-
nels: AI research papers published online and exist-
ing AI terminology dictionaries. For the research
papers, our objective is to compile a substantial
number of terms from high-quality AI papers span-
ning a long time frame. To identify representative
papers, a natural approach would be to crawl the

https://github.com/jiarui-liu/MultilingualAITerminology
https://github.com/jiarui-liu/MultilingualAITerminology


Arabic Chinese French Japanese Russian

# Terms 4,844 6,426 6,527 4,770 5,167
Unique En Words 2,470 3,244 3,470 2,424 2,615
Unique Tgt Words 3,161 2,838 4,036 2,050 4,210
En Words/Term 2.02 2.05 2.07 2.02 2.01
Tgt Words/Term 2.36 2.26 2.68 2.53 2.16
En Chars/Term 16.99 17.26 17.44 16.96 16.94
Tgt Chars/Term 15.22 4.66 21.27 6.89 20.20

Table 1: Statistics of the dataset across languages. “En”
denotes English, and “Tgt” denotes the target language.
Statistics with standard deviations are presented in Ta-
ble 4.

most cited papers using online search engines or
platforms. However, no tools or APIs currently
enable this. Instead, we focus on awarded papers
announced on the websites of top AI conferences.
Specifically, we collect all awarded papers, span-
ning awards such as Best Paper, Outstanding Paper,
and other recognitions from the venues listed in
Table 7, covering the years 2000 to 2023. This
approach ensures comprehensive coverage of rec-
ognized research work. In total, we collect 879
paper PDFs from arXiv and other online reposito-
ries and process them into text files using SciPDF.5

As we analyze later in Section 5, this collection
strategy provides broad terminology and domain
coverage of AI terminology.

As supported by previous research (Xu et al.,
2024; Dagdelen et al., 2024; Shamsabadi et al.,
2024), recent LLMs such as LLaMA 3 (Dubey
et al., 2024) have demonstrated strong capabilities
in scientific terminology extraction tasks. While
the definition of “AI” lacks a clear and univer-
sally agreed boundary, LLMs are trained on vast
datasets that reflect human knowledge, enabling
them to classify terms as AI-related based on their
contextual relevance. Accordingly, we leverage
LLaMA-3-70B-Instruct to extract AI terminology
from award-winning papers, providing specific in-
structions to guide the extraction process.

To define AI-specific terminology, we impose
the following criteria: (1) the term must be a noun
or noun phrase, (2) it should be specialized to AI,
encompassing core concepts, methods, models, al-
gorithms, or systems, and (3) it should have either
no meaning or a distinct meaning outside the AI do-
main. We process the text in sentence chunks of up
to 64 words to stay within LLaMA’s optimal context-
handling capabilities. Additionally, for each unique

5https://github.com/titipata/scipdf_parser

term, we record up to three different contexts dur-
ing extraction to ensure sufficient contextual diver-
sity.

After extraction, we perform multiple quality as-
surance steps. We remove terms that appear in only
one paper to ensure representativeness. Moreover,
we exclude abbreviations and terms starting with
special characters, and filter out non-noun phrases.
Duplicates are eliminated, and GPT-4o (Hurst et al.,
2024) is employed to further refine the list by fil-
tering out non-AI terms based on the same criteria.
Finally, three AI domain experts review the terms
to remove any remaining unqualified entries. To
enhance the dataset, we also integrate terminology
from external sources, including the 60-60 initia-
tive dataset, government websites, Wikipedia, and
other online resources. Consequently, the number
of English terms varies across languages in GIST.
Full details of the terminology collection process
are provided in Appendix B.2.

3.2 Terminology Translation
In selecting target languages for translation, we
aim to encompass a range of morphological com-
plexities and varying levels of resource availabil-
ity, particularly in AI-related publications. First,
Chinese and Japanese exhibit minimal morpholog-
ical variation in nouns and noun phrases, relying
primarily on word order and context rather than
inflection. In contrast, Arabic, French, and Rus-
sian are morphologically complex, characterized
by extensive inflectional systems. Second, French,
Chinese, Japanese, and Russian were selected due
to the presence of large native-speaking scientific
communities (Ammon, 2012; Chahal et al., 2022),
which may have historically contributed to the de-
velopment of well-established AI terminology. In
contrast, Arabic, despite being widely spoken, may
lack the same depth of scientific vocabulary, partic-
ularly in rapidly evolving fields such as AI. This dis-
parity underscores the potential for our approach to
contribute to the standardization and development
of cohesive terminology across different languages
in AI publications.

To evaluate whether state-of-the-art LLMs can
effectively perform terminology translation as
a generation task, we initially experiment with
two advanced LLMs and one API: Claude 3
Sonnet (Anthropic, 2024), GPT-3.5-Turbo (Ope-
nAI, 2023), and Google Translate API (Wu et al.,
2016). We measure the agreement among the three
methods using exact match. However, as shown in

https://github.com/titipata/scipdf_parser


Table 8, the three-model agreement ratio was only
around 15% for most languages except Chinese,
and the two-model agreement ratio was only about
40%. These results reveal significant inconsisten-
cies in the AI terminology translations produced
by these systems, and highlight the need for human
input to ensure reliable AI terminology translations.
The detailed procedure and the prompt used for
these translations is presented in Appendix B.3.

Given these findings, we opt for human annota-
tion to ensure translation accuracy. To achieve this,
we utilize Amazon Mechanical Turk (MTurk) for
crowdsourced annotations. A demonstration of the
MTurk task is shown in Figure 7. We instruct par-
ticipants to take on the task only if they specialized
in AI and are fluent in both English and one of the
target languages. Annotators are tasked with gener-
ating accurate translations for each AI terminology,
with relevant contexts provided and the terminol-
ogy highlighted in yellow in context. To maintain
quality, we implement a rigorous qualification pro-
cess. Annotators are first tested on a toy set of 10
carefully selected AI terms, and only those who
perform well are allowed to proceed with the full
task. Additionally, we monitor submissions daily
and filtered out participants who provide random
or low-quality translations during the annotation
process. All in all, for each term, we collect 10
annotations per target language.

Finally, we use GPT-4o to select the best transla-
tion from the annotators’ submissions and Google
API Translation for each term, ensuring high-
quality results for our final dataset. As analyzed
in Section 4.1, leveraging GPT-4o is crucial for
maintaining the quality of the translations.

4 Dataset Quality Assessments

To thoroughly evaluate the translation quality in
GIST, we conduct two additional crowdsourced
rating tasks: (1) In Section 4.1, we investigate
whether using GPT-4o is necessary to select the
best translation candidate; (2) In Section 4.2, we
compare the quality of our translation with the eval-
uation set from the 60-60 initiative.

4.1 Task 1: Is an LLM Necessary for Selecting
the Best Translation Candidate?

To ensure the selection of the best candidate from
the annotators’ generations, we explore two meth-
ods for candidate selection. The first method only
uses GPT-4o to select the best translation candidate

among 10 annotations and one Google Translation
for all terms. The second method relies on major-
ity voting among the 11 translations: a translation
candidate is selected if it appears in more than 5
out of 11 annotations. In cases where no majority
is reached, GPT-4o is prompted to select the best
translation candidate.

To evaluate these approaches, we conduct a sep-
arate MTurk task, involving a different group of
participants, to compare the two methods on a ran-
domly sampled subset of approximately 200 terms
per language. Participants are asked to choose one
of four options: (A) Both translations are good;
(B) Method 1 translation is better; (C) Method 2
translation is better; (D) Both translations are bad.
For each language, we collect 5 annotations per
term. As shown in Table 10, GPT-4o’s candidate
selection consistently outperforms majority voting
across all five languages. These results highlight
the necessity of GPT-4o in achieving high-quality
translations for crowdsourced annotations.

However, human involvement remains indispens-
able. As discussed in Section 3.2, state-of-the-art
LLMs and machine translation systems fail to pro-
vide consistent answers, rendering automatic trans-
lation through agreement across multiple models
infeasible. Thus, by combining the expertise of
LLMs as verifiers with humans as input sources,
we achieve efficient, accurate, and reliable transla-
tions.

4.2 Task 2: Is Our Dataset Translation Better
than 60-60?

The 60-60 initiative dataset also focuses on AI ter-
minology translations and includes the five lan-
guages we consider. This overlap allows us to in-
tersect the English terms in our dataset with those
in the 60-60 evaluation dataset and compare their
respective translations. We retrieve the translations
from both datasets and conduct a comparative as-
sessment through a crowdsourced evaluation, same
as the process detailed in Section 4.1.

The results presented in Table 11 show that the
translations in our dataset consistently and signif-
icantly outperform those from the 60-60 dataset
across all five languages. Additionally, as shown in
Table 12, annotators demonstrated fair agreement
when rating the Arabic translations, and moder-
ate agreement, with Fleiss’ Kappa values ranging
from 0.4 to 0.5, for translations in the other four
languages. These findings underscore the supe-
rior quality of translations in our dataset compared



to the 60-60 dataset. Refer to Appendix B.4 for
further details on the assessment of the two tasks.

5 Dataset Coverage Assessment

Domain Coverage We first investigate the AI do-
mains covered by the collected terms in GIST and
their distributions. We use GPT-4o-mini (Hurst
et al., 2024) to identify the specific AI domains
for each term, following the taxonomy proposed
by Ding et al. (2023), which clusters the research
domains of AI scholars. Figure 9 shows the dis-
tribution of the top six AI domains in GIST, with
terms most frequently categorized into statistics,
mathematics, computer science (CS), natural lan-
guage processing (NLP), data science (DS), and
computer vision (CV). We further embed all AI ter-
minology in GIST using the all-MiniLM-L6-v2
model (Reimers and Gurevych, 2019) and apply
Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018) for dimensionality
reduction to a two-dimensional space. The visual-
ization in Figure 10 reveals that terms in domains
such as NLP, CV, statistics, and mathematics form
distinct clusters, while terms in CS and DS are
more dispersed.

