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Abstract

The widespread practice of fine-tuning large lan-
guage models (LLMs) on domain-specific data
faces two major challenges in memory and pri-
vacy. First, as the size of LLMs continues to
grow, the memory demands of gradient-based
training methods via backpropagation become
prohibitively high. Second, given the tendency
of LLMs to memorize training data, it is impor-
tant to protect potentially sensitive information
in the fine-tuning data from being regurgitated.
Zeroth-order methods, which rely solely on for-
ward passes, substantially reduce memory con-
sumption during training. However, directly com-
bining them with standard differentially private
gradient descent suffers more as model size grows.
To bridge this gap, we introduce DPZERO, a
novel private zeroth-order algorithm with nearly
dimension-independent rates. The memory effi-
ciency of DPZERO is demonstrated in privately
fine-tuning RoBERTa and OPT on several down-
stream tasks. Our code is available at https:
//github.com/Liangl37/DPZero.

1. Introduction

Fine-tuning pretrained large language models (LLMs), such
as BERT (Devlin et al., 2019; Liu et al., 2019b; Sanh et al.,
2019), OPT (Zhang et al., 2022b), LLaMA (Touvron et al.,
2023a;b), and GPT (Radford et al., 2018; Brown et al.,
2020; Ouyang et al., 2022; OpenAl, 2023), achieves state-
of-the-art performance in a wide array of downstream ap-
plications. However, two significant challenges persist in
practical adoption: memory demands for gradient-based
optimizers and the need to safeguard the privacy of domain-
specific fine-tuning data.
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As the memory requirement of fine-tuning LLMs is increas-
ingly becoming a bottleneck, various approaches have been
proposed, spanning from parameter-efficient fine-tuning
(PEFT) (Li & Liang, 2021; Hu et al., 2022) to novel op-
timization algorithms (Shazeer & Stern, 2018; Anil et al.,
2019). Since these methods rely on backpropagation to
compute the gradients, which can be memory-intensive,
a recent trend has emerged in developing algorithms that
do not require backpropagation (Baydin et al., 2022; Sil-
ver et al., 2022; Hinton, 2022; Hou et al., 2023; Phang
et al., 2023; Chen et al., 2024a). Specifically for LLMs,
Malladi et al. (2023) introduced zeroth-order methods for
fine-tuning, thereby eliminating the backward pass and free-
ing up the memory for gradients and activations. Utilizing
a single A100 GPU (80 GiB memory), zeroth-order meth-
ods are capable of fine-tuning a 30-billion-parameter model,
whereas first-order methods, even equipped with PEFT, fail
to fit into the memory for a model with more than 6.7 billion
parameters. This greatly expands the potential for deploying
and fine-tuning LLMs even on personal devices.

On the other hand, empirical studies have highlighted the
risk of LLMs inadvertently revealing sensitive information
from their fine-tuning datasets (Mireshghallah et al., 2022;
Zeng et al., 2023; Mattern et al., 2023; Lukas et al., 2023).
Such privacy concerns are pronounced especially when
users opt to fine-tune LLMs on datasets of their own. No-
tably, the expectation that machine learning models should
not compromise the confidentiality of their contributing en-
tities is codified into legal frameworks (Voigt & Von dem
Bussche, 2017). Differential privacy (DP) (Dwork et al.,
2006) is a widely accepted mathematical framework for
ensuring privacy by preventing attackers from identifying
participating entities (Shokri et al., 2017). Consequently,
the development of methods that fine-tune LLMs under dif-
ferential privacy is of pressing necessity (Li et al., 2022b;
Yu et al., 2022; He et al., 2023; Bu et al., 2023b; Du et al.,
2023); however, most efforts so far have focused on first-
order algorithms.

Motivated by the memory-hungry nature and privacy con-
cerns in fine-tuning LLMs, we investigate zeroth-order meth-
ods that guarantee differential privacy for solving the fol-
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lowing stochastic optimization problem:

. 1
min Fs(z) := ;f(x,&) : M
where S = {1}, is the training data, z € R? is the
model weight, the loss f(z;¢;) is Lipschitz for each sam-
ple &;, and the averaged loss Fs(x) is smooth and possibly
nonconvex. In theory, previous work on both differentially
private optimization (Bassily et al., 2014) and zeroth-order
optimization (Duchi et al., 2015) indicated that their con-
vergence guarantees depend explicitly on the dimension
d. Such dimension dependence becomes problematic in
the context of LLMs with d scaling to billions. In prac-
tice, and somewhat surprisingly, empirical studies on the
fine-tuning of LLMs using zeroth-order methods (Malladi
et al., 2023) and DP first-order methods (Yu et al., 2022; Li
et al., 2022b;a) have shown that the performance degrada-
tion due to the large model size is marginal. For example,
Yu et al. (2022) showed that the performance drop due to pri-
vacy is smaller for larger architectures. A 345 million-sized
GPT-2-Medium, fine-tuned with (¢ = 6.8,6 = 10~°)-DP,
showcases a modest drop of 5.1 in BLEU score (Papineni
et al., 2002) (compared to a non-private model of the same
size and architecture), whereas a larger GPT-2-XL with 1.5
billion parameters exhibits smaller cost in test performance,
i.e., 4.3 BLEU score under the same privacy budget.

This gap between theory and practice has been linked to
the presence of low-rank structures in the fine-tuning of
pretrained LLMs (Malladi et al., 2023; Li et al., 2022a).
Empirical evidence suggests that fine-tuning occurs within
a low-dimensional subspace (Sagun et al., 2017; Gur-Ari
et al., 2018; Ghorbani et al., 2019; Li et al., 2018): 200 di-
mensions for ROBERTa with 355 million parameters (Agha-
janyan et al., 2021) and 100 dimensions for PEFT on Distil-
RoBERTa with 7 million parameters (Li et al., 2022a). In
such cases where the intrinsic dimension is small, zeroth-
order methods are known to achieve dimension-independent
convergence rate (Malladi et al., 2023) and private first-order
methods are also known to achieve dimension-independent
guarantees (Ma et al., 2022; Li et al., 2022a).

Given the significance of fine-tuning LLMs on domain-
specific datasets, we ask the following fundamental question:
Can we achieve a dimension-independent rate both under
differential privacy and with access only to the zeroth-order
oracle? Our contributions are summarized below.

e We first show that the straightforward approach — that
combines DP first-order methods with zeroth-order gradient
estimators (Algorithm 1) — exhibits an undesirable dimen-
sion dependence in the convergence guarantees, even when
the effective rank of the problem does not scale with the
dimension (Theorems 1 and 2 in Section 3). There are two

root causes. First, the standard practice of choosing the clip-
ping threshold to be the maximum norm of the estimated
sample gradient leads to an unnecessarily large threshold.
Next, this choice of the clipping threshold forces the addi-
tion of a large noise to ensure privacy, and Algorithm 1 adds
that noise in all d directions.

e We present DPZERO (Algorithm 2), the first nearly
dimension-independent DP zeroth-order method for stochas-
tic optimization. Its convergence guarantee depends on the
effective rank of the problem (specified in Assumption 3.5)
and exhibits logarithmic dependence on the dimension d
(Theorem 3 in Section 4). This builds upon two insights.
First, the direction of the estimated gradient is a public in-
formation and does not need to be private; it is sufficient to
make only the magnitude of the estimated gradient private,
which is a scalar value. Next, we introduce a tighter analy-
sis that allows us to choose a significantly smaller clipping
threshold, leveraging the fact that the typical norm of the
estimated gradient is much smaller than its maximum.

o We verify the effectiveness of DPZERO in both synthetic
examples and private fine-tuning tasks on ROBERTa (Liu
et al., 2019b) and OPT (Zhang et al., 2022b). In contrast to
first-order algorithms that demand extensive effort for the
efficient implementation of per-sample gradient clipping (Li
et al., 2022b; He et al., 2023; Bu et al., 2023b), DPZERO
offers the advantage of near-zero additional costs compared
to non-private zeroth-order methods (Malladi et al., 2023).
Our empirical results validate theoretical findings, revealing
only a slight performance decrement for DPZERO even with
large model sizes.

1.1. Related Works

We build upon exciting advances in zeroth-order optimiza-
tion and differentially private optimization, which we survey
here. Notably, DPZERO is inspired by new empirical and
theoretical findings showing that fine-tuning LLMs does not
suffer in high-dimensions when using zeroth-order methods
in Malladi et al. (2023) or using private first-order optimiza-
tion in Li et al. (2022a). Due to space limitation, a more
comprehensive overview is deferred to Appendix A.

Zeroth-order optimization. Nesterov & Spokoiny (2017)
pioneered the formal analysis of the convergence rate of
zeroth-order methods, i.e., zeroth-order (stochastic) gradient
descent (ZO-SGD) that replaces gradients in SGD by their
zeroth-order estimators. Their findings are later refined
by several works (Ghadimi & Lan, 2013; Shamir, 2017;
Lin et al., 2022). These well-established results indicate a
runtime complexity O(d) worse than first-order methods.
Such dimension dependence of zeroth-order methods is
proven inevitable without additional structures (Wibisono
et al., 2012; Duchi et al., 2015).
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There are several recent works that relax the dimension
dependence in zeroth-order methods leveraging problem
structures. Balasubramanian & Ghadimi (2018) demon-
strated that ZO-SGD can directly identify the sparsity of the
problem and proved a dimension-independent rate when the
support of gradients remains unchanged. Yue et al. (2023)
and Malladi et al. (2023) relaxed the dependence on dimen-
sion d to a quantity related to the trace of the loss’s Hessian.

Differentially private optimization. Previous works on
DP optimization mostly center around first-order methods.
When the problem is nonconvex, i.e., the setting of our
interest, differentially private (stochastic) gradient descent
(DP-GD) achieves a rate of O(y/dlog(1/d)/(ne)) on the
squared norm of the gradient (Wang et al., 2017; Zhou et al.,
2020). We show that DPZERO matches this rate with access
only to the zeroth-order oracle in Theorem 3. Given access
to the first-order oracle, it has been recently shown that
such rate can be improved to O((y/dlog(1/8)/(ne))*/?)
leveraging momentum (Tran & Cutkosky, 2022) or variance
reduction techniques (Arora et al., 2023).

Early works established dimension-independent rates when
the gradients lie in some fixed low-rank subspace (Jain
& Thakurta, 2014; Song et al., 2021). Closest to our re-
sult is Song et al. (2021), which demonstrated that the
rate of DP-GD for smooth nonconvex optimization can be
improved to O(y/7log(1/d)/(ne)) for generalized linear
models (GLMs) with a rank-r feature matrix. DPZERO
matches this result with access only to the zeroth-order
oracle in Theorem 3 for more general problems beyond
low-rank GLMs. Our result is inspired by Li et al. (2022a)
that introduced a relaxed Lipschitz condition for the gradi-
ents and provided dimension-free bounds when the loss is
convex and the relaxed Lipschitz parameters decay rapidly.
Similarly, Ma et al. (2022) suggested that the dependence
on d in the utility upper bound for DP stochastic convex
optimization can be improved.

Literature on DP optimization beyond first-order methods re-
mains less explored. Recently, Zhang et al. (2024a) studied
the problem of private zeroth-order nonsmooth nonconvex
optimization and achieved a rate that depends on the dimen-
sion d. As far as we are aware, no prior studies have ad-
dressed the challenge of deriving a dimension-independent
rate in DP zeroth-order optimization.

After the workshop version of our paper (Zhang et al., 2023)
was released, Tang et al. (2024a) concurrently discovered the
same algorithm as DPZERO (up to a minor difference in how
uy 1s drawn) and showed empirical benefits when applied
to fine-tuning OPT models but without theoretical analysis.
Also building upon the workshop version of our paper, Liu
et al. (2024) introduced DP-ZOSO, a stage-wise zeroth-
order method with an additional quadratic regularizer. With

extra hyper-parameters to be tuned, DP-ZOSO demonstrates
further empirical gain over DPZERO. However, Liu et al.
(2024) only provided dimension-dependent guarantees.

2. Preliminaries

Notation. We use ||-|| for the Euclidean norm and define
vl = v Wu for a square matrix W. S ! = {z €
R?|||lz|| = 1} denotes the unit sphere in R?, and 7 S¢~!
is the sphere of radius > 0. A function p : R? — R is
L-Lipschitz if [p(xz1) — p(a2)| < Lljzy — x2||, Va1, 2. A
function ¢ : R? — R is /-smooth if it is differentiable and
IVq(x1) — Vg(x2)|| < £]|z1 — x2||. The trace of a square
matrix J is denoted by Tr(J). A symmetric real matrix
M > 0if it is positive semi-definite. The clipping operation
is defined to be clip(z) =  min{1, C/||x||} given C' >
0. The notation O(-) hides additional logarithmic terms.

