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Abstract

In this paper, we explores the expressivity and trainability of the Fourier Neural
Operator (FNO). We establish a mean-field theory for the FNO, analyzing the
behavior of the random FNO from an edge of chaos perspective. Our investigation
into the expressivity of a random FNO involves examining the ordered-chaos phase
transition of the network based on the weight distribution. This phase transition
demonstrates characteristics unique to the FNO, induced by mode truncation, while
also showcasing similarities to those of densely connected networks. Furthermore,
we identify a connection between expressivity and trainability: the ordered and
chaotic phases correspond to regions of vanishing and exploding gradients, respec-
tively. This finding provides a practical prerequisite for the stable training of the
FNO. Our experimental results corroborate our theoretical findings.

1 Introduction

The recent surge in interest in solving partial differential equations (PDEs) has led to the use of neural
network (NN)-based surrogate models. One promising line of work is the neural operator (NO),
which learns the solution operator of PDEs, thereby bypassing the need for mesh dependency. Among
the variants of NO, the Fourier neural operator (FNO) (Li et al., 2020c) has gained popularity because
of its advantageous cost/accuracy trade-off. The FNO can capture long-distance spatial interactions
using the Fourier transform, whereas convolutional neural networks (CNNs) (Wen et al., 2019; Jiang
et al., 2021b) and message-passing graph neural networks (GNNs) (Li et al., 2020a,b) are limited to
operating solely on local variables. From a computational cost perspective, the Fourier transform is
performed in quasi-linear time by the fast Fourier transform (FFT), making it significantly faster than
the Transformer (Li et al., 2023).

Despite the widespread use of FNO as an architecture, there is a lack of comprehensive theoretical
analysis on its expressivity and trainability. The universal approximation property (Kovachki et al.,
2021), recognized as the basic expressivity of the FNO, is well-known; however, the exponential
expressivity depending on the weight distribution, which are known for the densely connected
network (DCN) (Schoenholz et al., 2016), a.k.a. fully connected network, and CNN (Xiao et al.,
2018), remains unexplored. Regarding the trainability of FNO, the training instability in deep FNO
has been experimentally reported by Tran et al. (2022), but the causes and conditions of the difficulty
have not been clarified either theoretically or experimentally.
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Figure 1: Illustration of ordered-chaos phase transition for the weight initialization parameter� 2. In
the ordered phase, the spatial hidden representationsH ( ` ) on the grid converge to a uniform state
during forward propagation and the gradient vanishes during backpropagation. In the chaotic phase,
the representations either converge to a distinct state or diverge and the gradient explodes.

We analyze the exponential expressivity (how far can two different input vectors be pulled apart)
and trainability (how much gradient explosion on average) of the random FNO from the perspective
of whether the network isorderedor chaotic. This viewpoint is grounded in mean-�eld theory, an
analytical framework for NN established by Poole et al. (2016); Schoenholz et al. (2016); Yang
& Schoenholz (2017); Xiao et al. (2018). A network is considered ordered when it brings all
representations of two different spatial positions closer together, and chaotic when it drives them
apart during forward propagation. Furthermore, a network can only be stably trained when initialized
close to theedge of chaos, which is the transition point between the ordered phase and the chaotic
phase. In fact, He initialization (He et al., 2015) is an example of a commonly used edge of chaos
initialization for the DCN with ReLU activation (Burkholz & Dubatovka, 2019).

In this study, we establish a mean-�eld theory to analyze the expressivity and trainability of the FNO.
Our investigation reveals the expressivity of random FNO at initialization by examining the transition
point between ordered and chaos phases. The phase transition exhibits FNO-speci�c characteristics
induced by mode truncation, as well as similarities with the characteristics of DCN and CNN. We also
�nd a link between expressivity and trainability: the ordered and chaotic phases correspond to regions
of vanishing and exploding gradient, respectively. This discovery offers a practical initialization
prerequisite for the stable training of the FNO.

2 Background

2.1 Fourier Neural Operators

The FNO (Li et al., 2020c) is one of the well-established methods for solving PDEs across many
scienti�c problems (Yang et al., 2021; Wen et al., 2022b; Hwang et al., 2022; Jiang et al., 2021a;
Pathak et al., 2022). AnM -dimensional FNO with the number of hidden featuresD and the spatial
sizeN for learning the operators between scalar-valued functions is de�ned as follows.

X ( ` +1) = �
�

D ( ` )
�

X ( ` )
�

+ K ( ` )
�

X ( ` )
��

; (1)

whereX ( ` ) 2 R

Mz }| {
N ����� N � D is the`-th hidden representation,M is the number of spatial dimensions,

and� is activation. The hidden representationsX (0) andX (L ) are the output of the lifting operator
and the input of the projection operator, respectively. The architecture of these operators does not
affect our analysis as long as the network stays shallow, as implemented in (Li et al., 2020c). The`-th
densely connected (DC) moduleD ( ` ) is an af�ne point-wise map in the physical space and the`-th
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Fourier convolution moduleK ( ` ) is a parameterized kernel integral operator using Fourier transform.
The bias term is considered to be included in either or both modulesK ( ` ) andD ( ` ) .

Several FNO variants have been developed to address speci�c challenges, such as geo-FNO (Li
et al., 2022) for irregular regions and group equivariant FNO (G-FNO) (Helwig et al., 2023), which
maintains equivariance to rotation, re�ection, and translation. U-NO (Rahman et al., 2022) and
U-FNO (Wen et al., 2022a) integrate FNO with U-Net for multiscale modeling. Additionally,
WNO (Tripura & Chakraborty, 2022) utilizes wavelet bases, while CFNO (Brandstetter et al.,
2023) enhances the use of geometric relations between different �elds and �eld components through
Clifford algebras. Adaptive FNO (Zhao et al., 2022; Guibas et al., 2021) and F-FNO (Tran et al., 2022)
have improved computational and memory ef�ciency through incremental learning and architectural
modi�cations. Other approaches for improving performance include methods with increasing physical
inductive bias (Li et al., 2024), data augmentation (Brandstetter et al., 2022), and a variance-preserving
weight initialization scheme (Poli et al., 2022).

While numerous new models and learning methods have been proposed, relatively little research has
been conducted to understand the intrinsic nature of these methods. Issues such as spectral bias (Zhao
et al., 2022) and training instability (Tran et al., 2022) have been reported. Tran et al. (2022) observed
that training did not converge even at24 layers. They successfully addressed the stability and
accuracy degradation issues associated with an increase in the number of layers by implementing
skip connections behind activation and introducing various training techniques. However, it is still
unknown that the theoretical basis for why the original architecture of the FNO has problems with
training instability and accuracy degradation.

2.2 Mean-�eld Theory for Neural Networks

The mean-�eld theory has been used to provide a mathematical framework for understanding the
expressivity and trainability of neural networks (Poole et al., 2016; Schoenholz et al., 2016; Yang
& Schoenholz, 2017; Hayou et al., 2018; Xiao et al., 2018). A series of papers (Poole et al., 2016;
Schoenholz et al., 2016) delved into the average behavior of in�nite-width random deep DCN, with
weights and biases initialized by a zero-mean Gaussian distribution. The formulation is given below.

x ( ` ) = �
�

h ( ` )
�

; h ( ` ) = W ( ` ) x ( ` � 1) + b( ` ) ;

W ( ` )
i;j

i:i:d:� N
�

0;
� 2

D

�
; b( ` )

i
i:i:d:� N

�
0; � 2

b

�
;

(2)

wherex ( ` ) 2 RD is the`-th hidden representation,W ( ` ) 2 RD � D ; b( ` ) 2 RD are thè -th learnable
parameters, and the width is assumed to be suf�ciently largeD � 1.

Poole et al. (2016) and Schoenholz et al. (2016) explored the exponential expressivity of random
DCN determined by two phases depending on the initial variance parameters� 2 and� 2

b , as shown
in Fig. 5a. Poole et al. (2016) �rst examined the forward propagation of a random DCN with Tanh
activation. They demonstrated that the covariance� ( ` ) of the`-th pre-activation representationsh ( ` )

and~h ( ` ) corresponding to two different inputsx (0) and~x (0) are obtained by

8d 2 [D ]; � ( ` ) = � 2E
h
�

�
h( ` � 1)

d

�
�

�
~h( ` � 1)

d

�i
+ � 2

b ;

where the expectation is taken over the pre-activations[h( ` � 1)
d ; ~h( ` � 1)

d ] � N (0; � ( ` � 1) ). The
covariance converges exponentially to a �xed point� � determined by parameters� 2 and� 2

b .

A network is consideredorderedwhen it brings two distinct representations closer together, which
implies a state of small expressivity. Conversely, a network ischaoticwhen it drives them apart
during forward propagation, implying a state of large expressivity. Networks with either excessively
small or large expressivity can disrupt the structure of the input: the difference between two distinct
inputs quickly becomes indistinguishable in networks with small expressivity, while similarities
between inputs are no longer recognized in networks with large expressivity. The network isordered
if the initial variance of the weights is small. For larger values, and beyond a certain threshold, the
phase shifts, and the network behaves chaotically. This phase shift point is termedthe edge of chaos.

Subsequently, Schoenholz et al. (2016) discovered the connection between expressivity and trainabil-
ity of DCN through analysis of the backpropagation behavior. In an ordered network, the expected

3



value of the gradient norm becomes exponentially small during backpropagation, while it becomes
exponentially large in a chaotic network. This implies that the gradient vanishes/explodes in ordered
or chaotic networks, respectively. These �ndings suggest that deep DCN can be stably trained only
near the edge of chaos. Schoenholz et al. (2016) also provided an estimate of the maximum depth at
which a network can be trained when initialized away from the edge of chaos. These insights are not
limited to DCN and similar results have been observed for residual networks (Yang & Schoenholz,
2017) and CNN (Xiao et al., 2018).

