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Abstract

In this paper, we explores the expressivity and trainability of the Fourier Neural
Operator (FNO). We establish a mean-field theory for the FNO, analyzing the
behavior of the random FNO from an edge of chaos perspective. Our investigation
into the expressivity of a random FNO involves examining the ordered-chaos phase
transition of the network based on the weight distribution. This phase transition
demonstrates characteristics unique to the FNO, induced by mode truncation, while
also showcasing similarities to those of densely connected networks. Furthermore,
we identify a connection between expressivity and trainability: the ordered and
chaotic phases correspond to regions of vanishing and exploding gradients, respec-
tively. This finding provides a practical prerequisite for the stable training of the
FNO. Our experimental results corroborate our theoretical findings.

1 Introduction

The recent surge in interest in solving partial differential equations (PDEs) has led to the use of neural
network (NN)-based surrogate models. One promising line of work is the neural operator (NO),
which learns the solution operator of PDEs, thereby bypassing the need for mesh dependency. Among
the variants of NO, the Fourier neural operator (FNO) (Li et al., 2020c) has gained popularity because
of its advantageous cost/accuracy trade-off. The FNO can capture long-distance spatial interactions
using the Fourier transform, whereas convolutional neural networks (CNNs) (Wen et al., 2019; Jiang
et al., 2021b) and message-passing graph neural networks (GNNs) (Li et al., 2020a,b) are limited to
operating solely on local variables. From a computational cost perspective, the Fourier transform is
performed in quasi-linear time by the fast Fourier transform (FFT), making it significantly faster than
the Transformer (Li et al., 2023).

Despite the widespread use of FNO as an architecture, there is a lack of comprehensive theoretical
analysis on its expressivity and trainability. The universal approximation property (Kovachki et al.,
2021), recognized as the basic expressivity of the FNO, is well-known; however, the exponential
expressivity depending on the weight distribution, which are known for the densely connected
network (DCN) (Schoenholz et al., 2016), a.k.a. fully connected network, and CNN (Xiao et al.,
2018), remains unexplored. Regarding the trainability of FNO, the training instability in deep FNO
has been experimentally reported by Tran et al. (2022), but the causes and conditions of the difficulty
have not been clarified either theoretically or experimentally.
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Figure 1: Illustration of ordered-chaos phase transition for the weight initialization parameter σ2. In
the ordered phase, the spatial hidden representations H(ℓ) on the grid converge to a uniform state
during forward propagation and the gradient vanishes during backpropagation. In the chaotic phase,
the representations either converge to a distinct state or diverge and the gradient explodes.

We analyze the exponential expressivity (how far can two different input vectors be pulled apart)
and trainability (how much gradient explosion on average) of the random FNO from the perspective
of whether the network is ordered or chaotic. This viewpoint is grounded in mean-field theory, an
analytical framework for NN established by Poole et al. (2016); Schoenholz et al. (2016); Yang
& Schoenholz (2017); Xiao et al. (2018). A network is considered ordered when it brings all
representations of two different spatial positions closer together, and chaotic when it drives them
apart during forward propagation. Furthermore, a network can only be stably trained when initialized
close to the edge of chaos, which is the transition point between the ordered phase and the chaotic
phase. In fact, He initialization (He et al., 2015) is an example of a commonly used edge of chaos
initialization for the DCN with ReLU activation (Burkholz & Dubatovka, 2019).

In this study, we establish a mean-field theory to analyze the expressivity and trainability of the FNO.
Our investigation reveals the expressivity of random FNO at initialization by examining the transition
point between ordered and chaos phases. The phase transition exhibits FNO-specific characteristics
induced by mode truncation, as well as similarities with the characteristics of DCN and CNN. We also
find a link between expressivity and trainability: the ordered and chaotic phases correspond to regions
of vanishing and exploding gradient, respectively. This discovery offers a practical initialization
prerequisite for the stable training of the FNO.

2 Background

2.1 Fourier Neural Operators

The FNO (Li et al., 2020c) is one of the well-established methods for solving PDEs across many
scientific problems (Yang et al., 2021; Wen et al., 2022b; Hwang et al., 2022; Jiang et al., 2021a;
Pathak et al., 2022). An M -dimensional FNO with the number of hidden features D and the spatial
size N for learning the operators between scalar-valued functions is defined as follows.

X(ℓ+1) = ϕ
(
D(ℓ)

(
X(ℓ)

)
+K(ℓ)

(
X(ℓ)

))
, (1)

where X(ℓ) ∈ R
M︷ ︸︸ ︷

N×···×N ×D is the ℓ-th hidden representation, M is the number of spatial dimensions,
and ϕ is activation. The hidden representations X(0) and X(L) are the output of the lifting operator
and the input of the projection operator, respectively. The architecture of these operators does not
affect our analysis as long as the network stays shallow, as implemented in (Li et al., 2020c). The ℓ-th
densely connected (DC) module D(ℓ) is an affine point-wise map in the physical space and the ℓ-th
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Fourier convolution module K(ℓ) is a parameterized kernel integral operator using Fourier transform.
The bias term is considered to be included in either or both modules K(ℓ) and D(ℓ).

Several FNO variants have been developed to address specific challenges, such as geo-FNO (Li
et al., 2022) for irregular regions and group equivariant FNO (G-FNO) (Helwig et al., 2023), which
maintains equivariance to rotation, reflection, and translation. U-NO (Rahman et al., 2022) and
U-FNO (Wen et al., 2022a) integrate FNO with U-Net for multiscale modeling. Additionally,
WNO (Tripura & Chakraborty, 2022) utilizes wavelet bases, while CFNO (Brandstetter et al.,
2023) enhances the use of geometric relations between different fields and field components through
Clifford algebras. Adaptive FNO (Zhao et al., 2022; Guibas et al., 2021) and F-FNO (Tran et al., 2022)
have improved computational and memory efficiency through incremental learning and architectural
modifications. Other approaches for improving performance include methods with increasing physical
inductive bias (Li et al., 2024), data augmentation (Brandstetter et al., 2022), and a variance-preserving
weight initialization scheme (Poli et al., 2022).

While numerous new models and learning methods have been proposed, relatively little research has
been conducted to understand the intrinsic nature of these methods. Issues such as spectral bias (Zhao
et al., 2022) and training instability (Tran et al., 2022) have been reported. Tran et al. (2022) observed
that training did not converge even at 24 layers. They successfully addressed the stability and
accuracy degradation issues associated with an increase in the number of layers by implementing
skip connections behind activation and introducing various training techniques. However, it is still
unknown that the theoretical basis for why the original architecture of the FNO has problems with
training instability and accuracy degradation.

2.2 Mean-field Theory for Neural Networks

The mean-field theory has been used to provide a mathematical framework for understanding the
expressivity and trainability of neural networks (Poole et al., 2016; Schoenholz et al., 2016; Yang
& Schoenholz, 2017; Hayou et al., 2018; Xiao et al., 2018). A series of papers (Poole et al., 2016;
Schoenholz et al., 2016) delved into the average behavior of infinite-width random deep DCN, with
weights and biases initialized by a zero-mean Gaussian distribution. The formulation is given below.

x(ℓ) = ϕ
(
h(ℓ)

)
, h(ℓ) =W (ℓ)x(ℓ−1) + b(ℓ),

W
(ℓ)
i,j

i.i.d.∼ N
(
0,
σ2

D

)
, b

(ℓ)
i

i.i.d.∼ N
(
0, σ2

b

)
,

(2)

where x(ℓ) ∈ RD is the ℓ-th hidden representation,W (ℓ) ∈ RD×D, b(ℓ) ∈ RD are the ℓ-th learnable
parameters, and the width is assumed to be sufficiently large D ≫ 1.

Poole et al. (2016) and Schoenholz et al. (2016) explored the exponential expressivity of random
DCN determined by two phases depending on the initial variance parameters σ2 and σ2

b , as shown
in Fig. 5a. Poole et al. (2016) first examined the forward propagation of a random DCN with Tanh
activation. They demonstrated that the covariance Σ(ℓ) of the ℓ-th pre-activation representations h(ℓ)

and h̃(ℓ) corresponding to two different inputs x(0) and x̃(0) are obtained by

∀d ∈ [D], Σ(ℓ) = σ2E
[
ϕ
(
h
(ℓ−1)
d

)
ϕ
(
h̃
(ℓ−1)
d

)]
+ σ2

b ,

where the expectation is taken over the pre-activations [h
(ℓ−1)
d , h̃

(ℓ−1)
d ] ∼ N (0,Σ(ℓ−1)). The

covariance converges exponentially to a fixed point Σ∗ determined by parameters σ2 and σ2
b .

A network is considered ordered when it brings two distinct representations closer together, which
implies a state of small expressivity. Conversely, a network is chaotic when it drives them apart
during forward propagation, implying a state of large expressivity. Networks with either excessively
small or large expressivity can disrupt the structure of the input: the difference between two distinct
inputs quickly becomes indistinguishable in networks with small expressivity, while similarities
between inputs are no longer recognized in networks with large expressivity. The network is ordered
if the initial variance of the weights is small. For larger values, and beyond a certain threshold, the
phase shifts, and the network behaves chaotically. This phase shift point is termed the edge of chaos.

Subsequently, Schoenholz et al. (2016) discovered the connection between expressivity and trainabil-
ity of DCN through analysis of the backpropagation behavior. In an ordered network, the expected
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value of the gradient norm becomes exponentially small during backpropagation, while it becomes
exponentially large in a chaotic network. This implies that the gradient vanishes/explodes in ordered
or chaotic networks, respectively. These findings suggest that deep DCN can be stably trained only
near the edge of chaos. Schoenholz et al. (2016) also provided an estimate of the maximum depth at
which a network can be trained when initialized away from the edge of chaos. These insights are not
limited to DCN and similar results have been observed for residual networks (Yang & Schoenholz,
2017) and CNN (Xiao et al., 2018).

3 A mean-field theory for FNO

In this section, we establish a mean-field theory of FNO. We demonstrate the exponential expressivity
of random FNO by examining the ordered-chaos phase transition during the forward propagation.
Furthermore, we identify the connection between expressivity and trainability by concentrating on
backward propagation behaviors. Our analysis is an advanced version of the approach developed
by Poole et al. (2016); Schoenholz et al. (2016); Yang & Schoenholz (2017); Xiao et al. (2018).
In Section 3.1, we outline the problem setup. In Section 3.2, we analyze the forward and backward
propagation behavior of random FNO at initialization. In Section 3.3, we discuss the practical
prerequisites for initialization to stabilize the training of FNO, leveraging the similarities between
FNO and DCN. The proofs for all the lemmas and theorems are provided in Appendices A and B.

3.1 Problem setting

Here, we consider a simplified one-dimensional (1D) FNO. Note that our theory is extensively
applicable to the original FNO, as discussed in Section 3.3. The simplified 1D FNO, with a depth
of L, is defined by the number of hidden features D, a spatial size N = 2m (where m is an
integer), the number of Fourier modes K ≤ N

2 + 1, two learnable weights Θ(ℓ,k) ∈ RD×D and
Ξ(ℓ,k) ∈ RD×D, and a bias b(ℓ) ∈ RD. Denote ϕ : R → R by the non-decreasing activation function.
Let X(ℓ) ∈ RN×D and H(ℓ) ∈ RN×D be the post and pre-activation representations defined by

X(ℓ) = ϕ
(
H(ℓ)

)
, H(ℓ) =

K−1∑
k=0

√
ck
2

(
H(ℓ,k) +H

(ℓ,k)
)
+ b(ℓ)1⊤

N ,

H(ℓ,k) := F †D(k)FX(ℓ−1)
(
Θ(ℓ,k) +

√
−1Ξ(ℓ,k)

)
,

(3)

where δa,b is the Kronecker-delta, ck = 2 − δk,0 − δk,N/2 is a constant, 1N is all-ones column

vector with the size N , H
(ℓ,k)

is the conjugate of H(ℓ,k) corresponding to the (N − k)-th frequency
components, † is the transpose conjugate, F ∈ CN×N is the Discrete Fourier Transform (DFT)
matrix defined by Fk,n = 1

N exp(− 2πk
N n), andD(k) is a diagonal matrix with a 1 at position D(k)

k,k.