2.1. Differential Privacy

Definition 2.1 (Differential Privacy (Dwork et al., 2006;
2014)). Two datasets S = {{;}i; and S’ = {&/}I-, are
neighboring if max{|S \ S’|,|S’ \ S|} = 1, and we denote
itby S ~ S’. For prescribed ¢ > 0 and 6 € (0,1), an
algorithm A is said to satisfy (e, §)-differential privacy (DP)
if P(A(S) € B) < e*P(A(S’") € B)+ 6 forall S ~ S” and
all measurable set 53 in the range of .A.

To ensure DP while solving the optimization problem in
Eq. (1), first-order approaches, such as DP-GD, update via
T = wp — o((1/n) 35 clipo(Vf(2456:)) + 20); see
e.g., (Song et al., 2013; Abadi et al., 2016). Through the
following composition lemma (Kairouz et al., 2015, Theo-
rem 4.3), the privacy for entire 7" updates is secured by the
per-sample clipping operation that ensures finite sensitivity
of A = 2C/n together with the Gaussian noise z;.

Lemma 2.2 (Advanced Composition). Let A be some
randomized algorithm operating on a dataset S and
outputting a vector in R% If A has sensitivity
A = supg.g||A(S) — A(S")|, the mechanism that
adds Gaussian noise N(0,0°1;) with variance o? =
(2A4/2T log(e + (¢/9))/e)? satisfies (¢,0)-DP under T-
fold adaptive composition for any € > 0 and § € (0,1).

2.2. Zeroth-Order Optimization

When the gradient is expensive to compute, zeroth-order
methods are useful for optimizing Eq. (1). For example,
the two-point gradient estimator below requires only two
evaluation of function values (Shamir, 2017)

@& = f(x+)\U;fi)2_/\f($_>‘u§§i)u7 ?)
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Algorithm 1 DP-GD with Oth-order gradients (DPGD-0th)

Input: Dataset S = {&;,--- ,&,}, initialization xy € R9,
number of iterations 7, stepsize o > 0, smoothing
parameter A > 0, clipping threshold C' > 0, privacy
parameters € > 0,6 € (0,1).

1: fort=0,1,--- , T —1do
2:  Sample u; uniformly at random from the Euclidean
sphere v/dS% ! and forall i = 1, - - - ,n compute

[+ Aug; &) — floe — Augs &)
2\

g)\(ﬂft;fi) — Ut.

3:  Sample z; € R randomly from the multivariate
Gaussian distribution AV(0, 01 ;) with variance o =
4C+/2T log(e + (¢/5))/(ne) and update

1 n )
Ti41 & Ty — Oé(ﬁ Z; Clch(gf\(xt;&)) + Zt)-

4: end for
Output: x, for 7 sampled uniformly at random from
{0,1,---, T —1}.

where u is sampled uniformly from the Euclidean sphere
V/dS? 1 and A > 0 is the smoothing parameter (Yousefian
et al., 2012; Duchi et al., 2012). A common approach to
generate u is to set u = \/d z/||z||, with z sampled from
the standard multivariate Gaussian N (0, I4) (Muller, 1959;
Marsaglia, 1972). We refer to g (z;€) as the zeroth-order
gradient (estimator) in the sequel. The results in this paper
can be directly extended to other zeroth-order gradient es-
timators, e.g., any u satisfying E[uu"] = I (Duchi et al.,
2015), the one-point estimator (Flaxman et al., 2005), and
the directional derivative (Nesterov & Spokoiny, 2017).

3. DP-GD with Zeroth-Order Gradients
Suffers in High Dimensions

In this section, we show that the direct integration of zeroth-
order gradient estimators in Eq. (2) into DP-GD, which we
term DPGD-O0th, leads to undesirable dimension dependence
in the error rate. Such dependence persists even under a low
effective rank assumption.

3.1. Direct Integration Leads to an O(d%/?) Rate

We present in Algorithm 1 the straightforward private zeroth-
order approach that substitutes the gradients in DP-GD with
zeroth-order estimators g (z¢; &;) in Eq. (2).

The privacy guarantee follows from standard DP-GD analy-
sis, and the utility guarantee on the squared gradient norm is
derived from classical techniques for analyzing zeroth-order

methods (Nesterov & Spokoiny, 2017). Before presenting
the convergence result, we make the following standard as-
sumption, which is common in nonconvex DP optimization
(Wang et al., 2017; 2019; Tran & Cutkosky, 2022).

Assumption 3.1. The loss f(x; ) is L-Lipschitz for every £.
The average loss Fs(x) is £-smooth for every given dataset
S, and its minimum F§ := min,cga Fg(z) is finite.

Theorem 1. Foranye > 0and § € (0, 1), Algorithm 1 is

(e,0)-DP. Under Assumption 3.1, its output x, satisfies that
E[|VFs(ar)|?] <

dlog(e + (/3))

16((Fs(eo) — F3) 0 +222)

with the choice of parameters

o — L T ne
40d’ Vdlog(e + (£/5))

A

AL r+/dlog(e + (/0))\1/2
< = = Ld.
- éd( ne ) , O=1Ld

The total number of zeroth-order gradient computations is

nT = O(n*/V/d).

Remark 3.2. Theorem 1 demonstrates that directly combin-
ing DP-GD with zeroth-order gradients leads to an O(d>/?)
error complexity, which is O(d) worse than first-order DP
approaches (Wang et al., 2017).

Remark 3.3. Three sources contribute to the dependence
in d: the squared norm of the zeroth-order gradient es-
timator E[|[(1/n) S0, gx(2,6)[?] = O(d |V Es(@)||?)
when taking A — 0 for simplicity, the clipping threshold
C = O(d), and the norm of the privacy noise E[||z?] =
O(dC?) = O(d?). The standard analysis of one-step up-
date gives
E[Fs(zi41)] < E[Fs(x)]

- %(1 —2dLa) E[||[VFs(zy)|]?] + ca® d?, X
where c is a constant that depends on problem parame-
ters other than « and d; see Eq. (12) for details. A small
enough step size, o < 1/(2¢d), is required to make the sec-
ond term negative, where the dependence in d comes from
E[[|(1/n) 31, gx(w,&)|]?]. The dependence on d? in the
last term arises from E[||z|?], which leads to the O(d®/?)
rate in Eq. (3) after balancing error terms. Detailed proofs
can be found in Appendix D.

Remark 3.4. The choice of the clipping threshold C' =
Ld ensures that clipping does not happen with probability
one, which is a common choice in the theoretical analysis
of private optimization algorithms (Bassily et al., 2014;
2019; Wang et al., 2017). This follows from the fact that,
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for L-Lipschitz f(x; &), the zeroth-order gradient is upper
bounded by ||gx(x; &)|| < Ld almost surely. Selecting the
clipping threshold without knowledge of this upper bound
remains an active research topic (Chen et al., 2020; Yang
et al., 2022; Fang et al., 2023; Koloskova et al., 2023; Zhang
et al., 2024b).

3.2. Rate Improves to O(d) under Low Effective Rank

Here, under the low-dimensional structures in fine-tuning
LLMs (cf. Section 1), we demonstrate improved perfor-
mance for Algorithm 1. Unfortunately, a linear dependence
in d still persists even under the low effective rank structure.

Assumption 3.5. The function f(x; &) is L-Lipschitz and
£-smooth for every £. The average function Fg(x) is twice
differentiable with —H < V2Fg(z) < H for any x € R4,
and its minimum FJ := min,cra Fg(x) is finite. Here, the
real-valued d x d matrix H > 0 satisfies that || H || < ¢ and
Tr(H) < r||H||2. We refer to r as the effective rank or the
intrinsic dimension of the problem.

Assumption 3.5 boils down to Assumption 3.1 if » = d.
This is because —H' < V2?Fg(z) < H',Vx € R? and
H' = (1, imply that ||H'||2 < ¢ and Tr(H') < d||H’||s.
With r < d, this assumption reflects the additional struc-
tures encoded in the Hessian matrix. While Assumption
3.5 naturally holds for low-rank Hessians, it covers more
general cases. For example, the assumption is satisfied with
r = O(log d) < d in the case of a full-rank matrix H, with
its i-th largest eigenvalue being ¢/i for 1 < i < d.

Similar assumptions have been made to relax the dimension
dependence in zeroth-order optimization in the limit A — 0
(Malladi et al., 2023) and also for DP first-order optimiza-
tion when the objective is smooth and convex (Ma et al.,
2022). However, even under Assumption 3.5, DPGD-0th
(Algorithm 1) still suffers from a linear dependence in d in
its error rate, as presented below. A proof is provided in
Appendix D.

Theorem 2. Foranye > 0and 6 € (0,1), Algorithm 1 is

(e,0)-DP. Under Assumption 3.5, its output x, satisfies that
E[|VFEs(z-)[] <

rlog(e + (e/0))

16((Fs(zo) — F3) 0+ 222)

with the choice of parameters

__ Lo nlrt?e
TMr+2) T dyrlogle+ (2/9)

rlog(e + (¢/4))

ne

)\<4L(

< )1/27 C = Ld.

The total number of zeroth-order gradient computations is

nT = O(n?\/r/d).

Remark 3.6. Comparing to Remark 3.3, both the zeroth-
order gradient, E[|[(1/n) Y"1, gx(2+; &)%), and the DP
noise, E[||2¢||%], decrease by a factor of O(r/d) under low
effective rank. This is made precise in Lemma C.1. As a
result, the one-step update analysis can be tightened as

E[Fs(z¢41)] < E[Fg(a)]

- %(1 —2(r +2)La) E[||VEs(2)||*] + ca®rd®. ©
Comparing to the RHS of Eq. (4), it achieves an improved
dependence in d. However, the third term in Eq. (6) is still
at O(d?) due to the clipping threshold C' = O(d). Conse-
quently, even when the effective rank r is small, Eq. (5) still
grows linearly in d.

4. DPZero: Nearly Dimension-Independent
Private Zeroth-Order Optimization

A straightforward combination of DP-GD and zeroth-order
methods has a large dimension dependence. Our novel
DPZERO overcomes this issue with two key insights elabo-
rated below.

Scalar privacy noise. By decoupling zeroth-order gra-
dients in Eq. (2) into direction and magnitude, our key
observation is that the direction, u;, is public knowledge,
and we only need to make the magnitude private. Pri-
vacy can be guaranteed by clipping the finite-difference,
(f(xe + Aug; &) — f(ze — Aug; &))/(2M), and then adding
a scalar noise z;; see line 3 of Algorithm 2. This change,
when applied to Algorithm 1, can significantly improve the
rate in Eq. (5) by a factor of d'/2.

Tighter clipping threshold. Another factor of d'/? im-
provement originates from a tighter analysis on the upper
bound of the finite-difference term. Although its worst-case
upper bound scales with the dimension d, this only happens
with an exponentially small probability over the randomness
of u;. As proved in Eq. (16) in Appendix E, the size of the
finite-difference is

|[f (e + Aug; &) — e = Mg &)
2 -
[l Ve €)l + 5N

where we use the assumption that each f(x; &) is £-smooth.
When w; is sampled from the sphere v/d S*~, a tail bound
(part (i¢) of Lemma C.1 in the appendix) implies that

02
P (‘utTVf(l"tyfz)’ > C) <2V2m exp ( - @)
By selecting the smoothing parameter A to be sufficiently
small, a careful choice of C' = O(L), which is nearly inde-
pendent of d, can ensure that clipping does not occur with a
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Algorithm 2 DPZERO

Input: Dataset S = {1, ,&,}, initialization 2y € RY, number of iterations 7', stepsize « > 0, smoothing parameter
A > 0, clipping threshold C' > 0, privacy parameters ¢ > 0,9 € (0, 1).

1: fort=0,1,--- , T — 1do

2:  Sample u; uniformly at random from the Euclidean sphere v/d S¢~ .
3:  Sample a scalar z; € R randomly from the univariate Gaussian distribution A/(0,02) with variance 0 =

4C+/2T log(e + (¢/0))/(ne) and update the parameter

I f(ze + dug; &)
e a—a(=>d (
Ti41 Tt Oé(n 2 clip~

4: end for

Output: . for 7 sampled uniformly at random from {0, 1, - - -

2)\f(éﬂt - AU&&)) n Zt)ut~

T —1}.

high probability. This choice is significantly smaller than the
worst-case clipping threshold of Ld'/?. The main technical
challenge is that we need to analyze the algorithm given the
event that clipping does not happen. The choice of drawing
u,; from the uniform distribution over the sphere, together
with corresponding tail bounds in Appendix C, allows us to
prove the following nearly dimension-independent bound
under the low effective rank structure in Assumption 3.5. A
proof is provided in Appendix E.