3 A mean-�eld theory for FNO

In this section, we establish a mean-�eld theory of FNO. We demonstrate the exponential expressivity
of random FNO by examining the ordered-chaos phase transition during the forward propagation.
Furthermore, we identify the connection between expressivity and trainability by concentrating on
backward propagation behaviors. Our analysis is an advanced version of the approach developed
by Poole et al. (2016); Schoenholz et al. (2016); Yang & Schoenholz (2017); Xiao et al. (2018).
In Section 3.1, we outline the problem setup. In Section 3.2, we analyze the forward and backward
propagation behavior of random FNO at initialization. In Section 3.3, we discuss the practical
prerequisites for initialization to stabilize the training of FNO, leveraging the similarities between
FNO and DCN. The proofs for all the lemmas and theorems are provided in Appendices A and B.

3.1 Problem setting

Here, we consider a simpli�ed one-dimensional (1D) FNO. Note that our theory is extensively
applicable to the original FNO, as discussed in Section 3.3. The simpli�ed 1D FNO, with a depth
of L , is de�ned by the number of hidden featuresD, a spatial sizeN = 2 m (wherem is an
integer), the number of Fourier modesK � N

2 + 1 , two learnable weights� ( `;k ) 2 RD � D and
� ( `;k ) 2 RD � D , and a biasb ( ` ) 2 RD . Denote� : R ! R by the non-decreasing activation function.
Let X ( ` ) 2 RN � D andH ( ` ) 2 RN � D be the post and pre-activation representations de�ned by

X ( ` ) = �
�

H ( ` )
�

; H ( ` ) =
K � 1X

k=0

r
ck

2

�
H ( `;k ) + H

( `;k )
�

+ b ( ` ) 1>
N ;

H ( `;k ) := F yD (k ) F X ( ` � 1)
�

� ( `;k ) +
p

� 1� ( `;k )
�

;

(3)

where� a;b is the Kronecker-delta,ck = 2 � � k; 0 � � k;N= 2 is a constant,1N is all-ones column

vector with the sizeN , H
( `;k )

is the conjugate ofH ( `;k ) corresponding to the(N � k)-th frequency
components,y is the transpose conjugate,F 2 CN � N is the Discrete Fourier Transform (DFT)
matrix de�ned byFk;n = 1

N exp(� 2�k
N n), andD (k ) is a diagonal matrix with a 1 at positionD (k )

k;k .

There are two differences from the original FNO proposed by Li et al. (2020a): (1) the DC module
is dropped for the simplicity, and (2)H ( `;k ) is multiplied by

p
2 with respect tok = 0 ; N

2 for
appropriate normalization. We assume that the weights of FNO are initialized by i.i.d. samples from

Gaussian distribution,i.e. � ( `;k )
i;j

i:i:d:� N (0; � 2

2D ); � ( `;k )
i;j

i:i:d:� N (0; � 2

2D ); b( ` )
i

i:i:d:� N (0; � 2
b). For

k = 0 ; N
2 , the parameter� ( `;k ) is set to zero exceptionally. For alld 2 [D ] = f 0; : : : ; D � 1g,

the pre-activationsH ( ` )
:;d 2 RN are i.i.d. random variables. WhenD � 1, by the central limit

theorem, the variablesH ( ` )
:;d follow Gaussian distribution with mean0 and covariance matrix� ( ` )

�;� 0 :=

E� 1: ` ;� 1: `

h
H ( ` )

�;d H ( ` )
� 0;d

i
, where the expectation is taken over all random variables[� 1:` ; � 1:` ] :=

f � ( ` 0;k 0) ; � ( ` 0;k 0) g` 02 [` ];k 02 [K ]. Our theory can be easily extended to 2D and 3D FNOs.

3.2 Expressivity and trainability of FNO

Firstly, the forward propagation of a single input signal with spatial features is described as follows.
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Lemma 3.1(Iterated map). For all d 2 [D ], the covariance� ( ` ) := E� 1: ` ;� 1: `

�
H ( ` )

:;d H ( ` )
:;d

>
�

is

obtained recursively by the iterated mapCde�ned by

� ( ` )
�;� 0 = � 2

K � 1X

k=0

ck E
h�
�[F � (H :;d )]k

�
�2

i
cos

�
� (k )

�;� 0

�
+ � 2

b

| {z }
= : C(� ( ` � 1) ) �;� 0

; (4)

where the expectation is taken over the pre-activationsH :;d � N (0; � ( ` � 1) ), � (k )
�;� 0 := 2�k

N (� � � 0)
represents the scaled positional difference.

The indices� and� 0 correspond to different spatial locations as with the mean-�eld theory for
CNN (Xiao et al., 2018). Note that[F � (H :;d )]k is thek-th Fourier modes of the post-activation
representation. When applying DCN (Poole et al., 2016; Schoenholz et al., 2016) or CNN (Xiao et al.,
2018) to the spatial signal, the iterated map depends only on local spatial locations, while in the case
of FNO, the iterated map depends on all spatial locations because of the global Fourier convolution.
In addition, only periodic spatial correlations with shift-invariant are propagated, and high-frequency
components exceeding modeK are eliminated.

Next, we explore the �xed point� � of the iterated mapCsatisfying� � = C(� � ). By linearizing
the dynamics of signal propagation around this �xed point and analyzing the stability and rate of
convergence to the �xed point, we can determine the depth to which each component of the input can
propagate. Schoenholz et al. (2016) showed that the iterated map of DCN de�ned in Eq. (2) has a
�xed point of the form:

� � = q� I N + q� c� (1N 1>
N � I N ); (5)

whereq� ; c� are the �xed points of variance and correlation, andI N is the identity matrix. Meanwhile,
Xiao et al. (2018) showed that any �xed point for the iterated map of the DCN is also a �xed point
for that of CNN. We show that random FNO has the same �xed points of the form of Eq. (5) with
c� = 1 in the following lemma.

Lemma 3.2(Exsistance of �xed points). When a random DCN de�ned by Eq.(2) has the �xed point
(q� ; c� = 1) for the initial parameters(� 2; � 2

b), then a random simpli�ed FNO de�ned by Eq.(3) has
a �xed point � � of the form

� � = q� I N + q� c� (1N 1>
N � I N ) = q� 1N 1>

N :

Lemma 3.2 indicates that the �xed point for the iterated map� � of the DCN serves as a �xed point
for the iterated map of the simpli�ed FNO (as well as CNN). To analyze the stability and convergence
rate, we linearly approximate the C-map around the �xed point� � , i.e.,C(� ) � � � + J � � (� � � � ),
whereJ � � is the Jacobian linear map of the iterated map de�ned in Eq. (15). We then derive the
eigenvalues and eigenvectors for the Jacobian linear mapJ � � as follows.

De�nition 3.3.

� q� := � 2E
�
� 02(H �;d ) + � 00(H �;d )� (H �;d )

�
; (6)

� c� := � 2E[� 0(H �;d )� 0(H � 0;d )]; (7)

� � :=
� 2

2
E [� 00(H �;d )� (H � 0;d ) + � (H �;d )� 00(H � 0;d )] + � 2E [c� � 0(H �;d )� 0(H � 0;d )] ; (8)

where the expectation is taken over the pre-activationsH :;d � N (0; � � ), and� 0; � 00are the �rst-
and second-order derivatives of the activation� .

The bases ;  (1) ; : : : ;  (K � 1) 2 RN � N using the above quantities are de�ned below.

 �;� 0 := 1 �
1
N

�
� � + � c� � � q�

� �

� K � 1X

s=0

cs cos
�

� (s)
�;� 0

�
;

 (k )
�;� 0 := cos

�
� (k )

�;� 0

�
�

1
P K � 1

s=0 cs

K � 1X

s=0

cs cos
�

� (s)
�;� 0

�
:

(9)
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From Lemma A.4,K � 1 matrices inf  (k ) gk2 [K ]nf 0g are eigenbases with the eigenvalue� c�

of the Jacobian linear map. From Lemma A.5, the matrix is the eigenbases with the eigen-
value � of the Jacobian linear map. Since the rank of the Jacobian linear map is at most K
(Lemma A.3), the deviation from the �xed point� ( ` ) � � � is spanned by K-dimensional eigenspace
span

�
f  (k ) gk2 [K ]nf 0g [ f  g

�
. Then, the �xed point stability and the convergence rate are shown

in the following theorem.

Theorem 3.4(Exponential expressivity). Let E ( ` ) := � ( ` ) � � � be the deviation from the �xed
point at thè -th layer. Suppose that the deviation at the �rst layer is decomposed asE (0) = �  +P K � 1

k=1 � k  (k ) + e. The scalars�; � k represent the scale of the perturbation for each eigencomponent
of the linearly approximated mapE ( ` ) 7! E ( ` +1) . The componente 2 RN � N belongs to the
orthogonal complements of the spacespan

�
f  ;  (1) ; : : : ;  (K � 1) g

�
.

Then, the deviation at thè-th layer is obtained by

E ( ` ) = � ` �  +
K � 1X

k=1

� `
c� � k  (k ) ; (10)

� :=
1
N

K � 1X

s=0

cs � q� +

 

1 �
1
N

K � 1X

s=0

cs

!

(� � + � c� ):

In particular, when the Fourier mode isK = N
2 + 1 , Eqs.(9) and(10) reduce to the following.

E ( ` ) = � `
q� �  +

K � 1X

k=1

� `
c� � k  (k ) ;

8�; � 0 2 [N ];  �;� 0 = 1 ;  (k )
�;� 0 = cos

�
� (k )

�;� 0

�
� � �;� 0:

(11)

Theorem 3.4 shows the expressivity of the FNO, which is characterized by the ordered-chaos phases
and varies exponentially with respect to the number of layers. Theorem 3.4 indicates that the
asymptotic behavior of the zero-frequency deviation is mostly determined by� and the periodic
deviation is determined by� c� . If � < 1 and� c� < 1, the �xed point is stable as the deviation from
the �xed point converges exponentially to zero. When the �xed point remains stable atc� = 1 , a
random network exists in an ordered phase, where all spatial representations are correlated in an
asymptotic manner. Conversely, when the �xed point withc� = 1 becomes unstable, the network
transitions into a chaotic phase, exhibiting behavior dependent on the activation function� . The
boundary between these two phases is referred to asthe edge of chaos.