Terminology Coverage We surmise that our
awarded paper dataset provides essential coverage
of the terms in our terminology dictionary, where
many terms are actually repeatedly extracted mul-
tiple times from different awarded papers. We
present the rarefaction curve in Figure 11, which
visually demonstrates the relationship between the
number of extracted terms and the dataset size.

To statistically validate our claim, we conduct
a one-sided one-sample t-test to compare the
mean coverage ratio of the terminology dictionary.
Specifically, we test whether the mean coverage ra-
tio of randomly sampled subsets, constituting 60%
of the terminology dictionary, is significantly above
80%. The null hypothesis (H0) assumes that the
mean coverage ratio of these subsets is less than or
equal to 80%, while the alternative hypothesis (Ha)
assumes that the mean coverage ratio exceeds 80%.
Using 1,000 random samples, the analysis yields a
t-statistic of 64.78 and a p-value of 0, rejecting the
null hypothesis. These results provide statistical
evidence supporting the sufficiency of our dataset
in covering the terminology dictionary. Refer to
Appendix B.5 for more details.

6 Experiments

We explore terminology integration approaches
that do not need model retraining. We quantita-
tively evaluate two methods: terminology refine-
ment via post-hoc LLM prompting and terminology
substitution guided by word alignment.

6.1 Methods
Terminology Refinement: LLM Prompting
With the recent advancements in multilingual and
instruction-following capabilities of LLMs, it is
now possible to leverage these models to refine
translations. Specifically, we prompt the LLMs
to revise the initial translation produced by a ma-
chine translation model, incorporating relevant
term translations from our terminology dictionary
within the provided context. For this refinement,
we employ GPT-4o-mini and use the prompt il-
lustrated in Figure 12. Refer to Appendix C.1 for
more details.

Terminology Substitution: Word Alignment
We apply the word alignment approach introduced
by Dou and Neubig (2021) to identify and substi-
tute term translations within the output. We use
the multilingual BERT base model (Devlin et al.,
2018) to tokenize both source and target sentences,
and then process these inputs through its hidden
layers to produce contextualized embeddings. We
determine alignments by computing dot-product
similarities between source and target token embed-
dings. High-confidence alignments are then filtered
using a threshold of 1e-4, and subword alignments
are aggregated to generate word-level mappings.
Lastly, we directly replace identified term trans-
lations with those from GIST. We also conduct
a post-hoc prompting after word alignment using
GPT-4o-mini to render the translations morpholog-
ically coherent and correct. Refer to Appendix C.2
for more details. Additionally, we conduct a quali-
tative evaluation of traditional decoding techniques,
including constrained beam search and token-level
logits adjustment. See Appendix C.3 for more de-
tails.

6.2 Experiment Setup
Evaluation Set We conduct experiments on two
evaluation sets: the 60-60 Evaluation Set and the
AI Papers and Model Cards Evaluation Set. The
first evaluation set is from the 60-60 initiative, pro-
viding terminology translations into five target lan-
guages. As detailed in Section 4.2, our analysis



Model Metric Arabic Chinese French Japanese Russian
D +P +W D +P +W D +P +W D +P +W D +P +W

Evaluation Set: 60-60

aya-expanse
BLEU 20.11 + 1.23 + 0.18 27.31 + 1.33 + 0.24 33.05 + 2.46 + 0.20 14.59 + 0.61 + 0.32 16.59 + 1.59 - 0.05
COMET 81.96 + 0.71 - 0.52 83.43 + 1.57 + 0.08 81.83 + 1.06 - 0.11 88.54 + 0.32 - 0.01 82.27 + 0.69 - 2.02

aya-23-8B
BLEU 19.98 + 0.54 - 0.21 26.08 + 0.47 + 0.39 33.85 + 2.28 - 0.11 15.06 + 0.87 + 0.36 15.77 + 1.05 + 0.37
COMET 84.02 + 0.81 - 0.24 85.12 + 0.58 + 0.38 82.40 + 0.94 - 0.15 87.92 + 0.50 + 0.09 81.91 + 0.40 - 2.26

gpt-4o-mini
BLEU 23.58 + 1.07 - 0.00 32.64 + 1.60 + 0.66 40.80 + 3.08 + 0.50 21.46 + 0.64 + 0.19 17.25 + 1.07 - 0.13
COMET 85.77 + 0.69 - 0.44 87.30 + 0.48 + 0.26 84.56 + 0.68 - 0.04 89.96 + 0.14 + 0.01 83.68 + 0.38 - 2.29

nllb
BLEU 22.38 + 1.37 + 0.64 17.29 + 1.92 + 1.02 34.93 + 2.86 + 0.21 6.19 + 2.42 + 0.53 17.30 + 1.54 + 1.07
COMET 83.52 + 0.83 - 0.45 78.22 + 2.95 + 0.73 82.83 + 1.00 - 0.19 77.82 + 3.80 + 0.39 81.41 + 0.97 - 1.54

seamless
BLEU 23.13 + 1.16 - 0.03 26.26 + 0.97 + 0.80 40.04 + 2.08 - 0.57 14.56 + 0.74 + 0.05 17.18 + 1.71 + 1.17
COMET 84.07 + 0.94 - 0.38 83.44 + 1.48 + 0.50 83.86 + 0.78 - 0.07 85.05 + 1.06 + 0.16 82.33 + 0.56 - 1.87

Evaluation Set: AI Papers & Model Cards

aya-expanse
BLEU 11.47 + 0.37 + 0.10 12.04 + 0.94 + 0.17 18.84 + 1.71 - 0.85 8.11 - 0.03 + 0.04 13.84 + 0.21 + 0.32
COMET 80.98 + 0.46 - 0.51 82.42 + 0.56 - 0.01 81.16 + 0.36 - 0.79 85.48 + 0.34 + 0.07 82.76 + 0.47 - 2.10

aya-23-8B
BLEU 14.28 + 0.81 + 0.28 14.50 + 0.39 + 0.19 24.49 + 2.36 + 0.08 9.22 + 0.23 + 0.35 16.39 + 1.36 + 0.61
COMET 81.55 + 1.03 - 0.62 83.88 + 0.68 + 0.04 82.55 + 1.22 - 0.70 84.42 + 0.81 + 0.02 82.72 + 1.14 - 2.08

gpt-4o-mini
BLEU 14.37 + 0.53 - 0.42 17.21 + 1.22 + 1.39 24.45 + 4.38 + 1.28 10.55 + 0.05 + 0.03 18.02 + 1.52 + 0.40
COMET 83.56 + 0.86 - 0.19 86.08 + 0.25 - 0.13 84.75 + 0.33 - 1.03 87.91 + 0.16 - 0.01 84.92 + 0.44 - 2.02

nllb
BLEU 15.42 - 0.31 - 0.77 10.24 + 2.19 + 2.07 22.68 + 2.73 + 0.90 8.24 + 1.08 + 0.88 19.18 - 0.10 - 0.24
COMET 81.23 + 1.28 - 0.50 80.19 + 1.61 + 0.38 78.70 + 3.81 - 1.59 83.05 + 1.71 + 0.70 80.46 + 2.80 - 2.38

seamless
BLEU 15.38 + 1.09 + 0.45 13.67 + 1.10 + 0.73 24.34 + 5.21 + 1.49 9.42 + 0.56 + 0.42 18.43 + 0.95 + 0.35
COMET 81.96 + 1.18 - 0.39 80.70 + 2.18 + 0.16 83.76 + 0.97 - 0.94 83.70 + 0.88 + 0.10 83.12 + 1.50 - 1.79

Table 2: Evaluation results across five models and five languages using BLEU and COMET metrics. The first black
value in each column represents the direct translation score (D). The second and third values, shown in red and
green, indicate the relative performance change when applying the prompting-powered refinement method (P) and
the word alignment method (W), respectively, compared to direct translation. See Table 15 for the complete results
of additional metrics and ablations.

shows that our dataset achieves higher quality com-
pared to the 60-60 set. Motivated by this, we en-
hance the labels of the 60-60 evaluation set by re-
placing AI terminology in their translations with
GPT-4o while maintaining grammatical correctness
and ensuring no loss in translation quality. This
process generates updated ground truth labels for
the evaluation.

The second evaluation set is manually created by
combining text from two sources: 50 held-out AI
research papers and 50 model cards generated by
Liu et al. (2024). From this set, we randomly sam-
pled 500 English text chunks from it for evaluation.
To create ground truth labels for this set, we use
Google Translate, a state-of-the-art machine trans-
lation model (Zhu et al., 2023; Santosa et al., 2024),
to produce initial translations. We then prompt
GPT-4o to refine these translations by updating AI
terminology. This evaluation set is designed to
explore the application of our AI terminology dic-
tionary in two major domains: AI research papers
and model cards. Both evaluation set references
have been verified by human experts and exhibit
high quality. Further details are provided in Ap-
pendix C.4.

Models We evaluate the following mod-
els: gpt-4o-mini (Hurst et al., 2024),
hf-seamless-m4t-large (Barrault et al.,
2023), nllb-200-3.3B (Costa-jussà et al.,
2022), aya-23-8B (Aryabumi et al., 2024), and
aya-expanse-8B (Dang et al., 2024). While
the prompting method applies to all models,
the word alignment method is not applicable to
gpt-4o-mini, as it does not provide access to its
model weights.