Theorem 3. For any ¢ > 0 and 6 € (0,1), Algo-
rithm 2 is (¢,0)-DP. Under Assumption 3.5, suppose
maxo<<7|Fs(x;)| < B, the output x, satisfies that

E[|VFs(z,)]?] < ©)

(64((Fs(a:o) — FH) 0+ i?) + QLz) rlog(zj (5/5))7

where we define

221 n3e?(r + 2)(d + 8(B(r + 2)/L2)>

L? =17 log ( rlog(e + (£/6))

and choose the parameters to be

B 1 _ n(r+2)e _4f
40(r +2)’ 4y/rlog(e + (¢/6))’ ’

A< min {42 - VB)L, = (VIREELERN T,

The total number of zeroth-order gradient computations is

nT = O(n?y/r).

Remark 4.1. Algorithm 2 is nearly dimension-independent,
given its logarithmic dependence on d. To the best of our
knowledge, this is the first zeroth-order DP method that is
nearly dimension-independent. This feature is significantly
beneficial for fine-tuning pretrained LLMs where the effec-
tive rank has been observed to be quite small (Aghajanyan
et al., 2021; Li et al., 2022a). When » = d, our rate in

Table 1. The dependence of the error rate on dimension d and effec-
tive rank r shows that the proposed DPZERO (Alg. 2) significantly
outperforms DPGD-0th (Alg. 1) and achieves performance close to
the popular first-order method, DP-GD, on both scenarios with and
without a low-effective rank assumption. Note that the error rates
of zeroth and first-order DP methods are achieved with different
number of iterations.

w/o Asmp. 3.5  with Asmp. 3.5

DPGD-0th O(dv/d) O(dy/r)
DPZERO  O((logd)vd)  O((logd)/7)
DP-GD O(Vd) O(Vr)

Eq. (7) nearly matches that of the best known achievable
bound of the first-order method DP-GD for smooth noncon-
vex losses (Wang et al., 2017). When the effective rank r
is smaller, this algorithm achieves O(+/7log(1/8)/(ne))
squared gradient norm. Similar dimension-free error rate is
established for DP-GD on unconstrained generalized linear
losses (Song et al., 2021), with a dependence on the rank
of the feature matrix. Table 1 provides a summary on how
DPZERO depends on dimension d and effective rank r.

Remark 4.2. The RHS of Eq. (7) improves upon Eq. (5)
of Algorithm 1 by a factor of d. Simplifying our analy-
sis in Eq. (22) and conditioned on the event that the clip-
ping does not happen, we get a similar one-step update
analysis as Eq. (6) (see Eq. (22) and (23) for a precise in-
equality). However, since the privacy noise z; is a scalar
and the clipping threshold has been reduced, we have that
E[||z:u¢]|%] = O(r) is nearly independent of the dimension
d, and thus the final error scales as O(r/2).

Remark 4.3. The strategy of appropriately selecting the
clipping threshold to ensure that clipping occurs with low
probability is commonly applied in the analysis of private
algorithms (Fang et al., 2023; Shen et al., 2023). Adaptive
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Figure 1. Experiments on the quadratic loss with effective rank Tr(A) (Assumption 3.5). For three different modes of the effective rank,
we demonstrate how the norm of the test gradient depends on the problem dimension. DPGD-0th (Algorithm 1) has a strong dimension
dependence regardless of the effective rank, while DPZERO (Algorithm 2) achieves dimension-independent performance when effective
rank is small (right panel), similar to the standard first-order method DP-GD.

choices of clipping thresholds can provably improve error
rates for certain problems including PCA (Liu et al., 2022)
and linear regression (Liu et al., 2023c). One technical chal-
lenge in the choice of the clipping threshold in DPZERO
is that we need the expected one-step progress to be suffi-
cient in Eq. (22). This requires controlling the progress in
the low-probability event that finite difference is clipped.
The fact that ||u,|| is finite with probability one simplifies
the analysis, which is the reason we choose to sample u;
uniformly at random over the sphere. We believe that the
analysis extends to the commonly used spherical Gaussian
random vectors, which we leave as a future research direc-
tion. Table 7 in the appendix supports our hypothesis that
the resulting performances are similar whether Gaussian or
spherical random vectors are used. We choose Gaussian
vectors for our experiments in Section 5 for simplicity.

Remark 4.4. Our theoretical results, including Theorems 1,
2, and 3, can be extended to the setting where the average
loss Fs(x) additionally satisfies the PL inequality (Karimi
et al., 2016; Polyak, 1963; Lojasiewicz, 1963). Under As-
sumption 3.5, DPZERO converges to an optimal solution in
a nearly dimension-independent error rate. See more details
in Appendix F.

Remark 4.5. Per-sample clipping is essential in DP algo-
rithms to ensure bounded sensitivity that determines the
magnitude of the DP noise. Besides the dimension-free er-
ror rates and memory saving of no backpropagation, another
practical merit of DPZERO stems from the significantly
simplified clipping compared with DP-GD. In addition to
the advantage of clipping a scalar function value difference
rather than a gradient vector as required by first-order meth-
ods, the efficiency of DPZERO is mainly attributed to the
low-cost per-sample operations. In DP first-order methods,
clipping is applied to gradients for every sample in a batch.
The straightforward method of performing backward steps

for each sample to compute its gradient loses the benefit of
parallelization, leading to significant memory and runtime
overhead. Despite extensive effort in improving the effi-
ciency of per-sample gradient clipping (Li et al., 2022b; He
et al., 2023; Bu et al., 2023b), these methods still incur extra
costs compared to non-DP algorithms. However, the clip-
ping in DPZERO only involves computing the per-sample
loss from forward steps and incurs no overhead in memory
and runtime. This is straightforward for implementation as
it is directly supported by, e.g., PyTorch, and no additional
techniques are required. DPZERO is thus the first private
method for fine-tuning LLMs that achieves near-zero addi-
tional costs compared to non-DP baselines, which is highly
preferable especially in resource-constrained scenarios.

5. Experiments

We provide empirical results on synthetic problems and
private fine-tuning of language models for sentence clas-
sification and generation tasks. A thorough description
of the experimental settings is available in Appendix B.
All experiments are tested on a single NVIDIA GeForce
RTX 3090 GPU with 24 GiB memory. Code is available at
https://github.com/Liangl37/DPZero.

Synthetic example. Our first evaluation compares the
performance of Algorithm 2 (DPZERO) with Algorithm 1
(DPGD-0th) and DP-GD on problems with different effec-
tive ranks. In particular, we use a quadratic loss

n

. 1 T

min, Fg(z) = o ;(:17 —xz;) Alx —x;),
with three choices of the Hessian matrix, A, whose effective
ranks are designed to be O(d), O(v/d), and O(log d), re-
spectively. All methods are trained with (¢ = 2,6 = 1076)-

DP on a training set {x1,--- ,2,} with n = 10,000 and
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Table 2. Experiments on RoBERTa (355M). We report both mean and standard error of the accuracy (%) across three random seeds.
Zero-shot results with no fine-tuning provide lower bounds (taken from Malladi et al. (2023)), since they can be achieved with no private
data. MeZO is not private and serves as an upper bound of DPZERO. LoRA (Hu et al., 2022) and DP-LoRA adopt AdamW (Loshchilov
& Hutter, 2018) as their optimizer. All first-order methods (AdamW, LoRA, and their private versions) utilize the implementation by Li
et al. (2022b). Thanks to DPZERO, the performance gaps between zeroth and first-order methods are made smaller in private fine-tuning.

Task SST-2 SST-5 SNLI MNLI RTE TREC

Sentiment Natural Language Inference — Topic —
AdamW 93.1+03 566+03 86.4+£08 814+09 83.6£16 95.9£0.2
DP-AdamW (¢ =6) 91.6+1.2 49.0+£03 81.5+14 763+09 773+1.1 89.9+0.8
DP-AdamW (¢ =2) 90.5+15 475+05 746+£10 703+08 72.8+0.9 85.0+0.5
LoRA 93.3+04 553+1.0 859+£07 822407 84.2+04 94.6=+04
DP-LoRA (¢ = 6) 91.0+1.3 488405 81.0+£15 728+18 747£13 89.2£0.8
DP-LoRA (¢ = 2) 90.2+12 4714+04 74.7x£16 65.7£09 6924+11 83.2+£23
MeZO 925+03 508+0.8 804+£06 6924+03 728+£1.0 88.9£0.1
DPZERO (¢ = 6) 922+03 4934+06 77.8£10 674+03 71.9£09 87.6=x£0.9
DPZERO (¢ = 2) 91.8+0.1 4714£09 73.6+£09 627+09 704£07 82.0£1.6

Zero-Shot 79.0 35.5 50.2 48.8 514 32.0

Table 3. Runtime per iteration (s) and memory consumption (MiB)
when fine-tuning RoBERTa (355M) for SST-2. Private methods
in the table ensure (¢ = 2,5 = 10~°)-DP. DPZERO is as mem-
ory and runtime efficient as the non-private zeroth-order method
MeZO (Malladi et al., 2023). First-order methods DP-AdamW
and DP-LoRA (AdamW as the optimizer) both introduce consider-
able memory and runtime overhead compared to their non-private
baselines. All first-order methods use the implementation by Li
et al. (2022b). Comparisons with other implementations of DP
first-order methods can be found in Table 9 in the appendix.

Method Time (s/iter) Memory (MiB)
AdamW 1.25 15820
DP-AdamW 2.12 17126
LoRA 0.821 10366
DP-LoRA 1.05 10496
MeZO 0.345 2668
DPZERO 0.347 2668

evaluated on a test set of the same size. The problem dimen-
sion is increased from 20 to 2,000. We perform a parameter
search and plot the best gradient norm evaluated on the
test set in Figure 1. Every method scales with the dimen-
sion d when the effective rank is d (as in Figure 1(a)), and
DPGD-O0th has the worst performance. When the effective
rank reduces to log d (as in Figure 1(c)), both DP-GD and
DPZERO become nearly dimension-independent, which val-
idates the dimension independence of DPZERO. Appendix
B.1 includes more results measuring the loss and the gradi-
ent norm for both training and test datasets.

Fine-tuning on ROBERTa. Next, we follow the experimen-
tal setting in Malladi et al. (2023) and evaluate DPZERO
on fine-tuning RoBERTa (Liu et al., 2019b) with 355M pa-
rameters across six different sentence classification tasks.
We consider the few-shot scenario with 512 samples per
class. We report the test accuracy for DPZERO trained with
(¢ = {2,6},6 = 1075)-DP and non-private zeroth-order
baseline MeZO (Malladi et al., 2023) and compare them
with first-order methods in Table 2. The memory consump-
tion and per-iteration runtime are shown in Table 3. DP
first-order methods introduce additional overhead in both
memory and runtime compared to non-DP baselines, with
a maximum accuracy drop of 9.5% when ¢ = 6. However,
DPZERO enjoys the same benefit as MeZO on memory effi-
ciency and achieves near-zero additional costs, with at max
only a 2.6% drop in the accuracy. In our experiments, we
notice that the clipping threshold of DPZERO is typically
larger compared to DP first-order methods; see Figure 4 in
the appendix. This is consistent with the results in Theorem
3 regarding the selection of the clipping threshold C'.

Compared with DP first-order methods, the main benefit
of DPZERO is memory efficiency. Such memory savings
are even greater than those observed in non-DP domains,
thanks to DPZERO’s efficient clipping (cf. Remark 4.5). We
note that the aim of Table 3 is to explain that DP first-order
methods need considerable memory and runtime overhead
compared to non-DP methods, while DPZERO does not.
Such comparisons happen between DP and non-DP algo-
rithms, respectively. We do not intend to directly compare
the runtime of DPZERO to DP first-order methods as it
depends on the implementation. In general, zeroth-order
methods require more iterations to attain the same level of
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Table 4. Experiments on OPT for classification tasks. We report mean and standard error of the accuracy (%) across three random seeds.

Model OPT-1.3B OPT-2.7B OPT-6.7B
Task SST-2 BoolQ SST-2 BoolQ SST-2 BoolQ
MeZO 88.2+09 632+08 91.9+£05 65313 93.0+£02 67.4+2.3
DPZERO (¢ =6) 88.2+1.1 624+08 91.5+17 654+16 92.6+0.7 66.8+1.6
DPZERO (¢ =2) 86.8+1.7 61.6£1.1 905+09 63.7+0.7 90.6+£1.3 63.7+0.7
Zero-Shot 53.6 45.3 56.3 47.7 61.2 59.4

Table 5. Experiments on OPT for generation tasks. We report both mean and standard error of the f1 score (%) across three random seeds.