The convergence rates� q� and � c� are the same as the convergence rates of the variance and
correlation to the �xed point for DCN (Schoenholz et al., 2016) and CNN (Xiao et al., 2018).
However, only periodic spatial correlations are propagated in the FNO, resulting in a different
eigenspace of the mapE ( ` ) 7! E ( ` +1) compared to the DCN and CNN. In DCN, the deviation
belongs to a vector space with dimensionN (N � 1)

2 in DCN, whereas in FNO, the dimension isK , or
at mostN2 + 1 . CNN possess diagonal eigenspaces associated with eigenvalues� q� and non-diagonal
eigenspaces associated with eigenvalues� c� . In contrast, FNOs without mode truncation exhibit
a similarity, possessing eigenspaces� q� for zero-frequency and eigenspaces� c� for k-frequencies
with diagonal components removed. Furthermore, mode truncation increases the convergence rate of
zero-frequency deviation from� q� to � and affects all eigenbases as well. For further discussions on
the similarities between CNN and FNO, please refer to Appendix C. A visualization of the covariance
of the FNO with Tanh and ReLU activations is shown in Appendix F.

Finally, we demonstrate the connection between expressivity and trainability. By examining the
covariance of the gradient in each layer during backpropagation, we investigate the conditions under
which training is stable without gradient vanishing or exploding.

Theorem 3.5(Trainability). Let ~� ( ` ) 2 RN � N be the gradient covariance with respect to some loss
L , e.g. mean squared error, at thè-th layer. Suppose that the gradient covariance at theL-th layer

is decomposed as~� (L )
�;� 0 =

P K � 1
k=0 ~� k cos

�
� (k )

�;� 0

�
+ ~e, where~� k is the coef�cient of each basis and~e
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(a) Simpli�ed FNO with Tanh (b) Simpli�ed FNO with ReLU (c) Original FNO with ReLU

Figure 2: Average gradient normTr( ~� ( ` ) )=D during the backpropagation of several FNOs plotted as
a function of layer̀ . Each line corresponds to the result of different initial values of� 2 from 0:5 to
4:0 in increments of0:5. The x-axis is the layer and the y-axis is the log-scale of the gradient norm.
Depending on the value of� 2, the gradient norm increases or decreases consistently as the gradient
propagates to shallower layers.

belongs to the orthogonal complements ofspan(f cos
�

� (k )
�;� 0

�
gK � 1

k=0 ). Then, the gradient covariance
at the`-th layer is obtained by

~� ( ` )
�;� 0 =

K � 1X

k=0

� L � `
c� ~� k cos

�
� (k )

�;� 0

�
:

Theorem 3.5 shows that gradient vanishing occurs when� c� < 1 (ordered phase) and gradient
explosion occurs when� c� > 1 (chaos phase). Thus, stable training of the FNO can be achieved
close tothe edge of chaosby setting the initial parameter� 2 to satisfy� c� � 1. We speci�cally
present the initial parameter choices that achievethe edge of chaosfor several FNOs in Section 3.3.

Whenc� = 1 , there is no change in the dynamics during backpropagation due to mode truncation.
When using the full modeK = N

2 + 1 , the condition� c� = 1 always achievesthe edge of chaos,
which is consistent with the results for the DCN and CNN. Despite the architectural and iterative map
differences among FNO, DCN, and CNN, Theorem 3.4 and Theorem 3.5 demonstrate the similarities
in the random behavior of FNO, DCN, and CNN. This allows existing results based on mean-�eld
theory to be applied to the FNO.

3.3 Initialization requirements for stable training

For stable training, Theorem 3.5 suggests the necessity of initializing FNO nearthe edge of chaos, i.e.,
initializing FNO so that� c� � 1. In this section, we present the initial parameter choices that achieve
the edge of chaosfor several FNOs, each with slightly different architectures such as activation
functions. Furthermore, the behavior of the gradient normTr( ~� ( ` ) )=D as a function of layer̀ are
visualized in Fig. 2 for several variants of random FNO with different initialization parameters� 2.
We used FNO with a width ofD = 32 and a number of layersL = 64, and for simplicity, we
computed the absolute value of the output as the loss with respect to the input sampled from the
standard normal distribution.

Simpli�ed FNO with Tanh activation .
The behavior of� c� for the parameters� 2 and� 2

b of the Tanh network has been extensively studied
by Poole et al. (2016); Schoenholz et al. (2016). The phase diagram drawn by Pennington et al.
(2017) is shown in Fig. 5a. By using parameters(� 2; � 2

b) around the two phase boundaries of ordered
and chaotic that achieve� c� = 1 , the training of the simpli�ed FNO with Tanh activation can be
stabilized. Figure 2a depicts the behavior of the gradient backpropagation in the simpli�ed FNO
with Tanh activation and the bias parameter being� 2

b = 0 :1. Figure 2a shows that when� 2 / 2, the
gradient diminishes exponentially; otherwise, it explodes exponentially.
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Simpli�ed FNO with ReLU activation .
The iterated mapCof the DCN with ReLU activation is given by Cho & Saul (2009) as follows.

q( ` +1) =
1
2

� 2q( ` ) + � 2
b ; (12)

c( ` +1) q( ` +1) =
1
2

� 2q( ` ) J1

�
c( ` ) q( ` )

q( ` )

�
+ � 2

b ; (13)

J1(c) =
1
�

� p
1 � c2 + ( � � arccos (c))c

�
;

The edge of chaos initialization for the DCN with ReLU activation is known as He initialization (He
et al., 2015), which sets the initial variance parameter as� 2 = 2 and initial bias asb( ` )

i = 0 for Eq. (2).
From the similarity of the DCN and the FNO, we can derive the FNO version of the He initialization
that achieves� c� = 1 by setting� 2 = 2 ; b( ` )

i = 0 for Eq. (3). The He initialization scheme for the
simpli�ed FNO with the activation� = ReLU is derived as follows.

� ( `;k )
i;j

i:i:d:� N (0; D � 1); � ( `;k )
i;j

i:i:d:� N (0; D � 1):

Figure 2b demonstrates that the choice of� 2 = 2 preserves the magnitude of the gradient norm
during backpropagation of deep simpli�ed FNO with ReLU activation.

Original FNO .
In the original architecture of the FNO proposed by Li et al. (2020c), the DC module is used together
with the Fourier convolution module as shown in Eq. (1). We initialize the weights of both layers
consistently as follows. For all` 2 [L ], k 2 [K ], andi; j 2 [D ],

� ( `;k )
i;j

i:i:d:� N
�

0;
� 2

4D

�
; � ( `;k )

i;j
i:i:d:� N

�
0;

� 2

4D

�
;

W ( ` )
i;j

i:i:d:� N
�

0;
� 2

2D

�
; b( ` )

i � N
�
0; � 2

b

�
:

From the similarity of the initial network behavior of the FNO and the DCN, the �xed point with
c� = 1 of the simpli�ed FNO is also a �xed point of the original FNO. In the neighborhood of the
�xed point � � , the eigencomponents spanned byf  (k ) gK

k=1 will decay or increase at the rate of� c� .
Following the derivation of Theorem 3.5, the eigenvalues of thecosfunction eigencomponents of the
gradient covariance are also� c� . These results show that the edge of chaos initialization scheme can
be used for the original FNO with each activation function. Figure 2c shows that the original FNO
with ReLU activation and the parameter �xed asb( ` )

i = 0 exhibits similar backpropagation behavior
as the simpli�ed FNO,i.e., � 2 � 2 is an appropriate choice.

4 Experiments

In this section, we experimentally demonstrate that deep FNO training requires appropriate initializa-
tion settings on a variety of datasets, consistent with the theory discussed in Section 3.

4.1 Datasets

We evaluated three models on commonly used PDEs: the advection equation, Burgers' equation,
Darcy Flow equation, and incompressible Navier-Stokes (NS) equation. All datasets were generated
by numerical simulations used in (Takamoto et al., 2022; Li et al., 2020c) and are publicly available.
A summary of the dataset is provided in Table 1, and more details are given in Appendix D.

Advection equation and Burgers' equation. The linear advection equation for the functionu(x; t )
is given by

@t u(x; t ) + �@x (u(x; t )=2) = 0 ; u(x; 0) = u0(x);

whereu0 is the initial condition and� = 2 :0 is an advection speed. The non-linear Burgers' equation
for the functionu(x; t ) is given by

@t u(x; t ) + @x
�
u2(x; t )=2

�
= �@xx u(x; t ); u(x; 0) = u0(x);
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Table 1: Overview of dataset with number of spatial dimensionsM , time dependence, spatial
resolutionNs = N �� � � � N , temporal resolutionN t , and number of samples for training, validation,
and testing.

PDE M time Ns N t Number of samples (Train / Val / Test)

advection 1 - 64 - 8000 / 1000 / 1000
Burgers' 1 - 64 - 8000 / 1000 / 1000

Darcy �ow 2 - 64� 64 - 900 / 100 / 100
Navier-Stokes (� = 1e-3) 2 X 64� 64 25 1000 / 100 / 100
Navier-Stokes (� = 1e-4) 2 X 64� 64 20 8000 / 1000 / 1000
Navier-Stokes (� = 1e-5) 2 X 64� 64 20 1000 / 100 / 100

whereu0 is the initial condition and� = 4 :0 is the diffusion coef�cient.

Darcy Flow equation. The Darcy Flow equation for the functionu(x) with a Dirichlet boundary is
given by

�r � (a(x)r u(x)) = f (x) (x 2 (0; 1)2); u(x) = 0 ( x 2 @(0; 1)2);
wherea is the diffusion coef�cient andf (x) = 1 is the forcing function.