Evaluation Metrics We adopt BLEU (Papineni
et al., 2002), COMET (Rei et al., 2020), ChrF
(Popović, 2015), ChrF++ (Popović, 2017), and
TER metrics (Snover et al., 2006) for the quan-
titative evaluation of translation quality, following
the methodology of Salesky et al. (2023). We uti-
lize the wmt22-comet-da model (Rei et al., 2022)
to compute COMET scores.

6.3 Experiment Results
Table 2 presents the quantitative evaluation results
under the experimental settings described earlier.
We draw several key observations:

First, the results across the two evaluation sets
show consistency, indicating the robustness of
the findings. Among the models, gpt-4o-mini



Figure 3: The interface demonstrates a paper example from Tang et al. (2024) and introduces a new translation
feature on the ACL Anthology website. Non-English speakers can click the “Translate” button at the bottom right of
the webpage and select their preferred language for translation. The page dynamically displays two translations side
by side: one using direct translation from a machine translation model (e.g., seamless in the figure) and the other
enhanced with prompting-powered refinement applied to the left translation. Highlighted text indicates updated
terminology integrated from GIST, showcasing improved translation performance.

achieves the best overall translation performance.
Among the remaining four models, differences in
performance are less pronounced.

Several trends emerge when comparing dif-
ferent terminology integration approaches. The
prompting-powered refinement method consis-
tently outperforms direct translation across nearly
all languages, models, and evaluation metrics,
which highlights its effectiveness in incorporating
AI-specific terminology into translations.

The word alignment method demonstrates mixed
performance, showing improvements for Chinese
and Japanese translations but leading to declines
for Arabic, French, and Russian. This discrepancy
is due to linguistic differences: Chinese exhibits
minimal morphological changes, allowing straight-
forward substitution of terminology with limited
disruption to surrounding syntax; In contrast, lan-
guages like Arabic often require agreement in gen-
der, number, and syntactic roles, making noun re-
placement more complex and error-prone. These
findings underscore the superior performance of
the prompt-powered refinement method, as well as
the importance of tailoring terminology integration
approaches to the linguistic characteristics of tar-
get languages. See Appendices D.1 and D.2 for
further discussion of the results. We further vali-
date our findings using a one-sided paired t-test in
Appendix D.3.

7 Website Demonstration

To facilitate real-world usage of our AI terminol-
ogy dictionary, we built on the 60-60 initiative by
modifying the ACL Anthology website layout and
introducing a new terminology translation feature,6

as illustrated in Figure 3. The ACL Anthology web-
site was chosen for this demonstration due to its
extensive collection of AI-related research papers,
making it an ideal platform to showcase the po-
tential impact of our work. In this demonstration,
translations of key terms are refined and standard-
ized based on the terminology dictionary we devel-
oped, providing more accurate terminology trans-
lations.This enhancement represents a step toward
improving access to AI knowledge for non-English
speakers by offering a consistent and reliable trans-
lation system, and broadens the accessibility of AI
research to a global audience.

8 Conclusion

We present GIST, a large-scale multilingual AI
terminology dataset addressing gaps in translat-
ing AI-specific terms. Combining LLM-based ex-
traction and validation with human expertise, it
includes 5K English terms with translations into
five languages, surpassing the ACL 60-60 bench-
mark. LLM prompting proved effective for post-
hoc terminology integration, improving translation

6https://acl6060.org/

https://acl6060.org/


quality across five metrics. We also provide a web-
site demonstration to enhance the accessibility of
our work for non-English speakers, supporting eq-
uitable AI knowledge access and fostering global
collaboration in AI research.

Limitations

This work is subject to several limitations. First,
our dataset assumes a one-to-one correspondence
between English terms and their translations, which
does not account for cases where multiple equally
valid translations exist for a single term. This sim-
plification may overlook the nuanced variations in
AI terminology usage across languages.

Despite significant efforts in collecting termi-
nologies, our coverage is not exhaustive. The field
of artificial intelligence lacks a well-defined bound-
ary, making it challenging to ensure comprehen-
sive inclusion of all relevant AI terms. Addition-
ally, while we provide translations for five widely
used languages, this represents only a subset of the
global linguistic diversity and leaves many other
languages unaddressed.

Furthermore, while our methodology is tailored
for AI terminology translation, its application to
other domains may require adaptation. Although
our LLM + Human hybrid framework for data
collection, translation, and evaluation is broadly
applicable and does not rely on AI-specific mod-
els or tools, domain-specific terminology transla-
tion poses unique challenges, such as variations in
terminology collection and the need for domain-
specific expertise in evaluation.

Nonetheless, we hope this work inspires the com-
munity to further advance the creation and refine-
ment of multilingual AI terminology dictionaries,
addressing these limitations and extending cover-
age to more languages and domains.

Ethical Considerations

We manually collected awarded papers from offi-
cial conference websites. Only papers available
under open-source licenses for research use were
downloaded. Similarly, model card contents used
in this study were sourced from openly shared ma-
terials by their respective authors.

During data processing, we ensured that no per-
sonal information, such as human names irrele-
vant to AI methods or metrics, was included in the
dataset. Automatic and manual reviews were con-
ducted to verify the exclusion of any sensitive or

private details.
For term translation, we employed LLMs to as-

sist with extraction and validation. While we ac-
knowledge that LLMs may exhibit biases when
selecting the best translations, manual evaluations
confirmed the superior performance of LLMs in
this task.

In crowdsourced experiments, we respected par-
ticipant privacy by not collecting any demographic
information. All contributors were fairly compen-
sated according to MTurk’s payment standards. Ad-
ditionally, our collected terminology dataset does
not involve ethically sensitive or controversial con-
tent, focusing exclusively on technical terms rele-
vant to AI.
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speaking communities. For those outside
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clearer understanding, as it is easier for them
to grasp complex concepts in their own lan-
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Wetzels, 2009; Al-Athwary and Ali, 2024),
making terms more meaningful while preserv-
ing linguistic and cultural identities. This
practice promotes the standardization of AI
terminology, reduces dependency on foreign
languages, and improves educational accessi-
bility for non-English speakers.

2. Our work aligns with and extends the ACL 60-
60 initiative (Salesky et al., 2023), which aims
to translate AI-specific terms to enhance mul-
tilingual scientific communication and foster
AI inclusivity. By expanding this effort, we
seek to improve the scale, scope, and quality
of AI terminology translation, furthering the
global reach of AI research.

3. The prevalence of untranslated loanwords
varies significantly across languages. The
prevalence of untranslated loanwords is more
common in languages influenced by English
or with linguistic similarities to English. How-
ever, this is not the case for many other lan-
guages. As a concession to this variability, we
employed GPT-4o-mini to determine whether
terms in the GIST dataset should be trans-
lated. Table 3 presents the results, based on
the prompt in Figure 4, which highlights the
disparities across languages.

Language
Percentage of Terms

Requiring Translation

Chinese 95.0%
Arabic 73.0%
French 72.0%
Japanese 53.8%
Russian 80.5%

Table 3: Proportion of AI terms requiring translation
across different languages.

B Additional Dataset Details

B.1 Additional Dataset Statistics
To better understand the composition and character-
istics of the dataset, we performed a comprehensive
statistical analysis across multiple dimensions, in-
cluding domain distribution, semantic clustering,
and lexical structure across five languages: Arabic,
Chinese, French, Japanese, and Russian. Below,
we present key findings through detailed visualiza-
tions and lexical statistics.

Lexical Statistics. Table 4 summarizes the lex-
ical characteristics of the dataset across the five
languages. Key metrics include:

• Number of Terms: The dataset contains
4,844 to 6,527 terms per language, with
French and Chinese having the largest reposi-
tories.

• Unique Words: English terms comprise
2,400–3,400 unique words across datasets.
Target languages exhibit varying lexical diver-
sity, with French and Russian showing higher
uniqueness due to linguistic richness.

• Words per Term: On average, English terms
consist of approximately two words (∼ 2.02),
while target languages show higher variabil-
ity. French terms, for instance, require more
words (2.68 ± 1.19), reflecting language-
specific expansion during translation.

• Characters per Term: English terms main-
tain consistent lengths (∼ 17 characters),
while target languages vary significantly. For
example, Chinese terms are concise (4.66±
1.96) due to its logographic script, whereas
French (21.27± 8.49) and Russian (20.20±
7.83) terms are longer, reflecting the morphol-
ogy of these languages.

To tokenize terms, we utilized
nltk.word_tokenize for English, Arabic,
French, and Russian; jieba for Chinese; and
MeCab Owakati for Japanese. These tools ensured
language-specific tokenization accuracy, enabling
detailed lexical analysis.

Terminology Examples To identify and show
the most frequently used terms in the original set
of awarded papers, we extracted and ranked the
top 150 terminologies based on their occurrence
frequency. Table 5 provides a comprehensive list of
these terms, categorized by their rank and grouped
for clarity.

Temporal Statistics We analyze the distribution
of terms in GIST based on the publication years
of the papers. Table 6 presents the top 10 most fre-
quent terms in awarded papers for each year. This
analysis offers insights into the temporal evolution
of AI terminology.



Figure 4: Prompt used to determine whether GIST terms should be translated.