Model OPT-1.3B OPT-2.7B OPT-6.7B
Task SQuAD DROP SQuAD DROP SQuAD DROP
MeZO 73.50+£12 244£02 763+£08 255+£1.2 79.7£11 288+0.7
DPZERO (¢ =6) 72.6+0.8 24.7+10 75715 246+05 79.5+09 284413
DPZERO (¢ =2) 70.1+1.6 239+12 719+12 2314+09 77.1+£1.0 27.6=£0.7
Zero-Shot 26.8 11.1 29.8 9.7 36.5 17.8

performance as first-order methods (Malladi et al., 2023).
In our case, DP first-order methods take 1,000 iterations
while DPZERO need 10,000 iterations. This aligns with
Theorem 3, which states that DPZERO requires O(r) times
more iterations than DP-GD to attain the same level of error
rate, where 7 is the effective rank. However, DPZERO can
still be efficient for large models in terms of GPU hours,
because first-order methods often require communication-
heavy distributed training over more GPUs each with limited
memory; see Appendix F.6 of Malladi et al. (2023).

Fine-tuning on OPT. We also provide experiments on fine-
tuning OPT (Zhang et al., 2022b) in the few-shot setting
to illustrate the scalability of DPZERO. On our device (a
GPU with 24 GiB memory), the largest model that can
fit in for zeroth-order methods is OPT-6.7B, while first-
order methods already run out of memory for OPT-1.3B;
see Table 11 in the appendix for a detailed comparison
of the memory consumption. The results of DPZERO’s
test performance on four downstream tasks are reported in
Tables 4 and 5. DPZERO demonstrates the same level of
scalability as MeZO, with the ability to fine-tune models
wherever MeZO is applicable, and experiences only small
drops in performance due to privacy (up to 0.9% when
€ = 6). Our results indicate the effectiveness of DPZERO
for privately fine-tuning pretrained LL.Ms and confirm that
it does not suffer in high dimensions.

6. Conclusion

DPZERO is proposed to privately fine-tune language models

in a memory efficient manner by avoiding backpropagation.
Theoretically, DPZERO enjoys a provably near dimension-
free rate under low-rank structures, clearing the barriers
for scaling private fine-tuning of LLMs. When deploying
DPZERO, the elimination of gradient computation not only
significantly saves memory, but avoids the overhead in gra-
dient clipping as well. Thus the benefit of using zeroth-order
method is more significant for private optimization. The the-
oretical guarantees on scalability and the practical merits of
DPZERO are validated on private fine-tuning of ROBERTa
and OPT on several downstream tasks.

DPZERO uses the full batch gradient every iteration, and
the analysis guarantees an upper bound on the empirical
average gradient assuming smooth nonconvex objectives.
We defer extensions to the stochastic mini-batch setting,
guarantees on the population loss leveraging the stability of
zeroth-order methods (Nikolakakis et al., 2022), and con-
siderations of other assumptions on objective functions like
convexity or nonsmoothness to future research. We believe
this work opens up a plethora of other prospective directions
in DP zeroth-order optimization. These include, but are not
limited to, understanding advantages of the intrinsic noise
in zeroth-order gradient estimators, discovering other struc-
tural assumptions like the restricted Lipschitz condition (Li
et al., 2022a) for dimension-independent rates, exploring
alternative private mechanisms for the privacy guarantees of
DPZERO (e.g., the Laplace mechanism for pure DP (Tang
et al., 2024a)), and utilizing momentum (Tran & Cutkosky,
2022) or variance reduction (Arora et al., 2023) techniques
for an improved rate and computational complexity.
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A. Additional Related Works

Zeroth-order optimization. Nesterov & Spokoiny (2017) pioneered the formal analysis of the convergence rate of
zeroth-order methods, i.e., zeroth-order (stochastic) gradient descent (ZO-SGD) that replaces gradients in SGD by their
zeroth-order estimators. This is motivated by renewed interest in adopting zeroth-order methods in industry due to, for
example, fast differentiation techniques that require storing all intermediate computations reaching the memory limitations.
Their findings on nonsmooth convex functions are later refined by Shamir (2017). Lin et al. (2022) contributed to further
advancements on nonsmooth nonconvex functions recently. Additionally, Ghadimi & Lan (2013) extended the results for
smooth functions into the stochastic setting. Zeroth-order methods have also been expanded to incorporate approaches
such as coordinate descent (Lian et al., 2016), conditional gradient descent (Balasubramanian & Ghadimi, 2018), variance
reduction techniques (Liu et al., 2018; Fang et al., 2018; Ji et al., 2019), SignSGD (Liu et al., 2019a), and minimax
optimization (Wang et al., 2022). Additionally, zeroth-order methods find applications in fields such as black-box machine
learning (Grill et al., 2015; Chen et al., 2017; 2019), bandit optimization (Flaxman et al., 2005; Shamir, 2017), reinforcement
learning (Salimans et al., 2017; Choromanski et al., 2018; Mania et al., 2018), and distributed learning (Fang et al., 2022;
Zelikman et al., 2023; Xu et al., 2023) to reduce communication overhead.

These well-established results indicate that the norm of the zeroth-order gradient scales with the dimension d and the
required stepsize is d-times smaller than that in first-order gradient-based methods, leading to a d-times increase in the final
time complexity. For example, the convergence rate of gradient descent for minimizing a smooth convex function f(z) is
f(@r) —min,cgra f(x) < O(1/T) where Zr is the average of T iterates (Nesterov, 2003), while the zeroth-order method
only achieves a rate O(d/T). It has been shown that such dimension dependence of zeroth-order methods is inevitable
without additional structures (Wibisono et al., 2012; Duchi et al., 2015).

There are several recent works that relax the dimension dependence in zeroth-order methods leveraging problem structures.
Wang et al. (2018b) and Cai et al. (2022) assumed certain sparsity structure in the problem and applied sparse recovering
algorithms, e.g. LASSO, to obtain sparse gradients from zeroth-order observations. Golovin et al. (2020) analyzed the case
when the objective function is f(Pz) for some low-rank projection matrix P. These works either require the objective or
the algorithm to be modified to have a dimension-independent guarantee. Balasubramanian & Ghadimi (2018) demonstrated
that ZO-SGD can directly identify the sparsity of the problem and proved a dimension-independent rate when the support of
gradients remains unchanged (Cai et al., 2022). Recently, Yue et al. (2023) and Malladi et al. (2023) relaxed the dependence
on dimension d to a quantity related to the trace of the loss’s Hessian.

Differentially private optimization. Previous works on DP optimization mostly center around first-order methods. For
constrained convex problems, tight utility guarantees on both excess empirical (Chaudhuri et al., 2011; Bassily et al., 2014;
Wu et al., 2017; Zhang et al., 2017; Wang et al., 2017) and population (Bassily et al., 2019; 2020; Feldman et al., 2020; Asi
et al., 2021; Kulkarni et al., 2021; Zhang et al., 2022a) losses are well-understood. As an example, a typical result states
that the optimal rate on the excess empirical loss for convex objectives is O(y/dlog(1/0)/(ne)), where (g, d) are privacy
parameters, n is the number of samples, and d is the dimension. The dimension dependence is fundamental as both the upper
bound (Bassily et al., 2014), using differentially private (stochastic) gradient descent (DP-GD) introduced in (Song et al.,
2013), and the lower bound (Bassily et al., 2014), using a reduction to finger printing codes, have the same dependence.

When the problem is nonconvex, i.e., the setting of our interest, DP-GD achieves a rate of O(y/dlog(1/6)/(ne)) on the
squared norm of the gradient (Wang et al., 2017; Zhou et al., 2020). We show that DPZERO matches this rate with access
only to the zeroth-order oracle in Theorem 3. Given access to the first-order oracle, it has been recently shown that such
rate can be improved to O((y/dlog(1/6)/(ne))*/?) leveraging momentum (Tran & Cutkosky, 2022) or variance reduction
techniques (Arora et al., 2023). Further, the convergence to second-order stationary points in nonconvex DP optimization
is studied in (Liu et al., 2023a). Recent advancements in DP optimization have also delved into the understanding of the
potential of public data (Ganesh et al., 2023a; Lowy et al., 2023), the convergence properties of per-sample gradient clipping
(Yang et al., 2022; Fang et al., 2023; Koloskova et al., 2023; Zhang et al., 2024b), and the relaxation of the dimension
dependence in the utility upper bound (Ma et al., 2022; Li et al., 2022a).

Early works established that dimension-independent rates can be attained when the gradients lie in some fixed low-rank
subspace (Jain & Thakurta, 2014; Song et al., 2021). By first identifying this gradient subspace, dimension-independent
algorithms can be designed (Zhou et al., 2021; Kairouz et al., 2021). Closest to our result is Song et al. (2021), which
demonstrated that the rate of DP-GD for smooth nonconvex optimization can be improved to O(+/rlog(1/6)/(ne)) under
certain structural assumptions, i.e., for generalized linear models (GLMs) with a rank-r feature matrix. DPZERO matches
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this result with access only to the zeroth-order oracle in Theorem 3 for more general problems beyond low-rank GLMs.
Our result is inspired by Li et al. (2022a) that introduced a relaxed Lipschitz condition for the gradients and provided
dimension-free bounds when the loss is convex and the relaxed Lipschitz parameters decay rapidly. Similarly, Ma et al.
(2022) suggested that the dependence on d in the utility upper bound for DP stochastic convex optimization can be improved
to a dependence on the trace of the Hessian. There is also a line of work on DP Riemannian optimization that achieves
utility bounds dependent on the intrinsic dimension of the manifold (Reimherr et al., 2021; Utpala et al., 2023b;a; Han et al.,
2024). Further exploration of its connection to the low-rank structure in this work is reserved for future.

Literature on DP optimization beyond first-order methods remains less explored. Ganesh et al. (2023b) investigated the
potential of second-order methods for DP convex optimization. Gratton et al. (2021) proposed to use zeroth-order methods
for DP-ADMM (Huang et al., 2019) in distributed learning. They state that the noise intrinsic in zeroth-order methods is
enough to provide privacy guarantee and rely on the output of zeroth-order methods being Gaussian, which is unverified
to the best of our knowledge. Liu et al. (2023b) proposed a private genetic algorithm based on zeroth-order optimization
heuristics for private synthetic data generation. Recently, Zhang et al. (2024a) studied the problem of private zeroth-order
nonsmooth nonconvex optimization and achieved a rate that depends on the dimension d. After the workshop version of
our paper (Zhang et al., 2023) was released, Tang et al. (2024a) concurrently discovered the same algorithm as DPZERO
(up to a minor difference in how u; is drawn) and showed empirical benefits when applied to fine-tuning OPT models but
without theoretical analysis. Also building upon the workshop version of our paper, Liu et al. (2024) introduced DP-ZOSO,
a stage-wise zeroth-order method with an additional quadratic regularizer. With extra hyper-parameters to be tuned, DP-
Z0SO0 demonstrates further empirical gain over DPZERO. However, Liu et al. (2024) only provided dimension-dependent
guarantees. As far as we are aware, no prior studies have addressed the challenge of deriving a dimension-independent rate
in DP zeroth-order optimization.

Other relevant works. Du et al. (2023) introduced a novel noise adding mechanism that happens in the forward pass
of training. Although the algorithm is termed “DP-Forward”, it still requires backpropagation for training. In a separate
context, Bu et al. (2023a) coincidentally proposed DP-ZeRO, a term identical to ours, denoting a private version of the zero
redundancy optimizer (ZeRO) by Rajbhandari et al. (2020) that aims at enhancing memory efficiency in data and model
parallelisms. DP prompt tuning (Hong et al., 2024) and DP in-context learning (Tang et al., 2024b) provide resource-efficient
alternatives compared to private fine-tuning, enabling the private adaptation of pretrained LLMs to specific tasks without
extensive computational demands. Investigating how DPZERO performs relative to these methods and whether different
techniques can be integrated is an interesting research problem. More recently, Chen et al. (2024b) proposed differentially
private algorithms that enforce weight flatness to improve generalization, which can also handle zeroth-order oracles. There
is also another line of research (Guha Thakurta & Smith, 2013; Tossou & Dimitrakakis, 2016; Shariff & Sheffet, 2018) on
the design of differentially private algorithms for the stochastic bandit problem based on upper confidence bound (Auer
et al., 2002). Their algorithms are not directly applicable to our setting.

B. Additional Experiment Details
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Figure 2. Experiments on the quadratic loss with effective rank Tr(A). For three different modes of the effective rank, we increase the
problem dimension and report the best gradient norm evaluated on the training set. Insights for the saturation of DPGD-0th when the
dimension increases can be found in Remark E.5.
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Figure 3. Experiments on the quadratic loss with effective rank Tr(A). For three different modes of the effective rank, we increase the
problem dimension and report the best loss evaluated on both training set ((a), (b), and (c)) and test set ((d), (e), and (f)).