Incompressible Navier-Stokes equation. The 2D NS equation on the unit torus is de�ned by
@t ! (x; t ) + u(x; t ) � r ! (x; t ) = � r 2! (x; t ) + f (x); r � u(x; t ) = 0 ; ! (x; 0) = ! 0(x);

where ! (x; t ) is the vorticity, ! 0 is the initial vorticity, u(x; t ) is the velocity �eld for
any r > 0, � 2 R+ is the viscosity, andf is the external forcing function de�ned by
f (x) = 0 :1 (sin(2� (x1 + x2) + cos(2� (x1 + x2)) . We experimented with the viscosities� =
1e� 3; 1e� 4; 1e� 5. For the data with� = 1e� 4, the time resolution was also downsampled by half.

4.2 Experimental Settings

In the experiments on the 1D advection and Burgers' equation, we compared the results of simpli�ed
FNOs de�ned in Eq. (3) with Tanh and ReLU activations for varying number of layerL and initial
parameters� 2. In the experiments on the 2D Darcy Flow and NS equations, we compared the results
of the original FNO (Li et al., 2020c) as shown in Eq. (1) for varying number of layerL and initial
parameters� 2. All models have a width ofD = 32 and the Fourier mode ofK = 12. When using
Tanh as the activation, we �xed the initial bias parameter� 2

b = 0 :1, and when using ReLU activation,
we �xed the initial biasb( ` )

i = 0 . We used the AdamW optimizer and cosine annealing scheduler.
Training was stopped early at the epoch of minimal normalized mean squared error (nMSE) on the
validation data. Details of the experimental setup are given in Appendix D. In the experiments on the
NS equation, we trained the original FNO with the autoregressive scheme using a teacher-forcing
technique, input normalization, and regularization that adds small-Gaussian noise to the input (Tran
et al., 2022). During the evaluation phase, only the initial10 steps are provided as input, and the
rollout results of all subsequent steps are evaluated. For all tasks, the mean squared error (MSE) is
used as the training loss and nMSE as the validation and testing (Li et al., 2020a; Tran et al., 2022).

4.3 Results

Heatmaps of the training loss measured by MSE at the last epoch and the test performance measured
by nMSE on six different datasets, for different depthsL and initial parameters� 2, are shown
in Figs. 3 and 4, respectively. Despite the differences in architectures and datasets, Figure 3 shows
the same trend supporting the theory in all experiments. As the number of layersL increases, the
range of acceptable initial� 2 value settings becomes narrower, and initialization nearthe edge of
chaos(� 2 � 2) is required for stable training of deep FNO. Detailed analyses on training loss and
test performance are presented in Appendix E.1 and Appendix E.2, respectively.

5 Conclusion

In this study, we developed a mean-�eld theory for FNO. We showed the expressivity and trainability
of the FNO, which is characterized by the ordered-chaos phases. Furthermore, we observed both

9



(a) Tanh on advection eq.(b) ReLU on advection eq.(c) Tanh on Burgers' eq.(d) ReLU on Burgers' eq.

(e) ReLU on Darcy Flow(f) ReLU on NS eq. (1e-3)(g) ReLU on NS eq. (1e-4)(h) ReLU on NS eq. (1e-5)

Figure 3: Training loss of FNOs at last epoch for four distinct PDEs.(a, b): the advection equation,
(c, d): the Burgers' equation,(e): Darcy Flow,(f-h): the NS equation. The heatmaps represents
the training loss values for varying depthL 2 f 4; 8; 16; 32g and initial weight parameter� 2 2
f 0:1; 0:5; 1:0; 2:0; 3:0; 4:0g, with lighter colors signifying lower training loss. The presented results
are the mean training loss at the last epoch over three different seeds.

(a) Tanh on advection eq.(b) ReLU on advection eq.(c) Tanh on Burgers' eq.(d) ReLU on Burgers' eq.

(e) ReLU on Darcy Flow(f) ReLU on NS eq. (1e-3)(g) ReLU on NS eq. (1e-4)(h) ReLU on NS eq. (1e-5)

Figure 4: nMSE of FNOs on test datasets for four distinct PDEs.(a, b): the advection equation(c,
d): the Burgers' equation,(e): Darcy Flow,(f-h): the NS equation. The heatmaps for each nMSE
correspond to the results of each heatmap of training loss in Fig. 3. The lighter colors, the better the
test performance. The presented results are the mean nMSE calculated over three different seeds.

unique FNO-speci�c behaviors caused by mode truncation, as well as common behaviors akin to
those of DCN. With our analysis as a basis, we identi�ed the necessity of initializing FNO nearthe
edge of chaosfor stable training of the FNO. Experimental results supported our theoretical results.

A limitation of our analysis is that it is limited to the network at initialization and does not address
the stability of the entire optimization process. While we do not provide suf�cient conditions for
stable training, we do offer one necessary condition for achieving stable training. Future work may
consider a mean-�eld analysis of the FNO when using skip-connection (Tran et al., 2022), Dropout
and batch normalization, as well as initialization methods that ensure the input-output Jacobian of the
FNO satis�es dynamical isometry (Pennington et al., 2017, 2018).
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(a) Tanh activation (Pennington et al., 2017) (b) ReLU activation

Figure 5: Ordered-chaos phase transition diagram for the DCN

A Proof of Theorem 3.4

Theorem 3.4(Exponential expressivity). Let E ( ` ) := � ( ` ) � � � be the deviation from the �xed
point at thè -th layer. Suppose that the deviation at the �rst layer is decomposed asE (0) = �  +P K � 1

k=1 � k  (k ) + e. The scalars�; � k represent the scale of the perturbation for each eigencomponent
of the linearly approximated mapE ( ` ) 7! E ( ` +1) . The componente 2 RN � N belongs to the
orthogonal complements of the spacespan

�
f  ;  (1) ; : : : ;  (K � 1) g

�
.

Then, the deviation at thè-th layer is obtained by

E ( ` ) = � ` �  +
K � 1X

k=1

� `
c� � k  (k ) ; (10)

� :=
1
N

K � 1X

s=0

cs � q� +

 

1 �
1
N

K � 1X

s=0

cs

!

(� � + � c� ):

In particular, when the Fourier mode isK = N
2 + 1 , Eqs.(9) and(10) reduce to the following.

E ( ` ) = � `
q� �  +

K � 1X

k=1

� `
c� � k  (k ) ;

8�; � 0 2 [N ];  �;� 0 = 1 ;  (k )
�;� 0 = cos

�
� (k )

�;� 0

�
� � �;� 0:

(11)

Proof. The theorem is obtained by the eigenvalue analysis on the the �rst-order Taylor approximation
of the iterated mapCat the �xed point� � . The Jacobian matrixJ (� � ) 2 RN 2 � N 2

of the iterated
map at the �xed point and the Jacobian linear mapJ � � (�) : RN � N ! RN � N are de�ned as follows.

[J (� � )]( �;� 0) ;( �;� 0) :=
@[C(� )] �;� 0

@� �;� 0

�
�
�
�
� = � �

; (14)

8� 2 RN � N ; J � � (� ) := mat ( J (� � ) vec(� )) ; (15)

wherevecperforms the vectorization,i.e. transforming anN � N matrix into a vector of sizeN 2,
andmat performs the inverse operation ofvec.

From Lemma A.3,K � 1 matrices inf vec( (k ) )gk2 [K ]nf 0g are eigenbases with the eigenvalue� c�

of the Jacobian linear map. From Lemma A.4, the matrix is the eigenbases with the eigenvalue
� of the Jacobian linear map. Since the sets ofK matrices inf  (k ) gk2 [K ]nf 0g [ f  g are linearly
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independent (yet non-orthogonal) inRN � N , the subspacespan
�
f  (k ) gk2 [K ]nf 0g [ f  g

�
is theK -

dimensional eigenspace of the Jacobian linear map. From Lemma A.2, the rank of the Jacobian matrix
J (� � ) at the �xed point� � is at mostK , thereby the rank of the Jacobian linear map in Eq. (15) is
at mostK . Therefore, we have

8e 2 span
�

f  (k ) gk2 [K ]nf 0g [ f  g
� ?

; J � � (e) = O:

C(� � + E ( ` � 1) ) � � � + J � � (E ( ` � 1) )

= � � +

 

� ` � 1�J � � ( ) +
K � 1X

k=1

� ` � 1
c� � k J � � ( (k ) )

!

= � � + � ` �  +
K � 1X

k=1

� `
c� � k  (k )

| {z }
= E ( ` )

:

Lemma 3.1(Iterated map). For all d 2 [D ], the covariance� ( ` ) := E� 1: ` ;� 1: `

�
H ( ` )

:;d H ( ` )
:;d

>
�

is

obtained recursively by the iterated mapCde�ned by

� ( ` )
�;� 0 = � 2

K � 1X

k=0

ck E
h�
�[F � (H :;d )]k

�
�2

i
cos

�
� (k )

�;� 0

�
+ � 2

b

| {z }
= : C(� ( ` � 1) ) �;� 0

; (4)

where the expectation is taken over the pre-activationsH :;d � N (0; � ( ` � 1) ), � (k )
�;� 0 := 2�k

N (� � � 0)
represents the scaled positional difference.

Proof. For simplicity, we introduceY�;k;�;i as follows.

H ( `;k )
�;d =

DX

i =1

N � 1X

� =0

F y
�;k Fk;� X ( ` � 1)

�;i| {z }
= : Y�;k;�;i

�
� ( `;k )

i;d +
�
1 �

�
� k; 0 + � k;N= 2

�� p
� 1� ( `;k )

i;d

�
:

Since the weights are sampled independently, for differentk 6= k0,

E
h
H ( `;k )

�;d H ( `;k 0)
�;d

i
= E

h
H ( `;k )

�;d H
( `;k 0)
�;d

i
= E

h
H

( `;k )
�;d H

( `;k 0)
�;d

i
= 0 :

From Eq. (3), we have

E� ( ` ) ;� ( ` ) [H ( ` )
�;d H ( ` )

� 0;d ] =
K � 1X

k=0

ck

2
E

h�
H ( `;k )

�;d + H
( `;k )
�;d

� �
H ( `;k )

� 0;d + H
( `;k )
� 0;d

�i
+ E

h
(b( ` )

d )2
i

:
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First, we calculate the termk 6= 0 ; N
2 , whereck = 2 .