Arabic Chinese French Japanese Russian

# Terms 4844 6426 6527 4770 5167
Unique En Words 2470 3244 3470 2424 2615
Unique Tgt Words 3161 2838 4036 2050 4210
En Words/Term 2.02± 0.59 2.05± 0.68 2.07± 0.67 2.02± 0.58 2.01± 0.59
Tgt Words/Term 2.36± 0.83 2.26± 0.90 2.68± 1.19 2.53± 0.98 2.16± 0.80
En Chars/Term 16.99± 5.97 17.26± 6.60 17.44± 6.57 16.96± 5.91 16.94± 5.90
Tgt Chars/Term 15.22± 5.66 4.66± 1.96 21.27± 8.49 6.89± 3.16 20.20± 7.83

Table 4: Lexical statistics of the dataset across languages, including standard deviations. “En” denotes English, and
“Tgt” denotes the target language. Terms are tokenized into words using nltk.word_tokenize for English, Arabic,
French, and Russian, jieba for Chinese, and the MeCab Owakati tokenizer for Japanese.

Conclusion. The statistical analysis highlights
the diversity and interdisciplinary nature of the
dataset. Figures 9 and 10 illustrate domain-wise
distributions and semantic clusters, while Table 4
quantifies lexical variations across languages. To-
gether, these findings provide a robust understand-
ing of the dataset’s structure, supporting its utility
for multilingual and domain-specific AI applica-
tions.

B.2 Terminology Collection Details
We selected terms from awarded papers as this ap-
proach provides an efficient and manageable way
to curate a representative sample of influential AI
research. While we acknowledge that valuable AI
terminology also exists in non-awarded yet influen-
tial papers, capturing all relevant terms across the
vast AI field is infeasible. Nonetheless, we believe
our dataset offers a comprehensive representation
in terms of domain coverage and unique terminol-
ogy. We considered expanding our selection to
include highly cited papers; however, to our knowl-
edge, no automated method reliably identifies such
papers. Even if one existed, determining an appro-
priate citation threshold for inclusion would remain
a challenge.

To refine our terminology selection, we employ
a two-step procedure to filter out non-nominal
phrases. First, we prompt GPT-4 to retain only

nouns or noun phrases as candidates. Subsequently,
we use a POS tagger to further remove any phrases
that do not contain a noun.

We integrate terms from the WikiPedia Glossary
of AI7, which serves as a comprehensive starting
point for artificial intelligence (AI)-related termi-
nology, ensuring alignment with globally recog-
nized concepts and definitions. To enhance mul-
tilingual coverage and domain relevance, we also
include terms from several other specialized AI
terminology initiatives across different languages:

Arabic AI Dictionary8: Published by the Ara-
bic Government AI Office, this resource aims to
elevate the status of the Arabic language in AI, stan-
dardize terminology, reduce linguistic ambiguity,
and foster better integration of Arabic speakers into
the global AI community. By providing accurate
translations and clear definitions for English AI
terms, this dictionary promotes knowledge dissem-
ination and encourages collaboration within the
Arabic-speaking AI ecosystem.

Chinese GitBook AI Term Database9: Devel-
oped by Jiqizhixin (Machine Heart), this database
represents an extensive effort to document techni-
cal terms encountered during the translation of AI

7en.wikipedia.org/wiki/Glossary_of_artificial_intelligence
8ai.gov.ae/ar/ai-dictionary/
9https://jiqizhixin.gitbook.io/artificial-intelligence-

terminology-database

https://en.wikipedia.org/wiki/Glossary_of_artificial_intelligence
https://ai.gov.ae/ar/ai-dictionary/
https://jiqizhixin.gitbook.io/artificial-intelligence-terminology-database
https://jiqizhixin.gitbook.io/artificial-intelligence-terminology-database


articles and research papers. Starting with practi-
cal usage, the project has evolved to incorporate
domain-specific expansions based on authoritative
textbooks and expert input, offering the Chinese AI
community a unified and precise reference for both
academic and industrial applications.

French AI Dictionary10: The first compre-
hensive French reference tool for data science and
AI, this dictionary addresses the needs of public
service, commerce, research, and education. It
aims to bridge the gap between French and English
AI terminologies, ensuring accessibility and stan-
dardization for French-speaking professionals and
researchers.

Russian AI Dictionary11: This initiative cap-
tures the interdisciplinary nature of AI by including
terminology drawn from fields such as logic, psy-
chology, linguistics, and cybernetics. Leveraging
contributions from Russian and Soviet experts, this
dictionary emphasizes the frequency and relevance
of terms within AI-specific contexts, providing a
culturally adapted yet globally aligned resource for
Russian-speaking researchers.

B.3 Terminology Translation Details

Terminology Dataset Collection In this section,
we provide a detailed description of our method-
ology for creating the multilingual AI terminol-
ogy dictionary and the associated translation ex-
periments. The terms were extracted from papers
published in the top AI conferences as shown in
Table 7 across various fields including Artificial
Intelligence, Computer Vision, Machine Learning,
Natural Language Processing, and Web & Infor-
mation Retrieval. These conferences represent the
leading venues in their respective domains.

Prompt Design for Translation To ensure con-
sistent and high-quality translations, we used care-
fully designed prompts for GPT-3.5-Turbo and
Claude 3 Sonnet. We provided sentence contexts
relevant to each AI terminology, split into a maxi-
mum of three chunks, each containing up to 64
words. As shown in Figure 6, the translation
prompt asks the model to translate an AI-specific
term into a target language, with context provided
to clarify the meaning. If the term is an abbrevia-
tion or a technical term that should remain in its

10https://datafranca.org/wiki/Cat%C3%A9gorie:
GRAND_LEXIQUE_FRAN%C3%87AIS

11https://www.raai.org/pages/
UGFnZVR5cGU6MTAwMw==

original form to avoid confusion, the models are
instructed to retain the English term.

Translation Agreement Analysis We evaluated
the consistency of translations across three mod-
els: Claude 3 Sonnet, GPT-3.5-Turbo, and Google
Translate API. Table 8 summarizes the agreement
ratios for five target languages: Arabic, Chinese,
French, Japanese, and Russian. The results indicate
significant variation in agreement ratios across lan-
guages, with Chinese achieving the highest three-
model agreement (42.71%) and Arabic having the
lowest (10.11%). These findings underscore the
need for human involvement in AI terminology
translation, as automatic translations often fall short
due to the inherent limitations of current models.

To further assess translation quality, we also ex-
amined which model’s outputs align most closely
with human annotations by incorporating GPT-4o.
Table 9 presents the results, showing that GPT-4o
is the most advanced LLM available at the time
of this study. This claim is further supported by
relevant literature (Wang et al., 2024; Sato et al.,
2024; Zhang et al., 2024; OpenAI, 2024). How-
ever, our evaluation reinforces the argument that,
despite GPT-4o’s advancements, it remains inad-
equate for precise terminology translation. This
highlights the necessity of human annotations to
ensure translation accuracy and reliability.

Human Translation via Mturk To further vali-
date the translations, we employed human transla-
tor through the MTurk platform. Each terminology
was translated by 10 independent annotators, re-
sulting in a set of 10 translation candidates for each
term. The platform layout and guidance for help-
ing translators give these translations is shown in
Figure 7. We compensate annotators in accordance
with MTurk’s payment standards.

B.4 Dataset Quality Assessment Details

To evaluate the quality of translations in our dataset,
we conducted two tasks involving human annota-
tors. Annotators were presented with pairs of trans-
lations generated by different methods and were
tasked with evaluating their relative quality. The
analysis of their ratings is summarized in Tables 10,
11, and 12. Below, we describe the findings in de-
tail.

Task 1: Comparison Between GPT-4o-Selected
Candidates and Majority-Voted Translations
In Task 1, we constructed the evaluation dataset by

https://datafranca.org/wiki/Cat%C3%A9gorie:GRAND_LEXIQUE_FRAN%C3%87AIS
https://datafranca.org/wiki/Cat%C3%A9gorie:GRAND_LEXIQUE_FRAN%C3%87AIS
https://www.raai.org/pages/UGFnZVR5cGU6MTAwMw==
https://www.raai.org/pages/UGFnZVR5cGU6MTAwMw==


Figure 5: Prompts for extracting AI terminologies with LLaMA-3-70B-Instruct.

Figure 6: Prompts for translating AI terminologies with GPT-3.5-Turbo and Claude 3 Sonnet.

first randomly sampling 1,000 terms per language
that had received majority votes. We then filtered
out terms where both translation strategies pro-
duced identical results, leaving approximately 200
terms per language for human evaluation. Specif-
ically, this resulted in 323 Arabic terms, 185 Chi-
nese terms, 180 French terms, 206 Japanese terms,
and 230 Russian terms.

Annotators compared translations selected by
GPT-4o (Method 1) with majority-voted transla-
tions generated by human annotators (Method 2).
The choices were: A. Both translations are good;
B. Method 1’s translation is better; C. Method 2’s
translation is better; D. Both translations are bad.

Table 10 summarizes the distribution of annota-
tors’ choices for Task 1. Across all languages, the
majority of annotations fell into category A, where
both translations were rated as good. Japanese
showed the highest percentage of agreement in this
category (56.99%), followed by Russian (54.43%)
and Chinese (50.59%). Cases where Method

1 translations were rated as better (category B)
ranged from 24.37% (Japanese) to 30.26% (Rus-
sian). Similarly, cases where Method 2 transla-
tions were rated as better (category C) ranged from
13.04% (Russian) to 20.37% (Arabic). The lowest
percentage of responses was observed in category
D, where both translations were rated as bad, ac-
counting for less than 5% of responses across all
languages.

Task 2: Comparison Between Dataset Transla-
tions and 60-60 Initiative Translations In Task
2, the number of overlapping terms between the
60-60 evaluation set and our dataset varies across
languages for two main reasons. First, some ter-
minology translations appear in certain languages
but not others due to the integration of external
data sources, as shown in Table 1. Second, some
translations are identical in both our dataset and
the 60-60 evaluation set; these were removed prior
to human evaluation. As a result, the final analysis
includes 162 Arabic terms, 106 Chinese terms, 77



Figure 7: The MTurk layout demonstration for AI terminology translation generation task.