In this section, we discuss our experimental setups in detail.

B.1. Synthetic Example on a Quadratic Loss

Given a training dataset S = {z1,--- ,x, } with each coordinate of ; € R? sampled independently from the Gaussian
N(1,1), we implement DPZERO on the quadratic loss
1 n
] — — . T — .
min, Fs(z) = o ;(x i) Al — x;),

with a fixed Hessian A € R%*< that can be designed to implement different effective ranks 7 = Tr(A)/|| Al|2 according to
Assumption 3.5. We compare DPZERO (Algorithm 2) with DPGD-0th (Algorithm 1) and first-order algorithm DP-GD on
three patterns of the effective rank

(a) Tr(A) = O(d) : A=diag{l,1,---,1};
(b) Tr(A) = O(Vd) : A=diag{1,1/v2, - ,1/Vd};
(c) Tr(A) = O(logd) : A =diag{1,1/2,---,1/d}.

Since ||Al|2 = 1 in all cases, the effective rank » = Tr(A). For each mode of the effective rank, we increase the problem
dimension d from 20 to 2000. We perform a parameter search and plot the best gradient norm evaluated on the training set
(see Figure 2) and a test set that follows the same distribution of the training set (see Figure 1). For completeness, we also
plot both training and test loss in Figure 3. The key hyper-parameters used for the experiments are summarized in Table 6.

In all figures, we observe that the performance of each method is improved with smaller effective rank. For each pattern
of the effective rank, DPGD-0th (Algorithm 1) has the worst performance, while DP-GD consistently achieves the best
results. When the effective rank is d, every method scales with the dimension. When the effective rank improves to log d,
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Table 6. Hyper-parameters used for the synthetic example on the quadratic loss. The number of iterations, stepsize, and clipping threshold
are optimized through a grid search using given values. Other parameters are fixed to the listed values.

Hyper-parameters Values
Number of training samples 10000
Number of test samples 10000
Dimension d {20, 50, 100, 200, 500, 1000, 2000}
Privacy (e=2,6=1079)
Smoothing A (DPZERO and DPGD-0th) 104
Number of iterations {10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120}
Stepsize {1075,3 x 1075,107%,3 x 10~*,0.001,0.003, 0.01,0.03,0.1, 0.3, 1}
Clipping {0.1,0.3,1, 3,10, 30, 100, 300}

DPZERO and DP-GD become nearly dimension-independent, and DPZERO matches the performance of the first-order
method DP-GD. This validates our theoretical findings, as summarized in Table 1, and demonstrates the effectiveness of
DPZERO. We want to mention that a similar set of experiments to verify the performance of DP-GD when dimension
increases was also provided by Li et al. (2022a). Our implementation of this synthetic example is based on their code.

B.2. Private Fine-Tuning of the Language Model RoOBERTa

We follow experiment settings in Malladi et al. (2023) to evaluate the performance of DPZERO in the private fine-tuning of
RoBERTa (Liu et al., 2019b) across six sentence classification datasets: SST-2 and SST-5 (Socher et al., 2013) for sentiment
classification, SNLI (Bowman et al., 2015), MNLI (Williams et al., 2018), and RTE (Dagan et al., 2005; Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009; Wang et al., 2018a) for natural language inference tasks, and TREC
(Voorhees & Tice, 2000) for topic classification. In our experiments, we employ the same prompts as used in Malladi et al.
(2023), which are adapted from Gao et al. (2021).

Implementation details. Our implementation of DPZERO utilizes the codebase provided by Malladi et al. (2023). For
easier implementation and better memory efficiency, we follow Malladi et al. (2023) to sample the zeroth-order direction u;
from the Gaussian distribution NV (0, I) instead of the sphere as stated in Algorithm 2. Table 7 compares the performance of
DPZERO on SST-2 and SST-5 when u;, is sampled from Gaussian and sphere. Given the negligible differences between the
two sampling strategies, we continue with the Gaussian sampling for its simplicity. Another strategy in the implementation
to further save memory involves storing only the random seed for the generation of the zeroth-order direction u,, rather than
the complete vector, and regenerating this direction whenever it’s used. Although DPZERO is stated for the full-batch case
in Algorithm 2, we adopt a mini-batch setting in the experiments.

Table 7. Test accuracy (mean % =+ standard error %) of DPZERO when fine-tuning RoBERTa (355M) for SST-2 and SST-5 with
(¢ = {2,6},6 = 1075)-DP and using different sampling strategies of the zeroth-order update direction u;. No notable difference is
observed when u; is sampled from either the Gaussian distribution or the Euclidean sphere.

Gaussian Sphere
e=6 =2 e=6 =2

SST-2 922+£03 91.8+£01 91.8+£0.1 91.5£0.5
SST-5 493£06 4714+09 499+13 474+£13

Randomness

Hyper-parameter selection. For all experiments, we employ a few-shot setting, utilizing 512 samples per class in the
training set, randomly selected from the original dataset. The test set is also composed of 1000 randomly selected samples
from the original test dataset. We fix the total number of iterations to be 10000, the batch size to be 64, and the smoothing
parameter A\ = 102 for both DPZERO and the non-private zeroth-order baseline MeZO (Malladi et al., 2023). Note that the
original results of MeZO reported in Malladi et al. (2023) run for 100000 iterations. A parameter search of the learning
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Table 8. Hyper-parameters used in DPZERO for fine-tuning RoBERTa (355M). We only optimize the clipping threshold through a grid
search from 50 to 400. Other parameters are fixed to the listed values.

Hyper-parameters Values
Number of training samples 512 per class
Number of test samples 1000
Number of iterations 10000
Batch size 64
Privacy (e =1{2,6},0 =1079)
Smoothing A 1073
Stepsize 10-6
Clipping {50, 100, 150, 200, 250, 300, 400}

rate for MeZO is performed, and it turns out 10~ consistently yields the best performance. We then fix the learning rate
to be 10~ for DPZERO and only search for the clipping threshold for different tasks. There is potential for improved
performance by well-optimizing other hyper-parameters, such as the learning rate and the number of iterations. All results
are averaged through three different random seeds {42, 13, 21} for selecting the few-shot datasets. The hyper-parameters
used for our language model fine-tuning experiments are summarized in Table 8.

Comparison with first-order methods. Regarding the first-order methods, we use the same few-shot setting as before,
and the results are averaged over three different random seeds {42, 13,21}. The number of iterations is set to be 1000, and
the batch size is fixed to be 64. The learning rate is optimized by a grid search over {5 x 107°,107%,5 x 10~%,1073}, and
the clipping threshold is optimized by a grid search over {0.1, 0.5, 1,10}. In the experiments for LoRA, we set the rank to
be 8 and the LoORA a = 16, which remain the same as in the original paper (Hu et al., 2022). All other parameters are fixed
to their default values. In addition to Li et al. (2022b) in Tables 2 and 3, we also compare the performance of DPZERO to
two other implementations of DP first-order methods, Yu et al. (2022) and Bu et al. (2023b), in Table 9. DPZERO achieves
similar performance on SST-2 as DP first-order methods, while saving a significant amount of memory. Such memory
savings are greater than the savings of MeZO (Malladi et al., 2023) over AdamW (Loshchilov & Hutter, 2018) and LoRA
(Hu et al., 2022) (AdamW as the optimizer), due to DPZero’s simpler clipping (cf. Remark 4.5).

Table 9. Test accuracy (%), runtime per iteration (s), and memory consumption (MiB) when fine-tuning RoBERTa (355M) for SST-2.
Private methods in the table guarantee (¢ = 2, = 1075)-DP. A fair comparison is ensured among Li et al. (2022b) and Bu et al. (2023b),
as they are implemented using the same codebase. It is important to note, however, that they cannot be directly compared with those
of Yu et al. (2022), due to differences in implementations. LoRA (Hu et al., 2022) and DP-LoRA use the first-order method AdamW
(Loshchilov & Hutter, 2018) as the optimizer. DP first-order methods introduce considerable overheads in both memory and runtime
compared to their non-DP baselines, while DPZERO does not, thanks to its novel design of the efficient clipping. Also note that such
comparisons between DP and non-DP algorithms are fair since they use the same codebase.

Method Acc. Time (s/iter) Memory (MiB)
AdamW (Li et al., 2022b) 93.1 1.25 15820
DP-AdamW (Li et al., 2022b)  90.5 2.12 17126
DP-AdamW (Bu et al., 2023b)  91.1 1.55 18372
AdamW (Yu et al., 2022) 94.4 0.425 16960
DP-AdamW (Yu et al., 2022)  92.3 2.33 21494
LoRA (Li et al., 2022b) 93.3 0.821 10366
DP-LoRA (Li et al., 2022b) 90.2 1.05 10496
LoRA (Yu et al., 2022) 94.3 0.301 11512
DP-LoRA (Yu et al., 2022) 91.3 0.332 11522
MeZO 92.5 0.345 2668
DPZERO 91.8 0.347 2668
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Figure 4. Experiments on private fine-tuning RoOBERTa (125M) for SNLI with DPZERO. (a) (Smoothed) training curves when fixing the
stepsize to be 5 x 10~ and varying the clipping threshold from 1 to 500. In the choice of clipping, a tradeoff emerges; larger clipping
values result in unnecessarily high privacy noise, while smaller values can induce increased bias in the optimization process. (b) and
(c) Test loss and accuracy (%) when varying the stepsize and clipping threshold together. Consistent with first-order methods (Li et al.,
2022b), we observe that larger clipping necessitates smaller stepsizes, whereas smaller clipping favors larger stepsizes.

Comparison with DPGD-0th. In the previous synthetic example, DPGD-0th suffers from worse performance in larger
dimensions. To provide a more complete comparison, we also evaluate the performance of DPGD-0th (Algorithm 1) for
fine-tuning RoBERTa-large on the dataset TREC with a privacy budget of ¢ = 2 (the same setting as Table 2). DPGD-0th
only achieves a test accuracy of 67.0, while DPZERO attains 82.0. Moreover, DPGD-0th still requires per-sample clipping
of the gradient estimator, which is costly in both memory and runtime compared to DPZERO.

Clipping threshold. Our findings indicate that the optimal clipping threshold for DPZERO tends to be higher than that
for first-order methods. This observation aligns with the theoretical outcomes presented in Theorem 3, where the clipping
threshold for DPZERO is C' = O(L+/log(nd)), in contrast to the O(L) threshold adequate for first-order methods. In the
concurrent study by (Tang et al., 2024a), the chosen clipping threshold is 0.05. However, their implementation applies the
clipping to the term f(x + Au; &) — f(x — Au; €). After normalization by A = 1073, it aligns with the order of magnitude
used in our method. The validity of opting for a larger clipping threshold in DPZERO is further confirmed through the
private fine-tuning of ROBERTa (125M) on the SNLI dataset in Figure 4. An additional observation from our experiments is
that the non-private baseline MeZO also appears to benefit from clipping. For instance, without clipping, the original MeZO
encounters non-convergence issues at a stepsize of 5 x 10~%. Conversely, incorporating clipping permits the use of larger
stepsizes and yields better results. A thorough investigation of this phenomenon is reserved for future research.

B.3. Private Fine-Tuning of the Language Model OPT

Table 10. Hyper-parameters used for fine-tuning OPT. We randomly sample 1000 samples for training and 1000 samples for testing.
Stepsize and clipping are optimized through a grid search over the listed values. Other parameters are fixed to the values provided.

Hyper-parameters Values
Number of training samples 1000
Number of test samples 1000
Number of iterations 20000
Batch size 8
Privacy (e =1{2,6},0 =1079)
Smoothing A 1073

Stepsize {1076,1077}
Clipping {10, 50, 100, 200}

We follow experiment settings in Malladi et al. (2023) to evaluate the performance of DPZERO in the private fine-tuning
of OPT (Zhang et al., 2022b) across four different datasets: SST-2 (Socher et al., 2013) for sentiment classification and
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Table 11. Memory consumption (MiB) when fine-tuning OPT for BoolQ with batch size 8. All experiments are tested on a single GPU
with 24 GiB memory. ‘-’ in the table denotes out of memory. MeZO and DPZERO can fit models up to OPT-6.7B, while the first-order
method AdamW already runs out of memory on OPT-1.3B.