E
h�

H ( `;k )
�;d + H

( `;k )
�;d

� �
H ( `;k )

� 0;d + H
( `;k )
� 0;d

�i

=
DX

i;i 0=1

N � 1X

�;� 0=0

Y�;k;�;i Y� 0;k;� 0;i 0� i;i 0

�
� 2 � � 2�

=2D

+
DX

i;i 0=1

NX

�;� 0=1

Y �;k;�;i Y � 0;k;� 0;i 0� i;i 0

�
� 2 � � 2�

=2D

+
DX

i;i 0=1

N � 1X

�;� 0=0

Y�;k;�;i Y � 0;k;� 0;i 0� i;i 0

�
� 2 + � 2�

=2D

+
DX

i;i 0=1

N � 1X

�;� 0=0

Y �;k;�;i Y� 0;k;� 0;i 0� i;i 0

�
� 2 + � 2�

=2D

=
� 2

D

DX

i =1

N � 1X

�;� 0=0

Y�;k;�;i Y � 0;k;� 0;i + Y �;k;�;i Y� 0;k;� 0;i

=
� 2

D

DX

i =1

0

@
N � 1X

� =0

Fk;� X ( ` � 1)
�;i

1

A

| {z }
= X̂ ( ` � 1)

k;i

0

@
N � 1X

� 0=0

Fk;� 0X ( ` � 1)
� 0;i

1

A
�

F y
�;k Fk;� 0 + F y

�;k Fk;� 0

�

=
2� 2

D

DX

i =1

�
�
�X̂ ( ` � 1)

k;i

�
�
�
2

cos
�

� (k )
�;� 0

�
;

whereX̂ ( ` � 1)
k;i is thek-th Fourier mode of the representaionX ( ` � 1)

:;i .

Second, we calculate the termsk = 0 ; N
2 , whereck = 1 andH ( `;k )

�;d = H
( `;k )
�;d .

E
hck

2

�
H ( `;k )

�;d + H
( `;k )
�;d

� �
H ( `;k )

� 0;d + H
( `;k )
� 0;d

�i
= 2

DX

i;i 0=1

N � 1X

�;� 0=0

(Y�;k;�;i Y� 0;k;� 0;i 0) � i;i 0
� 2

2D

=
� 2

D

DX

i =1

�
�
�X̂ ( ` � 1)

k;i

�
�
�
2

cos
�

� (k )
�;� 0

�
:

Since the Fourier modesjX̂ ( ` � 1)
k;i j2 are i.i.d. for each hidden dimensioni 2 [D ], we have

E� 0: ` � 1 ;� 0: ` � 1 ;b0: ` � 1 E� ( ` ) ;� ( ` ) ;b( ` )

h
H ( ` )

�;d H ( ` )
� 0;d

i
= � 2

K � 1X

k=0

ck E� 0: ` � 1 ;� 0: ` � 1

� �
�
�X̂ ( ` � 1)

k;i

�
�
�
2
�

cos
�

� (k )
�;� 0

�
+ � 2

b

= � 2
K � 1X

k=0

ck EH : ;d �N (0;� ( ` � 1) )

� �
�
�X̂ ( ` � 1)

k;i

�
�
�
2
�

cos
�

� (k )
�;� 0

�
+ � 2

b :

(16)

To obtain a more tractable expression in the subsequent proofs of theorems, we express the iterated
map without using Fourier modes as follows.

E� 0: ` ;� 0: ` ;b0: `

h
H ( ` )

�;d H ( ` )
� 0;d

i

=
� 2

N 2

K � 1X

k=0

ck

N � 1X

�;� 0=0

cos
�

� (k )
�;� 0

�
cos

�
� (k )

�;� 0

�
EH : ;d �N (0;� ( ` � 1) ) [� (H �;d )� (H � 0;d )] + � 2

b : (17)
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Lemma 3.2(Exsistance of �xed points). When a random DCN de�ned by Eq.(2) has the �xed point
(q� ; c� = 1) for the initial parameters(� 2; � 2

b), then a random simpli�ed FNO de�ned by Eq.(3) has
a �xed point � � of the form

� � = q� I N + q� c� (1N 1>
N � I N ) = q� 1N 1>

N :

Proof. Using the properties of cosine functions, the following holds.

� 2
b =

1
N 2

K � 1X

k=0

ck cos
�

� (k )
�;� 0

� N � 1X

�;� 0=0

cos
�

� (k )
�;� 0

�

| {z }
= N 2 � k; 0

� 2
b : (18)

Then, the following holds for all�; � 0 2 [N ].

[C(� � )] �;� 0 =
1

N 2

K � 1X

k=0

ck cos
�

� (k )
�;� 0

� N � 1X

�;� 0=0

cos
�

� (k )
�;� 0

� �
� 2EH : ;d �N (0 ;� � ) [� (H �;d )� (H � 0;d )] + � 2

b

�
:

When the DCN is applied pointwise to each spatial representationH �; :; � 2 [N ], the iterated map of
the random DCN (Poole et al., 2016) is given byCDCN (� ) := � 2EH : ;d �N (0 ;� ) [� (H �;d )� (H � 0;d )] +
� 2

b . Since the covariance� � is a �xed point with respect to the iterative map of the DCN,i.e.
CDCN (� � ) = � � , the following holds.

[C(� � )] �;� 0 =
1

N 2

K � 1X

k=0

ck cos
�

� (k )
�;� 0

� N � 1X

�;� 0=0

cos
�

� (k )
�;� 0

�

| {z }
= N 2 � k; 0

q� (� �;� 0 + (1 � � �;� 0)c� )
| {z }

= q�

= q� :

Thus, we con�rm that the covariance� � satis�es the de�nition of a �xed point in the mapC, i.e.
� � = C(� � ). This means that the �xed point for the iterated map� � of the DCN also serves as a
�xed point for the iterated map of the simpli�ed FNO.

Lemma A.1. Let � � be the �xed point of the form in Eq.(5). Suppose that the symmetric perturbation
E 2 RN � N , whereE �;� = E � 0;� 0 andE �;� 0 are non-zero for some�; � 0 2 [N ]; � 6= � , and all
other elements are zero. Then, we have

� 2EH : ;d �N (0 ;� � + E )
�
� (H �;d )2�

+ � 2
b = q� + E �;� � q� + O

�
jE �;� j2

�
; (19)

� 2EH : ;d �N (0 ;� � + E ) [� (H �;d )� (H � 0;d )] + � 2
b = q� c� + E �;� � � + E �;� 0� c� + O

�
jE �;� 0j2

�
;

(20)

where� q� ; � c� ; and� � are the constants de�ned by

� q� := � 2EH : ;d �N (0 ;� � )
�
� 02(H �;d ) + � 00(H �;d )� (H �;d )

�
;

� c� := � 2EH : ;d �N (0 ;� � ) [� 0(H �;d )� 0(H � 0;d )] ;

� � :=
� 2

2
E [� 00(H �;d )� (H � 0;d ) + � (H �;d )� 00(H � 0;d ) + 2 c� � 0(H �;d )� 0(H � 0;d )] :

Proof. Equation (19) is obviously shown by the result of Section 2 in (Poole et al., 2016) and Section
3 in (Schoenholz et al., 2016). We prove Eq. (20) with reference to the results of (Schoenholz et al.,
2016).

� 2EH : ;d �N (0 ;� � + E ) [� (H �;d )� (H � 0;d )] + � 2
b = � 2

Z
Dz1Dz2� (u1)� (u2) + � 2

b ;

where
R

D dz = 1p
2�

R
dze� 1

2 z2
is the measure for a standard Gaussian distribution,u1 =

p
qz1,

u2 =
p

q
�

c�;� 0z1 +
q

1 � c2
�;� 0z2

�
, q = q� + E �;� andc�;� 0 = c� +

E �;� 0

q .
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We consider the case wherec� < 1 andc� = 1 separately. Later, we will show that the two results
agree with each other. First, we consider the case wherec� < 1. Using Taylor expansion, we can
approximate� (u1) and� (u2) as follows. For the simplicity, we assumeO(jE �;� j) = O(jE �;� 0j).

� (u1) = � (u�
1) +

1
2

E �;�p
q� z1� 0(u�

1) + O(jE �;� j2);

� (u2) = � (u�
2) +

E �;� 0
p

q�

 

z1 �
c�

p
1 � (c� )2

z2

!

� 0(u�
2) +

E �;�

2
p

q� (c� z1 +
p

1 � (c� )2z2)� 0(u�
2) + O(jE �;� j2);

whereu�
1 =

p
q� z1 andu�

2 =
p

q� (c� z1 +
p

1 � (c� )2z2).

Thus, we have

� 2
Z

Dz1Dz2� (u1)� (u2) + � 2
b

= � 2
Z

Dz1Dz2� (u�
1)� (u�

2) + � 2
b

| {z }
= q� c�

+ � 2
Z

Dz1Dz2
E �;� 0
p

q�

 

z1 �
c�

p
1 � (c� )2

z2

!

� (u�
1)� 0(u�

2)

+ � 2
Z

Dz1Dz2
1
2

E �;�p
q� (c� z1 +

p
1 � (c� )2z2)� (u�

1)� 0(u�
2) + � 2

Z
Dz1Dz2

1
2

E �;�p
q� z1� 0(u�

1)� (u�
2) + O(jE 2

�;� j):

The results of the second term are obtained from the transformation of equations 36 to 39 in Appendix
7.2 of (Schoenholz et al., 2016).

� 2 E �;� 0
p

q�

Z
Dz1Dz2

 

z1 �
c�

p
1 � (c� )2

z2

!

� (u�
1)� 0(u�

2) = E �;� 0 � 2
Z

Dz1Dz2� 0(u�
1)� 0(u�

2)
| {z }

= � c �

:

Utilizing the identity,
R

Dzzf (z) =
R

Dzf 0(z), we obtain the third term as follows.

