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ABSTRACT

Source-free domain adaptation (SFDA) alleviates the do-
main discrepancy among data obtained from domains with-
out accessing the data for the awareness of data privacy.
However, existing conventional SFDA methods face inher-
ent limitations in medical contexts, where medical data are
typically collected from multiple institutions using various
equipment. To address this problem, we propose a simple
yet effective method, named Uncertainty-aware Adaptive
Distillation (UAD) for the multi-source-free unsupervised
domain adaptation (MSFDA) setting. UAD aims to perform
well-calibrated knowledge distillation from (i) model level to
deliver coordinated and reliable base model initialisation and
(ii) instance level via model adaptation guided by high-quality
pseudo-labels, thereby obtaining a high-performance target
domain model. To verify its general applicability, we evaluate
UAD on two image-based diagnosis benchmarks among two
multi-centre datasets, where our method shows a significant
performance gain compared with existing works. The code is
available at https://github.com/YXSong000/UAD.

Index Terms— Unsupervised Domain Adaptation, Multi-
source-free, Uncertainty-ware

1. INTRODUCTION

Unsupervised domain adaptation (UDA) is a promising
streamline of works to compensate for the distributional dis-
crepancy [1]. It seeks to utilise existing transferable knowl-
edge from labelled data drawn from one or more source do-
mains to recognise unlabelled data in the target domain [2].
UDA has shown great success in a broad spectrum of down-
stream applications, including classification [3] [4] [5], seg-
mentation [6] [7] [8] and object detection [9] [10] by mitigat-
ing this domain shift.

Despite its great promises in general visual perception
tasks, existing UDA approaches inherently fall short in med-
ical scenarios where additional regulations on data sharing
restrictions. To address the problems on medical images,
source-free DA methods [4] have been developed, providing
the pre-trained source model only instead of directly access-
ing the source data to preserve the privacy issue.

In this work, we investigate multi-source-free unsuper-
vised domain adaptation (MSFDA) [11] [12] and improve the
typical SFDA settings [4] [13] by introducing multiple source
domains. It therefore holds the potential to serve as an appeal-
ing solution for real-world large-scale medical image analysis
studies involving multiple centres. Several recent efforts have
been made [12] [14] with preliminary attempts to the self-
supervised clustering pseudo-labelling method [15], which is
commonly adopted for MSFDA. However, they tend to be
suboptimal particularly for medical image processing. Since
the distinctions of the data from multiple centres are large,
the models trained on datasets derived from single or multi-
ple healthcare institutions have not demonstrated a consistent
ability to generalise their applicability to external sites [16].

To transcend the aforementioned bottlenecks, in this pa-
per, we propose a framework for MSFDA for medical image
analysis. Our contributions include:

1) We propose a novel algorithm termed as Uncertainty-
aware Adaptive Distillation (UAD). Our algorithm first
recognises the source model with the most comparable un-
derlying data distribution to the target domain to deliver
coordinated model initialisation, and then further leverages
the complementary knowledge among source models for pre-
cise distillation to the target domain; 2) To avoid over- and
under-confidence issues, we apply the Temperature Scaling
(TS) method for comprehensive confidence calibration over
source models towards a well-regulated knowledge distilla-
tion procedure; 3) We substantiate the effectiveness of the
proposed method by comparison experiments and ablation
studies across diverse scenarios, demonstrating its practical
benefits towards various endpoints with clinical significance.

2. METHODS

2.1. Problem Setting

Without involving any source domain data in training the fi-
nal model, we aim to transfer a series of models, pre-trained
on multiple source domains, to a new target domain without
any human annotation. In this work, we will consider the K-
way classification-model adaptation. We are given a source
model zoo {θjS}Nj=1, which contains N source classification
models from N source domains. For the j-th source model
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Fig. 1. Overview of the proposed framework. Our framework follows a multi-source domain model pre-training process with
a two-stage uncertainty-aware adaptive distillation (UAD) process of model initialisation and pseudo-labelling.

θjS in the source model zoo, with the input space being X and
the output space being Y , it is learned by the source dataset
Dj

S = {xi
Sj
, yiSj

}nj

i=1 with nj instances, where xi
Sj

∈ XSj ,
yiSj

∈ YSj . A target classification model θT : X → RK

is learned by only {θjS}Nj=1 and the unlabelled target domain
dataset DT = {xi

T }
nT
i=1 with nT instances.