Method OPT-1.3B  OPT-2.7B OPT-6.7B OPT-13B

AdamW - - - -
MeZO 7866 11602 20548 -
DPZERO 7866 11602 20548 -

BoolQ (Clark et al., 2019), SQuAD (Rajpurkar et al., 2016), and DROP (Dua et al., 2019) for question answering. In our
experiments, we employ the same prompts as used in Malladi et al. (2023) and use the same implementation as explained
before. All results are averaged over three random seeds {0, 29, 83}. The hyper-parameters used for our experiments are
summarized in Table 10, and the memory usages on the dataset BoolQ are reported in Table 11.

C. Technical Lemmas
Lemma C.1. Let u be uniformly sampled from the Euclidean sphere \/dS? 1, a € R be some fixed vector independent of
u, and H € R¥*? be some fixed matrix independent of u. We have that
(1) E[u] =0 and E[uu'] = 1,.
(ii) Eu[uTa] =0, E,[(u'a)?] = ||a||? and ¥ C >0,

2
P(ju"a| > C) < 2v2mexp (_8||02) .
a

(iii) Eu[(u'a)u] = a and
Eu[(u a)?[ul*] = dl|al?,

d
E.[(u'a)?uu'] = F) (2aa’ + |jal|*1,) .

(iv) Ey[u' Hu) = Tr(H) and

Ey[(u”a)?u” Hu] = %2 (20" Ha + [|a|? Tr(H)) .

Proof. (i) is a standard result, e.g., in Duchi et al. (2015), and follows by the symmetry of the sphere. For any u € Vd-si1,
it must be the case that —u € +/d - S*! as well, which suggests that E[u] = 0. Since E[Zle u?] = E|jul]® = 4,
we immediately have that E[u?] = 1 for every i by symmetry. Then for the off-diagonal terms, since for any u =
(U, gy ug, e ug) € Vd - SYL it must be the case that (ug, - -+, ug, -+, —uj, - ug) € Vd - ST as well,

which suggests that E[u;u;] = 0 when i # j. As a result, we can conclude that the matrix E[uu '] = 1.

We then show (i). Applying (i), we have that E,,[u" a] = 0, and that

d
]Eu[(u—ra)2] = Z G?E[Uf] + Z a;a;E[u;u;]
i=1 i#j
= [lall®.
The tail bound follows from Example 3.12 in Wainwright (2019), where they showed that for any function h : S¢~! — R
such that Va,y € S771,
[h(w) = h(y)| < arccos(zy),
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when z is uniformly sampled from S, it holds that Vv > 0,
dvy?
P(|h(z) —E[h(x)]] 2 7) < 2v2mexp | ——- ). ®)

Let h(x) = 2 "a/||a|| for z € S?~1. First, we have that Vo, y € S9!,

X — Ta2
Ihz) — h)]? = (”y”)

< Jlz —yl?
=2(1—2z"y)
< (arccos(z "y))?,

where we use the inequality that 62 /2 + cos(f) — 1 > 0 for § € [0, 7] and let # T yy = cos(#) such that arccos(z " y) = 6 for
some 0 € [0, 7]. When w is uniformly sampled from Vd - S, we know u / V/d is uniformly from S?1. Applying (8) for

h(z) = x"a/||a|| where x € S?~1, we obtain that
d 2
) < 2V2mexp (—7>

r( !

Setting C' = v+/d||a|, the proof is complete since E[u " a] = 0. Similar results also exist in Theorem 5.1.4 of Vershynin
(2018), with all constants hidden behind some absolute c.

u'a E[uTa]

Vdlal|  Vd|all]

Next, we prove (iii). Applying (¢), we have that

Eo[(u a)u;] = +Za] [wiu,]
J#i
= a;.

This implies that E,, [(u " a)u] = a. Applying (i4), we obtain that

E,[(u"a)?|ul?] = d- E,[(u" a)?]
— dl|al.

For the expectation of the matrix, we start from the diagonal terms.

d
E.[(u"a)?u?] = Z a?]E[u?u,z] + Z a;jarElujupu?]

j?ék )
= a2E |+ a?Elul
J#
Here, we use the property that E[u;uju?] = 0 for every i when j # k. This follows from symmetry of the sphere such that for
any u = (ug, - ,Uj, -, ug, - ,ug) € Vd- ST, it must be the case that (uy, -+, uj, -, —up, - ug) € V- ST

as well. Again by symmetry, we have that E[u}] remains the same for every i, and E[u? 2] remains the same for every

i # j. Denote wy = E[uy] and wy = E[u7u?]. Since it holds that
Y Euf(u’a)*uf] = Euf(u’a)?|ul?)
= d||a]?,
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taking summation over (9), we can have that

d
a?E[u?uf]
J7

d d
dlal* = afE[u] + )
i=1 1=1j

- ; i—1,j4i

d
= wila]® +ws Y ([lal* — af)
i=1
= wi|al® + (d = Dws | a]*.
This holds for arbitrary a € R<, and thus we obtain that

We only compute w; = E[u}] by showing that u? /d actually follows the Beta distribution, and the value of w can be derived
from (10). First, z/|z|| is uniformly distributed on the unit sphere S¢~! for z € R sampled from the standard multivariate
Gaussian NV (0, 1) (Muller, 1959; Marsaglia, 1972). This means that zf is distributed according to the X2-distributi0n
with 1 degree of freedom, and z7 := ) ki 232 is distributed according to the y2-distribution with degree (d — 1). Since
x2-distribution is a special case of the Gamma distribution and 272, z? are independent, we conclude that 22 /(22 + z2)
has the Beta distribution with parameters 1/2 and (d — 1)/2 (Cramér, 1999; Gupta & Nadarajah, 2004). Finally, since
u/ V/d is uniformly distributed on S?~!, by symmetry of the sphere, we know that u?/d has the same Beta distribution
as 22 /(2% + z?). The mean and variance of Beta(1/2, (d — 1)/2) is 1/d and 2(d — 1)/(d?(d + 2)). This suggests that
E[u?] = 1, as already proved in (i), and that
wy = E[(u — Efuf])?] + (E[u]])®

2d—1) 1

_ g2 -
=4 <d2(d+2)+d2>
_3d

S d+2

By (10), we know wy = d/(d + 2). According to (9), we have that the diagonal terms

E,[(u"a)*uf] = wiaf + wy(||a|* — af)
2, d
= —aqa:
d+27" T d+2

la]l?.
Then we compute the off-diagonal entries for ¢ # j. By the same reasoning as (9), we have that

E.[(u'a)?uu;] = Z aiajE[u?u?]
i)
2d

——a;a;.

All other terms equal to 0 by symmetry of the sphere. Combining both diagonal and off-diagonal elements, we have that
E.[(u"a)?uu’] = (d/(d+2))(2aa" + ||a||?14). Similar results are also shown in Appendix F of Malladi et al. (2023).

Finally, we give the proof of (iv). For the first statement, applying (7) in this lemma, we have that

E, [uTHu} = E[Tr(uuTH)}
= Tr(E[uuT] H)
= Tr(H).
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Similarly for the second statement, we apply (¢i¢) in this lemma and obtain that

E, [(ua)u" Hu] = E[(uTa)Q : Tr(uuTH)}
- E[Tr((uTa)ZuuT : H)]
- Tr(]E[(uTa)zuuT] -H)
4
d+2
llall® Te(H).

= T H
F) r(aa’ H) +
2 - d

- 2 TH
12t Pt i

lal|* Tr(H)

This concludes the proof. O

Lemma C.2. Let u be uniformly sampled from the Euclidean sphere \/dS% ' and v be uniformly sampled from the
Euclidean ball /dB? = {x € R?|||z|| < V/d}. For any function f(z) : R — R and \ > 0, we define its zeroth-order
gradient estimator as gx(z) = ((f(z + M) — f(x — Au))/(2X))u and the smoothed function as fx(z) = E,[f(x + Av)].
The following properties hold:

(7) fa(z) is differentiable and E,,[gx(x)] = V fa ().
(it) If f(x) is L-smooth, then we have that
¢
2
62
2d- |Vf()||* + A,

IVf(z) = V@) < SAd?,

IN

Eu[llgx(@)]]

The above results are consistent with (iii) in Lemma C.1 when A — 0 and f(z) is differentiable such that the two-point
estimator reduces to the directional derivative go(z) = u' V f(x)u.

Proof. We first show (7). Similarly to Lemma 10 in Shamir (2017), we have that

A
E,cvagi1lon(@)] =E, . /gga {W} .

Applying Lemma 2.1 in Flaxman et al. (2005), we know

)\l
Eyesiot [ (o 4+ X' )] = S VE emal f(z + Xo)].

Introducing u = v/du/, v = v/dv' and A\ = X' /\/d, we thus obtain

SN 1220 YN PSS
= VEU/EBd [f(fE + Alv/)]
= VE, . japalf (@ + )]

The proof of (i) mostly follows from Nesterov & Spokoiny (2017), where the results are originally obtained for the case
that u is sampled from the standard multivariate Gaussian distribution. By (¢4¢) in Lemma C.1 and () here, we have that for
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w uniformly sampled from v/d - S4~1,

IV f(2) - Vir(@)]| = \

Eo[(u7V £(2))u] — E, [f(w +Au) — f(z — )\u)u}

k. (f(x + )\u);)\f(x “w) UT;;@)) §
< Y11+ 2) — 1)~ 0T V1)

Y5 15w) ~ £ )~ 0T 5 )
< §Ad3/2,

where in the last step we use smoothness of f(z) such that | f(z + Au) — f(z) — AuT V f(z)| < €A2d/2 and the same holds
for |f(x) — f(x — M) — A"V f(2)| = |f(x — M) — f(x) + A" Vf(x)|. The last statement holds similarly:

_ 4
T 4)2

<2d-Eu[(u" Vf(z))?] +

Eu[llga(2)1I°] Eu[(f(z + ) = f(z = Au))?]

Bl + M) — f(z — ) — 20TV f(@))’]
< 2 B[V ()] + B+ ) — [(@) ~ TV (@)
d

+ 2E(f@) — [z = du) = 2TV f(2))’]

52
<2d- [VF(@)|* + FAd, (11)
where in the last step we use Lemma C.1 and smoothness of f(z). O

D. Detailed Proof and Analysis of DPGD-0th (Algorithm 1)

Proof of Theorem 1. The privacy guarantees directly follow from Lemma 2.2 noticing that the sensitivity is 2C'/n. Note that
the original advanced composition theorem in Kairouz et al. (2015) is stated for the case where the output of A is a scalar.
Given the spherical symmetry properties of Gaussian noise, the results can be readily extended to multiple dimensions, as
outlined in Lemma 1 of Kenthapadi et al. (2013) where the basis can be selected in a way such that A(S) and A(S’) differ
in exactly one dimension.

We then focus on the utility guarantee on E[||V Fs(z,)||?]. Since f(x;€) is L-Lipschitz for every & by Assumption 3.1 and
l|lug || = v/d by its construction, we have that

|f (e + Aug; &) — floe — Augs &)
2\

o (@ €)]l = ]

< Lluef?
— Ld.

This means clip(gx(z¢; &) = ga(ze; &) when setting C = Ld. For notation simplicity, we let

Gale) = = Y gali )
i=1

Ut

2\

_ FS(It + )\Ut) — Fs(l’t — )\’Z,Lt)
2

_ % zn; floe 4+ Au; &) — fae — Aug; &)

Ut .
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Algorithm 1 reduces to ;1 = x; — a(Gx(x¢) + 2¢). By smoothness of Fis(x), we have that

/
Fs(2i11) < Fs(x1) + VFs(20) T (241 — ) + T = 4|

/ /
= Fs(xy) — aVFs(xy) (Ga(xe) + 2) + §a2HGA(xt)||2 + §a2|\zt||2 + 00”2 G (x).
Since z; is sampled from N(0, 021d) and is independent of x;, u; and S, we have that
/ l
Ezt [FS(xt-i-l)] < Fs(xt) — onFs(xt)TG)\(xt) + §OZQHG>\(1‘,5)||2 + 50(2 dUZ.

Define F(z) := E,[Fs(z + \v)] for v sampled uniformly from the Euclidean ball v/d - B¢. By Lemma C.2, we know
E,,[Gx(x¢)] = VFx(x¢). Since u, is independent of x; and S, taking expectation with respect to u, and applying (i7) in
Lemma C.2, we obtain that

Y4 Y4
E, i [Fs(x41)] < Fs(xe) — aVFs(zy) V() + §Q2Eut[||G/\(wt)||2] + 5042 do?