There are two differences from the original FNO proposed by Li et al. (2020a): (1) the DC module
is dropped for the simplicity, and (2) H(ℓ,k) is multiplied by

√
2 with respect to k = 0, N2 for

appropriate normalization. We assume that the weights of FNO are initialized by i.i.d. samples from
Gaussian distribution, i.e. Θ(ℓ,k)

i,j
i.i.d.∼ N (0, σ

2

2D ), Ξ
(ℓ,k)
i,j

i.i.d.∼ N (0, σ
2

2D ), b
(ℓ)
i

i.i.d.∼ N (0, σ2
b ). For

k = 0, N2 , the parameter Ξ(ℓ,k) is set to zero exceptionally. For all d ∈ [D] = {0, . . . , D − 1},
the pre-activations H

(ℓ)
:,d ∈ RN are i.i.d. random variables. When D ≫ 1, by the central limit

theorem, the variables H(ℓ)
:,d follow Gaussian distribution with mean 0 and covariance matrix Σ

(ℓ)
α,α′ :=

EΘ1:ℓ,Ξ1:ℓ

[
H

(ℓ)
α,dH

(ℓ)
α′,d

]
, where the expectation is taken over all random variables [Θ1:ℓ,Ξ1:ℓ] :=

{Θ(ℓ′,k′),Ξ(ℓ′,k′)}ℓ′∈[ℓ],k′∈[K]. Our theory can be easily extended to 2D and 3D FNOs.

3.2 Expressivity and trainability of FNO

Firstly, the forward propagation of a single input signal with spatial features is described as follows.
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Lemma 3.1 (Iterated map). For all d ∈ [D], the covariance Σ(ℓ) := EΘ1:ℓ,Ξ1:ℓ

[
H

(ℓ)
:,d H

(ℓ)
:,d

⊤
]

is

obtained recursively by the iterated map C defined by

Σ
(ℓ)
α,α′ = σ2

K−1∑
k=0

ckE
[∣∣[Fϕ (H:,d)]k

∣∣2] cos(θ(k)α,α′

)
+ σ2

b︸ ︷︷ ︸
=: C(Σ(ℓ−1))α,α′

, (4)

where the expectation is taken over the pre-activations H:,d ∼ N (0,Σ(ℓ−1)), θ(k)α,α′ := 2πk
N (α− α′)

represents the scaled positional difference.

The indices α and α′ correspond to different spatial locations as with the mean-field theory for
CNN (Xiao et al., 2018). Note that [Fϕ (H:,d)]k is the k-th Fourier modes of the post-activation
representation. When applying DCN (Poole et al., 2016; Schoenholz et al., 2016) or CNN (Xiao et al.,
2018) to the spatial signal, the iterated map depends only on local spatial locations, while in the case
of FNO, the iterated map depends on all spatial locations because of the global Fourier convolution.
In addition, only periodic spatial correlations with shift-invariant are propagated, and high-frequency
components exceeding mode K are eliminated.

Next, we explore the fixed point Σ∗ of the iterated map C satisfying Σ∗ = C(Σ∗). By linearizing
the dynamics of signal propagation around this fixed point and analyzing the stability and rate of
convergence to the fixed point, we can determine the depth to which each component of the input can
propagate. Schoenholz et al. (2016) showed that the iterated map of DCN defined in Eq. (2) has a
fixed point of the form:

Σ∗ = q∗IN + q∗c∗(1N1⊤
N − IN ), (5)

where q∗, c∗ are the fixed points of variance and correlation, and IN is the identity matrix. Meanwhile,
Xiao et al. (2018) showed that any fixed point for the iterated map of the DCN is also a fixed point
for that of CNN. We show that random FNO has the same fixed points of the form of Eq. (5) with
c∗ = 1 in the following lemma.
Lemma 3.2 (Exsistance of fixed points). When a random DCN defined by Eq. (2) has the fixed point
(q∗, c∗ = 1) for the initial parameters (σ2, σ2

b ), then a random simplified FNO defined by Eq. (3) has
a fixed point Σ∗ of the form

Σ∗ = q∗IN + q∗c∗(1N1⊤
N − IN ) = q∗1N1⊤

N .

Lemma 3.2 indicates that the fixed point for the iterated map Σ∗ of the DCN serves as a fixed point
for the iterated map of the simplified FNO (as well as CNN). To analyze the stability and convergence
rate, we linearly approximate the C-map around the fixed point Σ∗, i.e., C(Σ) ≈ Σ∗+JΣ∗(Σ−Σ∗),
where JΣ∗ is the Jacobian linear map of the iterated map defined in Eq. (15). We then derive the
eigenvalues and eigenvectors for the Jacobian linear map JΣ∗ as follows.
Definition 3.3.

χq∗ := σ2E
[
ϕ′2(Hα,d) + ϕ′′(Hα,d)ϕ(Hα,d)

]
, (6)

χc∗ := σ2E[ϕ′(Hα,d)ϕ
′(Hα′,d)], (7)

χκ :=
σ2

2
E [ϕ′′(Hα,d)ϕ(Hα′,d) + ϕ(Hα,d)ϕ

′′(Hα′,d)] + σ2E [c∗ϕ′(Hα,d)ϕ
′(Hα′,d)] , (8)

where the expectation is taken over the pre-activations H:,d ∼ N (0,Σ∗), and ϕ′, ϕ′′ are the first-
and second-order derivatives of the activation ϕ.

The bases ψ, ψ(1), . . . , ψ(K−1) ∈ RN×N using the above quantities are defined below.

ψβ,β′ := 1− 1

N

(
χκ + χc∗ − χq∗

χκ

)K−1∑
s=0

cs cos
(
θ
(s)
β,β′

)
,

ψ
(k)
β,β′ := cos

(
θ
(k)
β,β′

)
− 1∑K−1

s=0 cs

K−1∑
s=0

cs cos
(
θ
(s)
β,β′

)
.

(9)
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From Lemma A.4, K − 1 matrices in {ψ(k)}k∈[K]\{0} are eigenbases with the eigenvalue χc∗
of the Jacobian linear map. From Lemma A.5, the matrix ψ is the eigenbases with the eigen-
value χ of the Jacobian linear map. Since the rank of the Jacobian linear map is at most K
(Lemma A.3), the deviation from the fixed point Σ(ℓ) −Σ∗ is spanned by K-dimensional eigenspace
span

(
{ψ(k)}k∈[K]\{0} ∪ {ψ}

)
. Then, the fixed point stability and the convergence rate are shown

in the following theorem.

Theorem 3.4 (Exponential expressivity). Let E(ℓ) := Σ(ℓ) − Σ∗ be the deviation from the fixed
point at the ℓ-th layer. Suppose that the deviation at the first layer is decomposed as E(0) = ϵψ +∑K−1
k=1 ϵkψ

(k)+e. The scalars ϵ, ϵk represent the scale of the perturbation for each eigencomponent
of the linearly approximated map E(ℓ) 7→ E(ℓ+1). The component e ∈ RN×N belongs to the
orthogonal complements of the space span

(
{ψ,ψ(1), . . . , ψ(K−1)}

)
.

Then, the deviation at the ℓ-th layer is obtained by

E(ℓ) = χℓϵψ +

K−1∑
k=1

χℓc∗ϵkψ
(k), (10)

χ :=
1

N

K−1∑
s=0

csχq∗ +

(
1− 1

N

K−1∑
s=0

cs

)
(χκ + χc∗).

In particular, when the Fourier mode is K = N
2 + 1, Eqs. (9) and (10) reduce to the following.

E(ℓ) = χℓq∗ϵψ +

K−1∑
k=1

χℓc∗ϵkψ
(k),

∀β, β′ ∈ [N ], ψβ,β′ = 1, ψ
(k)
β,β′ = cos

(
θ
(k)
β,β′

)
− δβ,β′ .

(11)

Theorem 3.4 shows the expressivity of the FNO, which is characterized by the ordered-chaos phases
and varies exponentially with respect to the number of layers. Theorem 3.4 indicates that the
asymptotic behavior of the zero-frequency deviation is mostly determined by χ and the periodic
deviation is determined by χc∗ . If χ < 1 and χc∗ < 1, the fixed point is stable as the deviation from
the fixed point converges exponentially to zero. When the fixed point remains stable at c∗ = 1, a
random network exists in an ordered phase, where all spatial representations are correlated in an
asymptotic manner. Conversely, when the fixed point with c∗ = 1 becomes unstable, the network
transitions into a chaotic phase, exhibiting behavior dependent on the activation function ϕ. The
boundary between these two phases is referred to as the edge of chaos.

The convergence rates χq∗ and χc∗ are the same as the convergence rates of the variance and
correlation to the fixed point for DCN (Schoenholz et al., 2016) and CNN (Xiao et al., 2018).
However, only periodic spatial correlations are propagated in the FNO, resulting in a different
eigenspace of the map E(ℓ) 7→ E(ℓ+1) compared to the DCN and CNN. In DCN, the deviation
belongs to a vector space with dimension N(N−1)

2 in DCN, whereas in FNO, the dimension is K, or
at most N2 +1. CNN possess diagonal eigenspaces associated with eigenvalues χq∗ and non-diagonal
eigenspaces associated with eigenvalues χc∗ . In contrast, FNOs without mode truncation exhibit
a similarity, possessing eigenspaces χq∗ for zero-frequency and eigenspaces χc∗ for k-frequencies
with diagonal components removed. Furthermore, mode truncation increases the convergence rate of
zero-frequency deviation from χq∗ to χ and affects all eigenbases as well. For further discussions on
the similarities between CNN and FNO, please refer to Appendix C. A visualization of the covariance
of the FNO with Tanh and ReLU activations is shown in Appendix F.

Finally, we demonstrate the connection between expressivity and trainability. By examining the
covariance of the gradient in each layer during backpropagation, we investigate the conditions under
which training is stable without gradient vanishing or exploding.

Theorem 3.5 (Trainability). Let Σ̃(ℓ) ∈ RN×N be the gradient covariance with respect to some loss
L, e.g. mean squared error, at the ℓ-th layer. Suppose that the gradient covariance at the L-th layer
is decomposed as Σ̃(L)

α,α′ =
∑K−1
k=0 ϵ̃k cos

(
θ
(k)
α,α′

)
+ ẽ, where ϵ̃k is the coefficient of each basis and ẽ
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(a) Simplified FNO with Tanh (b) Simplified FNO with ReLU (c) Original FNO with ReLU

Figure 2: Average gradient norm Tr(Σ̃(ℓ))/D during the backpropagation of several FNOs plotted as
a function of layer ℓ. Each line corresponds to the result of different initial values of σ2 from 0.5 to
4.0 in increments of 0.5. The x-axis is the layer and the y-axis is the log-scale of the gradient norm.
Depending on the value of σ2, the gradient norm increases or decreases consistently as the gradient
propagates to shallower layers.

belongs to the orthogonal complements of span({cos
(
θ
(k)
α,α′

)
}K−1
k=0 ). Then, the gradient covariance

at the ℓ-th layer is obtained by

Σ̃
(ℓ)
α,α′ =

K−1∑
k=0

χL−ℓc∗ ϵ̃k cos
(
θ
(k)
α,α′

)
.

Theorem 3.5 shows that gradient vanishing occurs when χc∗ < 1 (ordered phase) and gradient
explosion occurs when χc∗ > 1 (chaos phase). Thus, stable training of the FNO can be achieved
close to the edge of chaos by setting the initial parameter σ2 to satisfy χc∗ ≈ 1. We specifically
present the initial parameter choices that achieve the edge of chaos for several FNOs in Section 3.3.