2.2. Uncertainty-aware Adaptive Distillation

In the proposed framework, we transfer the knowledge
from multiple source models to adapt the target domain
with pseudo-labels generated by distilling the proper source
model. Technically, we learn a set of uncertainty (or its op-
posite, confidence) measures for both overall domain-wise
and individual instance-wise distillation corresponding to
each source model in the source model zoo. It evaluates the
distributional distance of certain source models working on
the target domain dataset and the quality of pseudo-labelling.
Specifically, we introduce margin, defined as the difference
between the predicted probabilities of the first and second
most probable classes [17], as the metric to estimate the
confidence measure:

M = Topk
k=1

(δ(θ(x)))− Topk
k=2

(δ(θ(x))), (1)

where δ(·) denotes the Softmax Layer operation with δj(v) =
exp(vj)∑K
i=1 exp(vi)

for j = 1, ...,K and v ∈ RK 7→ (0, 1)K . Intu-
itively, if a model θ has a larger value of the margin M while
predicting an instance, it is regarded as more optimal to ex-
tract the instance’s feature and finally does the classification
task.

In order to prevent the trained target domain model from
being interrupted by confounding factors incurred by at-
tributed irrelevant to the target task (e.g., image appearance
discrepancy due to inconsistent imaging protocols) or avoid
local minima problems, we propose to perform Uncertainty-
aware Adaptive Distillation (UAD) from two complementary
perspectives, (i) model-level and (ii) instance-level, towards

directed and well-regularised multi-source model adaptation.
The overview of our proposed framework is illustrated in
Fig. 1.
Model-level UAD: In previous work related to multi-source
domain adaptation [11], it was a common practice to involve
all source models with varying weights in the subsequent fine-
tuning stage. However, we found that if there is a significant
domain gap between a particular source model and the target
domain, negative transfer [18] could be incurred which results
in biased adaptation. Thus, to initialise a base target model
with minimal disturbance, we collect all pre-trained source
models from each domain and estimate the overall confidence
measure of each source model for predicting the target do-
main data. Specifically, for assessing the confidence of a
source model θjS’s inference results on the target domain data,
we average all confidence measures estimated for each in-
stance of the target domain data as follows: Mj =

∑nT
i=1 Mi

nT
.

The source model with the largest confidence measure which
is defined as ε for the target domain, θ∗S , is regarded as the
model conforming to the underlying data distribution closest
to the target domain and can be considered as the optimal
teacher:

ε = arg max([Mj]
N
j=1). (2)

We assign the source model θ∗S as the initial model for SFDA
learning on the target data to minimise the gap between the
multiple source domains and the target domain.
Instance-level UAD: As the target domain data are not anno-
tated, we propose to use the instance-level UAD method for
self-supervised learning on the target data with pseudo labels.
Specifically, we sequentially estimate the confidence measure
(margin) of each model in the source model zoo for predict-
ing each instance xi

T , for i = 1, ..., nT , in the target domain
and select the most confident source model to generate the
pseudo-label:

εi = arg max([Mi]
nT
i=1), (3)

where Mi denotes the margin values of source models pre-



dicting the target domain instance with:

Mi =
[
Topk
k=1

(δ(θjS(x
i
T )))− Topk

k=2
(δ(θjS(x

i
T )))

]nT ,N

i=1,j=1
. (4)

For the instance xi
T , the corresponding pseudo-label is

obtained by prediction of the source model with Mi = εi,

which we define as θiT : ŷiT =
[
θiT (x

i
T )

]nT

i=1
. {xi

T , ŷ
i
T }

nT
i=1

is leveraged to fine-tune the target initial model θT = θ∗S by
minimising the standard cross-entropy loss:

Ltar = −E(xT ,ŷT )∈XT×ŶT

∑K

k=1
1[k=ŷT ] log δk(θT (xT )), (5)

where 1(·) gives value 1 when the argument is true.

2.3. Temperature Scaling

In certain models, domain shift and limited data in source do-
mains may result in over- and under-confidence in predict-
ing target domain data which potentially triggers a mismatch
between model prediction accuracy and confidence [19]. In
other words, when this phenomenon occurs, the confidence
measure ε will no longer be an optimal measure for improv-
ing model prediction accuracy.