« « «
= Fs(a,) = 5IIVEs(@)I* = SIVEA (@) * + SIVE (@) = Vs (@)

l l
+ 5@2 Eut[HG)\(fEt)HQ] + §a2d0'2
2

14 1
< Fg(z;) — %(1 —2d0a) ||V Fs(z¢) || + go+ 200)\2d® + 50? do?. (12)
Choosing o = 1/(44d) such that 1 — 2dfa = 1/2 and 2a; < 1, we obtain that

4E[Fs(x;) — Fs(x441)]

E[|VFEs(z)|?] < + CXN2@2 + 20 do?

a
_ AE[Fs(z¢) — Fs(w¢41)] +O2N2P 4 64¢C* T dlog(e + (¢/9))
et n2e?
4E[Fs(z¢) — Fs(mi41)] 5.0 5 64¢L2 T d3log(e + (5/5))
= +2\%d =
a n

As a result, taking summation from ¢ = 0 to 7' — 1 and dividing both sides by 7', we have that

E[|VFs(z,)]*] = Z [V Es ()]
t=0
2 3
< A(Fs(z ) )+€2)\2d3 64012 oT d ;05(64—(6/6))
n2e
6(£(Fs(1:0) — F%) +2L%)dy/dlog(e + (¢/9))
— ”’LE )
with the choice of parameters
1/2
B ne y <A dlog(e + (¢/9))
4dy/dlog(e + (¢/5))’ ~ ~ 4 ne '

This suggests that the total number of iteration is T = ne/+/dlog(e + (¢/§)) and the total number of zeroth-order gradient
computations is nT' = n%e/+/dlog(e + (¢/6)). Note that the above selection of parameters ensures scale invariance. [

Proof of Theorem 2. The privacy analysis remains the same as before, and we focus on the utility analysis on E||V Fs(z,)]|?.
By the same reasoning, when setting C' = Ld, Algorithm 1 reduces to x;1 = @ — a(Gx(x¢) + 2:) where Gy (z¢) =
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(Fs(zy + Aug) — Fs(xy — Aug))ug/(20). By Taylor’s theorem with remainder, for some 6 € (0, 1), we have that

1
Fs(zi41) = Fs(ai) + VFs(as) " (@41 — ) + §(xt+1 —2¢) ' VPFs (0 4 0(x41 — 30)) (@41 — 21

2

a? o
< Fg(ay) — QVFS(xt)T (Ga(ze) + 2¢) + ?G)\(xt)THGA(xt) + ?thHzt

2
o
+ - (G)\(xt)THzt + thHG)\(:I:t)) .

Here in the inequality, we use Assumption 3.5 such that V2Fg(z) < H for any x € RY. Similarly to (iv) in Lemma C.1,
we have that E[z,] Hz;] = Tr(E[z:2 |H) = o Tr(H). Since z; is sampled from N(0, %I,) and is independent of u,
and the dataset S, taking expectation with respect to z;, we can then obtain that

2 2
E.,[Fs(xe11)] < Fs(ae) — aVFs(ze) T Ga(ae) + %G,\(xt)THGA(xt) + %E% 2] Hz]
(13)
2 2

= Fs(z;) — aVFs(z;) " Ga(x) + %ZG)\(xt)THGA(mt) +2 Tr(H).

Assumption 3.5 implies Fg(x) is also £-smooth. By a similar argument as (11) in the proof of (i) in Lemma C.2, we have

<FS(ZL’t + )\Ut) — FS

— )\ 2
o (2 “t)) §2(utTVFS(:z:t))2+§)\2d2. (14)

Asu,} Huy > 0, by (iv) in Lemma C.1 and Assumption 3.5, we have that

E [Ga (o) HGA(w)] — B =

Fo(xy + Aug) — Fg(zy — Au 2
< s+ Auy) — F(ae ») u:HuJ

2
<2E [(u:VFS(:ct))Q u:Hut} + %)\QdQ E [u:Hut]
2d

02
= o5 (VFs(@)  HVFs(w,) + |V Fs (@) |* Tr(H)) + 5 N*d* Tr(H)

3
< 26(r + 2)||VEs()||? + %A%ﬂr.

Taking expectation of (13) with respect to u, by Lemma C.2 for F\(x) = E,[Fs(« + Av)] with v uniformly sampled from
Vd - B%, we have that

Ba?X2d?r o ro?

E[Fs(21+1)] < Fs(2:) — aVFs(x:)  VE () + La®(r + 2)[|V Fs (2)||* + T T

lo’ le’ BaP 2d?r o ro?
SFs(xt)—5(1—2(T+2)€04)||VFS(%)H2+§||VFS($t)—VF/\(th)||2+ 1 5

« Par2d?(d+ 2rta a2 ro?
< Fo(m) — 21~ 2(r + 2)t) [V Fs(ar) |2 COATLE2H) | Lo ro7, (15)

Choosing o = 1/(44(r 4 2)) such that 1 — 2(r + 2)a = 1/2 and 20ar < 1 < d, we have that

_ AE[Fs(@,) = Fo(@ii1)]

+ 2XN2d3 + 20 ro?
_ AE[Fs(z1) — Fs(z111)] v 640C? oT rlog(e + (£/9))

a n2e?
_ AE[Fs(xt) — Fs(2141)) L2 64¢L% T d2r2102g(e + (5/6))
a n2e

E[|[V Fs(z:)|]
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As a result, taking summation from ¢ = 0 to 7' — 1 and dividing both sides by 7', we have that

E[|VFs(z,)|%] = Z IV Fs(2:)]1%]
< 4(Fs(z ) )+€2/\2d3 64¢L>2 aTd2r2102g(e+(€/6))
n2e
L6(e(Fann) - F3) + 2070 T T )

f— )

ne

with the choice of parameters

- AL < rlogle & (5/5))>”2
 4ldy/rlog(e + (£/6)) A ne '

This suggests that the total number of iteration is ' = n(r+2)e/(d+/r log(e + (¢/§))) and the total number of zeroth-order
gradient computations is n'T" = n?(r + 2)e/(d+/r1og(e + (¢/5))). The above selection ensures scale invariance. O

E. Detailed Proof and Analysis of DPZero (Algorithm 2)

Privacy guarantee. Since u, is independent of the dataset S, the privacy guarantees directly follow from Lemma 2.2 and
post-processing (Dwork et al., 2014) noticing that the sensitivity is 2C/n. We want to emphasis that the randomness of w; is
never used for the privacy guarantee, and the analysis holds for any u; as long as it is independent of the dataset.

Utility guarantee. We then focus on the utility guarantee on E||V Fs(z,)|?. Since f(x;&) is ¢-smooth for every & by
Assumption 3.5, we have that

|f (2 + Aug; &) — flae — Mug; &)
2

< |u:vf($t,£z)| + |f(33t + )\uﬁgi) - f(x;/{&) — )\U;er(,’ljt; &)‘

n |f (2 — Aug; &) — f(i;t);\fi) + Aul V(245 6))| (16)

I
< ug Vf(ze &)+ §>\d-

Therefore, by (i¢) in Lemma C.1 and Lipschitzness of f(x;&), we have that

P <f(13f + Aug; &) — flog — g &)
2X

i
> Co + 2/\d> < P(lug VI (i:8:)| > Co)

< 2V2rex <_C)
= P8IV i@s &)

C2
< 2V2mexp < 8L2)

We define ); ; to be the event that the clipping does not happen at iteration ¢ for sample &; and Q” to be the event that
the clipping does happen. The above equation implies that if the clipping threshold C' > Cy + ¢Ad/2, then we have that
P(Q::) < 2v2mexp(—CZ/(8L?%)). Let Q; denote the event that the clipping does not happen at iteration ¢ for every
sample 1 < i < n, and let Q; be the event that there exist some i such that the clipping does happen at iteration . We also
denote @) as the event that the clipping does not happen for every iteration¢t = 0,1,--- ,7 — 1 and every sample 1 <7 <n
and Q) as the event that there exist some ¢ and 4 such that the clipping does happen. By the union bound, we have that

_p (U § Q)

t=0 i=1

2
< 2V2mnT exp (801?2> .
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To simplify the notation, we let

2X H

_ FS(ZZ?t + )\Ut) — Fs(l’t — )\Ut)
2

Galzy) = %2": e & s &) = flan = i &)
=1

Ut ,

and its per-sample clipped version as

Ga(zr) = %Z clipe <f(xt + A &) —
i=1

f(ift - )\Uﬁfi)
2\ ) "

Algorithm 2 becomes z;1 = x; — a(G(2¢) + zu;) under the above notation. By Taylor’s theorem with remainder, for
some 6 € (0, 1), we have that

1
Fs(ze41) = Fs(a1) + VFs () T (@041 — @) + §($t+1 —2¢) " V2Fs (e 4 0(x41 — 34)) (@41 — 2¢)

2

. o? . R o
< Fg(ay) — aVFS(.’L't>T (GA(mt) + ztut) + ?G,\(:Ct)THG,\(:Et) + ?z?u:Hut
2

a . .
+ o (G,\(xt)THut + u;rHGA(xt)) )

Here in the inequality, we use Assumption 3.5 such that V2Fg(z) < H for any # € R?. The event Q; depends on the
randomness in w41y := {uo, w1, - ,us} and z<; := {20, 21, -, z,—1}. Note that the scalar noise z; sampled from
N(0,0?) is independent of U< (141)> Z<t»> Tt, and the dataset S. Conditioned on the event (); and taking expectation with
respect t0 2 (¢441) and U« (¢41), we have that

EZ<(t+1)7u<(t+1) [Fs(xtJrl)'Qt] < Ez<t7u<t [Fs(xt)th} - aEz<t)u<(t+1) [st(xt)TGA(mt)‘Qt}

a? R S a2o? . (17)
+ 7E2<t7u<(t+1) [Gk(xt) HG}\(th) Qt} + 9 Ez<t,u<(t+1> [ut HUt|Qt] .

LetE; :=E._, u_,,,, for simplicity. Given the condition that @, happens, we know that G (z¢) = Ga(x¢) and thus

E, [GA(%)THGA(%)

Qt:| =E, on

F M) — Folzy — M) \ 2
( sz + Ut)2)\ 5 (2 Ut)) utTHut

Since H = 0, we have that v, Hu; > 0. By the law of total probability, we obtain

E

2\

Fo(x: + Muy) — Fg(xy — Au 2
<s(t ) — Fs(a, t>> utTHut]

2
_E, <Fs(l’f, + )\Ut);)\FS(If - Aut)) u, Huy Qt] P(Q:)
. (18)
LE, <Fs(xt + Aut);}\FS@t — Aut)) utTHut Q:| P(Qr)
2
> E, (Fg(l‘t + )\ut)Q_)\FS(‘Tt — Aut)) u;rHut Qt P(Qt)
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Assumption 3.5 implies Fs(z) is also /-smooth. Similarly to the proof of Theorem 2, by (14) and the fact that u, Hu; > 0,
applying (iv) in Lemma C.1 and Assumption 3.5, we can then obtain that

E; [(Fg(l‘t + Aug) — Fs(xy — /\ut))QutTHut]
422 - P(Qy)

Et {2 (UZVFs(JZt))Q utTHut} €2/\2d2
< +

- P(Qt) 2P(Qy)
2dE,_, 4., [2VFS(xt)THVFS(:1:t) + ||VFS(:ct)||2Tr(H)] N 2 X\2d? Tr(H)

(d+2)P(Q:) 2P(Q¢)

G232y

2P(Q:)

E, [G)\(xt)THG')\(xt)

Qt:| <

Et [utTHut]

20(r +2)
= P@Q))

The same as (18), we can also get that

E. e IVFEs(a0)]]* + (19)

Et [’UJ;FHUf]
P(Qe)

Eq [u) Hu, | Q] <

<

For the inner-product term, we have that

Et {VFs(.’L‘t)TG,\(.%‘t)

Qt] =[E, [VFS(JCt)TGA(l‘t) ’ Qt] .
By the law of total probability, since u; is independent of x;, we know that

E: [VFs(xe) " Galwo) | Q] P(Q2) + Ex [VFs(ae)  Galwe) | Qi) P(Q) = B¢ [VFs(a) Gi(a)]
—F [VFs(xt)TVFA(fEt)] )

Z<t U<t

where we use Lemma C.2 for F)(z) = E,[Fs(z 4+ A\v)] with v uniformly sampled from v/d B?. Rearranging terms, we
thus obtain that

E; [VFS(xt)TG)\(xt) | Qt] _ ]EZ<t,U<t [v;‘iéit))TVF)\(xt)] - [VFS(xt) C:g)jt ’Qt] Qt)
B IVEs@)P | Eepul IVRA@OIP Eoryue, [VFs(24) — VFx (@)
a 2P(Q) 2P(Qy) 2P(Q:)
[VFS(%)TGA (4 |Qt] Qt)
P(Q¢)
E.uc [VEs(@)|>  ANd® By [VFs(z:) Ga(ze) | Qe P Qt)
- 2P(Q:) 8P(Q:) P(Q:)

where we apply (i7) in Lemma C.2. Assumption 3.5 implies that Fis(x) is also Lipschitz, and thus

VFs(zi) Ga(ae) < |[VFs(xe) | [|Ga(zy)]]
< L2 lug)?
= L%d.