Figure 8: The MTurk layout demonstration for evaluating AI terminology translations. The layout is used for two
tasks: (1) comparing the GPT-4o-selected candidate with the majority-voted candidate, and (2) comparing the
translations in our dataset with those in the 60-60 initiative evaluation set.

French terms, 103 Japanese terms, and 88 Russian
terms.

Annotators compared translations from our
dataset (Method 1) with those in the 60-60 initia-
tive evaluation set (Method 2). The distribution of
choices is shown in Table 11. In this task, a higher
percentage of annotators preferred translations
from Method 2 (category B) for most languages,
especially in Chinese (43.02%), French (43.64%),
and Russian (45.00%). However, Japanese trans-
lations from Method 1 had a significantly higher
percentage in category A, with 57.28% of anno-
tators agreeing that both translations were good.
Instances where both translations were rated as bad
(category D) remained low across all languages,
ranging from 2.60% to 5.68%.

Inter-Annotator Agreement To measure inter-
annotator agreement, we calculated Fleiss’ Kappa
scores for each language in both tasks. Table 12
reports these values. Fleiss’ Kappa values between
0.20 ≤ κ < 0.40 indicate fair agreement, while

values between 0.40 ≤ κ < 0.60 indicate mod-
erate agreement. In Task 1, Kappa scores ranged
from 0.21 (Japanese) to 0.39 (Russian), showing
fair agreement across languages. In Task 2, Kappa
scores improved, ranging from 0.39 (Japanese) to
0.50 (French), indicating moderate agreement for
most languages.

Conclusion The results demonstrate that our
dataset’s translations are of high quality, with a
majority of annotators rating them as good. While
inter-annotator agreement was fair in Task 1, mod-
erate agreement was observed in Task 2, highlight-
ing the robustness of our dataset compared to es-
tablished benchmarks.

B.5 Dataset Coverage Assessment Details
Domain Distribution. The terminology in the
dataset spans various AI-related domains. As
shown in Figure 9, the six most frequent do-
mains include Statistics and Probability (13.31%),
Math (12.24%), Computer Science (11.74%), Nat-



ural Language Processing (11.50%), Data Sci-
ence (9.98%), and Computer Vision (6.57%). The
largest proportion of terms (34.65%) falls under the
“Other” category, which represents interdisciplinary
or less-defined concepts that do not fit neatly into
any of the predefined categories. This distribution
reflects the diversity and multidisciplinary nature
of GIST.

Semantic Clustering. We used Uniform Man-
ifold Approximation and Projection (UMAP)
to visualize the semantic relationships between
terms across domains. Figure 10 shows a low-
dimensional embedding of terms, where each point
represents a term, color-coded by its domain. The
visualization reveals distinct clusters corresponding
to each domain, indicating strong intra-domain co-
herence. Overlaps between clusters (e.g., Data Sci-
ence and Natural Language Processing) highlight
the interconnected nature of these fields, where con-
cepts are often shared or applied across domains.

Coverage Analysis through Rarefaction. To as-
sess the comprehensiveness of our terminology col-
lection, we conducted a rarefaction analysis, which
is visualized in Figure 11. This analysis reveals
the relationship between the sample size of papers
and the coverage of AI terminology. The curve
demonstrates a characteristic asymptotic behavior,
starting with a steep increase in coverage ratio from
approximately 0.3 at 10% of papers to 0.6 at 30% of
papers. As the subset size increases, the marginal
gain in coverage gradually diminishes, reaching a
coverage ratio of approximately 0.9 at 100% of the
papers. The error bars, representing standard devia-
tion across 50 random samples for each subset size,
notably decrease as the sample size increases, indi-
cating more stable coverage at larger sample sizes.
The asymptotic nature of the curve approaching
0.9 coverage suggests that our current collection
has achieved a robust representation of commonly
used AI terminology, with additional papers likely
to introduce increasingly specialized or niche terms
at a decreasing rate. The relatively small error bars
at larger sample sizes (80-100%) indicate high con-
sistency in terminology coverage across different
subsets of the literature, supporting the reliability
of our collection methodology.
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Figure 9: Terminology distribution of the top-6 AI do-
mains in GIST.
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Figure 10: UMap visualization of terms in GIST by
domain.

C Additional Experiment Details

C.1 Terminology Refinement via Prompting
Details

In this subsection, we describe the process of re-
fining machine translation outputs by leveraging
prompts tailored for terminology consistency. The
objective is to ensure that specific domain-related
terms are translated accurately, adhering to prede-
fined mappings provided in the dataset.

As illustrated in Figure 12, the prompt incor-
porates a term dictionary, the source language
src_lang text, and the initial machine-translated
tgt_lang output. The model is instructed to re-
vise the translation by applying the specified target
terms for corresponding source terms while main-
taining the rest of the content unchanged. This
approach ensures consistency and accuracy in trans-
lation outputs, particularly in specialized fields,
by integrating domain knowledge directly into the
model’s refinement process.
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Figure 11: Rarefaction curve showing the mean cover-
age ratio of AI terminology with respect to the subset
size of papers. Each subset size is sampled 50 times,
and the error bars represent the standard deviation of
the coverage ratios across these samples.

C.2 Terminology Substitution by Word
Alignment Details

To validate our analysis in Section 6.3 regarding
the varying performance of the word alignment
method across different languages, we perform a
post-hoc prompting step after word alignment. This
step ensures that the translations are morphologi-
cally coherent and accurate, and is used to compare
with the original results. The prompt is depicted
in Figure 13. Refer to Appendix D.1 for complete
experiment results.

C.3 Terminology-Aware Decoding
Approaches

For constrained beam search (Hokamp and Liu,
2017b), we use the Hugging Face implementation,
which enforces the inclusion of term translations
from GIST in the output.12 For token-level adjust-
ment, we first identify AI terminology and their
corresponding expected translations from GIST.
We then modify the output logits of these tokens by
increasing them by factors of 10/7, 10/8, and 10/9
to prioritize their selection during decoding. See
Appendix D.2 for a discussion on performance.

C.4 Evaluation Set Creation Details

The AI Papers and Model Cards evaluation set is
created using 50 held-out AI research papers and 50
model cards generated by Liu et al. (2024). We then
segment the content into sentence chunks, ensuring
that each chunk contains no more than 64 words.
From this set, we randomly sample 500 sentence

12https://huggingface.co/blog/
constrained-beam-search

chunks for evaluation.
For both evaluation sets, we conducted a manual

evaluation, involving a new group of five expert
annotators on MTurk. We randomly sampled 50
examples from the 60-60 test set and another 50
examples from the AI papers + model card test
set. The annotators were provided with the English
sentences, their corresponding translations, the as-
sociated terminologies, and their translations. The
evaluation included the following tasks:

• Task 1: Overall Translation Quality (rated on
a scale from 1 to 5)

– 1 = The translation makes no sense
– 2 = Poor translation quality
– 3 = Acceptable translation quality
– 4 = Good translation quality
– 5 = Excellent translation quality

• Task 2: Grammatical and Morphological Cor-
rectness (binary annotation: Yes/No)

• Task 3: Accuracy of Terminology Transla-
tions (binary annotation: Yes/No)

The results of the manual evaluation are summa-
rized in Table 13. We observe consistently high
performance across all languages in terms of trans-
lation quality, grammatical correctness, and termi-
nology accuracy, highlighting the robustness and
linguistic reliability of ground truth labels gener-
ated in our evaluation set. We don’t measure the
impact of incorporating GIST because there are
only two possible reasons why translation qual-
ity might decrease after using GPT-4o to integrate
terminologies: (1) low-quality terminology trans-
lations in our glossary, and (2) GPT-4o failing to
integrate terminologies while maintaining gram-
matical accuracy. Regarding (1), we have already
validated our glossary’s translation quality in Sec-
tion 4. Regarding (2), terminology integration is a
straightforward task, and it is unlikely that GPT-4o
would significantly degrade grammatical accuracy.

D Additional Experiment Results

D.1 Additional Quantitative Results

We present comprehensive evaluation results using
ChrF (Popović, 2015), ChrF++ (Popović, 2017),
and TER (Snover et al., 2006) for translation into
the five target languages across both evaluation sets
in Table 15. By comparing the fourth and second

https://huggingface.co/blog/constrained-beam-search
https://huggingface.co/blog/constrained-beam-search


Figure 12: Prompts for refining a machine translation model’s initial output using relevant term translations from
GIST as input.

Figure 13: Prompts for refining the output of the word alignment method to ensure morphological coherence and
accuracy.

values in each column of Table 2, we observe that
the post-hoc prompting ablation enhances transla-
tion scores, aligning them with the performance
of the prompting-powered method across all lan-
guages and models.

We also present one good example and one bad
example for the prompting-powered refinement and
the word alignment method across all languages,
as shown from Figure 14 to Figure 18.

D.2 Qualitative Results
We also conduct a qualitative manual evaluation
of the generation results produced by constrained
beam search and logit adjustment methods, as ex-
plained in Appendix C.3. Both approaches ex-

hibit extremely slow performance, running approx-
imately 100 times slower than post-hoc methods.
Furthermore, forcing specific word ids to appear in
the output did not perform well, suffering from sim-
ilar issues as the word alignment method in disrupt-
ing syntactical dependencies and morphological
agreements. During manual inspection, we observe
that constrained beam search behaves similarly to
the logit adjustment method with a large scaling fac-
tor: the generated sentences often failed to maintain
proper grammar, and terminological terms were fre-
quently repeated multiple times within the same
output. Conversely, with a small scaling factor in
the logit adjustment method, the terms were often



omitted entirely, demonstrating little to no effect
on the output.