When c∗ = 1, there is no change in the dynamics during backpropagation due to mode truncation.
When using the full mode K = N

2 + 1, the condition χc∗ = 1 always achieves the edge of chaos,
which is consistent with the results for the DCN and CNN. Despite the architectural and iterative map
differences among FNO, DCN, and CNN, Theorem 3.4 and Theorem 3.5 demonstrate the similarities
in the random behavior of FNO, DCN, and CNN. This allows existing results based on mean-field
theory to be applied to the FNO.

3.3 Initialization requirements for stable training

For stable training, Theorem 3.5 suggests the necessity of initializing FNO near the edge of chaos, i.e.,
initializing FNO so that χc∗ ≈ 1. In this section, we present the initial parameter choices that achieve
the edge of chaos for several FNOs, each with slightly different architectures such as activation
functions. Furthermore, the behavior of the gradient norm Tr(Σ̃(ℓ))/D as a function of layer ℓ are
visualized in Fig. 2 for several variants of random FNO with different initialization parameters σ2.
We used FNO with a width of D = 32 and a number of layers L = 64, and for simplicity, we
computed the absolute value of the output as the loss with respect to the input sampled from the
standard normal distribution.

Simplified FNO with Tanh activation.
The behavior of χc∗ for the parameters σ2 and σ2

b of the Tanh network has been extensively studied
by Poole et al. (2016); Schoenholz et al. (2016). The phase diagram drawn by Pennington et al.
(2017) is shown in Fig. 5a. By using parameters (σ2, σ2

b ) around the two phase boundaries of ordered
and chaotic that achieve χc∗ = 1, the training of the simplified FNO with Tanh activation can be
stabilized. Figure 2a depicts the behavior of the gradient backpropagation in the simplified FNO
with Tanh activation and the bias parameter being σ2

b = 0.1. Figure 2a shows that when σ2 ⪅ 2, the
gradient diminishes exponentially; otherwise, it explodes exponentially.
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Simplified FNO with ReLU activation.
The iterated map C of the DCN with ReLU activation is given by Cho & Saul (2009) as follows.

q(ℓ+1) =
1

2
σ2q(ℓ) + σ2

b , (12)

c(ℓ+1)q(ℓ+1) =
1

2
σ2q(ℓ)J1

(
c(ℓ)q(ℓ)

q(ℓ)

)
+ σ2

b , (13)

J1(c) =
1

π

(√
1− c2 + (π − arccos (c))c

)
,

The edge of chaos initialization for the DCN with ReLU activation is known as He initialization (He
et al., 2015), which sets the initial variance parameter as σ2 = 2 and initial bias as b(ℓ)i = 0 for Eq. (2).
From the similarity of the DCN and the FNO, we can derive the FNO version of the He initialization
that achieves χc∗ = 1 by setting σ2 = 2, b

(ℓ)
i = 0 for Eq. (3). The He initialization scheme for the

simplified FNO with the activation ϕ = ReLU is derived as follows.

Θ
(ℓ,k)
i,j

i.i.d.∼ N (0, D−1), Ξ
(ℓ,k)
i,j

i.i.d.∼ N (0, D−1).

Figure 2b demonstrates that the choice of σ2 = 2 preserves the magnitude of the gradient norm
during backpropagation of deep simplified FNO with ReLU activation.

Original FNO.
In the original architecture of the FNO proposed by Li et al. (2020c), the DC module is used together
with the Fourier convolution module as shown in Eq. (1). We initialize the weights of both layers
consistently as follows. For all ℓ ∈ [L], k ∈ [K], and i, j ∈ [D],

Θ
(ℓ,k)
i,j

i.i.d.∼ N
(
0,
σ2

4D

)
, Ξ

(ℓ,k)
i,j

i.i.d.∼ N
(
0,
σ2

4D

)
,

W
(ℓ)
i,j

i.i.d.∼ N
(
0,
σ2

2D

)
, b

(ℓ)
i ∼ N

(
0, σ2

b

)
.

From the similarity of the initial network behavior of the FNO and the DCN, the fixed point with
c∗ = 1 of the simplified FNO is also a fixed point of the original FNO. In the neighborhood of the
fixed point Σ∗, the eigencomponents spanned by {ψ(k)}Kk=1 will decay or increase at the rate of χc∗ .
Following the derivation of Theorem 3.5, the eigenvalues of the cos function eigencomponents of the
gradient covariance are also χc∗ . These results show that the edge of chaos initialization scheme can
be used for the original FNO with each activation function. Figure 2c shows that the original FNO
with ReLU activation and the parameter fixed as b(ℓ)i = 0 exhibits similar backpropagation behavior
as the simplified FNO, i.e., σ2 ≈ 2 is an appropriate choice.

4 Experiments

In this section, we experimentally demonstrate that deep FNO training requires appropriate initializa-
tion settings on a variety of datasets, consistent with the theory discussed in Section 3.

4.1 Datasets

We evaluated three models on commonly used PDEs: the advection equation, Burgers’ equation,
Darcy Flow equation, and incompressible Navier-Stokes (NS) equation. All datasets were generated
by numerical simulations used in (Takamoto et al., 2022; Li et al., 2020c) and are publicly available.
A summary of the dataset is provided in Table 1, and more details are given in Appendix D.

Advection equation and Burgers’ equation. The linear advection equation for the function u(x, t)
is given by

∂tu(x, t) + β∂x (u(x, t)/2) = 0, u(x, 0) = u0(x),

where u0 is the initial condition and β = 2.0 is an advection speed. The non-linear Burgers’ equation
for the function u(x, t) is given by

∂tu(x, t) + ∂x
(
u2(x, t)/2

)
= ν∂xxu(x, t), u(x, 0) = u0(x),
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Table 1: Overview of dataset with number of spatial dimensions M , time dependence, spatial
resolutionNs = N×· · ·×N , temporal resolutionNt, and number of samples for training, validation,
and testing.

PDE M time Ns Nt Number of samples (Train / Val / Test)

advection 1 - 64 - 8000 / 1000 / 1000
Burgers’ 1 - 64 - 8000 / 1000 / 1000

Darcy flow 2 - 64× 64 - 900 / 100 / 100
Navier-Stokes (ν = 1e-3) 2 ✓ 64× 64 25 1000 / 100 / 100
Navier-Stokes (ν = 1e-4) 2 ✓ 64× 64 20 8000 / 1000 / 1000
Navier-Stokes (ν = 1e-5) 2 ✓ 64× 64 20 1000 / 100 / 100

where u0 is the initial condition and ν = 4.0 is the diffusion coefficient.

Darcy Flow equation. The Darcy Flow equation for the function u(x) with a Dirichlet boundary is
given by

−∇ · (a(x)∇u(x)) = f(x) (x ∈ (0, 1)2), u(x) = 0 (x ∈ ∂(0, 1)2),

where a is the diffusion coefficient and f(x) = 1 is the forcing function.

Incompressible Navier-Stokes equation. The 2D NS equation on the unit torus is defined by
∂tω(x, t) + u(x, t) · ∇ω(x, t) = ν∇2ω(x, t) + f(x), ∇ · u(x, t) = 0, ω(x, 0) = ω0(x),

where ω(x, t) is the vorticity, ω0 is the initial vorticity, u(x, t) is the velocity field for
any r > 0, ν ∈ R+ is the viscosity, and f is the external forcing function defined by
f(x) = 0.1 (sin(2π(x1 + x2) + cos(2π(x1 + x2)). We experimented with the viscosities ν =
1e−3, 1e−4, 1e−5. For the data with ν = 1e−4, the time resolution was also downsampled by half.

4.2 Experimental Settings

In the experiments on the 1D advection and Burgers’ equation, we compared the results of simplified
FNOs defined in Eq. (3) with Tanh and ReLU activations for varying number of layer L and initial
parameters σ2. In the experiments on the 2D Darcy Flow and NS equations, we compared the results
of the original FNO (Li et al., 2020c) as shown in Eq. (1) for varying number of layer L and initial
parameters σ2. All models have a width of D = 32 and the Fourier mode of K = 12. When using
Tanh as the activation, we fixed the initial bias parameter σ2

b = 0.1, and when using ReLU activation,
we fixed the initial bias b(ℓ)i = 0. We used the AdamW optimizer and cosine annealing scheduler.
Training was stopped early at the epoch of minimal normalized mean squared error (nMSE) on the
validation data. Details of the experimental setup are given in Appendix D. In the experiments on the
NS equation, we trained the original FNO with the autoregressive scheme using a teacher-forcing
technique, input normalization, and regularization that adds small-Gaussian noise to the input (Tran
et al., 2022). During the evaluation phase, only the initial 10 steps are provided as input, and the
rollout results of all subsequent steps are evaluated. For all tasks, the mean squared error (MSE) is
used as the training loss and nMSE as the validation and testing (Li et al., 2020a; Tran et al., 2022).

4.3 Results

Heatmaps of the training loss measured by MSE at the last epoch and the test performance measured
by nMSE on six different datasets, for different depths L and initial parameters σ2, are shown
in Figs. 3 and 4, respectively. Despite the differences in architectures and datasets, Figure 3 shows
the same trend supporting the theory in all experiments. As the number of layers L increases, the
range of acceptable initial σ2 value settings becomes narrower, and initialization near the edge of
chaos (σ2 ≈ 2) is required for stable training of deep FNO. Detailed analyses on training loss and
test performance are presented in Appendix E.1 and Appendix E.2, respectively.

5 Conclusion

In this study, we developed a mean-field theory for FNO. We showed the expressivity and trainability
of the FNO, which is characterized by the ordered-chaos phases. Furthermore, we observed both
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(a) Tanh on advection eq. (b) ReLU on advection eq. (c) Tanh on Burgers’ eq. (d) ReLU on Burgers’ eq.

(e) ReLU on Darcy Flow (f) ReLU on NS eq. (1e-3) (g) ReLU on NS eq. (1e-4) (h) ReLU on NS eq. (1e-5)

Figure 3: Training loss of FNOs at last epoch for four distinct PDEs. (a, b): the advection equation,
(c, d): the Burgers’ equation, (e): Darcy Flow, (f-h): the NS equation. The heatmaps represents
the training loss values for varying depth L ∈ {4, 8, 16, 32} and initial weight parameter σ2 ∈
{0.1, 0.5, 1.0, 2.0, 3.0, 4.0}, with lighter colors signifying lower training loss. The presented results
are the mean training loss at the last epoch over three different seeds.

(a) Tanh on advection eq. (b) ReLU on advection eq. (c) Tanh on Burgers’ eq. (d) ReLU on Burgers’ eq.

(e) ReLU on Darcy Flow (f) ReLU on NS eq. (1e-3) (g) ReLU on NS eq. (1e-4) (h) ReLU on NS eq. (1e-5)

Figure 4: nMSE of FNOs on test datasets for four distinct PDEs. (a, b): the advection equation (c,
d): the Burgers’ equation, (e): Darcy Flow, (f-h): the NS equation. The heatmaps for each nMSE
correspond to the results of each heatmap of training loss in Fig. 3. The lighter colors, the better the
test performance. The presented results are the mean nMSE calculated over three different seeds.

unique FNO-specific behaviors caused by mode truncation, as well as common behaviors akin to
those of DCN. With our analysis as a basis, we identified the necessity of initializing FNO near the
edge of chaos for stable training of the FNO. Experimental results supported our theoretical results.

A limitation of our analysis is that it is limited to the network at initialization and does not address
the stability of the entire optimization process. While we do not provide sufficient conditions for
stable training, we do offer one necessary condition for achieving stable training. Future work may
consider a mean-field analysis of the FNO when using skip-connection (Tran et al., 2022), Dropout
and batch normalization, as well as initialization methods that ensure the input-output Jacobian of the
FNO satisfies dynamical isometry (Pennington et al., 2017, 2018).
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(a) Tanh activation (Pennington et al., 2017) (b) ReLU activation

Figure 5: Ordered-chaos phase transition diagram for the DCN

A Proof of Theorem 3.4

Theorem 3.4 (Exponential expressivity). Let E(ℓ) := Σ(ℓ) − Σ∗ be the deviation from the fixed
point at the ℓ-th layer. Suppose that the deviation at the first layer is decomposed as E(0) = ϵψ +∑K−1
k=1 ϵkψ

(k)+e. The scalars ϵ, ϵk represent the scale of the perturbation for each eigencomponent
of the linearly approximated map E(ℓ) 7→ E(ℓ+1). The component e ∈ RN×N belongs to the
orthogonal complements of the space span

(
{ψ,ψ(1), . . . , ψ(K−1)}

)
.