To address this problem, we embedded Temperature Scal-
ing (TS) which acts on prediction probabilities to calibrate
the logits prior to confidence measurement. In our approach,
TS is capable of effectively regularising the representation
of uncertainty in model predictions, and a more precise and
unbiased representation of uncertainty is preferable for the
process of knowledge distillation. The parameter T is the so-
called temperature, which yields softer probability estimates
with larger a temperature to alleviate over-confidence in the
model. For every source model [θjS ]

N
j=1, we learn Tj by setting

an initialisation value Tinitial and applying temperature scaling
on the target domain data DT : Tj = TS-Alg([θjS ]

N
j=1,DT ).

Specifically, the temperature scaling models are tuned by
minimising expected calibration error (ECE), a.k.a., calibra-
tion gap, which is defined as the difference between accuracy
and confidence for a given bin [20]:

ECE =

M∑
m=1

|Bm|
nT

∣∣∣acc(Bm)− conf(Bm)
∣∣∣, (6)

where M denotes the number of interval bins that we group
predictions, and Bm represents the batch of indices of in-
stances allocated in the interval Im = (m−1

M , m
M ].

Given the logit vector θjS(x
i
T ) obtained from each source

model, the calibrated probabilities are estimated by the for-
mula: zj = θjS(x

i
T )/Tj, where zj is the calibrated pre-

softmax output (logits) that will be utilised in Sec. 2.2.

3. EXPERIMENTS AND RESULTS

3.1. Dataset and Implementation Details

Datasets: We evaluate the proposed multi-source-free do-
main adaptation framework for classification tasks on two se-
ries of datasets:

• Multi-centre Diabetic Retinopathy (DR) dataset: The
multi-centre DR dataset, which measures DR grades (no
DR, mild DR, moderate DR, severe DR and proliferative
DR), consists of three public datasets (domains) APTOS
2019 [21], DDR [22], and IDRiD [23] with counts 3660,
13673, and 516 correspondingly.

• Skin Cancer MNIST HAM10000 [24]: To investigate the
classification of lesions as benign or malignant in different
parts of the human body, we split it into four domains by
skin lesion locations which are back, face, lower extrem-
ity, and upper extremity with counts 2192, 745, 2077 and
1118 respectively.

In our experimental process, we reprocess the data by first
resizing into 256 × 256 and cropping into size 224; then, we
assign one domain as the target in turn while considering the
others as source domains.
Implementation Details: Following the top-rank solution for
medical image classification [25], we employ DenseNet-121
as the backbone. In the source model training process, we use
smooth labels instead of the usual one-hot labels to reduce
overfitting and label noise. The maximum number of epochs
Nepoch for both DR and HAM10000 datasets is set to 100;
while during the UAD process, the Nepoch is set to 15 with a
series of updated pseudo-labels at the start of each. The batch
size is set to 32. For each epoch, there are Ntraining data/32 it-
erations in domains. We use Tinitial = log (1/1.5) and 1.5 for
the DR dataset and the HAM10000 dataset, respectively. For
both source models pre-training and adaptive distillation, we
leverage stochastic gradient descent with momentum value
0.9 and weight decay 10−3, with the learning rate schedul-
ing method [3] during the model learning progress.

3.2. Comparison Experiments

For experimental comparison, we included one existing
SFDA framework AaD [13] with multi-source extension and
two MSFDA frameworks DECISION [11] and CAiDA [12]
as baseline methods. We re-implement them following their
default settings. The experimental results are reported in Ta-
ble 1. The multi-source extension of AaD is implemented via
an ensemble that passes the target data through each of the
adapted source model and takes an average of the soft predic-
tion to obtain the test label. By exploring the experimental
results of iterations during the SFDA process for DECISION,
we noted that, except for the target domain I in DR and F
in HAM10000, the performance of the DECISION model
deteriorates as the iterations increase for training the target
model. This phenomenon is also observed in the CAiDA
framework, although the degradation in model performance
in the domain adaptation process is not as severe as in the
DECISION framework. Intuitively, in a domain-biased and
unsupervised setting, the model overfits to noisy labels when
training on the target data. It is due to the effect of the in-
volvement of inappropriate source models and low-quality



Table 1. Comparison experiments with baselines and ablation study. For method, M-UAD, I-UAD and TS are abbreviations
of model-level UAD, instance-level UAD and temperature scaling. For datasets, A, D and I are abbreviations of APTOS 2019,
DDR and IDRiD; B, F, L and U are abbreviations of back, face, lower extremity and upper extremity. The first three rows are
baselines, and the last four rows are ablation study. All values are adaptation accuracy (%). The last row is our default method
setting and corresponding experimental result.