D.3 Statistical Tests for Experiment Results
To assess the statistical significance of our findings
in Section 6.3, we conducted one-sided paired t-
tests on the BLEU, COMET, ChrF, ChrF++, and
TER scores. Based on our observations, we formu-
lated the following three hypotheses:

H
(1)
0 : The prompting-powered refinement method

outperforms direct translation across all lan-
guages.

H
(2)
0 : The word alignment method outperforms di-

rect translation for Chinese and Japanese but
underperforms for Arabic, French, and Rus-
sian.

H
(3)
0 : The prompting-powered refinement method

outperforms the word alignment method
across all languages.

As shown in Table 14, hypotheses 1 and 3 are
fully supported by all metrics across all languages.
Hypothesis 2 is partially supported, as there are
cases where we cannot reject the null hypothesis
that the word alignment method underperforms
default translation for Arabic, French, and Russian.
This outcome is insightful, as it suggests that the
default translation approach remains effective for
these languages.



Rank Terminology Rank1 Terminology (Continued)1 Rank2 Terminology (Continued)2

1 Algorithm 51 Latent space 101 Recall
2 Model 52 Node 102 Q-learning
3 Classifier 53 Transfer learning 103 Lasso
4 Transformer 54 Stochastic gradient descent 104 Transition matrix
5 Machine learning 55 Feature vector 105 Linear regression
6 Policy 56 Gibbs sampling 106 Meta-learning
7 Learning rate 57 Baseline 107 Segmentation
8 Neural network 58 Generative model 108 Fourier transform
9 Language model 59 Ontology 109 Epoch

10 Loss function 60 Attention 110 Learning algorithm
11 Reinforcement learning 61 Training set 111 Topic model
12 Encoder 62 Data mining 112 Time complexity
13 Deep learning 63 Manifold 113 Feature selection
14 Decoder 64 Discriminator 114 Knowledge distillation
15 Gradient descent 65 F1 score 115 Word embedding
16 Beam search 66 Dynamic programming 116 Euclidean distance
17 Machine translation 67 Adam optimizer 117 Covariance
18 Computer vision 68 Eigenvalue 118 Hyper-parameter
19 Dataset 69 Vector 119 Test set
20 Graph 70 State-of-the-art 120 Attention mechanism
21 Markov chain 71 Regularization 121 Oracle
22 Kernel 72 Backpropagation 122 Question answering
23 Marginal likelihood 73 Greedy algorithm 123 Point cloud
24 Objective function 74 Optical flow 124 Local minima
25 Gradient 75 Mutual information 125 N-gram
26 Reward function 76 Weight decay 126 Semi-supervised learning
27 Entropy 77 Posterior distribution 127 Batch normalization
28 Tensor 78 Bounding box 128 Homomorphism
29 Active learning 79 Disentanglement 129 Markov
30 Natural language processing 80 Convolution 130 Mini-batch
31 Perplexity 81 Semantic segmentation 131 Subgraph
32 Posterior 82 Logit 132 Bias
33 Logistic regression 83 Loss 133 Arg min
34 Covariance matrix 84 Multi-task learning 134 State space
35 Self-attention 85 Matrix 135 Dimensionality
36 Data augmentation 86 Binary classification 136 Random variable
37 Object detection 87 In-context learning 137 Gaussian distribution
38 Inference 88 Validation set 138 Optimizer
39 Cosine similarity 89 Cost function 139 Weight vector
40 Sample complexity 90 Corpus 140 Named entity recognition
41 Value function 91 Estimator 141 Kernel matrix
42 Probability distribution 92 Lemma 142 Discount factor
43 Generator 93 Parser 143 Hidden layer
44 Adam 94 Feature space 144 Domain adaptation
45 Supervised learning 95 Sentiment analysis 145 Frobenius norm
46 Dropout 96 Token 146 Positional encoding
47 Classification 97 Unsupervised learning 147 Seq2seq
48 Ground truth 98 State 148 Cross validation
49 Arg max 99 Infoset 149 Gaussian process
50 K-means 100 Precision 150 Coreference resolution

Table 5: Top 150 terms with the highest frequency in the original set of awarded papers.



Year Terms

2000 feature vector, machine translation, probabilistic model, inference, loss function, feature space,
BLEU, translation model, model selection, OOV

2001 reinforcement learning, policy, Ablation study, baseline, machine learning, bias, learning rate,
state, gradient descent, tensor

2002 machine learning, machine translation, posterior distribution, inference, weight vector, training
set, time complexity, tf-idf, mutual information, dot product

2003 softmax, computer vision, machine learning, local minima, gradient descent, neural network,
Dataset, generative model, Gaussian noise, time complexity

2004 deep learning, ground truth, neural network, bounding box, 3D object detection, mean square
error, machine learning, cost volume, gradient, receptive field

2005 neural network, loss function, machine translation, learning rate, gradient, perplexity, Kernel,
validation set, beam search, feature vector

2006 NLP, machine learning, beam search, language model, Question Answering, Dataset, regular-
ization, overfitting, greedy algorithm, neural network

2007 learning rate, probability distribution, machine learning, deep learning, loss, binary classifica-
tion, covariance matrix, Adam optimizer, corpus, estimator

2008 machine learning, softmax, dropout, language model, computer vision, bias, baseline, neural
network, F1 score, NLP

2009 computer vision, language model, softmax, NLP, deep learning, learning rate, clustering, natural
language processing, neural network, loss function

2010 machine learning, learning rate, neural network, gradient descent, Euclidean distance, regular-
ization, convex optimization, learning algorithm, Gaussian noise, gradient

2011 learning rate, NLP, deep learning, overfitting, supervised learning, Lemma, inference, eigen-
value, baseline, Cross Entropy Loss

2012 softmax, NLP, neural network, attention, deep learning, dropout, State-of-the-art, word embed-
ding, learning rate, attention mechanism

2013 machine learning, loss function, Dataset, inference, NLP, learning rate, language model,
stochastic gradient descent, probability distribution, decoder

2014 language model, NLP, machine learning, computer vision, convolutional layer, learning rate,
deep learning, loss function, softmax, sigmoid

2015 NLP, language model, learning rate, feature vector, baseline, loss function, recall, validation
set, probabilistic model, Markov chain

2016 learning rate, decoder, classification, loss function, NLP, Dataset, data augmentation, machine
learning, State-of-the-art, beam search

2017 unsupervised learning, supervised learning, neural network, reinforcement learning, Dataset,
dynamic programming, inference, validation set, NLP, epoch

2018 NLP, neural network, learning rate, machine learning, language model, Dataset, inference,
natural language processing, loss function, BERT

2019 machine learning, learning rate, NLP, neural network, softmax, gradient descent, natural
language processing, computer vision, node, Dataset

2020 NLP, Dataset, loss function, language model, natural language processing, learning rate,
reinforcement learning, BERT, Adam optimizer, baseline

2021 learning rate, NLP, natural language processing, machine learning, language model, loss
function, computer vision, BERT, overfitting, decoder

2022 machine learning, neural network, NLP, learning rate, computer vision, Dataset, loss function,
deep learning, supervised learning, node

2023 machine learning, NLP, learning rate, computer vision, deep learning, Dataset, softmax, ma-
chine translation, natural language processing, neural network

Table 6: Top 10 most frequent terms in awarded papers for each year from 2000 to 2023.



Category Selected Conferences

AI AAAI, IJCAI
CV CVPR, ECCV, ICCV
ML ICLR, ICML, NeurIPS, KDD
NLP ACL, EMNLP, NAACL, EACL

LREC, COLING, CoNLL
Web & IR SIGIR, WWW

Table 7: Top AI conferences included in our dataset
collection.



Arabic Chinese French Japanese Russian

Three-Model Agreement Ratio 10.11% 42.71% 9.86% 16.60% 17.93%
Two-Model Agreement Ratio 30.52% 36.82% 45.15% 40.44% 38.36%

Table 8: Translation agreement ratios among three models (Claude 3 Sonnet, Google Translate API, and GPT-3.5-
Turbo) for five target languages. The table shows the ratio of terms where all three models agree (Three-Model
Agreement Ratio) and the ratio where any two models agree (Two-Model Agreement Ratio).

Language Claude 3 vs. Human Google Translate vs. Human GPT-3.5 vs. Human
GPT-4o vs. Human

(500 Random Examples)

Chinese 69.26% 62.84% 59.20% 76.80%
Arabic 29.26% 36.45% 23.05% 39.80%
French 57.06% 51.44% 14.17% 58.20%
Japanese 57.59% 49.65% 34.07% 67.80%
Russian 39.72% 42.63% 28.23% 41.20%

Table 9: Comparison of translation accuracy between Claude 3, Google Translate, GPT-3.5, and GPT-4o against
human translations across different languages.

A. Both translations are good B. Method 1 translation is better C. Method 2 translation is better D. Both translations are bad

Arabic 739, 45.76% 461, 28.54% 329, 20.37% 72, 4.46%
Chinese 468, 50.59% 266, 28.76% 163, 17.62% 25, 2.70%
French 438, 48.67% 274, 30.44% 170, 18.89% 17, 1.89%
Japanese 587, 56.99% 251, 24.37% 159, 15.44% 27, 2.62%
Russian 626, 54.43% 348, 30.26% 150, 13.04% 14, 1.22%

Table 10: Distribution of annotators’ choices for AI terminology ratings in Task 1, comparing the GPT-4o-selected
candidate (Method 1) with the majority-voted candidate (Method 2). The table reports the total counts and
corresponding ratios for each choice.