Then, the deviation at the ℓ-th layer is obtained by

E(ℓ) = χℓϵψ +

K−1∑
k=1

χℓc∗ϵkψ
(k), (10)

χ :=
1

N

K−1∑
s=0

csχq∗ +

(
1− 1

N

K−1∑
s=0

cs

)
(χκ + χc∗).

In particular, when the Fourier mode is K = N
2 + 1, Eqs. (9) and (10) reduce to the following.

E(ℓ) = χℓq∗ϵψ +
K−1∑
k=1

χℓc∗ϵkψ
(k),

∀β, β′ ∈ [N ], ψβ,β′ = 1, ψ
(k)
β,β′ = cos

(
θ
(k)
β,β′

)
− δβ,β′ .

(11)

Proof. The theorem is obtained by the eigenvalue analysis on the the first-order Taylor approximation
of the iterated map C at the fixed point Σ∗. The Jacobian matrix J(Σ∗) ∈ RN2×N2

of the iterated
map at the fixed point and the Jacobian linear map JΣ∗(·) : RN×N → RN×N are defined as follows.

[J(Σ∗)](α,α′),(β,β′) :=
∂[C(Σ)]α,α′

∂Σβ,β′

∣∣∣∣
Σ=Σ∗

, (14)

∀Σ ∈ RN×N , JΣ∗(Σ) := mat (J(Σ∗) vec(Σ)) , (15)

where vec performs the vectorization, i.e. transforming an N ×N matrix into a vector of size N2,
and mat performs the inverse operation of vec.

From Lemma A.3, K − 1 matrices in {vec(ψ(k))}k∈[K]\{0} are eigenbases with the eigenvalue χc∗
of the Jacobian linear map. From Lemma A.4, the matrix ψ is the eigenbases with the eigenvalue
χ of the Jacobian linear map. Since the sets of K matrices in {ψ(k)}k∈[K]\{0} ∪ {ψ} are linearly
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independent (yet non-orthogonal) in RN×N , the subspace span
(
{ψ(k)}k∈[K]\{0} ∪ {ψ}

)
is the K-

dimensional eigenspace of the Jacobian linear map. From Lemma A.2, the rank of the Jacobian matrix
J(Σ∗) at the fixed point Σ∗ is at most K, thereby the rank of the Jacobian linear map in Eq. (15) is
at most K. Therefore, we have

∀e ∈ span
(
{ψ(k)}k∈[K]\{0} ∪ {ψ}

)⊥
, JΣ∗(e) = O.

C(Σ∗ +E(ℓ−1)) ≈ Σ∗ + JΣ∗(E(ℓ−1))

= Σ∗ +

(
χℓ−1ϵJΣ∗(ψ) +

K−1∑
k=1

χℓ−1
c∗ ϵkJΣ∗(ψ(k))

)

= Σ∗ + χℓϵψ +

K−1∑
k=1

χℓc∗ϵkψ
(k)

︸ ︷︷ ︸
= E(ℓ)

.

Lemma 3.1 (Iterated map). For all d ∈ [D], the covariance Σ(ℓ) := EΘ1:ℓ,Ξ1:ℓ

[
H

(ℓ)
:,d H

(ℓ)
:,d

⊤
]

is

obtained recursively by the iterated map C defined by

Σ
(ℓ)
α,α′ = σ2

K−1∑
k=0

ckE
[∣∣[Fϕ (H:,d)]k

∣∣2] cos(θ(k)α,α′

)
+ σ2

b︸ ︷︷ ︸
=: C(Σ(ℓ−1))α,α′

, (4)

where the expectation is taken over the pre-activations H:,d ∼ N (0,Σ(ℓ−1)), θ(k)α,α′ := 2πk
N (α− α′)

represents the scaled positional difference.

Proof. For simplicity, we introduce Yα,k,β,i as follows.

H
(ℓ,k)
α,d =

D∑
i=1

N−1∑
β=0

F †
α,kFk,βX

(ℓ−1)
β,i︸ ︷︷ ︸

=: Yα,k,β,i

(
Θ

(ℓ,k)
i,d +

(
1−

(
δk,0 + δk,N/2

))√
−1Ξ

(ℓ,k)
i,d

)
.

Since the weights are sampled independently, for different k ̸= k′,

E
[
H

(ℓ,k)
α,d H

(ℓ,k′)
α,d

]
= E

[
H

(ℓ,k)
α,d H

(ℓ,k′)

α,d

]
= E

[
H

(ℓ,k)

α,d H
(ℓ,k′)

α,d

]
= 0.

From Eq. (3), we have

EΘ(ℓ),Ξ(ℓ) [H
(ℓ)
α,dH

(ℓ)
α′,d] =

K−1∑
k=0

ck
2
E
[(
H

(ℓ,k)
α,d +H

(ℓ,k)

α,d

)(
H

(ℓ,k)
α′,d +H

(ℓ,k)

α′,d

)]
+ E

[
(b

(ℓ)
d )2

]
.
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First, we calculate the term k ̸= 0, N2 , where ck = 2.

E
[(
H

(ℓ,k)
α,d +H

(ℓ,k)

α,d

)(
H

(ℓ,k)
α′,d +H

(ℓ,k)

α′,d

)]
=

D∑
i,i′=1

N−1∑
β,β′=0

Yα,k,β,iYα′,k,β′,i′δi,i′
(
σ2 − σ2

)
/2D

+

D∑
i,i′=1

N∑
β,β′=1

Y α,k,β,iY α′,k,β′,i′δi,i′
(
σ2 − σ2

)
/2D

+

D∑
i,i′=1

N−1∑
β,β′=0

Yα,k,β,iY α′,k,β′,i′δi,i′
(
σ2 + σ2

)
/2D

+

D∑
i,i′=1

N−1∑
β,β′=0

Y α,k,β,iYα′,k,β′,i′δi,i′
(
σ2 + σ2

)
/2D

=
σ2

D

D∑
i=1

N−1∑
β,β′=0

Yα,k,β,iY α′,k,β′,i + Y α,k,β,iYα′,k,β′,i

=
σ2

D

D∑
i=1

N−1∑
β=0

Fk,βX
(ℓ−1)
β,i


︸ ︷︷ ︸

=X̂
(ℓ−1)
k,i

N−1∑
β′=0

Fk,β′X
(ℓ−1)
β′,i

(F †
α,kFk,α′ + F †

α,kFk,α′

)

=
2σ2

D

D∑
i=1

∣∣∣X̂(ℓ−1)
k,i

∣∣∣2 cos(θ(k)α,α′

)
,

where X̂(ℓ−1)
k,i is the k-th Fourier mode of the representaion X

(ℓ−1)
:,i .

Second, we calculate the terms k = 0, N2 , where ck = 1 and H(ℓ,k)
α,d = H

(ℓ,k)

α,d .

E
[ck
2

(
H

(ℓ,k)
α,d +H

(ℓ,k)

α,d

)(
H

(ℓ,k)
α′,d +H

(ℓ,k)

α′,d

)]
= 2

D∑
i,i′=1

N−1∑
β,β′=0

(Yα,k,β,iYα′,k,β′,i′) δi,i′
σ2

2D

=
σ2

D

D∑
i=1

∣∣∣X̂(ℓ−1)
k,i

∣∣∣2 cos(θ(k)α,α′

)
.

Since the Fourier modes |X̂(ℓ−1)
k,i |2 are i.i.d. for each hidden dimension i ∈ [D], we have

EΘ0:ℓ−1,Ξ0:ℓ−1,b0:ℓ−1EΘ(ℓ),Ξ(ℓ),b(ℓ)

[
H

(ℓ)
α,dH

(ℓ)
α′,d

]
= σ2

K−1∑
k=0

ckEΘ0:ℓ−1,Ξ0:ℓ−1

[∣∣∣X̂(ℓ−1)
k,i

∣∣∣2] cos(θ(k)α,α′

)
+ σ2

b

= σ2
K−1∑
k=0

ckEH:,d∼N(0,Σ(ℓ−1))

[∣∣∣X̂(ℓ−1)
k,i

∣∣∣2] cos(θ(k)α,α′

)
+ σ2

b .

(16)

To obtain a more tractable expression in the subsequent proofs of theorems, we express the iterated
map without using Fourier modes as follows.

EΘ0:ℓ,Ξ0:ℓ,b0:ℓ

[
H

(ℓ)
α,dH

(ℓ)
α′,d

]
=

σ2

N2

K−1∑
k=0

ck

N−1∑
β,β′=0

cos
(
θ
(k)
α,α′

)
cos
(
θ
(k)
β,β′

)
EH:,d∼N(0,Σ(ℓ−1)) [ϕ(Hβ,d)ϕ(Hβ′,d)] + σ2

b . (17)
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Lemma 3.2 (Exsistance of fixed points). When a random DCN defined by Eq. (2) has the fixed point
(q∗, c∗ = 1) for the initial parameters (σ2, σ2

b ), then a random simplified FNO defined by Eq. (3) has
a fixed point Σ∗ of the form

Σ∗ = q∗IN + q∗c∗(1N1⊤
N − IN ) = q∗1N1⊤

N .

Proof. Using the properties of cosine functions, the following holds.

σ2
b =

1

N2

K−1∑
k=0

ck cos
(
θ
(k)
α,α′

) N−1∑
β,β′=0

cos
(
θ
(k)
β,β′

)
︸ ︷︷ ︸

=N2δk,0

σ2
b . (18)

Then, the following holds for all α, α′ ∈ [N ].

[C(Σ∗)]α,α′ =
1

N2

K−1∑
k=0

ck cos
(
θ
(k)
α,α′

) N−1∑
β,β′=0

cos
(
θ
(k)
β,β′

) (
σ2EH:,d∼N (0,Σ∗) [ϕ(Hβ,d)ϕ(Hβ′,d)] + σ2

b

)
.

When the DCN is applied pointwise to each spatial representationHβ,:, β ∈ [N ], the iterated map of
the random DCN (Poole et al., 2016) is given by CDCN(Σ) := σ2EH:,d∼N (0,Σ) [ϕ(Hβ,d)ϕ(Hβ′,d)]+

σ2
b . Since the covariance Σ∗ is a fixed point with respect to the iterative map of the DCN, i.e.

CDCN(Σ
∗) = Σ∗, the following holds.

[C(Σ∗)]α,α′ =
1

N2

K−1∑
k=0

ck cos
(
θ
(k)
α,α′

) N−1∑
β,β′=0

cos
(
θ
(k)
β,β′

)
︸ ︷︷ ︸

=N2δk,0

q∗(δβ,β′ + (1− δβ,β′)c∗)︸ ︷︷ ︸
=q∗

= q∗.

Thus, we confirm that the covariance Σ∗ satisfies the definition of a fixed point in the map C, i.e.
Σ∗ = C(Σ∗). This means that the fixed point for the iterated map Σ∗ of the DCN also serves as a
fixed point for the iterated map of the simplified FNO.