As a result, we obtain that

B.puo Vsl 2Xd°  L2dP(Qy)
2P(Q1) 8P(Q1) P(Q)
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Plugging (21), (19) and (20) back into (17), we obtain that

]Ez<t7u<t||VFs(wt)||2 a2 ro?
P(Q:) 2P(Q)

(22)

«
Ez<(t+1)7u<(t+1) [FS(-Tt-i-l)‘Qt} < Ez<t;u<t [Fs(It)th] - 5(1 - Q(T + 2)60&)

Pa(d + 20ar)\2d? N al?d P(Qy)

Choosing oo = 1/(44(r + 2)) such that 1 — 2(r + 2)a = 1/2 and 20ar < 1 < d, we have that

4EZ<(t+1)au<(t+1) [Fs(xt) - FS($t+1)|Qt]P(Qt)

E.opued[VEs(ze)|* < - + 2aro® + Cd* X + AL*d P(Qy)
A, o uegen Fs(xe) — Fs(x P _
< <A1 U< (4 )[ s (@) 5(e41)|Qe]P(Q) 4 2%aro® + AN + AL P(Q).

a

Recall Q) is the event that clipping does not happen at iteration ¢ and () is the event that clipping does not happen for every
iteration. By the law of total probability and the assumption that | Fs(x;)| < B for every t, we have that

]EZ<(t+1)vu<(t+1) [Fs(xt) - Fs(xt+1)|Qt]]P(Qt) = ]EZ<T7U<T [FS(It) - Fs(xt+1)|Qt]]P(Qt)

=K. ,ucr {Fs(ﬂﬁt) - FS(xt-i-l)‘Qt N Q}P(Qt nQ)
+ Bep e | Fs() — Fs(w41)| @ 0 Q]P@Q N Q)

<E. ruer[Fs(zt) — Fs(2e41)|QIP(Q) + 2B P(Q).
As a result, we have that

AE, ;1w [Fs(x) — Fs(ri41)|QIP(Q)

(0%

+ 2laro® + CdPN\? + <4L2d + 83) P(Q). (23)
«

E IVFs(z0)]* <

Z<t U<t

Taking expectation with respect to all randomness, i.e., E =E,_.. ,,_,., summing up from ¢ = 0 to T' — 1, and dividing both
sides by T', we have that

T-1

1
E||VF5($7—)H2 = T Z EZ<t,u<t||VFS($t)||2
t=0
< 4E[Fs(zg) — Fs(z7)|Q)P(Q) N 64¢C% oT rlog(e + (g/9)) L2

o n2e2
CQ
+8%mnTu?d+ng+2»wp(_M;>

< (64¢[Fs(w0) — F3] +4C?) ”Og(:; (/9))

N 2v/2m n2e(r + 2)(L2d + 8¢B(r + 2)) o <_C§>
rlog(e + (¢/9)) 8L2 )’

+ 2d3)N?

with the choice of parameters to be

1 n(r+2)e

ne
=T ogle 1 (/o) A(r+2) T*4JH%@+@Q»'

When selecting A < 2(v/2 — 1)Cy/(¢d), we can set C' = /2Cy such that C > Cy + ¢\d/2 is satisfied. If Cy and ) further
satisfy the conditions that

2%%M§u+mw+%30+mm%> oL ( n%@+@m»yﬂ

5 =8L%1 <
Co =8L" log < rlog(e + (¢/4)) ~ 4d3/? ne
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we can then obtain that

E||VFs(z-)|*

rlog(e + (¢/9))
ne

(v (S B e ) ) D

< (64£[F5(x0) — F5]+4C? + 2L2>

We conclude that the clipping threshold C' and smoothing parameter A should satisfy that

¢ = 4L, |1og (2@71352(7“+2)(d—|—8€B(r+2)/L2)>,

rlog(e + (¢/4))

re Loindap - va) 1og<2m”352(7’+2)(d+843(7"*2)/”))7 1 < rlog(e+(£/6))>1/2

4 rlog(e + (£/9)) Vd ne

The total number of zeroth-order gradient computations is nT = n?(r + 2)e/(4+/rlog(e + (£/6)))

F. Extension to the PL Setting

Assumption F.1. The average loss Fs(z) satisfies the PL inequality with parameter ;1 > 0. That is, it holds that Vo € R,

IVFs(2)* > 2u(Fs(z) — FS).

Corollary F.2. Under the same setting of Theorem 1, when Assumption F.1 is also met, let k = £/ be the condition number,
the last iterate of Algorithm 1 satisfies that

n2e? 3log(e
E[Fs(xT) - Fg] < (f(Fs(l‘o) - Fg«) + 64L2I€ 10g (Iid‘3 10g(€€+ (6/5))) + 2L2) dlgﬂ(n;zz(f/is))7

with the choice of parameters

1 n?e? 2L +/log(e + (£/9))
= — T = I <— - = Ld.
RAYZ Brd Og(naﬁ”log(e—i—(e/é)))’ As 14 ne , U=1ld

The total number of zeroth-order gradient computations is n’T' = @(ndﬁ).

Proof. Starting from (12) in the proof of Theorem 1, with the choice that o = 1/(44d), we have that

e [Fs (o)) < Fs(n) — SIFs(@)lP + S X + S do?

(0%

< Fs(xy) 5

4
(Fs(z) — F%) + %£2A2d3 + 0% do’.
This gives the recursion that

« o l
E[Fs(ze1) — F3] < (1 - "7) E[Fs(x,) - F5] + 7 CNd* + 5a” do™
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Resolving the recursion, we obtain that

_ ko g (2 eazad 4+ Lo do? _HaNTTE (e
E[Fs(zr) - F3] < (1 2) (Fs (o) F5)+<4£Ad + 50 da>((1 2) +ot (1 ; )+1>
A28 n Lo do?

2p 1%

SW{ﬁfy&mw@H

uaT oo 32UL2 QT d3log(e + (¢/6)) 52)\2(13
—exp (=250 ) (Flan) - F3) + o +
2¢2 d‘jlog d’log(e + (¢/9))
= (0(Fs(zo) — F5) + 64L%k 1 - 21>
( ( S(IO) S) + K 10g ( d3 log(e ¥+ 5/6 + Mn2€2 )
with the choice of parameters
2.2 1 5
oT = 2 log ne A < 2L Viogle + (€/9))
i kd3log(e + (£/9)) L ne
The total number of iteration is 7' = @(Iid). O

Corollary F.3. Under the same setting of Theorem 2, when Assumption F.1 is also met, let k = £/ be the condition number,
the last iterate of Algorithm 1 satisfies that

%e? d*log(e + (¢/9))
E[Fs(ar) — F£] < ( 6(Fs(zo) — F&) + 64L2 1 ne 2r2) =
[Fs(wr) sl < (6( s(wo) 5) +64L7x log (nrdQ log(e + (5/5))) * ) un3e? ’
with the choice of parameters
1 n2e? 2L y/rlog(e+ (g/9))
= _ T= 2) 1 A< = Ld.
T Wt 2 8 (r+2)log <md2log(e+(a/5))> Nz ne > C

The total number of zeroth-order gradient computations is n’I' = @(nrﬁ).
Proof. Starting from (15) in the proof of Theorem 2, with the choice that a = 1/(44(r + 2)), we have that

« « Y4
Eey i [Fs(renn)] < Fs(a) = SIFs (o)l + 5 2N + a2 ro?

14
< Fs(zy) — %(Fs(a:t) —FI)+ %w%ﬁ +zara’.
This gives the recursion that

o « 14
E[Fs(z41) — F2] < (1 - “7) E[Fs(x) — F] + § X + 3a?ro®,

Resolving the recursion, we obtain that

E[Fs(zr) — Fg] < (1 - %) (Fs(zo) — F§) + (j N3+ £a2 7‘02) ((1 — &>T71 4 (1 _ @) + 1)

2 2 2
waT o P23 taro?
<o (157 ) (Psteo) - 1) + 55
_ paT oo 32L2aT rd%log(e + (¢/8)) = 2N\2d3
—exp( N ) (Fs(zo) — Fg) + in2e? + 2

2¢2 d?log(e + (¢/9))
— (£(Fs(wo) — FZ) + 6412k 1 ne 212 =
< (Fs(wo) = F5) + o8 (HTCP log(e + (g/9)) + un2e? ’
with the choice of parameters
2 n2e? 2L +/rlog(e + (¢/0))
T=-1o A<
“ U ©8 (/wd2 log(e + (5/5))) ’ = ne

The total number of iteration is 7' = O(kr). O
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Corollary F.4. Under the same setting of Theorem 3, when Assumption F.1 is also met, let k = £/ be the condition number,
suppose maxo<i<7|Fs(x,)| < B and |F§| < B, the last iterate of Algorithm 2 satisfies that

E[Fs(zr) — Fi] < (e(Fs(a:O) — F3) +log (mlog?ei (6/5))> (L2 + 16E2/§) + 2L2) W,

where we define

i? = 64L%log (32‘/%“”352(7“ +2)(d+ (80(r +2) + u)B/L2)> |

rlog(e + (¢/9))

and choose the parameters to be

1 n2e?
O qrray T8l <mog<e+ <a/6>>> =

1 = AL +/rlog(e + (g/9))
)\§2&lmm{(2—\/§)L,\/a - }

o |

The total number of zeroth-order gradient computations is n’T = @(nrﬁ).
Remark E.5. A more precise expression of our theoretical results, including Theorems 1, 2, and 3 and their corresponding

Corollaries F.2, F.3, and F.4, is to cover cases where 7' may be less than 1. Considering Theorem 3 as an example, a more
accurate statement is

T:max{4 nir +2)e ,1}, ]E[||VFS(xT)||2]§min{(5< “Og(eJr(g/‘s))),ﬁ}.

rlog(e + (¢/9)) ne

For the sake of clarity and simplicity in presentation, this detail is omitted in the main results.

Proof. Starting from (23) in the proof of Theorem 3 with the choice & = 1/(4¢(r + 2)) and using Assumption F.1 such that

E||VFs(:)|]* > 20 E[Fs(2:) - F3]
= 2uE[Fs(z;) — F§|QIP(Q) + 2uE[Fs(xe) — F5|Q]P(Q)
> 2uE[Fs(z) — Fg|QIP(Q),

we have the recursion that

E[Fs(ze1) — F2|QIP(Q) < (1 - %) E[Fs(z:) — F3|QP(Q) + %m%ﬁ + gaQ ro® + (L2do + 2B)P(Q).

Resolving the recursion, we obtain that

2
+ _
Ho
N2 laro?  (2L%d+4B/a)P(Q)
+ + :
2p 1% Iz

E[Fs(zr) — F3QIP(Q) < (1 - %)T (Fs(wo) — F2) (j NP+ §a2 ro® + (L2da + 23)1@(@))

oT N
<exp (_/”L2> (Fs(zo) — F5) +
Since the event ) happens with high probability, the above results can be refined to

E[Fs(vr) — F§] = E[Fs(er) — F5|QIP(Q) + E[Fs(xr) — F5|QP(Q)

< E[Fs(er) — F5[QIP(Q) + 2B P(Q).
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Therefore, we can obtain that

. oT o 320C%aT rlog(e+ (g/6
BiFs(or) - F5] < o (<5 ) (Fstao) ~ F5) + (e + (:/9)
un2e
4v/2mnT(L*d + 2B/a + Bu) Cc? 2N243
+ exp | —=+5
I 8L2 2u
’e? log(e + (¢/9))
= (0(Fs(zo) — F2) + L2 1 e 4
(st - 3.2 o et ) )
320C? aT rlog(e + (g/8))  £2N\%d3
+ > + o

7

une
with the choice of parameters

2 n2e? 32V2m kne?(r +2)(d + (8¢(r +2) + u)B/L?)

of = log <mog<e T <e/6>>) . Co=8L"log ( rlog(e + (¢/5)) ) |

When selecting A to be

) < i 2(v2—-1)Cy 2L +/rlog(e + (¢/6))
= 7R E ne ’

we can set C' = v/2C, such that C' > Cj + ¢\d /2 is satisfied, and thus

E[Fs(zr) — Fi] < (Z(Fs(mo) — F%) +log (mlogéi (6/5))> (L2 + 16E2H) + 2L2) W,

where we define

2o 1o 32v27m kn3e?(r + 2)(d 4 (84(r +2) + p)B/L?)
L7 =64L7og ( rlog(e+ (£/9)) ) '

The total number of iteration is 7' = O(kr).
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