A. Both translations are good B. Method 1 translation is better C. Method 2 translation is better D. Both translations are bad

Arabic 376, 46.42% 238, 29.38% 143, 17.65% 46, 5.68%
Chinese 197, 37.17% 228, 43.02% 85, 16.04% 17, 3.21%
French 152, 39.48% 168, 43.64% 53, 13.77% 10, 2.60%
Japanese 295, 57.28% 162, 31.46% 36, 6.99% 21, 4.08%
Russian 172, 39.09% 198, 45.00% 38, 8.64% 25, 5.68%

Table 11: Distribution of annotators’ choices for AI terminology ratings in Task 2, comparing the translations in our
dataset (Method 1) with those in the 60-60 initiative evaluation set (Method 2). The table reports the total counts
and corresponding ratios for each choice.



Arabic Chinese French Japanese Russian

Task 1 0.30 0.22 0.37 0.21 0.39
Task 2 0.22 0.41 0.50 0.39 0.41

Table 12: Fleiss’ Kappa scores for inter-annotator agree-
ment among 5 annotators across each question in Task
1 and Task 2.



Language Task 1 (Mean ± Std) Task 2 (Accuracy) Task 3 (Accuracy)

Chinese 3.96 ± 1.03 0.88 ± 0.32 0.91 ± 0.29
Arabic 3.39 ± 1.27 0.90 ± 0.30 0.91 ± 0.28
French 3.81 ± 1.20 0.78 ± 0.42 0.80 ± 0.40
Japanese 3.24 ± 1.13 0.77 ± 0.42 0.72 ± 0.45
Russian 3.11 ± 1.55 0.83 ± 0.38 0.82 ± 0.39

Table 13: Manual evaluation results for translation quality, grammatical correctness, and terminology accuracy
across five languages.

Arabic Chinese French Japanese Russian

Metric Hypothesis T Stats P Val T Stats P Val T Stats P Val T Stats P Val T Stats P Val

COMET
1 14.18 0.00 15.22 0.00 12.68 0.00 11.13 0.00 8.53 0.00
2 6.91 0.00 7.60 0.00 1.84 0.03 3.21 0.00 20.76 0.00
3 17.93 0.00 11.67 0.00 13.58 0.00 10.62 0.00 24.89 0.00

BLEU
1 6.37 0.00 6.72 0.00 9.80 0.00 6.26 0.00 7.63 0.00
2 -0.66 0.75 3.89 0.00 -0.22 0.59 2.58 0.00 -2.85 1.00
3 4.80 0.00 3.87 0.00 8.77 0.00 4.57 0.00 5.50 0.00

ChrF
1 6.37 0.00 6.72 0.00 9.79 0.00 6.26 0.00 7.64 0.00
2 -0.66 0.75 3.89 0.00 -0.18 0.57 2.59 0.00 -2.85 1.00
3 4.79 0.00 3.86 0.00 8.76 0.00 4.55 0.00 5.49 0.00

ChrF++
1 6.37 0.00 6.72 0.00 9.79 0.00 6.26 0.00 7.64 0.00
2 -0.66 0.75 3.89 0.00 -0.18 0.57 2.59 0.00 -2.85 1.00
3 4.79 0.00 3.86 0.00 8.76 0.00 4.55 0.00 5.49 0.00

TER
1 6.17 0.00 6.72 0.00 9.71 0.00 6.26 0.00 7.41 0.00
2 -0.85 0.80 3.88 0.00 -0.18 0.57 2.59 0.00 -2.76 1.00
3 4.40 0.00 3.87 0.00 8.73 0.00 4.56 0.00 5.27 0.00

Table 14: Hypothesis test statistics and p-values for all metrics across the five tested models.



Model Metric Arabic Chinese French Japanese Russian

Evaluation Set: 60-60

aya-expanse

BLEU 20.11 + 1.23 + 0.18 + 1.24 27.31 + 1.33 + 0.24 + 0.53 33.05 + 2.46 + 0.20 + 1.97 14.59 + 0.61 + 0.32 + 1.08 16.59 + 1.59 - 0.05 + 0.92
ChrF 20.62 + 1.24 + 0.18 + 1.26 27.52 + 1.32 + 0.24 + 0.52 33.68 + 2.44 + 0.18 + 1.96 14.76 + 0.61 + 0.32 + 1.08 16.99 + 1.59 - 0.06 + 0.92
ChrF++ 20.62 + 1.24 + 0.18 + 1.26 27.52 + 1.32 + 0.24 + 0.52 33.68 + 2.44 + 0.18 + 1.96 14.76 + 0.61 + 0.32 + 1.08 16.99 + 1.59 - 0.06 + 0.92
COMET 81.96 + 0.71 - 0.52 + 1.27 83.43 + 1.57 + 0.08 + 1.63 81.83 + 1.06 - 0.11 + 1.35 88.54 + 0.32 - 0.01 + 0.38 82.27 + 0.69 - 2.02 + 0.98
TER 93.61 - 1.35 - 0.24 - 1.36 73.47 - 1.33 - 0.24 - 0.53 77.43 - 2.78 - 0.23 - 2.28 86.42 - 0.61 - 0.33 - 1.08 94.56 - 1.74 + 0.08 - 0.96

aya-23-8B

BLEU 19.98 + 0.54 - 0.21 + 0.58 26.08 + 0.47 + 0.39 + 0.45 33.85 + 2.28 - 0.11 + 2.48 15.06 + 0.87 + 0.36 + 1.24 15.77 + 1.05 + 0.37 + 0.84
ChrF 20.50 + 0.54 - 0.21 + 0.58 26.20 + 0.47 + 0.39 + 0.45 34.48 + 2.26 - 0.11 + 2.46 15.22 + 0.87 + 0.37 + 1.24 16.17 + 1.06 + 0.37 + 0.85
ChrF++ 20.50 + 0.54 - 0.21 + 0.58 26.20 + 0.47 + 0.39 + 0.45 34.48 + 2.26 - 0.11 + 2.46 15.22 + 0.87 + 0.37 + 1.24 16.17 + 1.06 + 0.37 + 0.85
COMET 84.02 + 0.81 - 0.24 + 1.05 85.12 + 0.58 + 0.38 + 0.93 82.40 + 0.94 - 0.15 + 1.26 87.92 + 0.50 + 0.09 + 0.70 81.91 + 0.40 - 2.26 + 0.84
TER 93.97 - 0.57 + 0.23 - 0.61 74.40 - 0.46 - 0.38 - 0.44 76.35 - 2.64 + 0.18 - 2.89 85.73 - 0.88 - 0.37 - 1.24 95.60 - 1.17 - 0.45 - 0.98

gpt-4o-mini

BLEU 23.58 + 1.07 - 0.00 + 0.50 32.64 + 1.60 + 0.66 + 1.48 40.80 + 3.08 + 0.50 + 2.38 21.46 + 0.64 + 0.19 + 0.94 17.25 + 1.07 - 0.13 + 0.56
ChrF 24.06 + 1.07 - 0.00 + 0.50 32.76 + 1.60 + 0.66 + 1.48 41.40 + 3.06 + 0.49 + 2.37 21.59 + 0.64 + 0.19 + 0.94 17.65 + 1.08 - 0.13 + 0.56
ChrF++ 24.06 + 1.07 - 0.00 + 0.50 32.76 + 1.60 + 0.66 + 1.48 41.40 + 3.06 + 0.49 + 2.37 21.59 + 0.64 + 0.19 + 0.94 17.65 + 1.08 - 0.13 + 0.56
COMET 85.77 + 0.69 - 0.44 + 0.61 87.30 + 0.48 + 0.26 + 0.44 84.56 + 0.68 - 0.04 + 0.62 89.96 + 0.14 + 0.01 + 0.14 83.68 + 0.38 - 2.29 + 0.47
TER 89.66 - 1.17 - 0.11 - 0.54 67.79 - 1.60 - 0.66 - 1.48 68.32 - 3.57 - 0.56 - 2.76 79.33 - 0.64 - 0.20 - 0.94 93.90 - 1.17 + 0.15 - 0.58

nllb

BLEU 22.38 + 1.37 + 0.64 + 1.21 17.29 + 1.92 + 1.02 + 2.40 34.93 + 2.86 + 0.21 + 3.23 6.19 + 2.42 + 0.53 + 2.95 17.30 + 1.54 + 1.07 + 1.51
ChrF 22.87 + 1.37 + 0.64 + 1.22 17.45 + 1.92 + 1.03 + 2.40 35.55 + 2.85 + 0.21 + 3.21 6.22 + 2.42 + 0.53 + 2.94 17.69 + 1.55 + 1.08 + 1.53
ChrF++ 22.87 + 1.37 + 0.64 + 1.22 17.45 + 1.92 + 1.03 + 2.40 35.55 + 2.85 + 0.21 + 3.21 6.22 + 2.42 + 0.53 + 2.94 17.69 + 1.55 + 1.08 + 1.53
COMET 83.52 + 0.83 - 0.45 + 1.31 78.22 + 2.95 + 0.73 + 3.67 82.83 + 1.00 - 0.19 + 1.43 77.82 + 3.80 + 0.39 + 4.80 81.41 + 0.97 - 1.54 + 1.79
TER 91.12 - 1.59 - 0.74 - 1.34 83.26 - 1.93 - 1.03 - 2.40 75.21 - 3.24 - 0.26 - 3.72 94.32 - 2.41 - 0.53 - 2.94 93.87 - 1.67 - 1.17 - 1.65

seamless

BLEU 23.13 + 1.16 - 0.03 + 2.35 26.26 + 0.97 + 0.80 + 2.75 40.04 + 2.08 - 0.57 + 1.69 14.56 + 0.74 + 0.05 + 2.38 17.18 + 1.71 + 1.17 + 1.22
ChrF 23.67 + 1.17 - 0.03 + 2.36 26.43 + 0.98 + 0.80 + 2.74 40.68 + 2.08 - 0.58 + 1.67 14.65 + 0.74 + 0.05 + 2.37 17.61 + 1.71 + 1.17 + 1.23
ChrF++ 23.67 + 1.17 - 0.03 + 2.36 26.43 + 0.98 + 0.80 + 2.74 40.68 + 2.08 - 0.58 + 1.67 14.65 + 0.74 + 0.05 + 2.37 17.61 + 1.71 + 1.17 + 1.23
COMET 84.07 + 0.94 - 0.38 + 1.26 83.44 + 1.48 + 0.50 + 2.49 83.86 + 0.78 - 0.07 + 1.05 85.05 + 1.06 + 0.16 + 1.74 82.33 + 0.56 - 1.87 + 1.21
TER 90.27 - 1.33 + 0.01 - 2.78 74.32 - 0.97 - 0.80 - 2.74 69.19 - 2.38 + 0.65 - 1.91 86.02 - 0.74 - 0.05 - 2.38 94.01 - 1.89 - 1.30 - 1.38