Lemma A.1. Let Σ∗ be the fixed point of the form in Eq. (5). Suppose that the symmetric perturbation
E ∈ RN×N , where Eβ,β = Eβ′,β′ and Eβ,β′ are non-zero for some β, β′ ∈ [N ], β ̸= β, and all
other elements are zero. Then, we have

σ2EH:,d∼N (0,Σ∗+E)

[
ϕ(Hβ,d)

2
]
+ σ2

b = q∗ + Eβ,βχq∗ +O
(
|Eβ,β |2

)
, (19)

σ2EH:,d∼N (0,Σ∗+E) [ϕ(Hβ,d)ϕ(Hβ′,d)] + σ2
b = q∗c∗ + Eβ,βχκ + Eβ,β′χc∗ +O

(
|Eβ,β′ |2

)
,

(20)

where χq∗ , χc∗ , and χκ are the constants defined by

χq∗ := σ2EH:,d∼N (0,Σ∗)

[
ϕ′2(Hβ,d) + ϕ′′(Hβ,d)ϕ(Hβ,d)

]
,

χc∗ := σ2EH:,d∼N (0,Σ∗) [ϕ
′(Hβ,d)ϕ

′(Hβ′,d)] ,

χκ :=
σ2

2
E [ϕ′′(Hα,d)ϕ(Hα′,d) + ϕ(Hα,d)ϕ

′′(Hα′,d) + 2c∗ϕ′(Hα,d)ϕ
′(Hα′,d)] .

Proof. Equation (19) is obviously shown by the result of Section 2 in (Poole et al., 2016) and Section
3 in (Schoenholz et al., 2016). We prove Eq. (20) with reference to the results of (Schoenholz et al.,
2016).

σ2EH:,d∼N (0,Σ∗+E) [ϕ(Hβ,d)ϕ(Hβ′,d)] + σ2
b = σ2

∫
Dz1Dz2ϕ(u1)ϕ(u2) + σ2

b ,

where
∫
D dz = 1√

2π

∫
dze−

1
2 z

2

is the measure for a standard Gaussian distribution, u1 =
√
qz1,

u2 =
√
q
(
cβ,β′z1 +

√
1− c2β,β′z2

)
, q = q∗ + Eβ,β and cβ,β′ = c∗ +

Eβ,β′

q .
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We consider the case where c∗ < 1 and c∗ = 1 separately. Later, we will show that the two results
agree with each other. First, we consider the case where c∗ < 1. Using Taylor expansion, we can
approximate ϕ(u1) and ϕ(u2) as follows. For the simplicity, we assume O(|Eβ,β |) = O(|Eβ,β′ |).

ϕ(u1) = ϕ(u∗1) +
1

2

Eβ,β√
q∗
z1ϕ

′(u∗1) +O(|Eβ,β |2),

ϕ(u2) = ϕ (u∗2) +
Eβ,β′
√
q∗

(
z1 −

c∗√
1− (c∗)2

z2

)
ϕ′(u∗2) +

Eβ,β
2
√
q∗

(c∗z1 +
√

1− (c∗)2z2)ϕ
′(u∗2) +O(|Eβ,β |2),

where u∗1 =
√
q∗z1 and u∗2 =

√
q∗(c∗z1 +

√
1− (c∗)2z2).

Thus, we have

σ2

∫
Dz1Dz2ϕ(u1)ϕ(u2) + σ2

b

= σ2

∫
Dz1Dz2ϕ(u∗1)ϕ(u∗2) + σ2

b︸ ︷︷ ︸
=q∗c∗

+σ2

∫
Dz1Dz2

Eβ,β′
√
q∗

(
z1 −

c∗√
1− (c∗)2

z2

)
ϕ(u∗1)ϕ

′(u∗2)

+ σ2

∫
Dz1Dz2

1

2

Eβ,β√
q∗

(c∗z1 +
√

1− (c∗)2z2)ϕ(u
∗
1)ϕ

′(u∗2) + σ2

∫
Dz1Dz2

1

2

Eβ,β√
q∗
z1ϕ

′(u∗1)ϕ(u
∗
2) +O(|E2

β,β |).

The results of the second term are obtained from the transformation of equations 36 to 39 in Appendix
7.2 of (Schoenholz et al., 2016).

σ2Eβ,β′
√
q∗

∫
Dz1Dz2

(
z1 −

c∗√
1− (c∗)2

z2

)
ϕ(u∗1)ϕ

′(u∗2) = Eβ,β′ σ2

∫
Dz1Dz2ϕ′(u∗1)ϕ′(u∗2)︸ ︷︷ ︸

=χc∗

.

Utilizing the identity,
∫
Dzzf(z) =

∫
Dzf ′(z), we obtain the third term as follows.

σ2

∫
Dz1Dz2

1

2

Eβ,β√
q∗

(c∗z1 +
√
1− (c∗)2z2)ϕ(u

∗
1)ϕ

′(u∗2)

= σ2 1

2
Eβ,β

∫
Dz1Dz2

(
c∗ (ϕ′(u∗1)ϕ

′(u∗2) + c∗ϕ(u∗1)ϕ
′′(u∗2)) + (1− (c∗)2)ϕ(u∗1)ϕ

′′(u∗2)
)

= σ2 1

2
Eβ,β

∫
Dz1Dz2 (c∗ϕ′(u∗1)ϕ′(u∗2) + ϕ(u∗1)ϕ

′′(u∗2)) .

The last term is calculated as follows.

σ2

∫
Dz1Dz2

1

2

Eβ,β√
q∗
z1ϕ

′(u∗1)ϕ(u
∗
2) = σ2 1

2
Eβ,β

∫
Dz1Dz2(ϕ′′(u∗1)ϕ(u∗2) + c∗ϕ′(u∗1)ϕ

′(u∗2)).

Summing the last two terms, we obtain the term Eβ,βχκ.

Next, we consider the case where c∗ = 1. As with the discussion of (Schoenholz et al., 2016), the
perturbed correlation is defined by cβ,β′ = c∗ − Eβ,β′

q where Eβ,β′ > 0 and then ϕ(u2) is expanded
as follows.

ϕ(u2) = ϕ(u∗2) +

(√
2
Eβ,β′

q∗
z2 −

Eβ,β′
√
q∗

z1

)
ϕ′(u∗2) + Eβ,β′z22ϕ

′′(u∗2) +
Eβ,β
2
√
q∗
z1ϕ

′(u∗2) +O(|Eβ,β′ |3/2).
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Thus, we have

σ2

∫
Dz1Dz2ϕ(u1)ϕ(u2) + σ2

b

= σ2

∫
Dz1Dz2ϕ(u∗1)ϕ(u∗2) + σ2

b︸ ︷︷ ︸
=q∗c∗

+σ2

∫
Dz1Dz2

√
2
Eβ,β′

q∗
z2ϕ(u

∗
1)ϕ

′(u∗2)

− σ2

∫
Dz1Dz2

Eβ,β′
√
q∗

z1ϕ(u
∗
1)ϕ

′(u∗2) + σ2

∫
Dz1Dz2Eβ,β′z22ϕ(u

∗
1)ϕ

′′(u∗2)

+ σ2

∫
Dz1Dz2

Eβ,β
2
√
q∗
z1ϕ(u

∗
1)ϕ

′(u∗2) + σ2

∫
Dz1Dz2

1

2

Eβ,β√
q∗
z1ϕ

′(u∗1)ϕ(u
∗
2) +O(|E3/2

β,β |).

(21)

Using the fact that u∗2 = u∗1 and u∗2 is independent of z2,

σ2

∫
Dz1Dz2

√
2
Eβ,β′

q∗
z2ϕ(u

∗
1)ϕ

′(u∗2) = σ2

∫
Dz1

√
2
Eβ,β′

q∗
ϕ(u∗1)ϕ

′(u∗2)

(∫
Dz2z2

)
︸ ︷︷ ︸

=0

.

σ2

∫
Dz1Dz2

Eβ,β′
√
q∗

z1ϕ(u
∗
1)ϕ

′(u∗2) = σ2

∫
Dz1

Eβ,β′
√
q∗

z1ϕ(u
∗
1)ϕ

′(u∗1)

= σ2Eβ,β′

∫
Dz1(ϕ′(u∗1)2 + ϕ(u∗1)ϕ

′′(u∗1)).

σ2

∫
Dz1Dz2Eβ,β′z22ϕ(u

∗
1)ϕ

′′(u∗2) = σ2Eβ,β′

∫
Dz1ϕ(u∗1)ϕ′′(u∗1)

(∫
Dz2z22

)
︸ ︷︷ ︸

=1

.

σ2

∫
Dz1Dz2

Eβ,β
2
√
q∗
z1ϕ(u

∗
1)ϕ

′(u∗2) = σ2

∫
Dz1

Eβ,β
2
√
q∗
z1ϕ(u

∗
1)ϕ

′(u∗1)

= σ2Eβ,β
2

∫
Dz1(ϕ′(u∗1)2 + ϕ(u∗1)ϕ

′′(u∗1)).

σ2

∫
Dz1Dz2

1

2

Eβ,β√
q∗
z1ϕ

′(u∗1)ϕ(u
∗
2) = σ2

∫
Dz1

1

2

Eβ,β√
q∗
z1ϕ

′(u∗1)ϕ(u
∗
1)

= σ2Eβ,β
2

∫
Dz1(ϕ′(u∗1)2 + ϕ(u∗1)ϕ

′′(u∗1)).

Substituting these facts into Eq. (21), we obtain

σ2

∫
Dz1Dz2ϕ(u1)ϕ(u2) + σ2

b

≈ q∗c∗ − σ2Eβ,β′

∫
Dz1ϕ′(u∗1)2 + σ2Eβ,β

∫
Dz1(ϕ′(u∗1)2 + ϕ(u∗1)ϕ

′′(u∗1))

The above result agrees with that obtained by substituting c∗ = 1 for the result obtained when the
case c∗ < 1.

Lemma A.2. The Jacobian matrix J(Σ∗) of the iterated map C defined in Eq. (14) is obtained as
follows.

[J(Σ∗)](α,α′),(β,β′) =
1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)
cos
(
θ
(k′)
β,β′

)
(δβ,β′(χq∗ − χκ + δk′,0Nχκ) + (1− δβ,β′)χc∗)) .

Furthermore, the rank of the Jacobian matrix J(Σ∗) ∈ RN2×N2

is at most K.
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Proof. Let some semi-positive definite matrix E ∈ RN×N be a deviation from the fixed point Σ∗.
From Lemma 3.1 and Lemma A.1, we have

[C(Σ∗ +E)]α,α′

=
1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

) N−1∑
β,β′=0

cos
(
θ
(k′)
β,β′

) (
σ2EH:,d∼N (0,Σ∗+E) [ϕ(Hγ,d)ϕ(Hγ′,d)] + σ2

b

)
≈ 1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

) N−1∑
β,β′=0

cos
(
θ
(k′)
β,β′

)
(δβ,β′(q∗ + Eβ,βχq∗) + (1− δβ,β′)(q∗c∗ + Eβ,βχκ + Eβ,β′χc∗)) .

(22)

Note that Eq. (22) is obtained by neglecting higher order terms in Eqs. (19) and (20).

By the definition of the fixed point,

Σ∗
α,α′ =

1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

) N−1∑
β,β′=0

cos
(
θ
(k′)
β,β′

)
q∗(δβ,β′ + (1− δβ,β′)c∗).

By substituting the fact into Eq. (22), we obtain

[C(Σ∗ +E)−Σ∗]α,α′

≈ 1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

) N−1∑
β,β′=0

cos
(
θ
(k′)
β,β′

)
(δβ,β′Eβ,βχq∗) + (1− δβ,β′)(Eβ,βχκ + Eβ,β′χc∗))

(23)

=

N−1∑
β,β′=0

[
1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)
cos
(
θ
(k′)
β,β′

)
(δβ,β′(χq∗ − χκ + δk′,0Nχκ) + (1− δβ,β′)χc∗))

]
︸ ︷︷ ︸

=[J(Σ∗)](α,α′),(β,β′)

Eβ,β′ .

The last equation can be rewritten using the matrix calculation as follows.

C(Σ∗ +E)−Σ∗ ≈ mat(J(Σ∗) vec(E)).

Since J(Σ∗) is the first-order coefficient to the deviaction E, J(Σ∗) is exactly the Jacobian matrix
of the iterated map C.