� 2
Z

Dz1Dz2
1
2

E �;�p
q� (c� z1 +

p
1 � (c� )2z2)� (u�

1)� 0(u�
2)

= � 2 1
2

E �;�

Z
Dz1Dz2

�
c� (� 0(u�

1)� 0(u�
2) + c� � (u�

1)� 00(u�
2)) + (1 � (c� )2)� (u�

1)� 00(u�
2)

�

= � 2 1
2

E �;�

Z
Dz1Dz2 (c� � 0(u�

1)� 0(u�
2) + � (u�

1)� 00(u�
2)) :

The last term is calculated as follows.

� 2
Z

Dz1Dz2
1
2

E �;�p
q� z1� 0(u�

1)� (u�
2) = � 2 1

2
E �;�

Z
Dz1Dz2(� 00(u�

1)� (u�
2) + c� � 0(u�

1)� 0(u�
2)) :

Summing the last two terms, we obtain the termE �;� � � .

Next, we consider the case wherec� = 1 . As with the discussion of (Schoenholz et al., 2016), the
perturbed correlation is de�ned byc�;� 0 = c� �

E �;� 0

q whereE �;� 0 > 0 and then� (u2) is expanded
as follows.

� (u2) = � (u�
2) +

 s

2
E �;� 0

q� z2 �
E �;� 0
p

q� z1

!

� 0(u�
2) + E �;� 0z2

2 � 00(u�
2) +

E �;�

2
p

q� z1� 0(u�
2) + O(jE �;� 0j3=2):
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Thus, we have

� 2
Z

Dz1Dz2� (u1)� (u2) + � 2
b

= � 2
Z

Dz1Dz2� (u�
1)� (u�

2) + � 2
b

| {z }
= q� c�

+ � 2
Z

Dz1Dz2

s

2
E �;� 0

q� z2� (u�
1)� 0(u�

2)

� � 2
Z

Dz1Dz2
E �;� 0
p

q� z1� (u�
1)� 0(u�

2) + � 2
Z

Dz1Dz2E �;� 0z2
2 � (u�

1)� 00(u�
2)

+ � 2
Z

Dz1Dz2
E �;�

2
p

q� z1� (u�
1)� 0(u�

2) + � 2
Z

Dz1Dz2
1
2

E �;�p
q� z1� 0(u�

1)� (u�
2) + O(jE 3=2

�;� j):

(21)

Using the fact thatu�
2 = u�

1 andu�
2 is independent ofz2,

� 2
Z

Dz1Dz2

s

2
E �;� 0

q� z2� (u�
1)� 0(u�

2) = � 2
Z

Dz1

s

2
E �;� 0

q� � (u�
1)� 0(u�

2)
� Z

Dz2z2

�

| {z }
=0

:

� 2
Z

Dz1Dz2
E �;� 0
p

q� z1� (u�
1)� 0(u�

2) = � 2
Z

Dz1
E �;� 0
p

q� z1� (u�
1)� 0(u�

1)

= � 2E �;� 0

Z
Dz1(� 0(u�

1)2 + � (u�
1)� 00(u�

1)) :

� 2
Z

Dz1Dz2E �;� 0z2
2 � (u�

1)� 00(u�
2) = � 2E �;� 0

Z
Dz1� (u�

1)� 00(u�
1)

� Z
Dz2z2

2

�

| {z }
=1

:

� 2
Z

Dz1Dz2
E �;�

2
p

q� z1� (u�
1)� 0(u�

2) = � 2
Z

Dz1
E �;�

2
p

q� z1� (u�
1)� 0(u�

1)

= � 2 E �;�

2

Z
Dz1(� 0(u�

1)2 + � (u�
1)� 00(u�

1)) :

� 2
Z

Dz1Dz2
1
2

E �;�p
q� z1� 0(u�

1)� (u�
2) = � 2

Z
Dz1

1
2

E �;�p
q� z1� 0(u�

1)� (u�
1)

= � 2 E �;�

2

Z
Dz1(� 0(u�

1)2 + � (u�
1)� 00(u�

1)) :

Substituting these facts into Eq. (21), we obtain

� 2
Z

Dz1Dz2� (u1)� (u2) + � 2
b

� q� c� � � 2E �;� 0

Z
Dz1� 0(u�

1)2 + � 2E �;�

Z
Dz1(� 0(u�

1)2 + � (u�
1)� 00(u�

1))

The above result agrees with that obtained by substitutingc� = 1 for the result obtained when the
casec� < 1.

Lemma A.2. The Jacobian matrixJ (� � ) of the iterated mapCde�ned in Eq.(14) is obtained as
follows.

[J (� � )]( �;� 0) ;( �;� 0) =
1

N 2

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

�
cos

�
� (k 0)

�;� 0

�
(� �;� 0(� q� � � � + � k 0;0N� � ) + (1 � � �;� 0)� c� )) :

Furthermore, the rank of the Jacobian matrixJ (� � ) 2 RN 2 � N 2
is at mostK .
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Proof. Let some semi-positive de�nite matrixE 2 RN � N be a deviation from the �xed point� � .
From Lemma 3.1 and Lemma A.1, we have

[C(� � + E )] �;� 0

=
1

N 2

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� N � 1X

�;� 0=0

cos
�

� (k 0)
�;� 0

� �
� 2EH : ;d �N (0 ;� � + E ) [� (H 
;d )� (H 
 0;d )] + � 2

b

�

�
1

N 2

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� N � 1X

�;� 0=0

cos
�

� (k 0)
�;� 0

�
(� �;� 0(q� + E �;� � q� ) + (1 � � �;� 0)(q� c� + E �;� � � + E �;� 0� c� )) :

(22)

Note that Eq. (22) is obtained by neglecting higher order terms in Eqs. (19) and (20).

By the de�nition of the �xed point,

� �
�;� 0 =

1
N 2

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� N � 1X

�;� 0=0

cos
�

� (k 0)
�;� 0

�
q� (� �;� 0 + (1 � � �;� 0)c� ):

By substituting the fact into Eq. (22), we obtain

[C(� � + E ) � � � ]�;� 0

�
1

N 2

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� N � 1X

�;� 0=0

cos
�

� (k 0)
�;� 0

�
(� �;� 0E �;� � q� ) + (1 � � �;� 0)(E �;� � � + E �;� 0� c� ))

(23)

=
N � 1X

�;� 0=0

"
1

N 2

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

�
cos

�
� (k 0)

�;� 0

�
(� �;� 0(� q� � � � + � k 0;0N� � ) + (1 � � �;� 0)� c� ))

#

| {z }
=[ J ( � � )] ( �;� 0) ; ( �;� 0)

E �;� 0:

The last equation can be rewritten using the matrix calculation as follows.

C(� � + E ) � � � � mat(J (� � ) vec(E )) :

SinceJ (� � ) is the �rst-order coef�cient to the deviactionE , J (� � ) is exactly the Jacobian matrix
of the iterated mapC.

Furthermore, the Jacobian matrix can be decomposed to two matriciesA 2 RN 2 � K andB 2 RK � N 2

as follows.

[J (� � )]( �;� 0) ;( �;� 0) =
K � 1X

k 0=0

A ( �;� 0) ;k 0Bk 0;( �;� 0) ; A ( �;� 0) ;k 0 := cos
�

� (k 0)
�;� 0

�
;

Bk 0;( �;� 0) :=
1

N 2 ck 0 cos
�

� (k 0)
�;� 0

�
(� �;� 0(� q� � � � + � k 0;0N� � ) + (1 � � �;� 0)� c� )) :

Therefore, the rank of the Jacobian matrix is at mostK .

Lemma A.3. Let � � be the �xed point of the form in Eq.(5) andE (k ) be the perturbation expressed
as

E (k )
�;� 0 = � k  (k )

�;� 0;  (k )
�;� 0 :=

2

4cos
�

� (k )
�;� 0

�
�

 
K � 1X

s=0

cs

! � 1 K � 1X

s=0

cs cos
�

� (s)
�;� 0

�
3

5 ;

where� k denotes the scale of the perturbation, assumed to be suf�ciently small.

Then, we have, for allk 2 [K ]nf 0g,

C(� � + E (k ) ) � � � + � c� E (k ) :
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Proof. From Eq. (23), we have

[C(� � + E (k ) )] �;� 0 �
1

N 2

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� N � 1X

� =0

(q� + E (k )
�;� � q� )

+
1

N 2

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� N � 1X

� =0

X

� 6= � 0

cos
�

� (k 0)
�;� 0

�
(q� c� + E (k )

�;� � � + E (k )
�;� 0� c� ):

From the de�nition of the �xed point, we obtain

� �
�;� 0 =

1
N 2

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� N � 1X

�;� 0=0

cos
�

� (k 0)
�;� 0

�
q� (� �;� 0 + (1 � � �;� 0)c� ):

By combining the above two results, we have

[C(� � + E (k ) ) � � � ]�;� 0 �
1

N 2

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� N � 1X

� =0

E (k )
�;� � q�

+
1

N 2

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� N � 1X

� =0

X

� 6= � 0

cos
�

� (k 0)
�;� 0

�
(E (k )

�;� � � + E (k )
�;� 0� c� ):

Sincecos(� (k )
�;� ) = 1 for all k 2 [K ], we have (k )

�;� = 0 andE (k )
�;� = 0 . Thus, only the term with

E (k )
�;� 0 remains.