Method
DR HAM10000

D, I → A A, I → D A, D → I AVG. F, L, U → B B, L, U → F B, F, U → L B, F, L → U AVG.

AaD (22’) [13] 36.13 33.07 46.32 38.51 64.55 64.30 65.14 72.36 66.59
DECISION (21’) [11] 57.32 45.43 58.33 53.69 74.27 76.24 71.06 78.98 75.14

CAiDA (21’) [12] 71.74 44.98 50.97 55.90 73.68 73.83 79.59 78.80 76.48

M-UAD 71.49 62.03 50.39 61.30 81.84 68.19 87.48 83.27 80.20
I-UAD 72.91 63.71 53.10 63.24 84.58 69.66 88.78 83.09 81.53

M-UAD + I-UAD 74.47 64.39 53.88 64.25 85.40 71.41 89.41 84.08 82.58
M-UAD + I-UAD + TS 74.52 65.27 58.72 66.17 85.40 73.29 89.70 84.44 83.21

pseudo-labels generated.
In comparison with existing frameworks, our proposed

method effectively mitigates both factors that could poten-
tially diminish the performance of the target domain model:
we identify the most confident source model, excluding inap-
propriate ones from participating in the training of the target
model, and generate the most reliable pseudo-labels through
the optimal source model. The last row in Table 1 shows
that the average accuracy of domain adaptation via UAD (our
method) in both datasets significantly outperforms all the
baselines.

3.3. Ablation Study

Furthermore, we also performed an ablation study on the
domain adaptation process: the model-level UAD only with-
out training implementation, the instance-level UAD only
without training implementation, and the model-level and
instance-level UAD with training but without temperature
scaling.
Effectiveness on Model-level and Instance-level UAD: To
avoid inappropriate source model(s), which are learned by
the source domain data that deviates significantly from the
target domain data distribution, from disrupting the final per-
formance of the target domain model, we first propose the
exclusion of such disruptive source model(s) during the train-
ing process. Instead, using the model-level UAD (M-UAD)
method, we pick the most confident source model, which is
also the optimal choice among existing models, to serve as
the initialisation of training the target model process. This es-
tablishes a solid foundation in the early stages of model train-
ing. The first row of the ablation study (M-UAD) in Table 1
demonstrates the result that implementing only M-UAD leads
to an improvement of approximately 5% on average com-
pared to the baseline results.

In an unsupervised learning setting, the generation of
pseudo-labels is a crucial step in driving the eventual high-
performance model. Instead, the generation of low-quality

pseudo-labels leads the target model to gradually fit into these
noisy labels, thereby reducing the final performance of the
target model. To prevent this from occurring, we propose
using the instance-level UAD (I-UAD) method to identify the
most confident label corresponding to an individual instance
as its pseudo-label. The second row of the ablation study (I-
UAD) in Table 1 gives the experimental result that applying
the I-UAD method leads to a higher accuracy for the target
model compared to the M-UAD approach.

The third row of the ablation study (M-UAD + I-UAD) in
Table 1 gives the experimental result that the performance can
be further improved by jointly applying the two-level UAD.
Effectiveness on Temperature Scaling: According to Sec. 2.3,
to mitigate the problem of over- and under-confidence in cer-
tain model(s) predicting the target domain data, TS is an ef-
fective method to calibrate the model. The last row of Table 1
gives the experimental result of applying the TS approach
to our combined UAD framework, showing an improvement
in the average accuracy compared to without applying the
TS model calibration method. This effect is particularly pro-
nounced on some target domains with relatively low accuracy,
such as domains I and F in the DR and HAM10000 datasets
respectively.

4. CONCLUSION

In this study, we proposed a two-level uncertainty-aware
adaptive distillation method termed UAD, a novel deep learn-
ing framework for multi-source-free unsupervised domain
adaptation on medical imaging data, with successful appli-
cation on datasets across diseases and human anatomical
regions. Both initialising the target domain training process
by identifying the optimal source model and generating re-
liable pseudo-labels by leveraging a post-calibrated source
model zoo, our method significantly outperforms the existing
frameworks performing on the medical imaging data. In con-
clusion, our proposed method can fill the gap in the MSFDA
setting in the field of medical image processing and analysis.
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