Furthermore, the Jacobian matrix can be decomposed to two matriciesA ∈ RN2×K andB ∈ RK×N2

as follows.

[J(Σ∗)](α,α′),(β,β′) =

K−1∑
k′=0

A(α,α′),k′Bk′,(β,β′), A(α,α′),k′ := cos
(
θ
(k′)
α,α′

)
,

Bk′,(β,β′) :=
1

N2
ck′ cos

(
θ
(k′)
β,β′

)
(δβ,β′(χq∗ − χκ + δk′,0Nχκ) + (1− δβ,β′)χc∗)) .

Therefore, the rank of the Jacobian matrix is at most K.

Lemma A.3. Let Σ∗ be the fixed point of the form in Eq. (5) and E(k) be the perturbation expressed
as

E
(k)
β,β′ = ϵkψ

(k)
β,β′ , ψ

(k)
β,β′ :=

cos(θ(k)β,β′

)
−

(
K−1∑
s=0

cs

)−1 K−1∑
s=0

cs cos
(
θ
(s)
β,β′

) ,
where ϵk denotes the scale of the perturbation, assumed to be sufficiently small.

Then, we have, for all k ∈ [K]\{0},

C(Σ∗ +E(k)) ≈ Σ∗ + χc∗E
(k).
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Proof. From Eq. (23), we have

[C(Σ∗ +E(k))]α,α′ ≈ 1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)N−1∑
β=0

(q∗ + E
(k)
β,βχq∗)

+
1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)N−1∑
β=0

∑
β ̸=β′

cos
(
θ
(k′)
β,β′

)
(q∗c∗ + E

(k)
β,βχκ + E

(k)
β,β′χc∗).

From the definition of the fixed point, we obtain

Σ∗
α,α′ =

1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

) N−1∑
β,β′=0

cos
(
θ
(k′)
β,β′

)
q∗(δβ,β′ + (1− δβ,β′)c∗).

By combining the above two results, we have

[C(Σ∗ +E(k))−Σ∗]α,α′ ≈ 1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)N−1∑
β=0

E
(k)
β,βχq∗

+
1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)N−1∑
β=0

∑
β ̸=β′

cos
(
θ
(k′)
β,β′

)
(E

(k)
β,βχκ + E

(k)
β,β′χc∗).

Since cos(θ
(k)
β,β) = 1 for all k ∈ [K], we have ψ(k)

β,β = 0 and E(k)
β,β = 0. Thus, only the term with

E
(k)
β,β′ remains.

[C(Σ∗ +E(k))−Σ∗]α,α′ ≈ ϵkχc∗
1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

) ∑
β ̸=β′

cos
(
θ
(k′)
β,β′

)
cos
(
θ
(k)
β,β′

)
(24)

−

(
K−1∑
s=0

cs

)−1 K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

) ∑
β ̸=β′

cos
(
θ
(k′)
β,β′

)K−1∑
s=0

cs cos
(
θ
(s)
β,β′

) .

(25)

Given the orthogonality of the cosine functions, we have

N−1∑
β,β′=0
β ̸=β′

ck′ cos
(
θ
(k′)
β,β′

)
cos
(
θ
(k)
β,β′

)
=

{
N2 − ck′N (k′ = k)
−ck′N (otherwise). (26)

Utilizing Eq. (26) leads to the following two facts:

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

) ∑
β ̸=β′

cos
(
θ
(k′)
β,β′

)
cos
(
θ
(k)
β,β′

)
= N2 cos

(
θ
(k)
α,α′

)
−N

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)
.

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

) ∑
β ̸=β′

cos
(
θ
(k′)
β,β′

)K−1∑
s=0

cs cos
(
θ
(s)
β,β′

)
= N2

K−1∑
k′=0

cos
(
θ
(k′)
α,α′

)
−N

(
K−1∑
s=0

cs

)
K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)
.
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By substituting these facts into Eq. (24), we obtain
[C(Σ∗ +E(k))−Σ∗]α,α′

≈ χc∗ϵk
1

N2

(
N2 cos

(
θ
(k)
α,α′

)
−
����������
N

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)

−

(
K−1∑
s=0

cs

)−1

N2
K−1∑
k′=0

cos
(
θ
(k′)
α,α′

)
+
����������
N

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)
= χc∗ϵk

cos(θ(k)α,α′

)
−

(
K−1∑
s=0

cs

)−1 K−1∑
k′=0

cos
(
θ
(k′)
α,α′

)
︸ ︷︷ ︸

=ψ
(k)

α,α′

.

This completes the proof.

Lemma A.4. Let Σ∗ be the fixed point of the form in Eq. (5) and E be the perturbation expressed as

Eβ,β′ = ϵψβ,β′ , ψβ,β′ :=

[
1− 1

N

(
χκ + χc∗ − χq∗

χκ

)K−1∑
s=0

cs cos
(
θ
(s)
β,β′

)]
,

where ϵ denotes the scale of the perturbation, assumed to be sufficiently small, 1N1⊤
N is all-one

matrix with size N ×N .

Then, we have

C(Σ∗ +E) ≈ Σ∗ +

(∑K−1
s=0 cs
N

χq∗ +

(
1−

∑K−1
s=0 cs
N

)
(χκ + χc∗)

)
︸ ︷︷ ︸

:=χ

E.

Proof. For simplicity, we introduce x := 1
N

(
χκ+χc∗−χq∗

χκ

)(∑K−1
s=0 cs

)
as follows.

C(Σ∗ +E) ≈ Σ∗ +

(∑K−1
s=0 cs
N

χq∗ +

(
1−

∑K−1
s=0 cs
N

)
(χκ + χc∗)

)
E

= Σ∗ +


1− 1

N

(
χκ + χc∗ − χq∗

χκ

)(K−1∑
s=0

cs

)
︸ ︷︷ ︸

=:x

χκ + χc∗

E. (27)

From Eq. (23), we have
[C(Σ∗ +E)−Σ∗]α,α′

≈ 1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)N−1∑
β=0

Eβ,βχq∗ +
∑
β ̸=β′

cos
(
θ
(k′)
β,β′

)
(Eβ,βχκ + Eβ,β′χc∗)

 . (28)

Our goal is to derive Eq. (27) from Eq. (28). The following results are useful for the computation of
each term of Eq. (28).

∀β, β′ ∈ [N ], β ̸= β′, Eβ,β = ϵ(1− x), Eβ,β′ = ϵ

1− x

(
K−1∑
s=0

cs

)−1 K−1∑
s=0

cs cos
(
θ
(s)
β,β′

) .

N−1∑
β=0

∑
β ̸=β′

cos
(
θ
(k′)
β,β′

)
=

{
N2 −N (k′ = 0)
−N (otherwise) .

N−1∑
β,β′=0
β ̸=β′

ck′ cos
(
θ
(k′)
β,β′

)
cos
(
θ
(k)
β,β′

)
=

{
N2 − ck′N (k′ = k)
−ck′N (otherwise) .
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Using the above results, the first and second terms of Eq. (28) are calculated as follows.

1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)N−1∑
β=0

Eβ,βχq∗ = ϵ(1− x)χq∗
1

N

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)
.

1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)N−1∑
β=0

∑
β ̸=β′

cos
(
θ
(k′)
β,β′

)
Eβ,βχκ = ϵ(1− x)χκ − ϵ(1− x)χκ

1

N

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)
.

The third term of Eq. (28) is obtained as follows.

1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)N−1∑
β=0

∑
β ̸=β′

cos
(
θ
(k′)
β,β′

)
Eβ,β′χc∗

=
1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)N−1∑
β=0

∑
β ̸=β′

cos
(
θ
(k′)
β,β′

)
ϵχc∗

− x

(
K−1∑
s=0

cs

)−1

1

N2

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)K−1∑
s=0

N−1∑
β=0

∑
β ̸=β′

cs cos
(
θ
(s)
β,β′

)
cos
(
θ
(k′)
β,β′

)
ϵχc∗

= ϵχc∗ − ϵχc∗
1

N

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)

− ϵχc∗x

(
K−1∑
s=0

cs

)−1 K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)
+ ϵχc∗x

1

N

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)

= ϵχc∗ − ϵχc∗x

(
K−1∑
s=0

cs

)−1 K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)
− ϵ(1− x)χc∗

1

N

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)
.

By substituting these facts into Eq. (28), we have

[C(Σ∗ +E)−Σ∗]α,α′

≈ ϵ((1− x)χκ + χc∗)− ϵχc∗x

(
K−1∑
s=0

cs

)−1 K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)
− ϵ(1− x)

1

N
(χκ + χc∗ − χq∗)︸ ︷︷ ︸

=χκx(
∑K−1

s=0 cs)
−1

K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)

= ((1− x)χκ + χc∗) ϵ

1− x

(
K−1∑
s=0

cs

)−1 K−1∑
k′=0

ck′ cos
(
θ
(k′)
α,α′

)
︸ ︷︷ ︸

=Eα,α′

.

Finally, we obtain Eq. (27).

B Proof of Theorem 3.5

Theorem 3.5 (Trainability). Let Σ̃(ℓ) ∈ RN×N be the gradient covariance with respect to some loss
L, e.g. mean squared error, at the ℓ-th layer. Suppose that the gradient covariance at the L-th layer
is decomposed as Σ̃(L)

α,α′ =
∑K−1
k=0 ϵ̃k cos

(
θ
(k)
α,α′

)
+ ẽ, where ϵ̃k is the coefficient of each basis and ẽ

belongs to the orthogonal complements of span({cos
(
θ
(k)
α,α′

)
}K−1
k=0 ). Then, the gradient covariance
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at the ℓ-th layer is obtained by

Σ̃
(ℓ)
α,α′ =

K−1∑
k=0

χL−ℓc∗ ϵ̃k cos
(
θ
(k)
α,α′

)
.

Proof. Recall the definition of the gradient covariance. We first demonstrate the iterated map of the
gradient covariance, starting from this definition.

Σ̃
(ℓ)
α,α′ := EΘℓ:L,Ξℓ:L

[
g
(ℓ)
α,jg

(ℓ)
α′,j

]
, g

(ℓ)
α,j :=

∂L
∂H

(ℓ)
α,j

=

D∑
i=1

N−1∑
β=0

∂L
∂H

(ℓ+1)
β,i

∂H
(ℓ+1)
β,i

∂H
(ℓ)
α,j

.

The Jacobian
∂H

(ℓ+1)
β,i

∂H
(ℓ)
α,j

is calculated as follows.

∂H
(ℓ+1)
β,i

∂H
(ℓ)
α,j

=
K−1∑
k=0

√
ck
2

(
F †
β,kFk,α

(
Θ

(ℓ+1,k)
j,i +

√
−1Ξ

(ℓ+1,k)
j,i

)
+ F †

β,kFk,α

(
Θ

(ℓ+1,k)
j,i −

√
−1Ξ

(ℓ+1,k)
j,i

))
ϕ′
(
H

(ℓ)
α,j

)
=

1

N

K−1∑
k=1

2

√
ck
2

(
Θ

(ℓ+1,k)
j,i cos

(
θ
(k)
β,α

)
+ Ξ

(ℓ+1,k)
j,i sin

(
θ
(k)
β,α

))
ϕ′(H

(ℓ)
α,j).

The covariance of Jacobian
∂H

(ℓ+1)
β,i

∂H
(ℓ)
α,j

is as follows.

EΘℓ:L,Ξℓ:L

[
∂H

(ℓ+1)
β,i

∂H
(ℓ)
α,j

∂H
(ℓ+1)
β′,i

∂H
(ℓ)
α′,j

]

=
σ2

N2D
EH:,d∼N (0,Σ(ℓ))

[
ϕ′(H

(ℓ)
α,j)ϕ

′(H
(ℓ)
α,j)
]

×

(
K−1∑
k=0

ck

(
cos
(
θ
(k)
β,α

)
cos
(
θ
(k)
β′,α′

)
+ sin

(
θ
(k)
β,α

)
sin
(
θ
(k)
β′,α′

)))

=
σ2

N2D
EH:,d∼N (0,Σ(ℓ))

[
ϕ′(H

(ℓ)
α,j)ϕ

′(H
(ℓ)
α,j)
](K−1∑

k=0

ck cos
(
θ
(k)
β−β′,α−α′

))
.