[C(� � + E (k ) ) � � � ]�;� 0 � � k � c�
1

N 2

0

@
K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� X

� 6= � 0

cos
�

� (k 0)
�;� 0

�
cos

�
� (k )

�;� 0

�
(24)

�

 
K � 1X

s=0

cs

! � 1 K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� X

� 6= � 0

cos
�

� (k 0)
�;� 0

� K � 1X

s=0

cs cos
�

� (s)
�;� 0

�
1

A :

(25)

Given the orthogonality of the cosine functions, we have

N � 1X

�;� 0=0
� 6= � 0

ck 0 cos
�

� (k 0)
�;� 0

�
cos

�
� (k )

�;� 0

�
=

�
N 2 � ck 0N (k0 = k)

� ck 0N (otherwise): (26)

Utilizing Eq. (26) leads to the following two facts:

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� X

� 6= � 0

cos
�

� (k 0)
�;� 0

�
cos

�
� (k )

�;� 0

�
= N 2 cos

�
� (k )

�;� 0

�
� N

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

�
:

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

� X

� 6= � 0

cos
�

� (k 0)
�;� 0

� K � 1X

s=0

cs cos
�

� (s)
�;� 0

�
= N 2

K � 1X

k 0=0

cos
�

� (k 0)
�;� 0

�
� N

 
K � 1X

s=0

cs

!
K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

�
:
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By substituting these facts into Eq. (24), we obtain

[C(� � + E (k ) ) � � � ]�;� 0

� � c� � k
1

N 2

 

N 2 cos
�

� (k )
�;� 0

�
�

� � � � � � � � ��
N

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

�

�

 
K � 1X

s=0

cs

! � 1

N 2
K � 1X

k 0=0

cos
�

� (k 0)
�;� 0

�
+

� � � � � � � � ��
N

K � 1X

k 0=0

ck 0 cos
�

� (k 0)
�;� 0

�
1

A

= � c� � k

2

4cos
�

� (k )
�;� 0

�
�

 
K � 1X

s=0

cs

! � 1 K � 1X

k 0=0

cos
�

� (k 0)
�;� 0

�
3

5

| {z }
=  ( k )

�;� 0

:

This completes the proof.

Lemma A.4. Let � � be the �xed point of the form in Eq.(5) andE be the perturbation expressed as

E �;� 0 = � �;� 0;  �;� 0 :=

"

1 �
1
N

�
� � + � c� � � q�

� �

� K � 1X

s=0

cs cos
�

� (s)
�;� 0

�
#

;

where� denotes the scale of the perturbation, assumed to be suf�ciently small,1N 1>
N is all-one

matrix with sizeN � N .

Then, we have

C(� � + E ) � � � +

 P K � 1
s=0 cs

N
� q� +

 

1 �
P K � 1

s=0 cs

N

!

(� � + � c� )

!

| {z }
:= �

E :

Proof. For simplicity, we introducex := 1
N

�
� � + � c � � � q �
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as follows.
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From Eq. (23), we have
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Our goal is to derive Eq. (27) from Eq. (28). The following results are useful for the computation of
each term of Eq. (28).

8�; � 0 2 [N ]; � 6= � 0; E �;� = � (1 � x); E �;� 0 = �
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Using the above results, the �rst and second terms of Eq. (28) are calculated as follows.
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The third term of Eq. (28) is obtained as follows.
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By substituting these facts into Eq. (28), we have
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Finally, we obtain Eq. (27).

B Proof of Theorem 3.5

Theorem 3.5(Trainability). Let ~� ( ` ) 2 RN � N be the gradient covariance with respect to some loss
L , e.g. mean squared error, at thè-th layer. Suppose that the gradient covariance at theL-th layer

is decomposed as~� (L )
�;� 0 =

P K � 1
k=0 ~� k cos

�
� (k )

�;� 0

�
+ ~e, where~� k is the coef�cient of each basis and~e

belongs to the orthogonal complements ofspan(f cos
�

� (k )
�;� 0

�
gK � 1

k=0 ). Then, the gradient covariance
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at the`-th layer is obtained by

~� ( ` )
�;� 0 =

K � 1X

k=0

� L � `
c� ~� k cos

�
� (k )

�;� 0

�
:

Proof. Recall the de�nition of the gradient covariance. We �rst demonstrate the iterated map of the
gradient covariance, starting from this de�nition.
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The Jacobian
@H( ` +1)

�;i

@H( ` )
�;j

is calculated as follows.
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The covariance of Jacobian
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is as follows.
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Then, the covariance of the gradient is given by the following recurrence relation for all�; � 0 2 [N ],
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As with (Schoenholz et al., 2016), we approximate� ( ` +1) � � � since the number of layer` is
assumed to be suf�ciently large. Then, the linear iterated map of the gradient covariance� ( ` +1) 7!
� ( ` ) is given as follows.
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The rank of the linear iterated map� ( ` +1) 7! � ( ` ) is less thanK since the matrix representation of
the linear map can be decomposed into two matrices~A 2 RN 2 � K and ~B 2 RK � N 2

as follows.
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Next, we show that the subspacespan
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From the orthogonality of the cosine and sine function, we obtain
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Hence, we have
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This completes the proof.

C Discussions on the similarity of DCN and CNN

While CNNs perform local convolutions in the spatial domain, FNOs execute convolutions in the
frequency domain, thereby achieving global convolutions in the spatial domain. Our theory for the
FNO and the mean-�eld theory for CNNs (Xiao et al., 2018) share a common focus on the correlation
dynamics� (0) ; � (1) ; : : : ; � (L ) of the spatial representationsH (0) ; H (1) ; : : : ; H (L ) 2 RN � D . The
iterated maps for CNNs and FNOs are obtained as follows.
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i
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�
� (k )
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�
+ � 2

b =: CFNO (� ( ` ) );

where2r + 1 is the number of �lter width andker = f � 2 Zjj � j � r g is set of indices referring to
the elements of the �lter.

When we consider the FNO without mode truncation (K = N=2+1), the propagation of the diagonal
components(�; � ) for any � 2 [N ] is equivalent to a CNN with �lter sizeN performing global
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convolution.
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The �rst equality follows from Perseval's equality and the second from the periodic boundary
condition. In contrast, the propagation of the off-diagonal components differs between CNN and
FNO, and the iterated map is different even in the presence of mode truncation.

Regarding the �xed point, Xiao et al. (2018) demonstrated that any �xed point for the iterated map of
the DCN is also a �xed point for that of the CNN. Consequently, Lemma A.1 indicates that the �xed
points for CNN and FNO are consistent.

The behaviour of the iterated map around �xed points re�ects the nature of each architecture.
CNN possess diagonal eigenspaces associated with eigenvalues� q� and non-diagonal eigenspaces
associated with eigenvalues� c� . FNOs without mode truncation exhibit a similarity, possessing
eigenspaces� q� for zero-frequency and eigenspaces� c� for k-frequencies with diagonal components
removed.

Finally, the iterated map during the backpropagation for CNN and FNO are given by
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wherev� is the variance weight parameter dependent of the �lter position� , i.e., wi;j (� ) �
N (0; � 2v� =D);

P
� 2 ker v� = 1 .

Using the approximation� ( ` +1) � � � as with (Schoenholz et al., 2016), the backpropagation of the
diagonal components(�; � ) of the FNO without mode truncation is equivalent to that of the global
CNN (see Eq. (2.16) in (Xiao et al., 2018)) withv� = 1

N , as shown below:
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0
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N= 2X
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ck cos
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A
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= N� �;� 0

= � c�

N � 1X

� =0

1
N

~� ( ` +1)
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This equivalence suggests that the edge of chaos initialization (e.g., He initialization) is also valid
for the FNO since the problems of gradient vanishing and explosion are determined by the diagonal
components of~� .

D Details of Experimental Setup

In this section, we summarize the detailed setup of the all experiments, including the experiments
in Section 4.

D.1 Datasets

D.1.1 Advection equation

We used the advection equation data published by Takamoto et al. (2022). The advection equation for
the functionu(x; t ) 2 L 2((0; 1) � (0; 2];R) is given by

@t u(x; t ) + �@x (u(x; t )=2) = 0 ; u(x; 0) = u0(x);
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whereu0 2 L 2((0; 1); R) is the initial condition and� 2 R is an advection speed set to2:0. The
exact solution is given asu(x; t ) = u0(x � �t ) for any initial conditionu0.

Only periodic boundary conditions were used in this dataset. The initial conditions are the super-
position of sinusoidal wave given by

u0(x) =
kmaxX

i =1

A i sin (ki x + � i ); (31)

whereki = 2 �
P N

j =1 ni;j =Lx are wave numbers whoseni;j are integer numbers randomly chosen
in [1; kmax ], L x = 1 is the calculation domain size,N = 2 is the number of wave to be added,
andkmax = 8 is the maximum wave number. The amplitudeA i is uniformly chosen in[0; 1],
and the phase� i is the randomly chosen in(0; 2� ). The 2nd-order temporal and spatial upwind
�nite difference scheme was used for generating the data. Settings are described in Appendix D
of (Takamoto et al., 2022).

D.1.2 Burgers' equation

We used the Burgers' equation data published by Takamoto et al. (2022). The Burgers' equation for
the functionu(x; t ) 2 L 2((0; 1) � (0; 2];R) is given by

@t u(x; t ) + @x
�
u2(x; t )=2

�
= �@xx u(x; t );

u(x; 0) = u0(x);

whereu0 2 L 2((0; 1); R) is the initial condition and� is the diffusion coef�cient set to4:0. The
periodic boundary conditions and Equation (31) are used as the initial conditions. The 2nd-order
temporal and spatial upwind �nite difference scheme is used for generating the data. Settings are
described in Appendix D of (Takamoto et al., 2022).

D.1.3 Darcy Flow equation

We used the data of 2D Darcy Flow equation on a regular grid published by Li et al. (2020a). The
Darcy Flow equation for the functionu 2 H 1

0 ((0; 1)2; R+ ) with a Dirichlet boundary is given by

�r � (a(x)r u(x)) = f (x); x 2 (0; 1)2;

u(x) = 0 ; x 2 @(0; 1)2;

wherea 2 L 1 ((0; 1)2; R+ ) is the diffusion coef�cient andf 2 L 2((0; 1)2; R) is the forcing function.
The coef�cientsa was generated by measure� =  ] N (0; (� � + 9 I ) � 2) using the Laplacian with
zero Neumann boundary and the binary point-wise mapping (x) = 12 ( x � 0); 3 (x < 0).
The forcing function is �xedf (x) = 1 . Our aim is to predict the operator mapping the diffusion
coef�cient to the solutiona ! u. The solution functionu was generated by using the second-order
�nite difference scheme on a421� 421grid. Settings are described in Appendix A.3.2 of (Li et al.,
2020c).