Evaluation Set: AI Papers & Model Cards

aya-expanse

BLEU 11.47 + 0.37 + 0.10 + 0.49 12.04 + 0.94 + 0.17 + 0.85 18.84 + 1.71 - 0.85 + 2.19 8.11 - 0.03 + 0.04 + 0.31 13.84 + 0.21 + 0.32 + 0.68
ChrF 11.95 + 0.37 + 0.10 + 0.50 12.76 + 0.98 + 0.18 + 0.87 19.49 + 1.74 - 0.85 + 2.22 8.59 - 0.02 + 0.06 + 0.33 14.32 + 0.21 + 0.34 + 0.70
ChrF++ 11.95 + 0.37 + 0.10 + 0.50 12.76 + 0.98 + 0.18 + 0.87 19.49 + 1.74 - 0.85 + 2.22 8.59 - 0.02 + 0.06 + 0.33 14.32 + 0.21 + 0.34 + 0.70
COMET 80.98 + 0.46 - 0.51 + 0.63 82.42 + 0.56 - 0.01 + 0.75 81.16 + 0.36 - 0.79 + 0.44 85.48 + 0.34 + 0.07 + 0.54 82.76 + 0.47 - 2.10 + 0.75
ter 106.35 - 0.30 - 0.13 - 0.47 99.34 - 1.04 - 0.21 - 0.94 96.12 - 2.02 + 0.99 - 2.49 101.99 - 0.03 - 0.07 - 0.39 99.77 - 0.19 - 0.40 - 0.79

aya-23-8B

BLEU 14.28 + 0.81 + 0.28 + 0.75 14.50 + 0.39 + 0.19 + 0.71 24.49 + 2.36 + 0.08 + 2.37 9.22 + 0.23 + 0.35 + 0.45 16.39 + 1.36 + 0.61 + 1.35
ChrF 14.77 + 0.82 + 0.28 + 0.75 15.12 + 0.40 + 0.20 + 0.71 25.11 + 2.37 + 0.07 + 2.39 9.68 + 0.25 + 0.37 + 0.47 16.78 + 1.39 + 0.62 + 1.37
ChrF++ 14.77 + 0.82 + 0.28 + 0.75 15.12 + 0.40 + 0.20 + 0.71 25.11 + 2.37 + 0.07 + 2.39 9.68 + 0.25 + 0.37 + 0.47 16.78 + 1.39 + 0.62 + 1.37
COMET 81.55 + 1.03 - 0.62 + 1.23 83.88 + 0.68 + 0.04 + 0.80 82.55 + 1.22 - 0.70 + 1.23 84.42 + 0.81 + 0.02 + 1.26 82.72 + 1.14 - 2.08 + 1.29
ter 102.45 - 0.92 - 0.37 - 0.91 95.18 - 0.69 - 0.42 - 0.97 89.07 - 2.93 - 0.28 - 2.99 100.30 - 0.43 - 0.58 - 0.72 96.28 - 1.73 - 0.84 - 1.69

gpt-4o-mini

BLEU 14.37 + 0.53 - 0.42 + 0.61 17.21 + 1.22 + 1.39 + 1.34 24.45 + 4.38 + 1.28 + 3.40 10.55 + 0.05 + 0.03 + 0.01 18.02 + 1.52 + 0.40 + 1.60
ChrF 14.82 + 0.55 - 0.42 + 0.63 17.93 + 1.23 + 1.39 + 1.37 25.04 + 4.40 + 1.31 + 3.45 10.99 + 0.06 + 0.03 + 0.03 18.44 + 1.52 + 0.40 + 1.62
ChrF++ 14.82 + 0.55 - 0.42 + 0.63 17.93 + 1.23 + 1.39 + 1.37 25.04 + 4.40 + 1.31 + 3.45 10.99 + 0.06 + 0.03 + 0.03 18.44 + 1.52 + 0.40 + 1.62
COMET 83.56 + 0.86 - 0.19 + 0.93 86.08 + 0.25 - 0.13 + 0.07 84.75 + 0.33 - 1.03 + 0.13 87.91 + 0.16 - 0.01 + 0.19 84.92 + 0.44 - 2.02 + 0.49
ter 102.33 - 1.04 + 0.25 - 1.16 93.01 - 2.23 - 2.45 - 2.24 89.16 - 5.36 - 1.80 - 4.21 98.39 - 0.07 - 0.13 - 0.06 94.40 - 1.81 - 0.51 - 1.93

nllb

BLEU 15.42 - 0.31 - 0.77 + 0.29 10.24 + 2.19 + 2.07 + 3.10 22.68 + 2.73 + 0.90 + 3.40 8.24 + 1.08 + 0.88 + 1.21 19.18 - 0.10 - 0.24 + 1.44
ChrF 15.95 - 0.32 - 0.77 + 0.30 10.82 + 2.26 + 2.16 + 3.21 23.33 + 2.77 + 0.91 + 3.43 8.61 + 1.11 + 0.93 + 1.27 19.63 - 0.07 - 0.20 + 1.50
ChrF++ 15.95 - 0.32 - 0.77 + 0.30 10.82 + 2.26 + 2.16 + 3.21 23.33 + 2.77 + 0.91 + 3.43 8.61 + 1.11 + 0.93 + 1.27 19.63 - 0.07 - 0.20 + 1.50
COMET 81.23 + 1.28 - 0.50 + 1.99 80.19 + 1.61 + 0.38 + 2.84 78.70 + 3.81 - 1.59 + 1.62 83.05 + 1.71 + 0.70 + 2.55 80.46 + 2.80 - 2.38 + 1.63
ter 101.29 + 0.17 + 0.71 - 0.47 101.05 - 2.45 - 2.59 - 3.46 91.40 - 3.07 - 0.89 - 4.01 101.41 - 1.31 - 0.86 - 1.28 93.26 + 0.27 + 0.37 - 1.58

seamless

BLEU 15.38 + 1.09 + 0.45 + 1.66 13.67 + 1.10 + 0.73 + 1.99 24.34 + 5.21 + 1.49 + 5.35 9.42 + 0.56 + 0.42 + 0.91 18.43 + 0.95 + 0.35 + 1.70
ChrF 15.90 + 1.10 + 0.46 + 1.68 14.34 + 1.08 + 0.72 + 2.05 25.05 + 5.25 + 1.50 + 5.37 9.91 + 0.55 + 0.41 + 0.91 18.88 + 0.97 + 0.37 + 1.73
ChrF++ 15.90 + 1.10 + 0.46 + 1.68 14.34 + 1.08 + 0.72 + 2.05 25.05 + 5.25 + 1.50 + 5.37 9.91 + 0.55 + 0.41 + 0.91 18.88 + 0.97 + 0.37 + 1.73
COMET 81.96 + 1.18 - 0.39 + 1.72 80.70 + 2.18 + 0.16 + 2.95 83.76 + 0.97 - 0.94 + 0.88 83.70 + 0.88 + 0.10 + 1.81 83.12 + 1.50 - 1.79 + 1.70
ter 101.34 - 1.48 - 0.77 - 2.19 97.26 - 1.76 - 1.07 - 2.62 89.75 - 6.47 - 2.12 - 6.61 100.59 - 1.35 - 1.15 - 1.77 94.15 - 1.03 - 0.38 - 2.03

Table 15: Full evaluation results across five models and five languages using BLEU, ChrF, ChrF++, COMET, and
TER. The first black value in each column represents direct translation scores. The second, third, and fourth values
(colored red or green) indicate the relative change in performance when applying the prompting-powered refinement
method, the word alignment method, and post-hoc prompting after word alignment for improved morphological and
grammatical correctness, respectively, compared to direct translation. Lower TER scores indicate better alignment
with the reference.



Figure 14: Arabic translation examples of the two integration cases on nllb, including one good example and one
bad example for each case.



Figure 15: Chinese translation examples of the two integration cases on nllb, including one good example and one
bad example for each case.



Figure 16: French translation examples of the two integration cases on nllb, including one good example and one
bad example for each case.



Figure 17: Japanese translation examples of the two integration cases on nllb, including one good example and one
bad example for each case.



Figure 18: Russian translation examples of the two integration cases on nllb, including one good example and one
bad example for each case.
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