Then, the covariance of the gradient is given by the following recurrence relation for all α, α′ ∈ [N ],

Σ̃
(ℓ)
α,α′ := EΘℓ:L,Ξℓ:L

[
g
(ℓ)
α,jg

(ℓ)
α′,j

]
=

D∑
i,i′=1

N−1∑
β,β′=0

EΘℓ:L,Ξℓ:L

[
g
(ℓ+1)
β,i g

(ℓ+1)
β′,i′

∂H
(ℓ+1)
β,i

∂H
(ℓ)
α,j

∂H
(ℓ+1)
β′,i′

∂H
(ℓ)
α′,j

]

=

N−1∑
β,β′=0

D∑
i,i′=1

EΘℓ+1:L,Ξℓ+1:L

[
g
(ℓ+1)
β,i g

(ℓ+1)
β′,i′

]
EΘℓ:L,Ξℓ:L

[
∂H

(ℓ+1)
β,i

∂H
(ℓ)
α,j

∂H
(ℓ+1)
β′,i′

∂H
(ℓ)
α′,j

]
δi,i′

=
σ2

N2

N−1∑
β,β′=0

Σ̃
(ℓ+1)
β,β′ EH:,d∼N (0,Σ(ℓ))

[
ϕ′(H

(ℓ)
α,j)ϕ

′(H
(ℓ)
α′,j)

](K−1∑
k=0

ck cos
(
θ
(k)
β−β′,α−α′

))
.

As with (Schoenholz et al., 2016), we approximate Σ(ℓ+1) ≈ Σ∗ since the number of layer ℓ is
assumed to be sufficiently large. Then, the linear iterated map of the gradient covariance Σ(ℓ+1) 7→
Σ(ℓ) is given as follows.

Σ̃
(ℓ)
α,α′ =

1

N2

N−1∑
β,β′=0

Σ̃
(ℓ+1)
β,β′ χc∗

(
K−1∑
k=0

ck cos
(
θ
(k)
β−β′,α−α′

))
. (29)
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The rank of the linear iterated map Σ(ℓ+1) 7→ Σ(ℓ) is less than K since the matrix representation of
the linear map can be decomposed into two matrices Ã ∈ RN2×K and B̃ ∈ RK×N2

as follows.

Σ̃
(ℓ)
α,α′ =

1

N2

K−1∑
k=0

ck exp
(
−
√
−1θ

(k)
β,β′

)
exp

(√
−1θ

(k)
α′,α

)
χc∗Σ̃

(ℓ+1)
β,β′ =

(
K−1∑
k=0

Ã(α,α′),kB̃k,(β,β′)

)
Σ̃

(ℓ+1)
β,β′ ,

Ã(α,α′),k :=
1

N2
ck exp

(√
−1θ

(k)
α′,α

)
χc∗ , B̃k,(β,β′) := exp

(
−
√
−1θ

(k)
β,β′

)
.

Next, we show that the subspace span
(
{cos

(
θ
(k)
α,α′

)
}K−1
k=0

)
⊂ RN×N is the K-dimensional

eigenspace with eigenvalue χc∗ of the linear iterated map Σ(ℓ+1) 7→ Σ(ℓ) .

By substituting Σ̃
(ℓ+1)
β,β′ =

∑K−1
k=0 χ

L−(ℓ+1)
c∗ ϵ̃k cos

(
θ
(k)
β,β′

)
into Eq. (29), we obtain

Σ̃
(ℓ)
α,α′ =

1

N2

N−1∑
β,β′=0

χc∗

(
K−1∑
k=0

ϵ̃k cos
(
θ
(k)
β,β′

))K−1∑
k′=0

ck′ cos
(
θ
(k′)
β−β′,α−α′

)
.

From the orthogonality of the cosine and sine function, we obtain

1

N2

N−1∑
β,β′=0

K−1∑
k′=0

ck′ cos
(
θ
(k′)
β−β′,α−α′

)
cos
(
θ
(k)
β,β′

)

=
1

N2

N−1∑
β,β′=0

K−1∑
k′=0

ck′
(
cos
(
θ
(k′)
β,β′

)
cos
(
θ
(k′)
α′,α

)
cos
(
θ
(k)
β,β′

)
+sin

(
θ
(k′)
β,β′

)
sin
(
θ
(k′)
α′,α

)
cos
(
θ
(k)
β,β′

))
= cos

(
θ
(k)
α,α′

)
.

(30)

Hence, we have

Σ̃
(ℓ)
α,α′ =

K−1∑
k=0

χL−ℓc∗ ϵ̃k cos
(
θ
(k)
α,α′

)
.

This completes the proof.

C Discussions on the similarity of DCN and CNN

While CNNs perform local convolutions in the spatial domain, FNOs execute convolutions in the
frequency domain, thereby achieving global convolutions in the spatial domain. Our theory for the
FNO and the mean-field theory for CNNs (Xiao et al., 2018) share a common focus on the correlation
dynamics Σ(0),Σ(1), . . . ,Σ(L) of the spatial representations H(0),H(1), . . . ,H(L) ∈ RN×D. The
iterated maps for CNNs and FNOs are obtained as follows.

Σ
(ℓ+1)
α,α′ =

σ2

2r + 1

∑
β∈ker

EH:.d∼N (0,Σ(ℓ)) [ϕ(Hα+β,d)ϕ(Hα′+β,d)] + σ2
b =: CCNN(Σ

(ℓ)),

Σ
(ℓ)
α,α′ = σ2

K−1∑
k=0

ckEH:.d∼N (0,Σ(ℓ))

[∣∣[Fϕ (H:,d)]k
∣∣2] cos(θ(k)α,α′

)
+ σ2

b =: CFNO(Σ
(ℓ)),

where 2r + 1 is the number of filter width and ker = {β ∈ Z||β| ≤ r} is set of indices referring to
the elements of the filter.

When we consider the FNO without mode truncation (K = N/2+1), the propagation of the diagonal
components (α, α) for any α ∈ [N ] is equivalent to a CNN with filter size N performing global
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convolution.

Σ(ℓ)
α,α = σ2

N
2∑

k=0

ckEH:.d∼N (0,Σ(ℓ))

[∣∣[Fϕ (H:,d)]k
∣∣2] cos(θ(k)α,α

)
︸ ︷︷ ︸

=1

+σ2
b

=
σ2

N

N−1∑
β=0

EH:.d∼N (0,Σ(ℓ))

[
|ϕ(Hβ,d)|2

]
+ σ2

b

=
σ2

N

N−1∑
β=0

EH:.d∼N (0,Σ(ℓ)) [ϕ(Hα+β,d)ϕ(Hα+β,d)] + σ2
b .

The first equality follows from Perseval’s equality and the second from the periodic boundary
condition. In contrast, the propagation of the off-diagonal components differs between CNN and
FNO, and the iterated map is different even in the presence of mode truncation.

Regarding the fixed point, Xiao et al. (2018) demonstrated that any fixed point for the iterated map of
the DCN is also a fixed point for that of the CNN. Consequently, Lemma A.1 indicates that the fixed
points for CNN and FNO are consistent.

The behaviour of the iterated map around fixed points reflects the nature of each architecture.
CNN possess diagonal eigenspaces associated with eigenvalues χq∗ and non-diagonal eigenspaces
associated with eigenvalues χc∗ . FNOs without mode truncation exhibit a similarity, possessing
eigenspaces χq∗ for zero-frequency and eigenspaces χc∗ for k-frequencies with diagonal components
removed.

Finally, the iterated map during the backpropagation for CNN and FNO are given by

Σ̃
(ℓ)
α,α′ = σ2

∑
β∈ker

vβΣ̃
(ℓ+1)
α−β,α′−βEH:,d∼N (0,Σ(ℓ))

[
ϕ′(H

(ℓ)
α,j)ϕ

′(H
(ℓ)
α′,j)

]

Σ̃
(ℓ)
α,α′ =

σ2

N2

N−1∑
β,β′=0

Σ̃
(ℓ+1)
β,β′ EH:,d∼N (0,Σ(ℓ))

[
ϕ′(H

(ℓ)
α,j)ϕ

′(H
(ℓ)
α′,j)

](K−1∑
k=0

ck cos
(
θ
(k)
β−β′,α−α′

))
,

where vβ is the variance weight parameter dependent of the filter position β, i.e., wi,j(β) ∼
N (0, σ2vβ/D),

∑
β∈ker vβ = 1.

Using the approximation Σ(ℓ+1) ≈ Σ∗ as with (Schoenholz et al., 2016), the backpropagation of the
diagonal components (α, α) of the FNO without mode truncation is equivalent to that of the global
CNN (see Eq. (2.16) in (Xiao et al., 2018)) with vβ = 1

N , as shown below:

Σ̃(ℓ)
α,α ≈ 1

N2

N−1∑
β,β′=0

Σ̃
(ℓ+1)
β,β′ χc∗

N/2∑
k=0

ck cos
(
θ
(k)
β−β′,α−α

)
︸ ︷︷ ︸

=Nδβ,β′

= χc∗
N−1∑
β=0

1

N
Σ̃

(ℓ+1)
β,β .

This equivalence suggests that the edge of chaos initialization (e.g., He initialization) is also valid
for the FNO since the problems of gradient vanishing and explosion are determined by the diagonal
components of Σ̃.

D Details of Experimental Setup

In this section, we summarize the detailed setup of the all experiments, including the experiments
in Section 4.

D.1 Datasets

D.1.1 Advection equation

We used the advection equation data published by Takamoto et al. (2022). The advection equation for
the function u(x, t) ∈ L2((0, 1)× (0, 2];R) is given by

∂tu(x, t) + β∂x (u(x, t)/2) = 0, u(x, 0) = u0(x),
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where u0 ∈ L2((0, 1);R) is the initial condition and β ∈ R is an advection speed set to 2.0. The
exact solution is given as u(x, t) = u0(x− βt) for any initial condition u0.

Only periodic boundary conditions were used in this dataset. The initial conditions are the super-
position of sinusoidal wave given by

u0(x) =

kmax∑
i=1

Ai sin (kix+ ϕi), (31)

where ki = 2π
∑N
j=1 ni,j/Lx are wave numbers whose ni,j are integer numbers randomly chosen

in [1, kmax], Lx = 1 is the calculation domain size, N = 2 is the number of wave to be added,
and kmax = 8 is the maximum wave number. The amplitude Ai is uniformly chosen in [0, 1],
and the phase ϕi is the randomly chosen in (0, 2π). The 2nd-order temporal and spatial upwind
finite difference scheme was used for generating the data. Settings are described in Appendix D
of (Takamoto et al., 2022).

D.1.2 Burgers’ equation

We used the Burgers’ equation data published by Takamoto et al. (2022). The Burgers’ equation for
the function u(x, t) ∈ L2((0, 1)× (0, 2];R) is given by

∂tu(x, t) + ∂x
(
u2(x, t)/2

)
= ν∂xxu(x, t),

u(x, 0) = u0(x),

where u0 ∈ L2((0, 1);R) is the initial condition and ν is the diffusion coefficient set to 4.0. The
periodic boundary conditions and Equation (31) are used as the initial conditions. The 2nd-order
temporal and spatial upwind finite difference scheme is used for generating the data. Settings are
described in Appendix D of (Takamoto et al., 2022).