D.1.4 Incompressible Navier-Stokes equation

We used the 2D NS equation on the unit torus de�ned by

@t ! (x; t ) + u(x; t ) � r ! (x; t ) = � r 2! (x; t ) + f (x);
r � u(x; t ) = 0 ; ! (x; 0) = ! 0(x);

where! (x; t ) 2 C([0; T]; H r ((0; 1)2; R2)) is the vorticity, ! 0 2 H r ((0; 1)2; R2) is the initial
vorticity, u(x; t ) 2 C([0; T]; H r ((0; 1)2; R2)) is the velocity �eld for any r > 0, � 2 R+
is the viscosity, andf 2 L 2((0; 1)2; R) is the external forcing function de�ned byf (x) =
0:1 (sin(2� (x1 + x2) + cos(2� (x1 + x2)) . The initial vorticity ! 0 was generated by! 0 � � where
� = N (0; 7

3
2 (� � + 49 I ) � 2:5) with periodic boundary conditions. The viscosity was set to1e� 3,

1e� 4, or 1e� 5. Our aim is to predict the operator that maps a solutionu up to time 10 to a solution
up to some later timeT > 10. The data was generated by the pseudo-spectral Crak-Nicholson
second-order method on64 � 64 grid. For the data with� = 1e� 4, the time resolution was also
downsampled by half. Settings are described in Section 5.3 of (Li et al., 2020c).
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Table 2: Training settings

PDE architecture batch size initial lr max_epochs

advection Simpli�ed FNO with Tanh 40 5:0 � 10� 5 200
advection Simpli�ed FNO with ReLU 40 5:0 � 10� 5 200
Burgers' Simpli�ed FNO with Tanh 40 5:0 � 10� 5 200
Burgers' Simpli�ed FNO with ReLU 40 1:0 � 10� 3 200

Darcy �ow 2D FNO with ReLU 20 1:0 � 10� 3 500
Navier-Stokes (� = 1e-3) 2D FNO with ReLU 20 1:0 � 10� 4 500
Navier-Stokes (� = 1e-4) 2D FNO with ReLU 50 2:5 � 10� 3 400
Navier-Stokes (� = 1e-5) 2D FNO with ReLU 20 2:5 � 10� 3 500

D.2 Training settings

Our detailed training settings of the experiments in Section 4 are provided in Table 2. Our experimental
environment consists of an Intel Xeon Plantinum 8360Y (36-core) CPU and a single NVIDIA A100
GPU. Most of our code for experiments are based on the code of PDEBench (https://github.
com/pdebench/PDEBench) (Takamoto et al., 2022). The only modi�cations to the model are to
multiply the outputs (variableout_ft in code of class FNO1d and FNO2d) corresponding to mode
k = 0 ; N=2 by

p
2 and to initialize the weights by Gaussian distribution, as described in Section 3.1.

E Detailed Experimental Analysis

E.1 Analysis of Training Loss

Figure 6a shows the training loss for each epoch of the 32-layer FNOs with parameters� 2 2
f 0:1; 0:5; 1:0; 2:0; 3:0; 4:0g on the NS dataset with� = 1e� 3. When the initial parameter� 2 is too
small, the training loss is not well reduced due to gradient vanishing. On the other hand, when the
initial parameter� 2 is too large, the initial training loss blows up due to gradient exploding. The
proposed edge of chaos initialization smoothly reduces the training loss in the initial epoch and
enables stable training.

E.2 Analysis of Test Performance

The nMSE of the FNOs on test datasets for six distinct PDEs is presented in Tables 3 and 4. Results
are shown only for the FNOs with initial parameters where training was successful in many cases.
For the NS equation with viscosity values of� = 1e� 3; 1e� 4, where suf�cient data is available,
Table 4 shows that best performance is achieved with 8 or 16 layers. This suggests that while shallow
FNOs are currently prevalent, deep FNOs could be advantageous in certain tasks, underscoring the
signi�cance of our analysis of the bias in deep FNOs. Conversely, for other equations, the 4-layer
FNO performs best and deeper FNOs result in a drop in performance even with the edge of chaos
initialization. We will discuss this test performance deterioration in detail.

The over-�tting phenomenon is observed in the Darcy Flow and NS equation datasets with� = 1e� 5,
where only limited training data is available. The training loss for each epoch on the NS equation is
depicted in Fig. 6b. As demonstrated in Fig. 6b, the 16 and 32-layer FNOs yield a lower training
loss than the 4-layer FNO, but exhibit poorer performance on the test dataset as shown in Table 4.
These results suggest over-�tting to the training data, necessitating either abundant training data or
appropriate regularization.

Conversely, the under-�tting phenomenon is apparent in the 1D advection and Burgers' equation
datasets in Table 3. The training loss of the FNO with ReLU activation for each epoch on the Burgers'
equation is presented in Fig. 6c. Figure 6c indicates that the larger the number of layers, the higher
the training loss in the �nal epoch, and the worse the test performance. This under-�tting to the
training data could be attributed to the escalating complexity of the loss landscape as the layer count
increases, a known issue for DCN and CNN (Li et al., 2018). This may be due to the emergence
of local minima corresponding to operators that generate too complex functions, preventing the
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(a) NS eq. (1e-3) (b) NS eq. (1e-5) (c) Burgers' eq.

Figure 6: Training Loss Curve. (a): training loss curve of the 32-layer original FNOs with varying
initial parameters� 2 2 f 0:1; 0:5; 1:0; 2:0; 3:0; 4:0g, on the NS equation with� = 1e� 3. (b): training
loss curve of the original FNOs with an initial parameter� 2 = 2 :0 with a varying number of layers
L 2 f 4; 8; 16; 32g on the NS equation with� = 1e� 5. (c): training loss curve of the simpli�ed
FNOs with ReLU activation and the initial parameter� 2 = 2 :0 with varying number of layers
L 2 f 4; 8; 16; 32g on the Burgers' equation.

Table 3: Test performance measured by nMSE of 1D simpli�ed FNO on 1D PDEs

nMSE Layers Advection Burgers'
Tanh ReLU Tanh ReLU

� 2 = 1 :0

4 0.013 0.015 0.0055 0.00088
8 0.013 0.015 0.0069 0.0012
16 0.013 0.015 0.0068 0.0016
32 0.016 0.018 0.0071 0.0041

� 2 = 2 :0

4 0.013 0.017 0.0036 0.00098
8 0.012 0.018 0.0034 0.0011
16 0.012 0.020 0.0050 0.0016
32 0.014 0.024 0.0062 0.0027

� 2 = 3 :0

4 0.013 0.019 0.0044 0.00096
8 0.014 0.022 0.0042 0.0012
16 0.020 0.032 0.0060 0.0016
32 0.053 0.059 0.0093 0.0045

attainment of parameters that achieve global minima. This issue could be mitigated by introducing
more suitable regularization, an appropriate optimizer, or a skip connection (Tran et al., 2022).

Our theory and experiments suggest that the training of deep FNOs has suffered from problems
including gradient vanishing and exploding due to improper initialization, over-�tting caused by
insuf�cient training data, and under-�tting caused by loss landscapes with strong non-convexity.
While our edge of chaos initialization prevents the gradient vanishing and exploding, techniques to
solve over-�tting and under-�tting problems are still needed in practice.

F Visualization of Forward Propagation

We visualized the behavior of the simpli�ed FNO's covariance matrix� ( ` ) with varying initialization
parameters� 2 2 f 0:1; 1:0; 2:0; 4:0g and activation functions. The FNO, with a width ofD = 1024,
was used and the input was sampled from the standard normal distribution with a spatial size of
N = 32. The results of the FNO with Tanh activation, both with and without mode truncation, are
shown in Figs. 7 and 8 and Figs. 9 and 10 respectively. Similarly, the results of the FNO with ReLU
activation, both with and without mode truncation, are displayed in Figs. 11 and 12 and Figs. 13
and 14 respectively. In the ordered phase, all �gures illustrate convergence to the �xed point� � where
c� = 1 , with the rate of convergence increasing as the parameter� 2 decreases. In the chaotic phase,
the activation function dictates the covariance behavior. Without mode truncation, the covariance
behavior of the FNO is identical to those of the DCN; otherwise non-uniform, FNO-speci�c periodic
covariance is exhibited.
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Table 4: Test performance measured by nMSE of 2D original FNO with ReLU activation on Darcy
Flow and NS equation.

nMSE Layers Darcy Flow Navier-Stokes
� = 1 e� 3 � = 1 e� 4 � = 1 e� 5

� 2 = 1 :0

4 0:025 0:0063 0:18 0:10
8 0:028 0:0047 0:14 0:094
16 0:035 0:0048 0:12 0:12
32 0:56 0:0057 0:13 0:16

� 2 = 2 :0

4 0:029 0:0075 0:18 0:10
8 0:036 0:0057 0:14 0:11
16 0:041 0:0057 0:12 0:11
32 0:042 0:0072 0:13 0:18

� 2 = 3 :0

4 0:033 0:0089 0:18 0:10
8 0:040 0:0080 0:14 0:11
16 0:052 0:0098 0:13 0:13
32 0:16 0:028 0:14 0:19

Figure 7: Visualization of the correlation� ( ` )
�;� 0=

q
� ( ` )

�;� � ( ` )
� 0;� 0 for the simpli�ed FNO with Tanh

activation and no mode truncation.
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Figure 8: Visualization of the covariance� ( ` ) for the simpli�ed FNO with Tanh activation and no
mode truncation.

Figure 9: Visualization of the correlation� ( ` )
�;� 0=

q
� ( ` )

�;� � ( ` )
� 0;� 0 for the simpli�ed FNO with Tanh

activation and the Fourier modeK = 5 .
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