D.1.3 Darcy Flow equation

We used the data of 2D Darcy Flow equation on a regular grid published by Li et al. (2020a). The
Darcy Flow equation for the function u ∈ H1

0 ((0, 1)
2;R+) with a Dirichlet boundary is given by

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2,

u(x) = 0, x ∈ ∂(0, 1)2,

where a ∈ L∞((0, 1)2;R+) is the diffusion coefficient and f ∈ L2((0, 1)2;R) is the forcing function.
The coefficients a was generated by measure µ = ψ♯N (0, (−∆+ 9I)−2) using the Laplacian with
zero Neumann boundary and the binary point-wise mapping ψ(x) = 12 (x ≥ 0), 3 (x < 0).
The forcing function is fixed f(x) = 1. Our aim is to predict the operator mapping the diffusion
coefficient to the solution a→ u. The solution function u was generated by using the second-order
finite difference scheme on a 421× 421 grid. Settings are described in Appendix A.3.2 of (Li et al.,
2020c).

D.1.4 Incompressible Navier-Stokes equation

We used the 2D NS equation on the unit torus defined by

∂tω(x, t) + u(x, t) · ∇ω(x, t) = ν∇2ω(x, t) + f(x),

∇ · u(x, t) = 0, ω(x, 0) = ω0(x),

where ω(x, t) ∈ C([0, T ];Hr((0, 1)2;R2)) is the vorticity, ω0 ∈ Hr((0, 1)2;R2) is the initial
vorticity, u(x, t) ∈ C([0, T ];Hr((0, 1)2;R2)) is the velocity field for any r > 0, ν ∈ R+

is the viscosity, and f ∈ L2((0, 1)2;R) is the external forcing function defined by f(x) =
0.1 (sin(2π(x1 + x2) + cos(2π(x1 + x2)). The initial vorticity ω0 was generated by ω0 ∼ µ where
µ = N (0, 7

3
2 (−∆+ 49I)−2.5) with periodic boundary conditions. The viscosity was set to 1e−3,

1e−4, or 1e−5. Our aim is to predict the operator that maps a solution u up to time 10 to a solution
up to some later time T > 10. The data was generated by the pseudo-spectral Crak-Nicholson
second-order method on 64 × 64 grid. For the data with ν = 1e−4, the time resolution was also
downsampled by half. Settings are described in Section 5.3 of (Li et al., 2020c).
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Table 2: Training settings

PDE architecture batch size initial lr max_epochs

advection Simplified FNO with Tanh 40 5.0× 10−5 200
advection Simplified FNO with ReLU 40 5.0× 10−5 200
Burgers’ Simplified FNO with Tanh 40 5.0× 10−5 200
Burgers’ Simplified FNO with ReLU 40 1.0× 10−3 200

Darcy flow 2D FNO with ReLU 20 1.0× 10−3 500
Navier-Stokes (ν = 1e-3) 2D FNO with ReLU 20 1.0× 10−4 500
Navier-Stokes (ν = 1e-4) 2D FNO with ReLU 50 2.5× 10−3 400
Navier-Stokes (ν = 1e-5) 2D FNO with ReLU 20 2.5× 10−3 500

D.2 Training settings

Our detailed training settings of the experiments in Section 4 are provided in Table 2. Our experimental
environment consists of an Intel Xeon Plantinum 8360Y (36-core) CPU and a single NVIDIA A100
GPU. Most of our code for experiments are based on the code of PDEBench (https://github.
com/pdebench/PDEBench) (Takamoto et al., 2022). The only modifications to the model are to
multiply the outputs (variable out_ft in code of class FNO1d and FNO2d) corresponding to mode
k = 0, N/2 by

√
2 and to initialize the weights by Gaussian distribution, as described in Section 3.1.

E Detailed Experimental Analysis

E.1 Analysis of Training Loss

Figure 6a shows the training loss for each epoch of the 32-layer FNOs with parameters σ2 ∈
{0.1, 0.5, 1.0, 2.0, 3.0, 4.0} on the NS dataset with ν = 1e−3. When the initial parameter σ2 is too
small, the training loss is not well reduced due to gradient vanishing. On the other hand, when the
initial parameter σ2 is too large, the initial training loss blows up due to gradient exploding. The
proposed edge of chaos initialization smoothly reduces the training loss in the initial epoch and
enables stable training.

E.2 Analysis of Test Performance

The nMSE of the FNOs on test datasets for six distinct PDEs is presented in Tables 3 and 4. Results
are shown only for the FNOs with initial parameters where training was successful in many cases.
For the NS equation with viscosity values of ν = 1e−3, 1e−4, where sufficient data is available,
Table 4 shows that best performance is achieved with 8 or 16 layers. This suggests that while shallow
FNOs are currently prevalent, deep FNOs could be advantageous in certain tasks, underscoring the
significance of our analysis of the bias in deep FNOs. Conversely, for other equations, the 4-layer
FNO performs best and deeper FNOs result in a drop in performance even with the edge of chaos
initialization. We will discuss this test performance deterioration in detail.

The over-fitting phenomenon is observed in the Darcy Flow and NS equation datasets with ν = 1e−5,
where only limited training data is available. The training loss for each epoch on the NS equation is
depicted in Fig. 6b. As demonstrated in Fig. 6b, the 16 and 32-layer FNOs yield a lower training
loss than the 4-layer FNO, but exhibit poorer performance on the test dataset as shown in Table 4.
These results suggest over-fitting to the training data, necessitating either abundant training data or
appropriate regularization.

Conversely, the under-fitting phenomenon is apparent in the 1D advection and Burgers’ equation
datasets in Table 3. The training loss of the FNO with ReLU activation for each epoch on the Burgers’
equation is presented in Fig. 6c. Figure 6c indicates that the larger the number of layers, the higher
the training loss in the final epoch, and the worse the test performance. This under-fitting to the
training data could be attributed to the escalating complexity of the loss landscape as the layer count
increases, a known issue for DCN and CNN (Li et al., 2018). This may be due to the emergence
of local minima corresponding to operators that generate too complex functions, preventing the
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(a) NS eq. (1e-3) (b) NS eq. (1e-5) (c) Burgers’ eq.

Figure 6: Training Loss Curve. (a): training loss curve of the 32-layer original FNOs with varying
initial parameters σ2 ∈ {0.1, 0.5, 1.0, 2.0, 3.0, 4.0}, on the NS equation with ν = 1e−3. (b): training
loss curve of the original FNOs with an initial parameter σ2 = 2.0 with a varying number of layers
L ∈ {4, 8, 16, 32} on the NS equation with ν = 1e−5. (c): training loss curve of the simplified
FNOs with ReLU activation and the initial parameter σ2 = 2.0 with varying number of layers
L ∈ {4, 8, 16, 32} on the Burgers’ equation.

Table 3: Test performance measured by nMSE of 1D simplified FNO on 1D PDEs

nMSE Layers Advection Burgers’
Tanh ReLU Tanh ReLU

σ2 = 1.0

4 0.013 0.015 0.0055 0.00088
8 0.013 0.015 0.0069 0.0012

16 0.013 0.015 0.0068 0.0016
32 0.016 0.018 0.0071 0.0041

σ2 = 2.0

4 0.013 0.017 0.0036 0.00098
8 0.012 0.018 0.0034 0.0011

16 0.012 0.020 0.0050 0.0016
32 0.014 0.024 0.0062 0.0027

σ2 = 3.0

4 0.013 0.019 0.0044 0.00096
8 0.014 0.022 0.0042 0.0012

16 0.020 0.032 0.0060 0.0016
32 0.053 0.059 0.0093 0.0045

attainment of parameters that achieve global minima. This issue could be mitigated by introducing
more suitable regularization, an appropriate optimizer, or a skip connection (Tran et al., 2022).

Our theory and experiments suggest that the training of deep FNOs has suffered from problems
including gradient vanishing and exploding due to improper initialization, over-fitting caused by
insufficient training data, and under-fitting caused by loss landscapes with strong non-convexity.
While our edge of chaos initialization prevents the gradient vanishing and exploding, techniques to
solve over-fitting and under-fitting problems are still needed in practice.

F Visualization of Forward Propagation

We visualized the behavior of the simplified FNO’s covariance matrix Σ(ℓ) with varying initialization
parameters σ2 ∈ {0.1, 1.0, 2.0, 4.0} and activation functions. The FNO, with a width of D = 1024,
was used and the input was sampled from the standard normal distribution with a spatial size of
N = 32. The results of the FNO with Tanh activation, both with and without mode truncation, are
shown in Figs. 7 and 8 and Figs. 9 and 10 respectively. Similarly, the results of the FNO with ReLU
activation, both with and without mode truncation, are displayed in Figs. 11 and 12 and Figs. 13
and 14 respectively. In the ordered phase, all figures illustrate convergence to the fixed point Σ∗ where
c∗ = 1, with the rate of convergence increasing as the parameter σ2 decreases. In the chaotic phase,
the activation function dictates the covariance behavior. Without mode truncation, the covariance
behavior of the FNO is identical to those of the DCN; otherwise non-uniform, FNO-specific periodic
covariance is exhibited.
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Table 4: Test performance measured by nMSE of 2D original FNO with ReLU activation on Darcy
Flow and NS equation.

nMSE Layers Darcy Flow Navier-Stokes
ν = 1e−3 ν = 1e−4 ν = 1e−5

σ2 = 1.0

4 0.025 0.0063 0.18 0.10
8 0.028 0.0047 0.14 0.094

16 0.035 0.0048 0.12 0.12
32 0.56 0.0057 0.13 0.16

σ2 = 2.0

4 0.029 0.0075 0.18 0.10
8 0.036 0.0057 0.14 0.11

16 0.041 0.0057 0.12 0.11
32 0.042 0.0072 0.13 0.18

σ2 = 3.0

4 0.033 0.0089 0.18 0.10
8 0.040 0.0080 0.14 0.11

16 0.052 0.0098 0.13 0.13
32 0.16 0.028 0.14 0.19

Figure 7: Visualization of the correlation Σ
(ℓ)
β,β′/

√
Σ

(ℓ)
β,βΣ

(ℓ)
β′,β′ for the simplified FNO with Tanh

activation and no mode truncation.
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Figure 8: Visualization of the covariance Σ(ℓ) for the simplified FNO with Tanh activation and no
mode truncation.

Figure 9: Visualization of the correlation Σ
(ℓ)
β,β′/

√
Σ

(ℓ)
β,βΣ

(ℓ)
β′,β′ for the simplified FNO with Tanh

activation and the Fourier mode K = 5.
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Figure 10: Visualization of the covariance Σ(ℓ) for the simplified FNO with Tanh activation and the
Fourier mode K = 5.

Figure 11: Visualization of the correlation Σ
(ℓ)
β,β′/

√
Σ

(ℓ)
β,βΣ

(ℓ)
β′,β′ for the simplified FNO with ReLU

activation and no mode truncation.
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(a) Initial parameters σ2 ∈ {0.1, 1.0, 2.0}.

(b) Initial parameter σ2 = 4.0

Figure 12: Visualization of the covariance Σ(ℓ) for the simplified FNO with ReLU activation and no
mode truncation.

Figure 13: Visualization of the correlation Σ
(ℓ)
β,β′/

√
Σ

(ℓ)
β,βΣ

(ℓ)
β′,β′ for the simplified FNO with ReLU

activation and the Fourier mode K = 5.
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(a) Initial parameters σ2 ∈ {0.1, 1.0, 2.0}.

(b) Initial parameter σ2 = 4.0

Figure 14: Visualization of the covariance Σ(ℓ) for the simplified FNO with ReLU activation and the
Fourier mode K = 5.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contribution and scope of the paper are described in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention the limitation of this paper in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The full set of assumptions and a complete proof are provided in Section 3
and Appendices A and B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information needed to reproduce the main experimental results are
provided in Section 4 and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use existing public datasets and cite them appropriately.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All training and test details are provided in Section 4 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: In the experimental results depicted in Figs. 3 and 4, we determined that the
variation in the reported values has minimal impact. In fact, the inclusion of error bars seems
to obstruct intuitive understanding through visualization.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All sufficient information on the computer resources are provided in Section 4
and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper is foundational research and not tied to particular applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have stated the license and copyright of the data used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
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39

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The content of our public code is well described.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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well as details about compensation (if any)?
Answer: [NA]
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
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